JPH04236736A - Copper-base alloy for terminal and terminal using the same - Google Patents

Copper-base alloy for terminal and terminal using the same

Info

Publication number
JPH04236736A
JPH04236736A JP1833791A JP1833791A JPH04236736A JP H04236736 A JPH04236736 A JP H04236736A JP 1833791 A JP1833791 A JP 1833791A JP 1833791 A JP1833791 A JP 1833791A JP H04236736 A JPH04236736 A JP H04236736A
Authority
JP
Japan
Prior art keywords
terminal
stress relaxation
copper
spring
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1833791A
Other languages
Japanese (ja)
Other versions
JPH089745B2 (en
Inventor
Ryukichi Endo
隆吉 遠藤
Kenji Takenouchi
竹之内 賢二
Mikio Nishihata
西畑 三樹男
Toshio Asano
浅野 敏夫
Akira Sugawara
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Bell Parts Co Ltd
Dowa Holdings Co Ltd
Yazaki Corp
Original Assignee
Nippon Bell Parts Co Ltd
Yazaki Corp
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Bell Parts Co Ltd, Yazaki Corp, Dowa Mining Co Ltd filed Critical Nippon Bell Parts Co Ltd
Priority to JP3018337A priority Critical patent/JPH089745B2/en
Publication of JPH04236736A publication Critical patent/JPH04236736A/en
Priority to US08/036,490 priority patent/US5322575A/en
Priority to US08/036,489 priority patent/US5387293A/en
Publication of JPH089745B2 publication Critical patent/JPH089745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To offer a terminal having high performance and high reliability by regulating its compsn. contg. specified wt.% of Ni, Sn and P and the balance Cu and providing it with specified properties of tensile strength, spring limit value, stress relaxation rate and electric conductivity. CONSTITUTION:The compsn. of a copper-base allay for a terminal is regulated to a one contg., by weight, 0.5 to 3.0% Ni, 0.5 to 2.0% Sn, 0.005 to 0.20% P and the balance Cu with inevitable impurities. Then, the allay is provided with the properties of >=50kgf/mm<2> tensile strength, >=40kgf/mm<2> spring limit value, <=10% stress relaxation rate and 30% IACS electric conductivity. The copper- base alloy is furthermore incorporated with 0.01 to 2.0% Zn. The terminal is incorporated with a spring material. In this way, the terminal excellent in low voltage-low current resistance value and stress relaxation properties can be offered.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、自動車等のコネクタ用
端子に用いられる銅基合金およびその端子に関する。 【0002】 【従来の技術】自動車等の端子用銅基合金については、
従来は黄銅およびリン青銅、さらにはCu−Sn−Fe
−P系等の銅基合金が使用されていた。 【0003】 【発明が解決しようとする課題】自動車等コネクタ用端
子は、最近のエレクトロニクスの発達に伴い、高密度化
、小型化、軽量化、そして信頼性向上が求められるよう
になってきている。またさらに、エンジンの高性能化に
伴い、エンジンルーム内の温度も上昇してきている。 それに伴い、そこに使用される導電材料である端子用銅
基合金も、より高信頼性および耐熱性が要求されるよう
になってきている。しかしながら、端子用銅基合金とし
て従来用いられてきた黄銅は安価ではあるが導電率が低
く、例えばC2600で27%IACSであり、さらに
耐食性や応力緩和特性にも問題があった。また、リン青
銅は強度は優れているが導電率が低く、例えばC521
0で12%IACS程度であり、耐応力緩和特性にも問
題があり、さらに価格的にも高く経済的でなかった。C
u−Sn−Fe−P系合金は、これら2つの合金の欠点
を補うために開発されたものである。例えばCu−2.
0 Sn−0.1 Fe−0.03Pで導電率は35%
IACSで、強度にも優れているが、耐応力緩和特性に
ついては端子用合金としては十分満足しているとは言え
なかった。 【0004】また特に自動車用端子として信頼性を向上
させるためには、そこに用いられる銅基合金が、強度、
ばね限界値、導電率に優れ、さらに長時間の使用に対し
ても応力緩和、腐食等を起こさないことが必要であるが
、従来の黄銅、リン青銅、さらにCu−Sn−Fe−P
系合金はいずれも上記特性を満足するものではなかった
。 【0005】さらにこれらの端子用銅基合金を用いて製
造された端子についても、これらの材料の特性がそのま
ま端子としての特性に結びついていた。黄銅、リン青銅
、Cu−Sn−Fe−P系合金を用いた端子では、導電
率、耐応力緩和特性の両特性を兼ね備えていないため、
端子の自己発熱により酸化、メッキ剥離、応力緩和、回
路の電圧降下、ハウジングの軟化や変形が生じる可能性
を有する。 【0006】したがって、本発明は、引張強さ、ばね限
界値、導電率および耐応力緩和特性のすべてに優れた端
子用銅基合金を提供すること、並びに、少なくともこの
合金により構成されたばね部を有している低電圧低電流
抵抗値、耐応力緩和特性に優れた端子を提供することを
目的としている。 【0007】 【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、前記の課題について鋭意検討の結果、該
銅基合金としてCu−Ni−Sn−P系銅基合金および
それにさらにZnを添加したCu−Ni−Sn−P−Z
n系合金について試験研究を重ね、その成分組成を選ぶ
ことにより、引張強度、導電率、さらには応力緩和率に
ついて満足すべき特性が得られることを見出し、また、
この銅基合金から作製されたばねを内蔵するか、または
ばねを含めての全体をその銅基合金で一体的に製作した
端子は優れた性能を兼ね備えていることを見い出し本発
明に到達した。 【0008】すなわち本発明は第一に、重量%で、Ni
:0.5 〜3.0 %、Sn:0.5 〜2.0 %
、P:0.005 〜0.20%を含有し、残部がCu
と不可避不純物からなる組成を有し、引張り強さが50
kgf/mm2 以上、ばね限界値が40kgf/mm
2 以上、応力緩和率が10%以下および導電率30%
IACS以上の特性を持つことを特徴とする端子用銅基
合金を提供する。本発明は第二に、重量%で、Ni:0
.5 〜3.0 %、Sn:0.5 〜2.0 %、P
:0.005 〜0.20%、Zn:0.01〜2.0
 %を含有し、残部がCuと不可避不純物からなる組成
