JP3050763B2 - Heat resistant automotive terminal materials - Google Patents

Heat resistant automotive terminal materials

Info

Publication number
JP3050763B2
JP3050763B2 JP6274922A JP27492294A JP3050763B2 JP 3050763 B2 JP3050763 B2 JP 3050763B2 JP 6274922 A JP6274922 A JP 6274922A JP 27492294 A JP27492294 A JP 27492294A JP 3050763 B2 JP3050763 B2 JP 3050763B2
Authority
JP
Japan
Prior art keywords
stress relaxation
ppm
less
resistance
resistant automotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6274922A
Other languages
Japanese (ja)
Other versions
JPH08134565A (en
Inventor
睦夫 阪本
定雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP6274922A priority Critical patent/JP3050763B2/en
Publication of JPH08134565A publication Critical patent/JPH08134565A/en
Application granted granted Critical
Publication of JP3050763B2 publication Critical patent/JP3050763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温における耐応力緩
和特性及び耐マイグレーション特性に優れた耐熱性自動
車端子用材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant automotive terminal material having excellent stress relaxation resistance and migration resistance at high temperatures.

【0002】[0002]

【従来の技術】自動車配線の接続部に使用される端子あ
るいはコネクタと称されるいわゆる端子用材料には、従
来、成形性(曲げ加工性)、ばね特性並びに導電性に優
れた黄銅条をプレス成形加工したものが主に使用されて
いた。
2. Description of the Related Art Conventionally, brass strips excellent in formability (bending workability), spring characteristics and conductivity have been used for so-called terminal materials used as terminals or connectors used in connection parts of automobile wiring. Molded products were mainly used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近年自
動車用電装部品における小型軽量化の傾向を受けて、成
形性、ばね特性、導電性等、従来より要求されている特
性の一層の向上が求められているのはもちろんである
が、更に自動車の高性能化が進められるにつれて、使用
環境温度が高温化し、また水分を含む環境における耐マ
イグレーション特性等の要求が一段と厳しくなる傾向に
ある。即ち近年は、特に過酷な使用環境における信頼性
が一段と要求されるようになり、端子、コネクタ等の部
品についても150℃までの高温における信頼性評価に
耐えることが要求される場合がしばしばであり、もは
や、黄銅等の従来の合金では対応が困難な状況となって
いる。
However, in recent years, with the trend of miniaturization and weight reduction of electric parts for automobiles, further improvement of conventionally required characteristics such as formability, spring characteristics and conductivity has been required. Needless to say, as the performance of automobiles is further improved, the usage environment temperature is increased, and requirements such as anti-migration properties in an environment containing moisture tend to be more severe. That is, in recent years, reliability in particularly severe use environments has become more demanded, and it is often required that parts such as terminals and connectors are also required to withstand reliability evaluation at high temperatures up to 150 ° C. It is no longer possible to deal with conventional alloys such as brass.

【0004】[0004]

【課題を解決するための手段】本発明は上記の点に鑑み
種々検討の結果、高温における耐応力緩和特性及び耐マ
イグレーション特性に優れた耐熱性自動車端子用材料を
開発したものである。
According to the present invention, as a result of various studies in view of the above points, a material for a heat-resistant automotive terminal having excellent stress relaxation resistance and migration resistance at high temperatures has been developed.

【0005】即ち、本願発明は、Zn:28〜37wt
%、Sn:0.3〜2.0wt%を含有し、残部が実質
的に銅である銅合金であって、不純物元素の含有量が、
Al:50ppm未満、Fe:50ppm未満、Ni:
50ppm未満、P:50ppm未満であることを特徴
とする耐熱性自動車端子用材料である。尚、高温におけ
る耐応力緩和特性及び曲げ加工性の点から材料の結晶粒
度は10〜30μmの範囲内であることが好ましい。
[0005] That is, the present invention provides a method for producing Zn: 28 to 37 wt.
%, Sn: a copper alloy containing 0.3 to 2.0 wt%, with the balance being substantially copper, wherein the content of the impurity element is:
Al: less than 50 ppm, Fe: less than 50 ppm, Ni:
A heat-resistant automotive terminal material characterized by having a content of less than 50 ppm and less than 50 ppm of P. The crystal grain size of the material is preferably in the range of 10 to 30 μm from the viewpoint of stress relaxation resistance at high temperature and bending workability.

