JP2000129377A - Copper-base alloy for terminal - Google Patents

Copper-base alloy for terminal

Info

Publication number
JP2000129377A
JP2000129377A JP30759898A JP30759898A JP2000129377A JP 2000129377 A JP2000129377 A JP 2000129377A JP 30759898 A JP30759898 A JP 30759898A JP 30759898 A JP30759898 A JP 30759898A JP 2000129377 A JP2000129377 A JP 2000129377A
Authority
JP
Japan
Prior art keywords
weight
copper
composition
alloy
stress relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30759898A
Other languages
Japanese (ja)
Inventor
Kazuhito Ichinose
一仁 一之瀬
Toshiyuki Osako
敏行 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP30759898A priority Critical patent/JP2000129377A/en
Publication of JP2000129377A publication Critical patent/JP2000129377A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper-base alloy for a terminal, excellent in all the characteristics of tensile strength, spring limit value, electric conductivity, property of proof stress relaxation, and corrosion resistance. SOLUTION: This copper-base alloy has a composition which consists of, by weight, 0.5-3.0% Ni, 0.5-2.0% Sn, 0.025-1.0% P, and the balance Cu with inevitable impurities and also contains, if necessary, 0.01-2.0% Zn and in which the ratio between the Ni wt.% and the P wt.% takes a value less than 20. Further, this alloy has a structure where part of the contained Ni and P are finely and uniformly precipitated in the form of an Ni-P intermetallic compound in a matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車のコネクタ
用端子などに用いられる端子用銅基合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for a terminal used for a terminal of a connector of an automobile or the like.

【0002】[0002]

【従来の技術】近年のエレクトロニクスの発達に伴い、
自動車のコネクタ用端子などの端子は、より一層の高密
度化、小型化、軽量化、そして高信頼性が求められるよ
うになってきている。また、エンジンの高性能化により
エンジンルーム内の温度が上昇するに伴い、エンジンル
ームに使用される端子も、より高信頼性および高耐熱性
が要求されるようになってきている。
2. Description of the Related Art With the recent development of electronics,
2. Description of the Related Art Terminals such as automotive connector terminals are required to have higher density, smaller size, lighter weight, and higher reliability. In addition, as the temperature in the engine room rises due to the high performance of the engine, terminals used in the engine room are also required to have higher reliability and higher heat resistance.

【0003】自動車のコネクタ用端子などの端子の信頼
性が向上するためには、具体的には、該端子が強度、ば
ね限界値、導電率、耐応力緩和特性、耐食性に優れるこ
とが必要である。
In order to improve the reliability of a terminal such as a connector terminal of an automobile, specifically, the terminal needs to have excellent strength, spring limit value, conductivity, stress relaxation resistance, and corrosion resistance. is there.

【0004】従来より、自動車のコネクタ用端子などの
端子には、黄銅、りん青銅や、Cu−Ni−Sn−P系
合金などの銅基合金が使用されていた。
Conventionally, copper-based alloys such as brass, phosphor bronze, and Cu-Ni-Sn-P alloys have been used for terminals such as connector terminals of automobiles.

【0005】しかしながら、端子用銅基合金として従来
用いられてきた黄銅は、安価ではあるものの、導電率が
例えばC2600で27%IACSと低く、また耐食性
や耐応力緩和特性が問題になることもあった。
However, brass, which has been conventionally used as a copper-based alloy for terminals, is inexpensive, but has a low conductivity of, for example, 27% IACS at C2600, and may have problems in corrosion resistance and stress relaxation resistance. Was.

【0006】また、りん青銅は、強度は優れているが、
導電率が例えばC5210で12%IACS程度と低
く、また耐応力緩和特性に問題があり、価格的にも高か
った。
[0006] Phosphor bronze has excellent strength,
For example, the conductivity was as low as about 12% IACS for C5210, and there was a problem in the stress relaxation resistance, and the price was high.

【0007】さらに、Cu−Ni−Sn−P系合金は、
黄銅、りん青銅の欠点を補うため開発されたものであ
る。しかし、例えばCu−1.0Ni−0.9Sn−
0.05P(数値は重量%)は、強度・耐応力緩和特性
は優れているものの、導電率は38%IACSと低く、
十分満足できる端子用銅基合金とはいえなかった。
Further, a Cu—Ni—Sn—P alloy is
It was developed to compensate for the shortcomings of brass and phosphor bronze. However, for example, Cu-1.0Ni-0.9Sn-
0.05P (the numerical value is% by weight) has excellent strength and stress relaxation resistance, but has a low electrical conductivity of 38% IACS.
The copper base alloy for terminals was not sufficiently satisfactory.