を有し、引張強さが50kgf/mm2 以上、ばね限
界値が40kgf/mm2 以上、応力緩和率10%以
下および導電率30%IACS以上の特性を持つことを
特徴とする端子用銅基合金を提供する。本発明は第三に
、重量%で、Ni:0.5 〜3.0 %、Sn:0.
5 〜2.0 %、P:0.005 〜0.20%を含
有し、残部がCuと不可避不純物からなる組成の銅基合
金から溶製され、熱間および冷間圧延を経て加工された
ばね材でつくったばねを内蔵するか、またはこのばね材
でばねを含めた全体を一体的に構成した端子を提供する
。本発明は第四に、重量%で、Ni: 0.5〜3.0
 %、Sn:0.5 〜2.0 %、P:0.005 
〜0.20%、Zn:0.01〜2.0 %を含有し、
残部がCuと不可避不純物からなる組成の銅基合金から
溶製され、熱間および冷間圧延を経て加工されたばね材
でつくったばねを内蔵するか、またはこのばね材でばね
を含めた全体を一体的に構成した端子を提供する。 【0009】 【作用】次に本発明におけるCu−Ni−Sn−P系お
よびCu−Ni−Sn−P−Zn系銅基合金の添加元素
の作用および成分範囲の限定理由について説明する。 【0010】NiはCuマトリックス中に固溶して、強
度、ばね限界値および耐応力緩和特性を向上させ、さら
にPと化合物を形成して分散析出することにより、導電
率を向上させ、しかもさらに強度、ばね限界値および耐
応力緩和特性を向上させる。ただし、 0.5%未満で
は所望の効果が得られず、 3.0%を超えると効果が
飽和してしまうので、好ましいNiの範囲としては、 
0.5〜3.0 wt%である。 【0011】SnはCuマトリックス中に固溶して強度
、ばね限界値および耐食性を向上させる。ただし、 0
.5%未満では所望の効果が得られず、 2.0%を超
えると効果が飽和してしまうので、好ましいSnの範囲
としては、 0.5〜2.0 wt%である。 【0012】Pは溶湯の脱酸剤として作用すると共に、
Niと化合物を形成して分散析出することにより、導電
率を向上させ、かつ強度並びに耐応力緩和特性を向上さ
せる。ただし、 0.005%未満では所望の効果が得
られず、0.20%を超えると効果が飽和してしまうの
で、好ましいPの範囲としては、 0.005〜0.2
0wt%である。 【0013】副成分として添加することができるZnは
、メッキ耐候性を向上させる効果がある。ただし、0.
01%未満では所望の効果が得られず、2.0 %を超
えると効果が飽和してしまうので、好ましいZnの範囲
としては、0.01〜2.0 wt%である。 【0014】次に、本発明における端子の特性について
説明する。 【0015】挿抜力は端子において雄ターミナルと雌タ
ーミナルの結合の力を示すものであるが、あまり強すぎ
ると雄ターミナルを簡単に挿入することが困難である。 特に高集積化に伴いターミナルの数が増加すると、通常
の組み立て作業に支障をきたすことになる。また逆にあ
まり弱すぎると、接触荷重が低いため振動等によって酸
化皮膜が生成し易く接触抵抗が不安定となり、コネクタ
として電気的信頼性に欠けるものとなる。 【0016】したがって初期の挿抜力としては0.2k
gf以上3kgf以下が望ましく、そのためにはそこに
用いられる端子材料としては引張強さ50kgf/mm
2 以上、ばね限界値が40kgf/mm2 以上、応
力緩和率10%以下の材料を用いることが必要である。 【0017】さらに初期の低電圧低電流抵抗値について
は小さい方が望ましく3mΩ以下が良い。接触電気抵抗
値の大きさは、熱サイクルによる結合部の接触荷重の減
少の大きさに影響されるが、材料の自己発熱によって生
じる応力緩和、さらに自動車内のエンジンルーム内や排
ガス系周辺の温度の影響により生じる応力緩和によって
も接触荷重が減少してしまい、それに伴い接触電気抵抗
値も増加してしまう。 【0018】そのためには材料自体の応力緩和率が 1
50℃×1,000 時間で10%以下であり、さらに
引張強さ50kgf/mm2 以上、ばね限界値40k
gf/mm2 以上であることが必要であり、さらに材
料の導電率は30%IACS以上が好ましく、バネに加
工後の応力緩和率が20%以下であることが好ましい。 以下、本発明を実施例により、さらに具体的に説明する
。 【0019】 【実施例1】表1に示す組成の合金を高周波溶解炉を用
いて溶製し、850 ℃に加熱した後、厚さ 5.0m
mまで熱間圧延した。次に表面の面削により 4.8m
mとし冷間圧延と熱処理を繰り返し、最終加工率67%
、板厚 0.2mmの板材を得た。 【0020】次に、上記材料について引張強さ、伸び、
ばね限界値を測定すると共に、曲げ加工性、応力緩和特
性等を調査した。これらの結果を従来使用されている黄
銅、リン青銅およびCu−Sn−P−Fe合金と比較し
て表1に示した。 【0021】引張強さ、導電率、ばね限界値の測定はJ
IS H 2241、JIS H 0505、JIS 
H 3130に準拠した。 【0022】曲げ加工性については90°W曲げ加工試
験で評価した。試験はCES−M0002−6 に準拠
し、R=0.1mm の治具で90°W曲げ加工し、中
央部山表面の状況を調べて、割れが発生したものを×、
シワが発生したものを△、良好なものを○と評価した。 ただし、曲げ軸は圧延方向に対して平行(Bad Wa
y)とした。 【0023】また、応力緩和試験は試験片の中央部の応
力が40kgf/mm2 となるようにアーチ曲げを行
い、150 ℃の温度で 1,000時間保持後の曲げ
ぐせを応力緩和率として次式により算出した。       応力緩和率(%)={(L1 −L2 )
/(L1 −L0 )}×100    (ただし、L
0 :治具の長さ(mm)、            
  L1 :開始時の試料長さ(mm)       
       L2 :処理後の試料端間の水平距離(
mm))  【0024】以上の結果から、本発明による試料 No
.1〜4の合金はいずれも引張強さ50kgf/mm2
 、ばね限界値40kgf/mm2 、導電率30%以
上を示し、かつ曲げ加工性も良好である。そしてさらに
応力緩和率が10%以下で耐応力緩和特性に優れている
。したがって、自動車等の端子用銅基合金として非常に
優れた合金であることがわかる。 【0025】 【表1】 【0026】 【実施例2】さらに本発明の銅基合金を用いた端子特性
について実施例により具体的に説明する。 【0027】端子としての評価のため、本発明材料にて
プレス加工し、本発明材の狙いである応力緩和特性につ
いて評価を行った。 【0028】本発明合金を用いて図1に示すばね部2を
備えた雌端子1にプレス加工した。今回の材料はプレス
加工後、ばね性を良好にするために熱処理を行った。 【0029】熱処理条件は、端子の表面処理としてSn
メッキを施すため、表面劣化を考慮し、180 ℃×3
0分の処理を行った後、応力緩和特性の評価試験を実施
した。 なお、従来品との比較のため、Cu−Sn−Fe−P系
および黄銅材料の雌端子も同一条件の熱処理を施し、同
時に評価テストを行った。 【0030】初期の端子の挿抜力は、共に 0.5〜0
.6kgf、初期の低電圧低電流抵抗値は 1.5〜2
.0 mΩであった。 【0031】応力緩和特性試験として雌端子に雄端子を
篏合した後、耐熱試験を行い、試験前後の接触荷重の測
定を行った。なお、耐熱条件としては 120℃、 3
00時間の条件である。応力緩和率は次式により算出し
た。       応力緩和率(%)={(F1 −F2 )
/F1 }×100    (F1 :初期の接触荷重
(gf);F2 :試験後の接触荷重(gf))【00
32】試験結果を図3に示す。従来品のCu−Sn−F
e−P系の雌端子の応力緩和率は、本発明材の雌端子よ
り接触荷重の低下が大きく約30%であり、黄銅材のそ
れについては、約50%であった。一方、本発明材は約
12%であり、応力緩和率20%以下を満足し、優位性
が認められた。また、電気性能試験は上記と同一のサン
プルを用いて 120℃× 300時間の放置試験を行
い、試験前後の低電圧低電流抵抗値を測定した。その結
果を図4に示す。以上の結果より、明らかに本発明材料
は電気性能においても、従来品のCu−Sn−Fe−P
系や黄銅材に比較して優位性が認められた。 【0033】本発明の端子用銅基合金を用いたばね部2
を内蔵する雌端子1を図2の如く成形し、図1の端子の
場合と同様の試験を行ったところ、図1の端子の場合と
同等の試験結果が得られた。 【0034】以上により、本発明による端子は自動車等
の端子として非常に優れていることがわかる。 【0035】なお、本発明の端子用銅基合金およびそれ
を用いた端子は自動車用以外に航空機、船舶等にも同様
に利用できるものである。 【0036】 【発明の効果】本発明の端子用銅基合金は、引張強さ、
ばね限界値、導電率が優れており、かつ耐応力緩和特性
にも優れており、さらに上記合金により構成され内部に
ばねを持つ端子は、低電圧低電流抵抗値、応力緩和特性
に優れており、工業上顕著な効果を有するものである。 【0037】すなわち、本発明によれば、導電率が少な
くとも30%IACSで、引張強度、ばね限界値いずれ
もが高く、かつ応力緩和率が10%以下というような特