【0006】[0006]

【作用】本発明において、主合金元素であるZnは、古
くから知られているように銅の成形加工性及び強度を増
加させる効果があるが、28wt%未満ではその効果が
不充分であり、37wt%を越えると耐応力緩和特性が
低下すると共に、圧延加工性も悪くなる。よってZn含
有量は28〜37wt%とする。Snは、Znと相互作
用をおよぼし、Cu−Zn合金の高温における耐応力緩
和特性及び耐マイグレーション特性を改善する効果があ
るため、小型化され、高性能化の進む自動車に使用され
る端子用材料における添加元素としては、最も適した添
加元素である。なお、黄銅の強度、耐食性等を改善する
ためにSnを添加することは、従来より公知の技術では
あるが、上記Sn添加により、近年自動車端子用材料に
要求されている高温での耐応力緩和特性及び耐マイグレ
ーション特性が改善されることは、本願発明により始め
て明らかとなった技術思想である。ここで、Sn含有量
を0.3〜2.0%の範囲内に限定したのは、0.3%
未満ではその効果が十分ではなく、添加量の増加と共に
その効果が増大するが、2%を超える場合にはその効果
が飽和する一方、合金の圧延加工性を悪化させるために
製造歩留まりが悪く、材料のコストを高くするからであ
る。
In the present invention, Zn as a main alloying element has an effect of increasing the formability and strength of copper as has been known for a long time, but if less than 28 wt%, the effect is insufficient. If it exceeds 37% by weight, the stress relaxation resistance decreases, and the rolling processability also deteriorates. Therefore, the Zn content is set to 28 to 37 wt%. Since Sn interacts with Zn and has an effect of improving the stress relaxation resistance and migration resistance of Cu-Zn alloy at high temperatures, it is a terminal material used in automobiles that are miniaturized and have higher performance. Is the most suitable additive element. Although the addition of Sn to improve the strength, corrosion resistance, etc. of brass is a conventionally known technique, the addition of Sn reduces the stress relaxation at high temperatures recently required for automotive terminal materials. The improvement in the characteristics and the anti-migration characteristics is a technical idea first clarified by the present invention. Here, the reason why the Sn content was limited within the range of 0.3 to 2.0% was that the Sn content was 0.3%.
If it is less than 2%, the effect is not sufficient, and the effect increases with an increase in the amount of addition. However, if it exceeds 2%, the effect is saturated, but the production yield is poor because the workability of the alloy is deteriorated. This is because it increases the cost of the material.