【0008】従って、上記従来の材料を用いて製造され
た端子は、端子の自己発熱による酸化、めっき剥離、応
力緩和、回路の電圧降下、ハウジングの軟化・変形が生
じる可能性を有していた。
Therefore, terminals manufactured using the above-mentioned conventional materials have a possibility that oxidation, plating peeling, stress relaxation, circuit voltage drop, and softening / deformation of the housing due to self-heating of the terminals may occur. .

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、引張
強さ、ばね限界値、導電率、耐応力緩和特性、耐食性の
すべてに優れた端子用銅基合金を提供することを目的と
する。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a copper base alloy for terminals which is excellent in all of tensile strength, spring limit value, electric conductivity, stress relaxation resistance and corrosion resistance.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく、前記課題について鋭意検討した結果、Cu
−Ni−Sn−P系合金、およびさらにZnを添加した
Cu−Ni−Sn−P−Zn系合金の最適組成を選ぶこ
とにより、優れた引張強さ、ばね限界値、導電率、耐応
力緩和特性および耐食性が得られることを見出した。
Means for Solving the Problems The present inventor has conducted intensive studies on the above-mentioned problems in order to achieve the above object.
Excellent tensile strength, spring limit value, electrical conductivity, stress relaxation by selecting the optimal composition of -Ni-Sn-P-based alloy and Cu-Ni-Sn-P-Zn-based alloy further added with Zn It has been found that properties and corrosion resistance can be obtained.

【0011】すなわち、本発明の端子用銅基合金は、重
量%で、Ni:0.5〜3.0%(好ましくは1.0〜
2.0%)、Sn:0.5〜2.0%(好ましくは0.
5〜1.5%)、P:0.025〜1.0%(好ましく
は0.05〜0.70%)、必要によりZn:0.01
〜2.0%(好ましくは0.1〜1.0%)を含有し、
残部がCuと不可避不純物からなり、かつ該Ni重量%
と該P重量%との比の値が20より小さい組成を有する
銅基合金であって、含有されているNiとPとの一部が
Ni−P系金属間化合物となってマトリックス中に均一
微細に析出した組織を有する。
That is, the copper-based alloy for a terminal of the present invention has a Ni content of 0.5 to 3.0% by weight (preferably 1.0 to 3.0%).
2.0%), Sn: 0.5 to 2.0% (preferably 0.1%).
5 to 1.5%), P: 0.025 to 1.0% (preferably 0.05 to 0.70%), and if necessary, Zn: 0.01
~ 2.0% (preferably 0.1-1.0%),
The balance consists of Cu and unavoidable impurities, and
A copper-based alloy having a composition in which the ratio of the ratio by weight to the weight percent of P is less than 20, wherein a part of the contained Ni and P becomes a Ni-P-based intermetallic compound and is uniform in the matrix. It has a finely precipitated structure.

【0012】上記本発明の端子用銅基合金によれば、引
張強さ:500MPa以上、ばね限界値:400MPa
以上、導電率:45%IACS以上、かつ応力緩和率:
10%以下が実現される。
According to the copper alloy for terminals of the present invention, the tensile strength is not less than 500 MPa, and the spring limit value is 400 MPa.
Above, conductivity: 45% IACS or more, and stress relaxation rate:
10% or less is realized.

【0013】[0013]

【発明の実施の形態】本発明の端子用銅基合金の添加元
素の作用効果、および添加元素組成範囲の限定理由につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The function and effect of the additional element of the copper-based alloy for terminals of the present invention and the reason for limiting the composition range of the additional element will be described.

【0014】(1)Ni Niは、Cuマトリックス中に固溶して、強度、ばね限
界値および耐応力緩和特性を向上させる。また、共存す
るPと金属間化合物(Ni−P系)を形成しマトリック
ス中に均一微細に析出して、強度、ばね限界値、導電
率、耐応力緩和特性および曲げ加工性を向上させる。
(1) Ni Ni forms a solid solution in a Cu matrix to improve strength, spring limit value and stress relaxation resistance. In addition, coexisting P and an intermetallic compound (Ni-P type) are formed and uniformly and finely precipitated in the matrix, thereby improving strength, spring limit value, electrical conductivity, stress relaxation resistance, and bending workability.