性を兼ね備えた端子用銅基合金が得られると共に、さら
にその銅基合金により構成されるばねを内蔵して、また
はばねを含めての全体を、その銅基合金で製作した初期
性能として挿抜力が適正な0.2kgf以上3kgf以
下、低電圧低電流抵抗3mΩ以下、応力緩和率20%以
下等の特性を持つ端子が得られる。
Description: FIELD OF INDUSTRIAL APPLICATION The present invention relates to a copper-based alloy used in connector terminals for automobiles, etc., and its terminals. [Prior Art] Regarding copper-based alloys for terminals in automobiles, etc.,
Traditionally brass and phosphor bronze, and even Cu-Sn-Fe
-P-based copper-based alloys have been used. [0003]Problems to be Solved by the Invention With the recent development of electronics, terminals for connectors such as automobiles are required to have higher density, smaller size, lighter weight, and improved reliability. . Furthermore, as the performance of engines increases, the temperature inside the engine room is also rising. Along with this, the copper-based alloy for terminals, which is a conductive material used therein, is also required to have higher reliability and heat resistance. However, brass, which has been conventionally used as a copper-based alloy for terminals, is inexpensive but has low conductivity, for example, C2600 has an IACS of 27%, and also has problems in corrosion resistance and stress relaxation properties. In addition, phosphor bronze has excellent strength but low conductivity; for example, C521
0, the IACS was about 12%, and there were also problems in stress relaxation resistance, and the price was also high, making it uneconomical. C
The u-Sn-Fe-P alloy was developed to compensate for the drawbacks of these two alloys. For example, Cu-2.
0 Sn-0.1 Fe-0.03P, conductivity is 35%
Although it is IACS and has excellent strength, it could not be said that its stress relaxation resistance was sufficiently satisfactory as an alloy for terminals. [0004] Furthermore, in order to improve the reliability of terminals for automobiles, the copper-based alloy used therein has high strength and
It is necessary to have excellent spring limit value and electrical conductivity, and also to not cause stress relaxation or corrosion even after long-term use, but conventional brass, phosphor bronze, and even Cu-Sn-Fe-P
None of the series alloys satisfied the above characteristics. [0005] Furthermore, with respect to terminals manufactured using these copper-based alloys for terminals, the characteristics of these materials are directly linked to the characteristics of the terminal. Terminals made of brass, phosphor bronze, and Cu-Sn-Fe-P alloys do not have both electrical conductivity and stress relaxation resistance.
Self-heating of the terminals can cause oxidation, peeling of plating, stress relaxation, voltage drop in the circuit, and softening or deformation of the housing. Therefore, it is an object of the present invention to provide a copper-based alloy for terminals that is excellent in all of tensile strength, spring limit value, electrical conductivity, and stress relaxation resistance, and to provide at least a spring portion made of this alloy. The purpose of the present invention is to provide a terminal with excellent low voltage, low current resistance and stress relaxation properties. [Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted intensive studies on the above-mentioned problems, and have developed a Cu-Ni-Sn-P based copper-based alloy as the copper-based alloy. and Cu-Ni-Sn-P-Z with further addition of Zn
Through repeated testing and research on n-based alloys, we discovered that by selecting the component composition, satisfactory properties can be obtained in terms of tensile strength, electrical conductivity, and even stress relaxation rate.
We have discovered that a terminal with a built-in spring made from this copper-based alloy, or whose entire body including the spring is made integrally with the copper-based alloy, has excellent performance, and has thus arrived at the present invention. That is, the present invention firstly provides Ni
:0.5-3.0%, Sn:0.5-2.0%
, P: 0.005 to 0.20%, the balance being Cu