【0007】本願発明においては、Zn、Snを所定量
含有し、残部が実質的にCuであるとしたが、上記「実
質的にCu」とは、「通常、黄銅中に微量存在してもそ
の特性をほとんど変化させない元素を不純物として含む
もの」をいい、通常は、100ppm程度の不純物まで
許容される。しかし、本発明において、Al、Fe、N
iおよびPについては、その内の1つまたは複数の元素
が50ppmを超えると、上記のSn−Znの良好な相
互作用を阻害する結果、高温における応力緩和特性およ
び耐マイグレーション特性共に劣化させるのみならず、
圧延加工性を著しく阻害する結果、材料のコストを高く
する欠点のあることが判った。よって、Al、Fe、N
iおよびP量はいずれも50ppm以下に限定する。さ
らに、合金組成が本発明の範囲内であっても、結晶粒度
が10μm未満、あるいは30μmを超える場合は、高
温における耐応力緩和特性が若干低下するので、結晶粒
度は、10〜30μmの範囲内にすることが特に好まし
い。なお、本発明による耐熱性自動車端子用材料の形状
は、板、条、線のいずれでも良く、特に限定されるもの
ではないが、通常は板または条を所望の形状にプレス成
形加工して用いられることが多い。
In the present invention, it is assumed that Zn and Sn are contained in predetermined amounts, and the balance is substantially Cu. Includes an element that does not substantially change its characteristics as an impurity ", and usually, an impurity of about 100 ppm is permissible. However, in the present invention, Al, Fe, N
As for i and P, if one or more of the elements exceeds 50 ppm, the above-described favorable interaction of Sn—Zn is inhibited, and only the stress relaxation property and the migration resistance property at high temperatures are deteriorated. Without
As a result of significantly impairing the rollability, it was found that there was a drawback that the cost of the material was increased. Therefore, Al, Fe, N
Both i and P contents are limited to 50 ppm or less. Furthermore, even if the alloy composition is within the range of the present invention, when the crystal grain size is less than 10 μm or more than 30 μm, the stress relaxation resistance at high temperatures is slightly reduced, so that the crystal grain size is in the range of 10 to 30 μm. Is particularly preferred. The shape of the heat-resistant automotive terminal material according to the present invention may be any of a plate, a strip, and a wire, and is not particularly limited. Is often done.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【実施例1】表1、表2に示す合金組成(本発明例N
o.1〜41)、並びに表3に示す合金組成(比較例N
o.1〜17、従来例No.1)に配合した原料を溶解
し、連続鋳造により厚さ100mm、幅500mm、長
さ1000mmの鋳塊となし、室温まで冷却した。しか
る後、当該鋳塊を非酸化性雰囲気中で800℃に再加熱
してから、大気中に取り出し、厚さ10mmまで熱間圧
延した。熱間圧延上がり温度は、約400℃となってい
たが、その後室温まで冷却し、表面の酸化スケールを切
削加工により除去した後、厚さ2mmまで冷間圧延し
た。この際、圧延加工性が悪く、板のコバ割れが著しく
発生したものについては、表1〜表3の「コバ割れ性」
の欄に「×印」又は「××印」を付した。続いて、条の
コバをトリミングした後、非酸化性雰囲気中で650℃
で2時間焼鈍し、さらに厚さ0.5mmまで冷間圧延
し、次に非酸化性雰囲気中で700℃で走間焼鈍した
後、厚さ0.25mmに仕上げ圧延した。尚、上記走間
焼鈍時における条の炉中走行速度を変化させることによ
り、仕上げ圧延後の条材の結晶粒度を種々に変化させ
た。
Example 1 Alloy compositions shown in Tables 1 and 2 (Example N of the present invention)
o. 1-4) and the alloy compositions shown in Table 3 (Comparative Example N)
o. Nos. 1 to 17, conventional example Nos. The raw material blended in 1) was melted, formed into an ingot having a thickness of 100 mm, a width of 500 mm, and a length of 1000 mm by continuous casting, and cooled to room temperature. Thereafter, the ingot was reheated to 800 ° C. in a non-oxidizing atmosphere, taken out into the atmosphere, and hot-rolled to a thickness of 10 mm. Although the hot-rolling rise temperature was about 400 ° C., the temperature was then cooled to room temperature, the oxide scale on the surface was removed by cutting, and then cold-rolled to a thickness of 2 mm. At this time, those having poor rolling workability and marked edge cracking of the plate are referred to as “edge cracking” in Tables 1 to 3.
Are marked with “×” or “XX”. Subsequently, after trimming the edge of the strip, the temperature is 650 ° C. in a non-oxidizing atmosphere.
For 2 hours, further cold-rolled to a thickness of 0.5 mm, and then annealed at 700 ° C. in a non-oxidizing atmosphere, followed by finish rolling to a thickness of 0.25 mm. In addition, the crystal grain size of the strip after finish rolling was variously changed by changing the running speed of the strip in the furnace during the annealing during running.