【0015】上記Niの作用効果は、Ni組成が0.5
重量%未満では十分得ることができず、Ni組成が3.
0重量%を超えると飽和してしまう。従って、Ni組成
は0.5重量%以上が必要で(1.0重量%以上が好ま
しく)、3.0重量%以下が好ましい(2.0重量%以
下がより好ましい)。
The effect of Ni is as follows.
If the content is less than 3% by weight, it cannot be sufficiently obtained, and the Ni composition is 3.
If it exceeds 0% by weight, it will be saturated. Therefore, the Ni composition must be 0.5% by weight or more (preferably 1.0% by weight or more), and preferably 3.0% by weight or less (more preferably 2.0% by weight or less).

【0016】(2)Sn Snは、Cuマトリックス中に固溶して、強度、ばね限
界値および耐食性を向上させる。
(2) Sn Sn forms a solid solution in a Cu matrix and improves the strength, the spring limit value, and the corrosion resistance.

【0017】上記Snの作用効果は、Sn組成が0.5
重量%未満では十分得ることができず、Sn組成が2.
0重量%を超えると飽和してしまう。従って、Sn組成
は0.5重量%以上が必要で、2.0重量%以下が好ま
しい(1.5重量%以下がより好ましい)。
The effect of the above-mentioned Sn is as follows.
If it is less than 10% by weight, it cannot be obtained sufficiently, and the Sn composition is not more than 2.
If it exceeds 0% by weight, it will be saturated. Therefore, the Sn composition needs to be 0.5% by weight or more, preferably 2.0% by weight or less (more preferably 1.5% by weight or less).

【0018】(3)P Pは、溶製時に溶湯の脱酸剤として作用する。端子用銅
基合金中では、Cuマトリックス中に固溶しているだけ
でなく、共存するNiとNi−P系金属間化合物を形成
しマトリックス中に均一微細に析出して、強度、ばね限
界値、導電率、耐応力緩和特性および曲げ加工性を向上
させる。
(3) PP acts as a deoxidizing agent for molten metal during melting. In the copper base alloy for terminals, not only solid solution in the Cu matrix but also coexisting Ni and Ni-P based intermetallic compound are formed and uniformly and finely precipitated in the matrix, strength and spring limit value. Improves electrical conductivity, stress relaxation resistance and bending workability.

【0019】上記Pの作用効果は、P組成が0.025
重量%未満では十分得ることができず、P組成が1.0
重量%を超えると飽和してしまう。従って、P組成は
0.025重量%以上が必要で(0.05重量%以上が
好ましく)、1.0重量%以下が好ましい(0.70重
量%以下がより好ましい)。
The effect of P is that the P composition is 0.025
If the content is less than 1.0% by weight, it cannot be sufficiently obtained, and the P composition is 1.0% or less.
If the content exceeds% by weight, saturation occurs. Therefore, the P composition needs to be 0.025% by weight or more (preferably 0.05% by weight or more), and preferably 1.0% by weight or less (more preferably 0.70% by weight or less).

【0020】(4)Ni重量%とP重量%との比の値 微細なNi−P系金属間化合物を均一に析出させるため
に、Ni重量%とP重量%との比の値を20より小さく
する必要がある。この値が20以上になると、Ni−P
系金属間化合物が均一微細に析出し難いために、導電率
や曲げ加工性が低下しやすい。
(4) The value of the ratio of Ni weight% to P weight% In order to uniformly precipitate a fine Ni-P intermetallic compound, the value of the ratio of Ni weight% to P weight% is set to 20. Need to be smaller. When this value exceeds 20, Ni-P
Since it is difficult for the intermetallic compound to precipitate uniformly and finely, the electrical conductivity and bending workability are apt to decrease.

【0021】(5)Zn Znは、めっき耐候性を向上させる。(5) Zn Zn improves the weatherability of plating.

【0022】上記Znの作用効果は、Zn組成が0.0
1重量%未満では十分得ることができず、Zn組成が
2.0重量%を超えると飽和してしまう。従って、Zn
組成は0.01重量%以上が必要で(0.1重量%以上
が好ましく)、2.0重量%以下が好ましい(1.0重
量%以下がより好ましい)。
The effect of Zn is as follows.
If it is less than 1% by weight, it cannot be obtained sufficiently, and if the Zn composition exceeds 2.0% by weight, it will be saturated. Therefore, Zn
The composition must be at least 0.01% by weight (preferably at least 0.1% by weight), and is preferably at most 2.0% by weight (more preferably at most 1.0% by weight).

【0023】本発明の端子用銅基合金を製造するには、
例えば次の方法を採用することができる。すなわち、重
量%で、Ni:0.5〜3.0%(好ましくは1.0〜
2.0%)、Sn:0.5〜2.0%(好ましくは0.
5〜1.5%)、P:0.025〜1.0%(好ましく
は0.05〜0.70%)、必要によりZn:0.01
〜2.0%(好ましくは0.1〜1.0%)を含有し、
残部がCuと不可避不純物からなり、かつ該Ni重量%
と該P重量%との比の値が20より小さい組成を有する
合金鋳塊に対して、圧延などの塑性加工と熱処理を繰り
返し施した後、好ましくは60%以上の最終加工率で仕
上げ塑性加工を施す方法である。この方法で熱処理を施
すのは、塑性加工性を上げるとともに、Ni−P系金属
間化合物を均一微細に析出させやすくするためである。
また、最終加工率60%以上の仕上げ塑性加工を施す
と、種々端子の前記特性(引張強さ、ばね限界値、導電
率、応力緩和率)を所望の値に調整しやすい。
To produce the copper alloy for terminals of the present invention,
For example, the following method can be adopted. That is, in weight%, Ni: 0.5 to 3.0% (preferably 1.0 to 3.0%)
2.0%), Sn: 0.5 to 2.0% (preferably 0.1%).
5 to 1.5%), P: 0.025 to 1.0% (preferably 0.05 to 0.70%), and if necessary, Zn: 0.01
~ 2.0% (preferably 0.1-1.0%),
The balance consists of Cu and unavoidable impurities, and
After repeatedly performing plastic working such as rolling and heat treatment on an alloy ingot having a composition with a value of the ratio of P and the P weight% smaller than 20, the finish plastic working is preferably performed at a final working rate of 60% or more. It is a method of applying. The reason for performing the heat treatment by this method is to increase the plastic workability and facilitate the uniform and fine precipitation of the Ni-P intermetallic compound.
Further, when the finish plastic working at a final working ratio of 60% or more is performed, the characteristics (tensile strength, spring limit value, conductivity, stress relaxation rate) of various terminals can be easily adjusted to desired values.

【0024】[0024]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples.

【0025】[実施例1〜12、比較例1、従来例1、
2]表1(後記)に示す組成の合金鋳塊を大気溶解炉を
用いて溶製した。
[Examples 1 to 12, Comparative Example 1, Conventional Example 1,
2] An alloy ingot having a composition shown in Table 1 (described later) was melted using an air melting furnace.

【0026】これらの合金鋳塊を850℃で加熱した
後、厚さ5.0mmまで熱間圧延した。次に、表面の面
削により厚さ4.8mmとした。さらに、冷間圧延と熱
処理を繰り返した後、最終加工率67%の冷間圧延を行
って、板厚0.20mmの板材を得た。
After heating these alloy ingots at 850 ° C., they were hot-rolled to a thickness of 5.0 mm. Next, the surface was chamfered to a thickness of 4.8 mm. Furthermore, after cold rolling and heat treatment were repeated, cold rolling was performed at a final working rate of 67% to obtain a sheet material having a sheet thickness of 0.20 mm.

【0027】上記板材(従来例1、2は除く)について
検鏡した。また、上記板材の引張強さ、ばね限界値、導
電率および応力緩和率を測定し、耐食性および曲げ加工
性を評価した。
The above-mentioned plate material (except for Conventional Examples 1 and 2) was inspected under a microscope. Further, the tensile strength, the spring limit value, the electrical conductivity and the stress relaxation rate of the plate material were measured, and the corrosion resistance and bending workability were evaluated.

【0028】引張強さの測定はJIS H 2241
に、ばね限界値の測定はJIS H3130に、導電率
の測定はJIS H 0505に準拠した。
Measurement of the tensile strength is based on JIS H 2241
The measurement of the spring limit value conformed to JIS H3130, and the measurement of the electric conductivity conformed to JIS H0505.

【0029】応力緩和率の測定では、試験片の中央部の
応力が400MPaとなるようにアーチ曲げを行い、1
50℃の温度で1000時間保持した後、試験片の曲げ
ぐせを治具を用いて求めた。すなわち、次式により応力
緩和率を算出した。なお、次式において、L0 は治具の
長さ(mm)、L1 は曲げぐせをつける前の試料端間の
水平距離(mm)、L2 は曲げぐせをつけた後の試料端
間の水平距離(mm)である。
In the measurement of the stress relaxation rate, arch bending was performed so that the stress at the center of the test piece was 400 MPa, and 1
After holding at a temperature of 50 ° C. for 1000 hours, the bending of the test piece was determined using a jig. That is, the stress relaxation rate was calculated by the following equation. Incidentally, in the formula, L 0 is the length of the jig (mm), L 1 is bent habit horizontal distance between the sample prior to end to give the (mm), L 2 is between samples end after wearing bending habit Is the horizontal distance (mm).

【0030】[0030]

【数1】 (Equation 1)

【0031】耐食性は、耐応力腐食割れ性で評価した。
試験は、JIS H 3250に準拠し、断面を観察し
た。そして、100時間で粒内割れが発生したものを
「×」、100時間で粒界割れが発生したものを
「△」、割れが発生しなかったものを「○」と評価し
た。
The corrosion resistance was evaluated in terms of stress corrosion cracking resistance.
The test conformed to JIS H 3250 and observed the cross section. Then, those in which intragranular cracks occurred in 100 hours were evaluated as "x", those in which intergranular cracks occurred in 100 hours were evaluated as "△", and those in which no cracks occurred were evaluated as "○".

【0032】曲げ加工性は、90°W曲げ加工試験で評
価した。試験はCES−M0002−6に準拠し、R=
0.1mmの治具で90°W曲げ加工し、中央山表面の
状況を調べた。そして、割れが発生したものを「×」、
シワが発生したものを「△」、良好なものを「○」と評
価した。なお、曲げ軸は圧延方向に対して平行方向(B
ad Way)とした。
The bending workability was evaluated by a 90 ° W bending test. The test is based on CES-M0002-6, and R =
90 ° W bending was performed using a 0.1 mm jig, and the condition of the central mountain surface was examined. Then, if the crack occurred, "x"
Those with wrinkles were evaluated as “△”, and those with good wrinkles were evaluated as “○”. The bending axis is parallel to the rolling direction (B
ad Way).

【0033】検鏡の結果、実施例1〜12の板材には、
Ni−P系金属間化合物が均一微細に析出しているのが
観察された。しかし、比較例1の板材には、Ni−P系
金属間化合物が比較的粗いものと微細なものとが混ざっ
て不均一に析出しているのが観察された。
As a result of the microscopic examination, the plate materials of Examples 1 to 12 include:
It was observed that the Ni-P intermetallic compound was uniformly and finely precipitated. However, in the sheet material of Comparative Example 1, it was observed that the Ni-P-based intermetallic compound was mixed non-uniformly with relatively coarse and fine Ni-P intermetallic compounds.

【0034】検鏡以外の結果を表2に示す。Table 2 shows the results other than that of the microscope.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】以上の結果から、実施例1〜12の合金は
いずれも、引張強さが500MPa以上、ばね限界値が
400MPa以上、導電率が45%IACS以上、そし
て応力緩和率が10%以下であることが分かる。さら
に、耐食性、曲げ加工性も良好である。
From the above results, all of the alloys of Examples 1 to 12 have a tensile strength of 500 MPa or more, a spring limit value of 400 MPa or more, a conductivity of 45% IACS or more, and a stress relaxation rate of 10% or less. You can see that there is. Furthermore, corrosion resistance and bending workability are good.

【0038】これに対して、比較例1の合金は、導電率
がよくなく、曲げ加工性も十分ではない。また、従来例
1の合金(黄銅)は、導電率、応力緩和率および耐食性
がよくない。そして、従来例2の合金(りん青銅)は、
ばね限界値、導電率および応力緩和率がよくないことが
分かる。
On the other hand, the alloy of Comparative Example 1 has poor electric conductivity and insufficient bending workability. Further, the alloy (brass) of Conventional Example 1 has poor conductivity, stress relaxation rate, and corrosion resistance. Then, the alloy (phosphor bronze) of Conventional Example 2 is
It can be seen that the spring limit value, conductivity and stress relaxation rate are not good.

【0039】[0039]

【発明の効果】本発明の端子用銅基合金は、引張強さ、
ばね限界値、導電率、耐応力緩和特性、耐食性、曲げ加
工性のすべてに優れ、従来の黄銅、りん青銅、Cu−N
i−Sn−P系合金より優れる。従って、本発明によれ
ば、自動車などの端子用に用いて極めて好適な銅基合金
を提供することができる。
The copper alloy for terminals of the present invention has a tensile strength,
Excellent in spring limit value, conductivity, stress relaxation resistance, corrosion resistance, bending workability, conventional brass, phosphor bronze, Cu-N
Better than i-Sn-P based alloys. Therefore, according to the present invention, it is possible to provide a copper base alloy which is extremely suitable for use in terminals of automobiles and the like.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Ni:0.5〜3.0%、S
n:0.5〜2.0%、P:0.025〜1.0%を含
有し、残部がCuと不可避不純物からなり、かつ該Ni
重量%と該P重量%との比の値が20より小さい組成を
有する銅基合金であって、含有されているNiとPとの
一部がNi−P系金属間化合物となってマトリックス中
に均一微細に析出した組織を有する端子用銅基合金。
1. Ni: 0.5 to 3.0% by weight, S
n: 0.5-2.0%, P: 0.025-1.0%, the balance consisting of Cu and unavoidable impurities,
It is a copper-based alloy having a composition in which the ratio of the weight% to the P weight% is less than 20, and a part of the contained Ni and P becomes a Ni-P intermetallic compound to form a matrix in the matrix. Copper base alloy for terminals with a structure that is uniformly and finely precipitated.
【請求項2】 組成は、重量%で、Ni:1.0〜2.
0%、Sn:0.5〜1.5%、P:0.05〜0.7
0%を含有し、残部がCuと不可避不純物からなり、か
つ該Ni重量%と該P重量%との比の値が20より小さ
い請求項1に記載の端子用銅基合金。
2. The composition is expressed in terms of% by weight, Ni: 1.0-2.
0%, Sn: 0.5 to 1.5%, P: 0.05 to 0.7
The copper-based alloy for a terminal according to claim 1, which contains 0%, the balance consists of Cu and unavoidable impurities, and a value of a ratio between the Ni weight% and the P weight% is smaller than 20.
【請求項3】 重量%で、Ni:0.5〜3.0%、S
n:0.5〜2.0%、P:0.025〜1.0%、Z
n:0.01〜2.0%を含有し、残部がCuと不可避
不純物からなり、かつ該Ni重量%と該P重量%との比
の値が20より小さい組成を有する銅基合金であって、
含有されているNiとPとの一部がNi−P系金属間化
合物となってマトリックス中に均一微細に析出した組織
を有する端子用銅基合金。
3. Ni: 0.5 to 3.0% by weight, S
n: 0.5 to 2.0%, P: 0.025 to 1.0%, Z
n: a copper-based alloy containing 0.01 to 2.0%, the balance being Cu and unavoidable impurities, and having a composition in which the ratio of the Ni weight% to the P weight% is less than 20. hand,
A copper base alloy for a terminal having a structure in which a part of Ni and P contained therein becomes a Ni-P intermetallic compound and is uniformly and finely precipitated in a matrix.
【請求項4】 組成は、重量%で、Ni:1.0〜2.
0%、Sn:0.5〜1.5%、P:0.05〜0.7
0%、Zn:0.1〜1.0%を含有し、残部がCuと
不可避不純物からなり、かつ該Ni重量%と該P重量%
との比の値が20より小さい請求項3に記載の端子用銅
基合金。
4. The composition is expressed in terms of% by weight, Ni: 1.0 to 2.0.
0%, Sn: 0.5 to 1.5%, P: 0.05 to 0.7
0%, Zn: 0.1-1.0%, the balance consists of Cu and unavoidable impurities, and the Ni weight% and the P weight%
The copper-base alloy for a terminal according to claim 3, wherein the value of the ratio is smaller than 20.
【請求項5】 引張強さが500MPa以上、ばね限界
値が400MPa以上、導電率が45%IACS以上、
かつ応力緩和率が10%以下である請求項1〜4のいず
れかに記載の端子用銅基合金。
5. A tensile strength of at least 500 MPa, a spring limit of at least 400 MPa, a conductivity of at least 45% IACS,
The copper-based alloy for a terminal according to any one of claims 1 to 4, wherein a stress relaxation rate is 10% or less.
JP30759898A 1998-10-28 1998-10-28 Copper-base alloy for terminal Pending JP2000129377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30759898A JP2000129377A (en) 1998-10-28 1998-10-28 Copper-base alloy for terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30759898A JP2000129377A (en) 1998-10-28 1998-10-28 Copper-base alloy for terminal

Publications (1)

Publication Number Publication Date
JP2000129377A true JP2000129377A (en) 2000-05-09

Family

ID=17970993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30759898A Pending JP2000129377A (en) 1998-10-28 1998-10-28 Copper-base alloy for terminal

Country Status (1)

Country Link
JP (1) JP2000129377A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100111A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
EP1889934A1 (en) * 2005-06-08 2008-02-20 Kabushiki Kaisha Kobe Seiko Sho Copper alloy, copper alloy plate, and process for producing the same
EP2184371A1 (en) * 2007-08-07 2010-05-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2451604A1 (en) * 2009-07-10 2012-05-16 Luvata Espoo Oy Copper alloy for heat exchanger tube
US8641837B2 (en) 2005-12-22 2014-02-04 Kobe Steel, Ltd. Copper alloy having excellent stress relaxation property
US9284628B2 (en) 2009-05-19 2016-03-15 Dowa Metaltech Co., Ltd. Copper alloy sheet and method for producing same
KR20170125805A (en) 2015-04-24 2017-11-15 후루카와 덴끼고교 가부시키가이샤 Copper alloy material and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992281B1 (en) 2005-06-08 2010-11-05 가부시키가이샤 고베 세이코쇼 Copper alloy, copper alloy plate, and process for producing the same
US20090116996A1 (en) * 2005-06-08 2009-05-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Copper alloy, copper alloy plate, and process for producing the same
EP1889934A4 (en) * 2005-06-08 2009-09-30 Kobe Steel Ltd Copper alloy, copper alloy plate, and process for producing the same
EP2366807A1 (en) * 2005-06-08 2011-09-21 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and copper alloy plate
KR100968997B1 (en) 2005-06-08 2010-07-09 가부시키가이샤 고베 세이코쇼 Copper alloy, copper alloy plate, and process for producing the same
EP1889934A1 (en) * 2005-06-08 2008-02-20 Kabushiki Kaisha Kobe Seiko Sho Copper alloy, copper alloy plate, and process for producing the same
JP2007100111A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
US8641837B2 (en) 2005-12-22 2014-02-04 Kobe Steel, Ltd. Copper alloy having excellent stress relaxation property
EP2184371A1 (en) * 2007-08-07 2010-05-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2184371A4 (en) * 2007-08-07 2013-05-01 Kobe Steel Ltd Copper alloy sheet
US9284628B2 (en) 2009-05-19 2016-03-15 Dowa Metaltech Co., Ltd. Copper alloy sheet and method for producing same
EP2451604A4 (en) * 2009-07-10 2013-04-10 Luvata Espoo Oy Copper alloy for heat exchanger tube
EP2451604A1 (en) * 2009-07-10 2012-05-16 Luvata Espoo Oy Copper alloy for heat exchanger tube
KR20170125805A (en) 2015-04-24 2017-11-15 후루카와 덴끼고교 가부시키가이샤 Copper alloy material and method for producing same

Similar Documents

Publication Publication Date Title
JP3739214B2 (en) Copper alloy sheet for electronic parts
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP4959141B2 (en) High strength copper alloy
CN101146920A (en) Copper alloy for electronic material
JP6126791B2 (en) Cu-Ni-Si copper alloy
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPWO2002053790A1 (en) High-strength copper alloy excellent in bending workability, method for producing the same, and terminal / connector using the same
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
CN109338151A (en) A kind of electronic electric equipment copper alloy and purposes
JP4574583B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JPH0478704B2 (en)
JP4810704B2 (en) Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking
JP2000129377A (en) Copper-base alloy for terminal
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2004225112A (en) High strength and high conductivity copper alloy having excellent fatigue and intermediate temperature property
JPH04236736A (en) Copper-base alloy for terminal and terminal using the same
JPH0565571B2 (en)
JP7537643B2 (en) Copper alloy material and method for producing the same
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JP3779830B2 (en) Copper alloy for semiconductor lead frames
JPH06184676A (en) High strength and high electric conductivity copper alloy

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040713