It has a composition consisting of unavoidable impurities, and has a tensile strength of 50
kgf/mm2 or more, spring limit value is 40kgf/mm
2 or more, stress relaxation rate is 10% or less and electrical conductivity is 30%
Provided is a copper-based alloy for terminals characterized by having characteristics superior to IACS. The present invention secondly provides that, in weight %, Ni:0
.. 5 to 3.0%, Sn: 0.5 to 2.0%, P
: 0.005 ~ 0.20%, Zn: 0.01 ~ 2.0
%, with the balance consisting of Cu and unavoidable impurities, with a tensile strength of 50 kgf/mm2 or more, a spring limit of 40 kgf/mm2 or more, a stress relaxation rate of 10% or less, and an electrical conductivity of 30% IACS or more. Provided is a copper-based alloy for terminals, which is characterized by having the following characteristics. The third aspect of the present invention is that Ni: 0.5 to 3.0%, Sn: 0.0% by weight.
5 to 2.0%, P: 0.005 to 0.20%, and the balance is Cu and unavoidable impurities, and is processed through hot and cold rolling. To provide a terminal which has a built-in spring made of material or whose entire body including the spring is integrally made of this spring material. Fourthly, the present invention provides Ni: 0.5 to 3.0 in weight%.
%, Sn: 0.5 to 2.0%, P: 0.005
~0.20%, Zn: 0.01~2.0%,
A built-in spring made of a spring material made from a copper-based alloy with the remainder consisting of Cu and unavoidable impurities and processed through hot and cold rolling, or the whole body including the spring made of this spring material. Provides a terminal with a unique configuration. [Function] Next, the function of the additive elements of the Cu-Ni-Sn-P system and Cu-Ni-Sn-P-Zn system copper-based alloy in the present invention and the reason for limiting the range of the components will be explained. [0010] Ni forms a solid solution in the Cu matrix to improve strength, spring limit value, and stress relaxation resistance, and further improves electrical conductivity by forming a compound with P and precipitating in a dispersed manner. Improves strength, spring limit and stress relaxation properties. However, if it is less than 0.5%, the desired effect cannot be obtained, and if it exceeds 3.0%, the effect is saturated, so the preferred range of Ni is as follows:
It is 0.5 to 3.0 wt%. [0011] Sn forms a solid solution in the Cu matrix to improve strength, spring limit and corrosion resistance. However, 0
.. If it is less than 5%, the desired effect cannot be obtained, and if it exceeds 2.0%, the effect is saturated, so the preferred range of Sn is 0.5 to 2.0 wt%. [0012] P acts as a deoxidizing agent for the molten metal, and
By forming a compound with Ni and precipitating it in a dispersed manner, conductivity is improved, and strength and stress relaxation resistance are improved. However, if it is less than 0.005%, the desired effect cannot be obtained, and if it exceeds 0.20%, the effect is saturated, so the preferable range of P is 0.005 to 0.2.
It is 0wt%. Zn, which can be added as a subcomponent, has the effect of improving plating weather resistance. However, 0.
If the Zn content is less than 0.01%, the desired effect cannot be obtained, and if it exceeds 2.0%, the effect is saturated. Therefore, the preferred range of Zn is 0.01 to 2.0 wt%. Next, the characteristics of the terminal in the present invention will be explained. [0015] The insertion/extraction force indicates the coupling force between the male terminal and the female terminal in the terminal, and if it is too strong, it will be difficult to easily insert the male terminal. In particular, as the number of terminals increases due to higher integration, this poses a problem to normal assembly work. On the other hand, if it is too weak, an oxide film is likely to form due to vibration etc. due to the low contact load, resulting in unstable contact resistance and a lack of electrical reliability as a connector. Therefore, the initial insertion/extraction force is 0.2k.