【0009】このようにして得られた条材について、結
晶粒度を測定すると共に、下記の方法により、耐応力緩
和特性及び耐マイグレーション特性を評価した。それら
の結果を表1〜表3に併記する。 〔耐応力緩和特性〕:日本電子材料工業会標準規格(E
MASー3003)により、評価した。両持ち梁方式に
より、最大応力として耐力の40%を負荷し、150℃
で1000時間保持後の応力緩和率を測定した。 〔耐マイグレーション特性〕:図2に示す試験装置を用
い、5分間の20ppmNaCl滴下と20分間の乾燥
サイクルを100サイクル繰り返し行い、1.0mmの
間隔で配置した2枚の条材(長さ50mm)間に流れる
漏洩電流(マイグレーション電流)の最大値を測定し
た。
With respect to the strip obtained in this manner, the grain size was measured, and the stress relaxation resistance and the migration resistance were evaluated by the following methods. The results are shown in Tables 1 to 3. [Stress relaxation resistance]: Japan Electronic Materials Industry Association Standard (E
MAS-3003). With a double-supported beam system, a maximum stress of 40% of the proof stress is applied, and 150 ° C
The stress relaxation rate after holding for 1000 hours was measured. [Migration resistance]: Two strips (length 50 mm) arranged at 1.0 mm intervals using a test apparatus shown in FIG. 2 and repeating 20 cycles of 20 ppm NaCl dropping for 5 minutes and drying cycle for 20 minutes. The maximum value of the leakage current (migration current) flowing therebetween was measured.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】表1〜表3から明らかなように、本発明例
No.1〜41はいずれも従来例No.1に比べて、高
温での耐応力緩和特性及び耐マイグレーション特性に優
れており、応力緩和率は65%以下、マイグレーション
電流は0.25A以下となっている。結晶粒度が10〜
30μmの範囲内である本発明例No.1〜29、3
1、32、37、38は特に耐応力緩和特性に優れてい
て、応力緩和率が60%以下となっている。一方、Z
n、Snの含有量が本願の範囲内より少ない比較例N
o.1、2、15、16及びZnの含有量が本願の範囲
内より多い比較例No.17はいずれも従来例No.1
と同程度の耐応力緩和特性であり、比較例No.17は
圧延加工性も非常に悪い。Snの含有量が本願の範囲内
より多い比較例No.14は耐応力緩和特性は良好であ
るが、圧延加工性が非常に悪い。又、Zn、Snの含有
量が本願の範囲内であっても、Al、Fe、Ni、P等
の不純物元素の内少なくとも1種を50ppm以上含有
する比較例NO.3〜13はいずれも本発明例に比べて
耐応力緩和特性並びに耐マイグレーション特性が著しく
劣っており、圧延加工性も悪い。
As is clear from Tables 1 to 3, the present invention example No. Nos. 1 to 41 are all conventional example Nos. As compared with No. 1, it has excellent stress relaxation resistance and migration resistance at high temperatures, a stress relaxation rate of 65% or less, and a migration current of 0.25 A or less. Grain size is 10
Inventive Example No. within the range of 30 μm. 1-29, 3
1, 32, 37, and 38 are particularly excellent in stress relaxation resistance, and have a stress relaxation rate of 60% or less. On the other hand, Z
Comparative Example N in which the contents of n and Sn are less than the range of the present application
o. Comparative Examples Nos. 1, 2, 15, 16 and Zn in which the content of Zn was larger than the range of the present application. 17 are conventional example Nos. 1
It has the same stress relaxation resistance as that of Comparative Example No. No. 17 also has very poor rolling workability. Comparative Example No. in which the Sn content was higher than the range of the present application. No. 14 has good stress relaxation resistance but very poor rolling workability. Further, even when the contents of Zn and Sn are within the range of the present application, Comparative Example No. containing at least one of the impurity elements such as Al, Fe, Ni, and P at 50 ppm or more. All of Nos. 3 to 13 are significantly inferior in stress relaxation resistance and migration resistance as compared with the examples of the present invention, and have poor rolling workability.

【0014】[0014]

【実施例2】実施例1で得られた本発明例No.8、比
較例No.13及び従来例No.1の条材について、試
験温度を40〜160℃の範囲内で変化させた以外は、
実施例1と同様の方法により耐応力緩和特性を評価し、
その結果を図1に示した。図1から明らかなように、本
発明例No.8の条材は40〜160℃の範囲内のいず
れの温度においても比較例No.13及び従来例No.
1の条材に比べて、耐応力緩和特性に優れており、高温
になる程その傾向が著しい。
Example 2 Inventive Example No. 1 obtained in Example 1. 8, Comparative Example No. 13 and Conventional Example No. Except that the test temperature was changed within the range of 40 to 160 ° C. for the material 1
The stress relaxation resistance was evaluated in the same manner as in Example 1,
The result is shown in FIG. As is clear from FIG. In Comparative Example No. 8 at any temperature in the range of 40 to 160 ° C. 13 and Conventional Example No.
As compared with the strip material No. 1, the material is excellent in stress relaxation resistance, and the tendency is remarkable at higher temperatures.