It is desirable that the gf is greater than or equal to 3 kgf, and for that purpose, the terminal material used therein should have a tensile strength of 50 kgf/mm.
2. It is necessary to use a material with a spring limit value of 40 kgf/mm2 or more and a stress relaxation rate of 10% or less. Furthermore, the initial low voltage and low current resistance value is preferably as small as possible, preferably 3 mΩ or less. The magnitude of the contact electrical resistance value is influenced by the magnitude of the decrease in the contact load of the joint due to thermal cycling, but it is also influenced by the stress relaxation caused by the self-heating of the material, as well as the temperature in the engine room and around the exhaust gas system of the automobile. The contact load also decreases due to the stress relaxation caused by the influence of this, and the contact electrical resistance value increases accordingly. For this purpose, the stress relaxation rate of the material itself must be 1
10% or less at 50°C x 1,000 hours, tensile strength of 50kgf/mm2 or more, and spring limit of 40k.
gf/mm2 or more, the conductivity of the material is preferably 30% IACS or more, and the stress relaxation rate after processing into a spring is preferably 20% or less. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples. [Example 1] An alloy having the composition shown in Table 1 was melted using a high-frequency melting furnace, heated to 850°C, and then melted to a thickness of 5.0 m.
It was hot rolled to a thickness of m. Next, the surface was milled to 4.8m.
m, repeated cold rolling and heat treatment, final processing rate 67%
A plate material having a thickness of 0.2 mm was obtained. Next, the tensile strength, elongation,
In addition to measuring the spring limit value, bending workability, stress relaxation characteristics, etc. were investigated. These results are shown in Table 1 in comparison with conventionally used brass, phosphor bronze and Cu-Sn-P-Fe alloys. [0021] Measurement of tensile strength, electrical conductivity, and spring limit value is carried out by J.
IS H 2241, JIS H 0505, JIS
Compliant with H 3130. [0022] The bending workability was evaluated by a 90°W bending test. The test was conducted in accordance with CES-M0002-6, with a 90°W bending process using a jig with R = 0.1 mm, the condition of the central peak surface was examined, and those with cracks were marked as ×,
Those with wrinkles were rated △, and those with good wrinkles were rated ○. However, the bending axis is parallel to the rolling direction (Bad Wa
y). In addition, in the stress relaxation test, arch bending was performed so that the stress at the center of the specimen was 40 kgf/mm2, and the stress relaxation rate was calculated using the following equation as the bending pattern after being held at a temperature of 150°C for 1,000 hours. Calculated by. Stress relaxation rate (%) = {(L1 - L2)
/(L1 -L0)}×100 (However, L
0: Jig length (mm),
L1: Sample length at start (mm)
L2: Horizontal distance between sample edges after processing (
mm)) [0024] From the above results, sample No. according to the present invention
.. All alloys 1 to 4 have a tensile strength of 50 kgf/mm2
, the spring limit value is 40 kgf/mm2, the electrical conductivity is 30% or more, and the bending workability is also good. Furthermore, the stress relaxation rate is 10% or less, and the stress relaxation resistance is excellent. Therefore, it can be seen that this alloy is extremely excellent as a copper-based alloy for terminals in automobiles and the like. [0025] [Table 1] [0026] [Example 2] Further, the characteristics of a terminal using the copper-based alloy of the present invention will be specifically explained with reference to an example. For evaluation as a terminal, the material of the present invention was pressed and evaluated for stress relaxation properties, which is the aim of the material of the present invention. Using the alloy of the present invention, a female terminal 1 having a spring portion 2 shown in FIG. 1 was pressed. After the material was pressed, it was heat treated to improve its spring properties. The heat treatment conditions include Sn as a surface treatment for the terminal.
In order to perform plating, the temperature was 180℃ x 3 in consideration of surface deterioration.
After performing the treatment for 0 minutes, a stress relaxation property evaluation test was conducted. For comparison with conventional products, female terminals made of Cu-Sn-Fe-P and brass materials were also heat treated under the same conditions and evaluated at the same time. [0030] The initial insertion and removal forces of the terminals are both 0.5 to 0.
.. 6kgf, initial low voltage low current resistance value is 1.5~2
.. It was 0 mΩ. [0031] As a stress relaxation characteristic test, a male terminal was mated with a female terminal, a heat resistance test was conducted, and the contact load before and after the test was measured. In addition, the heat resistance conditions are 120℃, 3
The conditions are 00 hours. The stress relaxation rate was calculated using the following formula. Stress relaxation rate (%) = {(F1 − F2 )
/F1}×100 (F1: initial contact load (gf); F2: contact load after test (gf)) 00
32] The test results are shown in FIG. Conventional product Cu-Sn-F
The stress relaxation rate of the e-P female terminal was about 30%, which was greater in reducing the contact load than that of the female terminal made of the present invention material, and that of the brass material was about 50%. On the other hand, the material of the present invention had a stress relaxation rate of about 12%, satisfying a stress relaxation rate of 20% or less, and was recognized to be superior. In addition, for the electrical performance test, using the same sample as above, a standing test was conducted at 120° C. for 300 hours, and the low voltage and low current resistance values were measured before and after the test. The results are shown in FIG. From the above results, it is clear that the material of the present invention has better electrical performance than the conventional product Cu-Sn-Fe-P.
Superiority was recognized compared to steel and brass materials. Spring portion 2 using copper-based alloy for terminals of the present invention
When a female terminal 1 with a built-in terminal was molded as shown in FIG. 2 and tested in the same manner as in the case of the terminal in FIG. 1, test results equivalent to those in the case of the terminal in FIG. 1 were obtained. From the above, it can be seen that the terminal according to the present invention is very excellent as a terminal for automobiles and the like. The copper-based alloy for terminals of the present invention and terminals using the same can be used not only for automobiles but also for aircraft, ships, etc. Effects of the Invention The copper-based alloy for terminals of the present invention has high tensile strength,
It has excellent spring limit value, electrical conductivity, and stress relaxation properties.Furthermore, terminals made of the above alloy and having internal springs have excellent low voltage, low current resistance, and stress relaxation properties. , which has remarkable industrial effects. That is, according to the present invention, a copper base for a terminal is provided which has the following properties: an electrical conductivity of at least 30% IACS, a high tensile strength and a high spring limit value, and a stress relaxation rate of 10% or less. In addition to obtaining the alloy, the spring made of the copper-based alloy is built in, or the whole including the spring is made of the copper-based alloy.The initial performance is 0.2 kgf or more and 3 kgf of insertion/extraction force is appropriate. Hereinafter, a terminal having characteristics such as a low voltage and low current resistance of 3 mΩ or less and a stress relaxation rate of 20% or less can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の端子の一例についての斜視図である。FIG. 1 is a perspective view of an example of a terminal of the present invention.

【図2】本発明の端子の別の一例についての斜視図であ
る。
FIG. 2 is a perspective view of another example of the terminal of the present invention.

【図3】本発明の端子および従来品における応力緩和特
性を示すグラフである。
FIG. 3 is a graph showing stress relaxation characteristics of the terminal of the present invention and a conventional product.

【図4】本発明の端子および従来品における電気特性を
示すグラフである。
FIG. 4 is a graph showing the electrical characteristics of the terminal of the present invention and a conventional product.

【符号の説明】[Explanation of symbols]

1‥‥雌端子 2‥‥ばね部 1.Female terminal 2. Spring part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  重量%で、Ni:0.5 〜3.0 
%、Sn:0.5 〜2.0 %、P:0.005 〜
0.20%を含有し、残部がCuと不可避不純物からな
る組成を有し、引張り強さが50kgf/mm2 以上
、ばね限界値が40kgf/mm2 以上、応力緩和率
10%以下および導電率30%IACS以上の特性を持
つことを特徴とする端子用銅基合金。
[Claim 1] Ni: 0.5 to 3.0 in weight%
%, Sn: 0.5 to 2.0%, P: 0.005 to
0.20%, with the balance consisting of Cu and unavoidable impurities, tensile strength is 50 kgf/mm2 or more, spring limit value is 40 kgf/mm2 or more, stress relaxation rate is 10% or less, and electrical conductivity is 30%. A copper-based alloy for terminals that is characterized by having properties that are better than IACS.
【請求項2】  重量%で、Ni:0.5 〜3.0 
%、Sn:0.5 〜2.0 %、P:0.005 〜
0.20%、Zn:0.01〜2.0 %を含有し、残
部がCuと不可避不純物からなる組成を有し、引張強さ
が50kgf/mm2 以上、ばね限界値が40kgf
/mm2 以上、応力緩和率10%以下および導電率3
0%IACS以上の特性を持つことを特徴とする端子用
銅基合金。
[Claim 2] Ni: 0.5 to 3.0 in weight%
%, Sn: 0.5 to 2.0%, P: 0.005 to
0.20%, Zn: 0.01-2.0%, the balance is Cu and unavoidable impurities, the tensile strength is 50 kgf/mm2 or more, and the spring limit is 40 kgf.
/mm2 or more, stress relaxation rate of 10% or less, and electrical conductivity of 3
A copper-based alloy for terminals characterized by having characteristics of 0% IACS or higher.
【請求項3】  重量%で、Ni:0.5 〜3.0 
%、Sn:0.5 〜2.0 %、P:0.005 〜
0.20%を含有し、残部がCuと不可避不純物からな
る組成の銅基合金から溶製され、熱間および冷間圧延を
経て加工されたばね材でつくったばねを内蔵するか、ま
たはこのばね材でばねを含めた全体を一体的に構成した
端子。
[Claim 3] Ni: 0.5 to 3.0 in weight%
%, Sn: 0.5 to 2.0%, P: 0.005 to
0.20%, with the balance consisting of Cu and unavoidable impurities. A terminal whose entire structure including the spring is integrated.
【請求項4】  重量%で、Ni:0.5 〜3.0 
%、Sn:0.5 〜2.0 %、P:0.005 〜
0.20%、Zn:0.01〜2.0 %を含有し、残
部がCuと不可避不純物からなる組成の銅基合金から溶
製され、熱間および冷間圧延を経て加工されたばね材で
つくったばねを内蔵するか、またはこのばね材でばねを
含めた全体を一体的に構成した端子。
Claim 4: Ni: 0.5 to 3.0 in weight%
%, Sn: 0.5 to 2.0%, P: 0.005 to
0.20%, Zn: 0.01~2.0%, and the balance is Cu and unavoidable impurities. A terminal that has a built-in spring built-in, or is made entirely of this spring material, including the spring.
JP3018337A 1991-01-17 1991-01-17 Copper-based alloy for terminals Expired - Lifetime JPH089745B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3018337A JPH089745B2 (en) 1991-01-17 1991-01-17 Copper-based alloy for terminals
US08/036,490 US5322575A (en) 1991-01-17 1993-03-24 Process for production of copper base alloys and terminals using the same
US08/036,489 US5387293A (en) 1991-01-17 1993-03-24 Copper base alloys and terminals using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018337A JPH089745B2 (en) 1991-01-17 1991-01-17 Copper-based alloy for terminals

Publications (2)

Publication Number Publication Date
JPH04236736A true JPH04236736A (en) 1992-08-25
JPH089745B2 JPH089745B2 (en) 1996-01-31

Family

ID=11968839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018337A Expired - Lifetime JPH089745B2 (en) 1991-01-17 1991-01-17 Copper-based alloy for terminals

Country Status (1)

Country Link
JP (1) JPH089745B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100146A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY HAVING LESSENED ANISOTROPY OF STRESS RELAXATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
WO2007060953A1 (en) * 2005-11-24 2007-05-31 The Furukawa Electric Co., Ltd. Crimp-style terminal for aluminum strand and terminal structure of aluminum strand having the crimp-style terminal connected thereto
JP2007270266A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD
US8641837B2 (en) * 2005-12-22 2014-02-04 Kobe Steel, Ltd. Copper alloy having excellent stress relaxation property
US9284628B2 (en) 2009-05-19 2016-03-15 Dowa Metaltech Co., Ltd. Copper alloy sheet and method for producing same
KR20170125805A (en) 2015-04-24 2017-11-15 후루카와 덴끼고교 가부시키가이샤 Copper alloy material and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199741A (en) * 1986-02-25 1987-09-03 Kobe Steel Ltd Copper alloy for terminal and connector having superior migration resistance
JPS63286544A (en) * 1987-05-18 1988-11-24 Mitsubishi Electric Corp Copper alloy for multipolar connector
JPH01242742A (en) * 1988-03-23 1989-09-27 Mitsubishi Electric Corp Copper alloy for electronic equipment
JPH036341A (en) * 1989-06-02 1991-01-11 Dowa Mining Co Ltd High strength and high conductivity copper-base alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199741A (en) * 1986-02-25 1987-09-03 Kobe Steel Ltd Copper alloy for terminal and connector having superior migration resistance
JPS63286544A (en) * 1987-05-18 1988-11-24 Mitsubishi Electric Corp Copper alloy for multipolar connector
JPH01242742A (en) * 1988-03-23 1989-09-27 Mitsubishi Electric Corp Copper alloy for electronic equipment
JPH036341A (en) * 1989-06-02 1991-01-11 Dowa Mining Co Ltd High strength and high conductivity copper-base alloy

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100146A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY HAVING LESSENED ANISOTROPY OF STRESS RELAXATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
WO2007060953A1 (en) * 2005-11-24 2007-05-31 The Furukawa Electric Co., Ltd. Crimp-style terminal for aluminum strand and terminal structure of aluminum strand having the crimp-style terminal connected thereto
JP2007173215A (en) * 2005-11-24 2007-07-05 Furukawa Electric Co Ltd:The Crimp terminal for aluminum strand and terminal structure of aluminum strand having the same connected thereto
US7544892B2 (en) 2005-11-24 2009-06-09 The Furukawa Electric Co., Ltd. Crimp contact for an aluminum stranded wire, and cable end structure of an aluminum stranded wire having the crimp contact connected thereto
JP4550791B2 (en) * 2005-11-24 2010-09-22 古河電気工業株式会社 Aluminum stranded wire crimp terminal and aluminum stranded wire terminal structure to which the crimp terminal is connected
US7923637B2 (en) 2005-11-24 2011-04-12 The Furukawa Electric Co., Ltd. Crimp contact for an aluminum stranded wire, and cable end structure of an aluminum stranded wire having the crimp contact connected thereto
US8641837B2 (en) * 2005-12-22 2014-02-04 Kobe Steel, Ltd. Copper alloy having excellent stress relaxation property
CN104046836A (en) * 2005-12-22 2014-09-17 株式会社神户制钢所 Copper alloy having excellent stress relaxation property
CN104046836B (en) * 2005-12-22 2016-07-27 株式会社神户制钢所 There is the copper alloy of excellent stress relaxation property
JP2007270266A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD
US9284628B2 (en) 2009-05-19 2016-03-15 Dowa Metaltech Co., Ltd. Copper alloy sheet and method for producing same
KR20170125805A (en) 2015-04-24 2017-11-15 후루카와 덴끼고교 가부시키가이샤 Copper alloy material and method for producing same

Also Published As

Publication number Publication date
JPH089745B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
KR100336173B1 (en) Copper alloy sheet for electronic parts
JP2002294368A (en) Copper alloy for terminal and connector and production method therefor
US5322575A (en) Process for production of copper base alloys and terminals using the same
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JPH0551671A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JP2001262255A (en) Copper based alloy bar for terminal and its producing method
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
US6254702B1 (en) Copper base alloys and terminals using the same
KR100357501B1 (en) Copper base alloys and terminals using the same
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH04236736A (en) Copper-base alloy for terminal and terminal using the same
JPH0653901B2 (en) Copper alloy for electronic and electrical equipment
JP4460037B2 (en) Method of heat treatment of copper alloy for electrical connection member and copper alloy for electrical connection member
JPH03226536A (en) Migration-resistant copper alloy for terminal and connector excellent in spring properties, strength and electrical conductivity
EP0249778B1 (en) Composites having improved resistance to stress relaxation
US5387293A (en) Copper base alloys and terminals using the same
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JP2000129377A (en) Copper-base alloy for terminal
JP2514234B2 (en) Copper alloy for terminals and connectors with excellent strength and conductivity
JPH0565571B2 (en)
JPH0551674A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JP4813073B2 (en) Center contact, anchor connector, and connector structure thereof
JP2000273561A (en) Copper base alloy for terminal and its production
JPH0118139B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 15