【0015】[0015]

【発明の効果】以上に述べたように、本発明による耐熱
性自動車端子用材料は高温における耐応力緩和特性及び
耐マイグレーション特性に優れており、工業上顕著な効
果を奏する。
As described above, the heat-resistant automotive terminal material according to the present invention is excellent in stress relaxation resistance and migration resistance at high temperatures, and has industrially remarkable effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例、比較例及び従来例における試験温度
と応力緩和率との関係を示す説明図である。
FIG. 1 is an explanatory diagram showing a relationship between a test temperature and a stress relaxation rate in an example of the present invention, a comparative example, and a conventional example.

【図2】マイグレーション電流の測定方法を示す説明図
である。
FIG. 2 is an explanatory diagram showing a method for measuring a migration current.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Zn:28〜37wt%、Sn:0.3
〜2.0wt%を含有し、残部が実質的に銅である銅合
金であって、不純物元素の含有量が、Al:50ppm
未満、Fe:50ppm未満、Ni:50ppm未満、
P:50ppm未満であることを特徴とする耐熱性自動
車端子用材料。
1. Zn: 28-37 wt%, Sn: 0.3
A copper alloy containing about 2.0 wt% and the balance being substantially copper, wherein the content of the impurity element is Al: 50 ppm
, Fe: less than 50 ppm, Ni: less than 50 ppm,
P: less than 50 ppm, heat-resistant automotive terminal material.
【請求項2】 結晶粒度が10〜30μmであることを
特徴とする請求項1記載の耐熱性自動車端子用材料。
2. The heat resistant automotive terminal material according to claim 1, wherein the crystal grain size is 10 to 30 μm.
JP6274922A 1994-11-09 1994-11-09 Heat resistant automotive terminal materials Expired - Fee Related JP3050763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6274922A JP3050763B2 (en) 1994-11-09 1994-11-09 Heat resistant automotive terminal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6274922A JP3050763B2 (en) 1994-11-09 1994-11-09 Heat resistant automotive terminal materials

Publications (2)

Publication Number Publication Date
JPH08134565A JPH08134565A (en) 1996-05-28
JP3050763B2 true JP3050763B2 (en) 2000-06-12

Family

ID=17548418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6274922A Expired - Fee Related JP3050763B2 (en) 1994-11-09 1994-11-09 Heat resistant automotive terminal materials

Country Status (1)

Country Link
JP (1) JP3050763B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000064324A (en) * 1996-09-05 2000-11-06 후루까와 준노스께 Copper alloy for electronic device
JP4129807B2 (en) * 1999-10-01 2008-08-06 Dowaホールディングス株式会社 Copper alloy for connector and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08134565A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
KR101638272B1 (en) Cu-Ni-Si TYPE COPPER ALLOY
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP3413864B2 (en) Connector for electrical and electronic equipment made of Cu alloy
JPH0478704B2 (en)
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JP3050763B2 (en) Heat resistant automotive terminal materials
JPS6256937B2 (en)
JP2000129377A (en) Copper-base alloy for terminal
JPH0565571B2 (en)
JPS6142772B2 (en)
JP2514234B2 (en) Copper alloy for terminals and connectors with excellent strength and conductivity
JPH0118139B2 (en)
JPH0469217B2 (en)
JP4728535B2 (en) Copper-based alloy sheet for wiring components for electronic and electrical equipment
JPH02107732A (en) High strength and high conductivity copper base alloy
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0416534B2 (en)
JP2595095B2 (en) Copper alloy for terminals and connectors
JPH01189805A (en) Copper alloy for wire harness terminal
JP2673973B2 (en) High-strength Cu alloy with excellent hot rolling cracking resistance
JPS60218442A (en) Copper alloy for lead frame
JPS6260850A (en) Manufacture of copper alloy having superior stress relaxation resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees