JP4810704B2 - Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking - Google Patents

Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking Download PDF

Info

Publication number
JP4810704B2
JP4810704B2 JP2006002311A JP2006002311A JP4810704B2 JP 4810704 B2 JP4810704 B2 JP 4810704B2 JP 2006002311 A JP2006002311 A JP 2006002311A JP 2006002311 A JP2006002311 A JP 2006002311A JP 4810704 B2 JP4810704 B2 JP 4810704B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
less
content
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006002311A
Other languages
Japanese (ja)
Other versions
JP2007182615A (en
Inventor
友子 高山
義統 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2006002311A priority Critical patent/JP4810704B2/en
Publication of JP2007182615A publication Critical patent/JP2007182615A/en
Application granted granted Critical
Publication of JP4810704B2 publication Critical patent/JP4810704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、コネクタ、リレー、スイッチ、ソケット、リードフレーム等の電気・電子部品に適したCu−Ni−Si−Zn系銅合金の製造法に関する。 The present invention relates to a method for producing a Cu—Ni—Si—Zn based copper alloy suitable for electrical / electronic components such as connectors, relays, switches, sockets, lead frames and the like.

近年のエレクトロニクスの発達により、様々な機械の電気配線は複雑化、高集積化が進み、コネクタ、リレー、スイッチ等の電気・電子部品には一層の軽量化や高信頼向上が望まれている。特にパーソナルコンピュータや携帯電話などに使用されるコネクタ、ソケットなどでは、省スペース化と高機能化が同時に進んでおり、これらの通電部品を構成する銅合金に対しては、薄肉化した状態で従来の材料と同等以上のばね特性や信頼性を発揮できる優れた特性が求められている。具体的には、小型化・薄肉化に対応するための「強度」および「ばね特性」の向上、複雑な部品の形状に対応するための「プレス加工性」や「曲げ加工性」の向上、単位断面積あたりの通電量の増加、電気信号の高速化に対応するための「導電性」の向上、などが求められている。更に電気、電子部品は接触信頼性を向上させるために用途に応じてSn、Ag、Au等のめっきが施されることが多く、また、はんだ付け工程を伴うことも多い。このため、「めっき密着性」や「はんだ密着性」が良好であることも重要である。自動車向けのコネクタ材として用いられる場合には、エンジンルーム内の環境に耐えうるように「耐応力緩和特性」に優れることも要求される。   With the recent development of electronics, the electrical wiring of various machines has become more complex and highly integrated, and further reduction in weight and improvement in reliability have been desired for electrical / electronic components such as connectors, relays and switches. Especially for connectors and sockets used in personal computers and mobile phones, space saving and high functionality are progressing at the same time. The copper alloys that make up these current-carrying parts have been reduced in thickness. Therefore, there is a demand for excellent characteristics that can exhibit spring characteristics and reliability equivalent to or better than these materials. Specifically, improvement of “strength” and “spring characteristics” to cope with downsizing and thinning, improvement of “press workability” and “bending workability” to cope with complicated parts shapes, There is a demand for an increase in the amount of energization per unit cross-sectional area and an improvement in “conductivity” to cope with the increase in the speed of electrical signals. Furthermore, in order to improve contact reliability, electrical and electronic parts are often plated with Sn, Ag, Au, etc. depending on the application, and often involve a soldering process. For this reason, it is also important that “plating adhesion” and “solder adhesion” are good. When used as a connector material for automobiles, it is also required to have excellent “stress relaxation resistance” so as to withstand the environment in the engine room.

このように、昨今では素材に対する要求がますます厳しくなっているが、その素材の普及を図るには、安価であること、およびリサイクルに寄与できることも重要な条件となる。コストとリサイクル性を考慮すると、各種銅合金スクラップが利用できる合金系を採用することが極めて有利である。例えば、パーソナルコンピュータや携帯電話などに使用されるコネクタではNiめっきが施される場合が多く、自動車向け小型端子などではSnめっきが施されることが多い。また、自動車向け用途では黄銅のSnめっき材が多く使用されている。これらのめっき金属や黄銅の成分であるZnを成分元素として含む合金系によって前記諸特性に優れた材料を開発することができれば、スクラップの利用を通じてコスト低減およびリサイクルの促進にも寄与できる。   In this way, demands for materials are becoming more and more demanding in recent years. However, in order to spread the materials, it is also an important condition that they are inexpensive and can contribute to recycling. In view of cost and recyclability, it is extremely advantageous to adopt an alloy system that can use various types of copper alloy scrap. For example, Ni plating is often applied to connectors used in personal computers and mobile phones, and Sn plating is often applied to small terminals for automobiles. In addition, brass-plated Sn plating materials are often used for automotive applications. If a material excellent in the above characteristics can be developed by an alloy system containing Zn, which is a component of these plated metals and brass, as a component element, it can contribute to cost reduction and recycling promotion through the use of scrap.

強度特性に優れた銅合金としては、リン青銅やベリリウム銅が挙げられる。また、Ni−Si系の金属間化合物を析出させることにより、導電性、強度、ばね特性の改善を図った銅合金としてCu−Ni−Si系合金が挙げられる。スイッチ、コネクタ等に用いられるばね用材料としては、安価な黄銅、優れたばね特性および耐食性を有する洋白、あるいは優れたばね特性を有するりん青銅が使用されている。   Examples of copper alloys having excellent strength characteristics include phosphor bronze and beryllium copper. Further, Cu—Ni—Si based alloys can be cited as copper alloys whose conductivity, strength, and spring characteristics are improved by precipitating Ni—Si based intermetallic compounds. As materials for springs used for switches, connectors, etc., inexpensive brass, foreign white having excellent spring characteristics and corrosion resistance, or phosphor bronze having excellent spring characteristics are used.

特許文献1にはCu−Ni−Si系合金をベースとしてMgを添加し、強度、耐応力緩和性を改善することが記載されている。特許文献2にはCu−Ni−Si系合金においてNi−Si金属間化合物のサイズなどを制御することによって、はんだ付け性、めっき密着性などを向上させることが記載されている。   Patent Document 1 describes that Mg is added based on a Cu—Ni—Si based alloy to improve strength and stress relaxation resistance. Patent Document 2 describes that solderability, plating adhesion, and the like are improved by controlling the size of a Ni—Si intermetallic compound in a Cu—Ni—Si based alloy.

一方、特許文献3、4、5、6にはCu−Ni−Si系にZnを加えたCu−Ni−Si−Zn系銅合金が記載されている。Znは比較的安価な元素であり、銅合金に添加することではんだ付け性が改善され、また耐食性の改善効果もある。   On the other hand, Patent Documents 3, 4, 5, and 6 describe Cu—Ni—Si—Zn based copper alloys in which Zn is added to Cu—Ni—Si based. Zn is a relatively inexpensive element, and when added to a copper alloy, the solderability is improved and the corrosion resistance is also improved.

特開昭61−250134号公報JP-A-61-250134 特開昭58−123846号公報Japanese Patent Laid-Open No. 58-123846 特開昭56−90942号公報JP 56-90942 A 特開平2−205645号公報JP-A-2-205645 特開平2−205642号公報JP-A-2-205642 特開平4−224645号公報JP-A-4-224645

しかし、強度に優れるリン青銅は導電率が例えばJIS C5210で12%IAS程度と低く、また耐応力緩和特性についても改善が望まれている。ベリリウム銅はコストが高く、また安定供給にも難がある。Cu−Ni−Si系銅合金は導電性、強度、ばね特性のバランスが比較的良好であるが、薄肉化した材料としては昨今の通電部品に求められる厳しい要求に十分対応できない。特許文献1、2のような第三元素を添加した改良型のCu−Ni−Si系銅合金でも曲げ加工性等が必ずしも十分とは言えず、また、黄銅スクラップを原料として有効利用できないという弱みがある。特許文献3、4、5、6のCu−Ni−Si−Zn系銅合金の場合は黄銅スクラップが利用できる。しかし、本来リードフレーム用として開発されてきたことから曲げ加工性も十分でないという欠点がある。また、Znを添加することにより導電率が低下し、耐応力腐食割れ感受性も高くなるので、これらの開示合金をコネクタ等の通電部品に適用するにはZnの添加量を低く抑える必要があり、Zn添加による材料コスト低減効果が十分に享受できない。特許文献6では、結晶粒度を15μm以下とすることで従来の黄銅の持つ欠点である耐応力腐食割れ性を改良しているが、引張り強さが620N/mm2以下であり十分な強度が得られていない。 However, phosphor bronze having excellent strength has a low electrical conductivity of, for example, about 12% IAS according to JIS C5210, and improvement in stress relaxation resistance is also desired. Beryllium copper is expensive and difficult to supply stably. The Cu—Ni—Si copper alloy has a relatively good balance of conductivity, strength, and spring characteristics, but it cannot sufficiently meet the strict demands required of current-carrying parts as a thin material. Even with the improved Cu-Ni-Si-based copper alloys added with the third element as in Patent Documents 1 and 2, the bending workability is not always sufficient, and the weakness that brass scrap cannot be effectively used as a raw material There is. In the case of the Cu—Ni—Si—Zn-based copper alloys of Patent Documents 3, 4, 5, and 6, brass scrap can be used. However, since it was originally developed for lead frames, there is a drawback that bending workability is not sufficient. In addition, since the conductivity is reduced by adding Zn and the stress corrosion cracking susceptibility is also increased, it is necessary to keep the additive amount of Zn low in order to apply these disclosed alloys to current-carrying parts such as connectors, The material cost reduction effect due to the addition of Zn cannot be fully enjoyed. In Patent Document 6, the stress corrosion cracking resistance, which is a drawback of conventional brass, is improved by setting the crystal grain size to 15 μm or less, but the tensile strength is 620 N / mm 2 or less and sufficient strength is obtained. It is not done.

本発明は、通電部品に必要な前記各特性を基本的に具備する銅合金において、材料の薄肉化に伴う昨今の厳しい要求に対応すべく、強度、導電性、曲げ加工性、はんだ濡れ性に加え、耐応力腐食割れ性をも同時に改善し、かつコスト低減およびリサイクルの面でも有利な銅合金を開発し提供しようというものである。   The present invention is a copper alloy that basically has the above-mentioned characteristics required for current-carrying parts, and has strength, conductivity, bending workability, and solder wettability in order to meet the recent severe requirements accompanying the thinning of materials. In addition, the aim is to develop and provide a copper alloy that simultaneously improves the stress corrosion cracking resistance and is advantageous in terms of cost reduction and recycling.

発明者らの詳細な研究の結果、上記目的は、マトリクス中に固溶するSi量を適切にコントロールし、かつNi−Si系析出物を微細析出させたCu−Ni−Si−Zn系銅合金によって達成できた。   As a result of detailed studies by the inventors, the above object is to appropriately control the amount of Si dissolved in the matrix and to form a finely precipitated Ni—Si based precipitate. Could be achieved.

すなわち本発明では、質量%で、Ni:0.4〜4.5%、Si:0.15〜0.9%、Zn:5〜15%を含有し、必要に応じてさらにSn:2.0%以下、P:0.2%以下、Fe:1.0%以下、Mg:0.5%以下、Co:4.0%以下、Cr:4.0%以下のうち1種以上を含有し、残部が実質的にCuである組成を有し、下記(1)式のSi固溶指標Zが0.55〜0.9であり、かつ引張強さが650N/mm2以上であり、好ましくは導電率が25%IACS以上である銅合金の製造法が提供される。
Z=(a−b)/(c−b) ……(1)
That is, in the present invention, by mass, Ni: 0.4 to 4.5%, Si: 0.15 to 0.9%, Zn: 5 to 15% are contained, and Sn: 2. Contains at least one of 0% or less, P: 0.2% or less, Fe: 1.0% or less, Mg: 0.5% or less, Co: 4.0% or less, Cr: 4.0% or less And the balance is substantially Cu, the Si solid solution index Z of the following formula (1) is 0.55 to 0.9, and the tensile strength is 650 N / mm 2 or more, Preferably, a method for producing a copper alloy having an electrical conductivity of 25% IACS or more is provided.
Z = (ab) / (cb) (1)

ただし、
a:被測定材の実測された導電率(%IACS)、
b:Siが全て固溶した場合の計算上の導電率(%IACS)であり、原子%に換算された各合金元素の含有量を下記(3)式に代入することによって下記(2)式により定まるp値、
c:Siが全て析出した場合の計算上の導電率(%IACS)であり、Ni含有量(質量%)を下記(4)式のNiA(質量%)に、Si含有量(質量%)を下記(5)式のSiA(質量%)にそれぞれ補正したうえで、原子%に換算された各合金元素の含有量を下記(3)式に代入することによって下記(2)式により定まるp値、
である。
p=17.24/ρS×100 ……(2)
ρS=17.24+(12.2×Ni(at%)+39.5×Si(at%)+3×Zn(at%)+28.8×Sn(at%)+67×P(at%)+96.6×Fe(at%)+6×Mg(at%)+63×Co(at%)+40×Cr(at%))−(0.3×12.2×Ni(at%)2+4.9×39.5×Si(at%)2+2.7×3×Zn(at%)2+3.2×28.8×Sn(at%)2+20×96.6×Fe(at%)2)/100 ……(3)
NiA=Ni(mass%)−2×(58.69/28.09)×Si(mass%)、ただし上式でNiA<0となるときは、NiA=0とする ……(4)
SiA=Si(mass%)−(1/2)×(28.09/58.69)×Ni(mass%)、ただし上式でSiA<0となるときは、SiA=0とする ……(5)
ここで、Ni(mass%)およびSi(mass%)は、それぞれ質量%で表された合金中のNi含有量およびSi含有量である。
However,
a: Measured conductivity (% IACS) of measured material,
b: Calculated conductivity (% IACS) when all of Si is solid-solved. By substituting the content of each alloy element converted to atomic% into the following formula (3), the following formula (2) P value determined by
c: Calculated conductivity (% IACS) when all of Si is deposited, Ni content (mass%) is changed to Ni A (mass%) of the following formula (4), Si content (mass%) the after having corrected each of the following (5) Si a (mass%) of the equation defined by the following equation (2) by substituting the content of each alloying element is converted to atomic% in the following equation (3) p-value,
It is.
p = 17.24 / ρ S × 100 (2)
ρ S = 17.24 + (12.2 × Ni (at%) + 39.5 × Si (at%) + 3 × Zn (at%) + 28.8 × Sn (at%) + 67 × P (at%) + 96. 6 × Fe (at%) + 6 × Mg (at%) + 63 × Co (at%) + 40 × Cr (at%)) − (0.3 × 12.2 × Ni (at%) 2 + 4.9 × 39 0.5 × Si (at%) 2 + 2.7 × 3 × Zn (at%) 2 + 3.2 × 28.8 × Sn (at%) 2 + 20 × 96.6 × Fe (at%) 2 ) / 100 ...... (3)
Ni A = Ni (mass%)-2 × (58.69 / 28.09) × Si (mass%) However, when Ni A <0 in the above formula, Ni A = 0 (4) )
Si A = Si (mass%) − (1/2) × (28.09 / 58.69) × Ni (mass%) However, when Si A <0 in the above formula, Si A = 0 is set. ...... (5)
Here, Ni (mass%) and Si (mass%) are the Ni content and Si content in the alloy expressed by mass%, respectively.

ここで、選択元素であるSn、P、Fe、Mg、Co、Crのうち、無添加の元素については、上記(3)式の当該元素の箇所には0(ゼロ)が代入される。
質量%と原子%との換算には、各元素の原子量として以下の値を使う。
Cu;63.55、Ni;58.69、Si;28.09、Zn;65.39、Sn;118.71、P;30.97、Fe;55.85、Mg;24.31、Co;58.93、Cr;52.00
(2)式および(3)式中の定数17.24は温度273Kにおける純銅の比抵抗値に相当する。(3)式中の各元素含有量に掛かる定数は、温度273Kにおける各溶質元素の単位濃度あたりの電気抵抗への寄与等を表すものである(J.O.Linde:Helvetica physia acta.41(1968),1013)。
Here, among the additive elements Sn, P, Fe, Mg, Co, and Cr, 0 (zero) is substituted for the element in the above formula (3) for the additive element.
The following values are used as the atomic weight of each element for conversion between mass% and atomic%.
Cu; 63.55, Ni; 58.69, Si; 28.09, Zn; 65.39, Sn; 118.71, P; 30.97, Fe; 55.85, Mg; 24.31, Co; 58.93, Cr; 52.00
The constant 17.24 in the equations (2) and (3) corresponds to the specific resistance value of pure copper at a temperature of 273K. The constant applied to the content of each element in the formula (3) represents a contribution to the electrical resistance per unit concentration of each solute element at a temperature of 273 K (JO Linde: Helvetica physia acta. 41 ( 1968), 1013).

本発明の銅合金の製造法は、溶体化処理と時効処理を組み合わせた銅合金製造プロセスで製造できるが、特に、前記(1)式のSi固溶指標Zが0.3以下である中間材料を作り、その後、その中間材料に対して時効処理を施すことにより同Zを0.55〜0.9に調整する手法によるものであるThe method for producing a copper alloy of the present invention can be produced by a copper alloy production process combining solution treatment and aging treatment, and in particular, an intermediate material in which the Si solid solution index Z in the formula (1) is 0.3 or less. the make, then, is due to the method of adjusting the same Z by the aging treatment for the intermediate material to from 0.55 to 0.9.

より具体的に前記(1)式のSi固溶指標Zが0.3以下となるように、溶体化処理した材料に、60%以下の冷間圧延を施し、その後、380〜550℃の温度域で加熱保持後150℃以下の温度域まで平均冷却速度5℃/min以下で徐冷する時効処理を施すことにより同Zを0.55〜0.9に調整する。上記の溶体化処理条件としては、650〜850℃の範囲内で加熱保持後、650℃から250℃までの平均冷却速度が200℃/min以上となるように冷却する条件が採用できる。時効処理後、冷間圧延を行い、さらに250〜500℃で20sec〜10min保持する歪取り焼鈍を施すことができる。 More specifically, the solution-treated material is subjected to cold rolling of 60% or less so that the Si solid solution index Z in the formula (1) is 0.3 or less, and then a temperature of 380 to 550 ° C. it adjusts the Z to from 0.55 to 0.9 by performing aging treatment to slow cooling is below average cooling rate 5 ° C. / min up to a temperature range of the heating retention after 0.99 ° C. or less in range. As said solution treatment conditions, the conditions of cooling so that the average cooling rate from 650 degreeC to 250 degreeC may be 200 degreeC / min or more after heat-maintaining within the range of 650-850 degreeC can be employ | adopted. After the aging treatment, cold rolling can be performed, and further strain relief annealing can be performed at 250 to 500 ° C. for 20 seconds to 10 minutes.

本発明によれば、コネクタ、リレー、スイッチ等の電気・電子部品に必要な基本特性を具備する銅合金において、特に強度、導電性、曲げ加工性、さらに耐応力腐食割れ性を高水準で同時に改善することが可能になった。この銅合金は、素材の薄肉化に伴う昨今の厳しい要求に対応し得るものである。また、Znを比較的多量に含有することによる素材コストの低減効果が高く、さらにNiめっきやSnめっきを有する銅合金スクラップ、Znを含む黄銅スクラップを原料として使用できるのでリサイクル性にも優れる。したがって本発明は、電気・電子機器の小型・軽量化、性能・信頼性向上、およびコスト低減に寄与するものである。   According to the present invention, in a copper alloy having basic characteristics necessary for electrical and electronic parts such as connectors, relays, switches, etc., strength, conductivity, bending workability, and stress corrosion cracking resistance are simultaneously simultaneously at a high level. It became possible to improve. This copper alloy can meet the recent severe requirements accompanying the thinning of the material. Moreover, the effect of reducing the raw material cost by containing a relatively large amount of Zn is high, and furthermore, copper alloy scrap having Ni plating or Sn plating, or brass scrap containing Zn can be used as a raw material, so that recyclability is also excellent. Therefore, the present invention contributes to reducing the size and weight of electric / electronic devices, improving performance and reliability, and reducing costs.

〔Si固溶指標Z〕
本発明ではCu−Ni−Si−Zn系銅合金を採用する。当該合金系では通常、Ni−Si系析出物を生成させることで強度上昇を図っている。また、析出物の生成により導電率・熱伝導度を向上させている。NiとSiによって形成される析出物は主としてNi2Si系の金属間化合物であると考えられる。本発明においても基本的にはその強度および導電率の向上作用を利用する。ただし、添加したNiおよびSiは時効処理によってすべてが析出物になるとは限らず、ある程度はCuマトリクス中に固溶した状態で存在する。発明者らの詳細な検討によれば、この固溶Siは、耐応力腐食割れ性を改善するうえで極めて有効であることがわかった。したがって、強度、導電性、耐応力腐食割れを同時にバランス良く改善するには、固溶Si量を確保しつつ、強度向上に有効な微細なNi−Si系析出物を分散させることが重要となる。
[Si solid solution index Z]
In the present invention, a Cu—Ni—Si—Zn based copper alloy is employed. In the alloy system, the strength is usually increased by generating Ni-Si-based precipitates. In addition, the conductivity and thermal conductivity are improved by the formation of precipitates. Precipitates formed by Ni and Si are considered to be mainly Ni 2 Si intermetallic compounds. In the present invention, basically, the strength and conductivity are improved. However, the added Ni and Si are not necessarily all precipitated by the aging treatment, and to some extent, they are present in a solid solution state in the Cu matrix. According to detailed studies by the inventors, it has been found that this solute Si is extremely effective in improving the stress corrosion cracking resistance. Therefore, in order to improve the strength, conductivity, and stress corrosion cracking resistance at the same time in a well-balanced manner, it is important to disperse fine Ni—Si-based precipitates that are effective in improving the strength while securing the amount of dissolved Si. .

前記(1)式で定義されるSi固溶指標Zは、Cu−Ni−Si−Zn系銅合金のマトリクス中に固溶するSi量を導電率の値から評価する指標である。Ni−Si系析出物が微細分散している組織状態においてマトリクス中の固溶Si量を直接正確に測定することは必ずしも容易ではない。また析出物の量を測定することによってマトリクス中の固溶Si量を算出することも精度面で難しさがある。一方、固溶Si量は導電率に大きく反映される。ただし、合金組成によって導電率の値そのものが変動するため、固溶Si量を導電率によって評価するためには、合金組成の影響を考慮に入れる必要がある。Si固溶指標Zはこの点を考慮したものである。   The Si solid solution index Z defined by the formula (1) is an index for evaluating the amount of Si dissolved in the matrix of the Cu—Ni—Si—Zn based copper alloy from the value of conductivity. It is not always easy to directly and accurately measure the amount of solute Si in the matrix in a structure state in which Ni-Si based precipitates are finely dispersed. In addition, it is difficult to calculate the amount of dissolved Si in the matrix by measuring the amount of precipitates. On the other hand, the amount of dissolved Si is greatly reflected in the electrical conductivity. However, since the conductivity value itself varies depending on the alloy composition, it is necessary to take into account the influence of the alloy composition in order to evaluate the amount of dissolved Si based on the conductivity. The Si solid solution index Z takes this point into consideration.

合金中に含まれるSiが全量マトリクス中に固溶したと仮定すると、そのときSiに影響される導電率は最も低くなる。逆にSiが全量(ただしNi2Siを形成しうる最大量)析出物として析出したと仮定すると、そのときSiに影響される導電率は最も高くなる。(1)式において、分母はSi含有量に影響される導電率の最大変動幅に相当するから、これはSi固溶量の変動幅と考えることができる。分子は現実の材料(被測定材)とSiが全量固溶したと仮定した材料(最も導電率が低い材料)の導電率の差であるから、これは現実の材料のSi固溶量がどの程度であるのかを反映した値である。つまり(1)式で表されるSi固溶指標Zは、あるSi含有量の合金において、マトリクス中のSi固溶量が、Si固溶量の変動域を表すスケール上でどの位置にあるかを示す指標である。したがってZによって、現実の材料(被測定材)におけるSi固溶量の程度を知ることができる。Zが小さいほど固溶しているSi量が多く、Zが大きいほど析出しているSi量が多いことになる。ただし、このZ値によるSi固溶量の評価は、Ni含有量が0.4質量%以上、Si含有量が0.15質量%以上の合金において適用可能となる。 Assuming that the Si contained in the alloy is completely dissolved in the matrix, then the conductivity affected by Si is the lowest. On the other hand, if it is assumed that the entire amount of Si (but the maximum amount capable of forming Ni 2 Si) is deposited, then the conductivity affected by Si is the highest. In the equation (1), the denominator corresponds to the maximum fluctuation range of the conductivity affected by the Si content, so this can be considered as the fluctuation range of the Si solid solution amount. Since the molecule is the difference in conductivity between the actual material (material to be measured) and the material (the material with the lowest conductivity) that is assumed to have dissolved all of Si, this is the actual amount of Si dissolved in the material. It is a value that reflects the degree. In other words, the Si solid solution index Z expressed by the equation (1) indicates the position of the Si solid solution amount in the matrix on the scale representing the fluctuation range of the Si solid solution amount in an alloy having a certain Si content. It is an index showing. Therefore, it is possible to know the degree of the amount of Si solid solution in the actual material (material to be measured) from Z. The smaller Z is, the more Si is dissolved, and the larger Z is, the more Si is precipitated. However, the evaluation of the Si solid solution amount based on the Z value can be applied to an alloy having a Ni content of 0.4% by mass or more and a Si content of 0.15% by mass or more.

前述のように、当該合金系において、耐応力腐食割れ性は固溶Si量を確保することにより改善される。すなわちSi固溶指標Zが小さいほど耐応力腐食割れ性は良好になる。しかし反面、Zが小さすぎると導電率が低下し、またNi−Si析出物の量が不十分となるため強度レベルも低下する。このため、時効処理後においてZが適正範囲にあることが強度、導電性、耐応力腐食割れ性を同時に改善するための必要条件となる。しかしながら、強度レベルに関しては単に析出物の生成量だけを確保すれば向上するというものではない。析出物のサイズや分散形態が大きく影響するからである。そこで発明者らはさらに検討を進めた結果、溶体化処理後、すなわち時効処理前の状態においてSiを十分に固溶させておき、その後時効処理を施すことで、Ni−Si系析出物の微細分散が確保され、安定して強度の向上も達成できることを見出した。   As described above, in the alloy system, the stress corrosion cracking resistance is improved by securing a solid solution Si amount. That is, the smaller the Si solid solution index Z, the better the stress corrosion cracking resistance. On the other hand, if Z is too small, the conductivity is lowered, and the amount of Ni—Si precipitates is insufficient, so that the strength level is also lowered. For this reason, Z being in an appropriate range after the aging treatment is a necessary condition for simultaneously improving strength, conductivity, and stress corrosion cracking resistance. However, the strength level does not improve if only the amount of precipitates is secured. This is because the size and dispersion form of the precipitates have a great influence. Therefore, as a result of further investigation, the inventors have sufficiently dissolved Si in a state after the solution treatment, that is, before the aging treatment, and then applied the aging treatment, thereby finely forming the Ni-Si-based precipitates. It has been found that dispersion is ensured and that strength can be stably improved.

具体的には、溶体化処理後においてSi固溶指標Zが0.3以下の組織状態を作る。その後、時効処理を施してZが0.55〜0.9の範囲、好ましくは0.6〜0.9の範囲になるような析出状態を実現する。このようなプロセスを経て得られた組織状態において、強度、導電性、および耐応力腐食割れ性が同時に安定して改善される。   Specifically, a structure state in which the Si solid solution index Z is 0.3 or less is formed after the solution treatment. Thereafter, an aging treatment is performed to realize a precipitation state in which Z is in the range of 0.55 to 0.9, preferably in the range of 0.6 to 0.9. In the structure obtained through such a process, the strength, conductivity, and stress corrosion cracking resistance are simultaneously and stably improved.

〔合金組成〕
NiおよびSiは、析出物を形成し、強度上昇および導電性・熱伝導度向上に寄与する。その作用を十分に得るには、少なくとも0.4質量%以上のNi含有と、0.15質量%以上のSi含有が必要となる。しかし、これらの元素の含有量が多すぎると特に粒界で析出物が粗大化しやすくなり、曲げ加工性の低下を招く。種々検討の結果、Niは4.5質量%以下、Siは0.9質量%以下の範囲で含有させることが望ましい。したがってNi含有量は0.4〜4.5質量%の範囲とすることが望ましく、1.5〜3.5質量%がより好ましい。またSi含有量は0.15〜0.9質量%とすることが望ましく、0.3〜0.6質量%がより好ましい。
[Alloy composition]
Ni and Si form precipitates and contribute to an increase in strength and an improvement in conductivity and thermal conductivity. In order to obtain the effect sufficiently, it is necessary to contain at least 0.4% by mass of Ni and 0.15% by mass of Si. However, if the content of these elements is too large, precipitates are likely to be coarsened particularly at the grain boundaries, leading to a decrease in bending workability. As a result of various studies, it is desirable to contain Ni in a range of 4.5% by mass or less and Si in a range of 0.9% by mass or less. Therefore, the Ni content is preferably in the range of 0.4 to 4.5 mass%, more preferably 1.5 to 3.5 mass%. The Si content is desirably 0.15 to 0.9 mass%, and more preferably 0.3 to 0.6 mass%.

NiとSiの含有量の比は、できるだけ析出物Ni2Siの組成比に近付けることが望ましい。したがって本発明では質量%で表したNi/Si比を3.5〜5.5の範囲に調整することが好ましい。 It is desirable that the content ratio of Ni and Si is as close as possible to the composition ratio of the precipitate Ni 2 Si. Therefore, in the present invention, it is preferable to adjust the Ni / Si ratio expressed in mass% to a range of 3.5 to 5.5.

Znは、強度およびはんだ付け性を向上させる作用を有する。また、Znを添加すると、素材の色が銅色(赤褐色)から黄銅色(金色)に変化するため装飾的な効果を呈するようになるとともに、スクラップの分別も容易になる。さらにZnを合金元素として比較的多量に含むことにより、安価な黄銅スクラップを原料として使用できるメリットがある。Zn含有量が5質量%未満だと黄銅スクラップの使用に大きな制約が生じ、また色の面からも銅との区別がつきにくい。発明者らは種々検討の結果、5質量%以上という比較的多量のZnを含有させた場合でも後述の製造法により導電性が十分確保できることを見出した。一方、Zn含有量が15質量%を超えると製造条件を適正化しても十分な導電性を確保することが難しくなり、曲げ加工性や耐応力腐食割れ性も低下するようになるため、適用可能な用途が限られてしまう。Zn含有量は5〜15質量%の範囲とすることが望ましく、6〜9質量%がより好ましい。   Zn has an effect of improving strength and solderability. When Zn is added, the color of the material changes from copper (reddish brown) to brass (golden), so that a decorative effect is exhibited and scrap separation is facilitated. Further, by containing a relatively large amount of Zn as an alloy element, there is an advantage that inexpensive brass scrap can be used as a raw material. If the Zn content is less than 5% by mass, the use of brass scrap is greatly restricted, and it is difficult to distinguish it from copper in terms of color. As a result of various studies, the inventors have found that even when a relatively large amount of Zn of 5% by mass or more is contained, sufficient conductivity can be ensured by the manufacturing method described later. On the other hand, if the Zn content exceeds 15% by mass, it will be difficult to ensure sufficient conductivity even if the production conditions are optimized, and bending workability and stress corrosion cracking resistance will be reduced. Use is limited. As for Zn content, it is desirable to set it as the range of 5-15 mass%, and 6-9 mass% is more preferable.

Snは、強度向上や耐応力緩和特性の向上に有効な元素である。これらの作用を十分に引き出すためには0.001質量%以上のSn含有量を確保することが望ましく、0.03質量%以上とすることが一層好ましい。またSnを合金成分とすることによりSnめっきスクラップの使用が可能になり、コスト低減に有利となる。特にZnとSnの両方を合金成分とすることで黄銅のSnめっきスクラップが使用できるようになり、原料コスト低減効果とリサイクル性向上効果が一層高まる。一方、2.0質量%を超えるSn含有は導電性、曲げ加工性、熱間圧延性の低下を招くため好ましくない。Snを含有させる場合は0.01〜2.0質量%の範囲とすることが望ましく、0.03〜2.0質量%とすることがより好ましく、0.05〜0.5質量%とすることが一層好ましい。   Sn is an element effective for improving strength and stress relaxation resistance. In order to sufficiently bring out these effects, it is desirable to secure an Sn content of 0.001% by mass or more, and more preferably 0.03% by mass or more. Further, by using Sn as an alloy component, Sn plating scrap can be used, which is advantageous for cost reduction. In particular, by using both Zn and Sn as alloy components, it is possible to use brass Sn-plated scrap, and the raw material cost reduction effect and the recyclability improvement effect are further enhanced. On the other hand, Sn content exceeding 2.0% by mass is not preferable because it causes deterioration of conductivity, bending workability and hot rolling property. When it contains Sn, it is desirable to set it as the range of 0.01-2.0 mass%, It is more preferable to set it as 0.03-2.0 mass%, It is 0.05-0.5 mass%. More preferably.

Pは、脱酸剤としての効果があり、鋳造性を改善する。その効果を十分に得るには0.005質量%以上のP含有量を確保することが望ましい。しかし、P含有量が0.2質量%を超えると導電性が著しく低下するようになる。したがってPを含有させる場合は0.005〜0.2質量%の含有量とすることが好ましい。   P has an effect as a deoxidizer and improves castability. In order to sufficiently obtain the effect, it is desirable to secure a P content of 0.005% by mass or more. However, when the P content exceeds 0.2% by mass, the conductivity is significantly lowered. Therefore, when P is contained, the content is preferably 0.005 to 0.2% by mass.

Feは、固溶強化を呈する元素であり、その作用を十分に発揮させるためには0.005質量%以上の含有量を確保することが望ましい。しかし、Fe含有量が1.0質量%を超えると導電率や曲げ加工性の大幅な低下を招くことがあり好ましくない。したがってFeを含有させる場合は0.005〜1.0質量%の範囲とすることが望ましい。なお、FeはCu−Ni−Si系合金のスクラップから混入しやすい元素であり、そのスクラップを使用することによってFe含有量を上記の範囲に調整することも可能である。   Fe is an element exhibiting solid solution strengthening, and it is desirable to secure a content of 0.005% by mass or more in order to fully exert its action. However, if the Fe content exceeds 1.0% by mass, the electrical conductivity and bending workability may be significantly reduced, which is not preferable. Therefore, when it contains Fe, it is desirable to set it as 0.005 to 1.0 mass%. Note that Fe is an element that is easily mixed from scrap of Cu—Ni—Si alloy, and the Fe content can be adjusted to the above range by using the scrap.

Mgは、熱間加工性、強度、耐応力緩和特性の向上に有効であり、その作用を十分に発揮させるためには0.005質量%以上の含有量を確保することが望ましい。しかし、Mg含有量が0.5質量%を超えると導電率や曲げ加工性の大幅な低下を招くことがあり好ましくない。したがってMgを含有させる場合は0.005〜0.5質量%の範囲とすることが望ましい。なお、MgもFeと同様にCu−Ni−Si系合金のスクラップから混入しやすい元素であり、そのスクラップを使用することによってMg含有量を上記の範囲に調整することも可能である。   Mg is effective in improving the hot workability, strength, and stress relaxation resistance, and it is desirable to ensure a content of 0.005% by mass or more in order to fully exert its effects. However, if the Mg content exceeds 0.5% by mass, the electrical conductivity and bending workability may be significantly reduced, which is not preferable. Therefore, when it contains Mg, it is desirable to set it as the range of 0.005-0.5 mass%. In addition, Mg is an element which is easily mixed from the scrap of Cu—Ni—Si alloy like Fe, and the Mg content can be adjusted to the above range by using the scrap.

CoおよびCrは、いずれもNiと置換することでSiとの金属間化合物をつくり、材料の強度を向上させる。その作用を十分発揮させるためには、Co、Crいずれの場合も0.005質量%以上の含有量とすることが望ましく、0.03質量%以上とすることが一層好ましい。しかし、いずれも4.0質量%を超えて多量に含有させると曲げ加工性と導電率の低下を招く。したがって、CoまたはCrを含有させる場合は、いずれの場合も0.005〜4.0質量%の範囲とすることが望ましく、0.03〜4.0質量%とすることがより好ましく、0.05〜0.5質量%が一層好ましい。
任意添加元素であるSn、P、Fe、Mg、Cr、Coは単独で含有させてもよいし複合して含有させてもよい。
Co and Cr are both substituted with Ni to form an intermetallic compound with Si and improve the strength of the material. In order to fully exhibit its action, it is desirable to set the content to 0.005% by mass or more in both cases of Co and Cr, and more preferable to set the content to 0.03% by mass or more. However, if any of them is contained in a large amount exceeding 4.0% by mass, bending workability and conductivity are reduced. Therefore, in the case where Co or Cr is contained, in any case, the range is preferably 0.005 to 4.0% by mass, more preferably 0.03 to 4.0% by mass, and more preferably 0.0 to 4.0% by mass. More preferably, it is 05-0.5 mass%.
The optional additive elements Sn, P, Fe, Mg, Cr, and Co may be contained alone or in combination.

〔特性〕
コネクタ、リレー、スイッチ、ソケット、さらにはリードフレーム等の電気・電子部品に信頼性をもって適用するには、板材において圧延方向に引張試験を行ったときの引張強さが650N/mm2以上となる強度レベルを呈することが望ましい。特に今後ますます薄肉化への要求が強まることを考慮すると、引張強さが670N/mm2以上、あるいは700N/mm2以上、あるいはさらに720N/mm2以上の強度レベルを呈することが極めて有利となる。また同時に導電性は25%IACS以上の導電率を具備することが望まれる。後述の製造法に従えば、本発明で規定する銅合金組成において、このような優れた特性を実現することが可能である。
〔Characteristic〕
For reliable application to electrical and electronic parts such as connectors, relays, switches, sockets, and lead frames, the tensile strength when a tensile test is performed on the plate material in the rolling direction is 650 N / mm 2 or more. It is desirable to exhibit an intensity level. Considering in particular the future stronger increasingly demand for thinner, a tensile strength of 670N / mm 2 or more, or 700 N / mm 2 or more, or even to exhibit 720N / mm 2 or more intensity levels extremely advantageous Become. At the same time, it is desirable that the conductivity be 25% IACS or higher. According to the manufacturing method described later, such excellent characteristics can be realized in the copper alloy composition defined in the present invention.

また、種々の電気・電子部品への加工を考慮すると、優れた曲げ加工性を具備していることが望ましい。具体的には、圧延方向に平行な方向を曲げ軸とする曲げ加工(BW)において、最小曲げ半径(MBR/t、ただしtは板厚)が2.0以下となる曲げ加工性を呈することが望ましく、1.5以下、あるいはさらに1.0以下を呈するものが一層好ましい。高強度を図った合金では一般的に曲げ加工性が低下する傾向にあるが、本発明では後述の溶体化処理および時効処理の組み合わせにより、優れた強度−導電性−曲げ加工性バランスを実現し得る。   Further, considering the processing of various electrical / electronic components, it is desirable that the material has excellent bending workability. Specifically, in a bending process (BW) in which the direction parallel to the rolling direction is the bending axis, the bending processability is such that the minimum bending radius (MBR / t, where t is the plate thickness) is 2.0 or less. It is desirable that it exhibits 1.5 or less, or even 1.0 or less. Alloys with high strength generally have a tendency to decrease bending workability, but in the present invention, an excellent balance of strength-conductivity-bending workability is realized by a combination of solution treatment and aging treatment described later. obtain.

その他の特性としては、圧延方向に引張試験を行ったときの伸びが5%以上であることが望ましく、7%以上、あるいはさらに9%以上であることが一層好ましい。また、はんだ濡れ性に優れること、および熱間加工性に優れることも重要である。   As other characteristics, the elongation when the tensile test is performed in the rolling direction is preferably 5% or more, more preferably 7% or more, or even more preferably 9% or more. It is also important to have excellent solder wettability and excellent hot workability.

〔製造法〕
以上のような優れた特性をCu−Ni−Si−Zn系銅合金に付与するための手法について、発明者らは詳細な検討を行ってきた。その結果、溶体化処理後の冷却速度を十分大きくし、かつ時効処理後の冷却を徐冷とする「溶体化処理」−「時効処理」の組み合わせにより、上記特性の付与が可能となることを見出した。銅合金材料は一般に、熱間圧延後に、熱処理と冷間圧延を複数回付与する工程で製造される。時効析出を利用する銅合金の場合は、通常、途中のいずれかの熱処理工程で溶体化処理を行い、その後に行われるいずれかの熱処理工程で時効処理を行う。本発明の銅合金の製造においてもそのような工程が採用できる。ただし、以下のような条件とすることが肝要である。
[Production method]
The inventors have conducted a detailed study on a technique for imparting the above excellent characteristics to a Cu—Ni—Si—Zn based copper alloy. As a result, the combination of the “solution treatment” and the “aging treatment” in which the cooling rate after the solution treatment is sufficiently increased and the cooling after the aging treatment is gradually cooled can provide the above characteristics. I found it. A copper alloy material is generally manufactured in a process of applying heat treatment and cold rolling a plurality of times after hot rolling. In the case of a copper alloy using aging precipitation, solution treatment is usually performed in any heat treatment step in the middle, and aging treatment is performed in any heat treatment step performed thereafter. Such a process can also be employed in the production of the copper alloy of the present invention. However, it is important to set the following conditions.

溶体化処理では、冷却後にSi固溶指標Zが0.3以下となるように、Siの固溶量を十分に確保する条件で行うことが望ましい。そのためには加熱温度と冷却速度が重要である。加熱温度は650〜850℃の範囲とする。合金組成によって最適温度は多少変動するが、上記温度範囲への加熱により目的を達成できる。概ね80%以上の熱間圧延と、その後に概ね60%以上の冷間圧延を経た材料を対象とするならば、上記温度域での保持時間は30min以下でよい。多くの場合、10min以下、例えば30sec〜10minの加熱保持で良好な結果が得られる。そして、上記温度域から冷却する際は、650℃から250℃までの平均冷却速度を200℃/min以上とする。この冷却速度が200℃/min未満になると、冷却過程で粗大なNi−Si系の析出相が生成しやすくなり、溶体化処理後にSi固溶指標Zを安定して0.3以下にすることが困難となる。また、曲げ加工性の低下をまねく。
溶体化処理後の状態においてZが0.3を超えて大きくなる(すなわち固溶Si量が不足する)と、後工程の時効処理によって十分な析出強化が得られず、最終的にZが0.55〜0.9の適正範囲になったとしても、強度の改善が不十分となる
It is desirable that the solution treatment be performed under conditions that ensure a sufficient solid solution amount of Si so that the Si solid solution index Z is 0.3 or less after cooling. For this purpose, the heating temperature and the cooling rate are important. The heating temperature is in the range of 650 to 850 ° C. Although the optimum temperature varies somewhat depending on the alloy composition, the purpose can be achieved by heating to the above temperature range. If a material that has been subjected to approximately 80% or more hot rolling and then approximately 60% or more cold rolling is the target, the holding time in the above temperature range may be 30 min or less. In many cases, good results can be obtained by heating and holding for 10 min or less, for example, 30 sec to 10 min. And when cooling from the said temperature range, the average cooling rate from 650 degreeC to 250 degreeC shall be 200 degrees C / min or more. When this cooling rate is less than 200 ° C./min, a coarse Ni—Si-based precipitated phase is likely to be generated during the cooling process, and the Si solid solution index Z is stably reduced to 0.3 or less after the solution treatment. It becomes difficult. Moreover, bending workability is lowered.
When Z exceeds 0.3 in the state after the solution treatment (that is, the amount of solid solution Si is insufficient), sufficient precipitation strengthening cannot be obtained by the aging treatment in the subsequent step, and Z is finally 0. Even if it is within the proper range of .55 to 0.9, the improvement in strength is insufficient.

時効処理では、上記の方法で十分に溶体化された(すなわちZが0.3以下になっている)材料を、380〜550℃、好ましくは400〜550℃の温度域で保持する。合金組成によって最適温度は多少変動するが、上記温度範囲において適正条件を見出すことができる。保持時間(時効処理時間)は20min〜8hr、好ましくは1〜5hrとすればよい。そして、本発明では時効処理において加熱保持後の冷却を「徐冷」とすることが重要である。すなわち、上記温度域から(少なくとも380℃から)150℃に達するまでの平均冷却速度を5℃/min以下で徐冷する。このような徐冷処理により、急冷の場合と比較して均一かつ微細な析出物が多く得られ、これがZnを比較的多量に含む当該合金系において強度および導電性の顕著な改善をもたらすのである。ただし本発明の合金では時効処理後においてSi固溶指標Zが0.55〜0.9の範囲になるようにマトリクス中に固溶Siが残っている必要がある。Zが0.55を下回ると析出物の量が不足することにより強度不足が生じ、同時に固溶Si量が多すぎるきることにより導電性の低下が生じる。逆にZが0.9を超えるとマトリクス中の固溶Si量が不足して耐応力腐食割れ性が著しく低下する。Zのコントロールは、主として時効処理温度および時間を適正化することで行い得る。   In the aging treatment, a material that has been sufficiently solutionized by the above-described method (that is, Z is 0.3 or less) is maintained in a temperature range of 380 to 550 ° C, preferably 400 to 550 ° C. Although the optimum temperature varies somewhat depending on the alloy composition, appropriate conditions can be found in the above temperature range. The holding time (aging treatment time) may be 20 min to 8 hr, preferably 1 to 5 hr. In the present invention, in the aging treatment, it is important that the cooling after the heating and holding is “slow cooling”. That is, the average cooling rate until the temperature reaches 150 ° C. (from at least 380 ° C.) from the above temperature range is gradually cooled at 5 ° C./min or less. Such a slow cooling process yields more uniform and fine precipitates than in the case of rapid cooling, which leads to a marked improvement in strength and conductivity in the alloy system containing a relatively large amount of Zn. . However, in the alloy of the present invention, solute Si needs to remain in the matrix so that the Si solid solution index Z is in the range of 0.55 to 0.9 after the aging treatment. When Z is less than 0.55, the amount of precipitates is insufficient, resulting in insufficient strength. At the same time, the amount of dissolved Si is too large, resulting in a decrease in conductivity. On the other hand, when Z exceeds 0.9, the amount of dissolved Si in the matrix is insufficient and the stress corrosion cracking resistance is remarkably lowered. Z can be controlled mainly by optimizing the aging temperature and time.

全般的な工程についてみると、例えば以下のような製造プロセスが採用できる。
鋳造は、Znを含有する一般的な銅合金の溶製方法に従い、1100〜1300℃で溶解した後、半連続鋳造または連続鋳造で行うことができる。
As for the general process, for example, the following manufacturing process can be adopted.
Casting can be performed by semi-continuous casting or continuous casting after melting at 1100 to 1300 ° C. according to a general method for melting a copper alloy containing Zn.

鋳造後に熱間圧延を行う場合は、鋳造組織中に生じているSn、Mg、Ni2Si相などの偏析を熱間圧延前の加熱によってできるだけ均質化しておくことが望ましい。具体的には平衡状態で均質な固溶状態となる800℃以上の温度域に1hr以上保持する加熱が有効である。加熱温度は800〜950℃が好ましい。熱間圧延は650℃以上の温度で最終パスを終了し、650℃以下の温度域を水冷等により急冷する。熱間圧延後は適正な厚みの面削を行い、表面に発生しているNi−Si系の粗大析出物や酸化物を除去する。
熱間圧延を行わない場合は、組織の均質化のために、鋳造後に800℃以上の温度で2hr以上の加熱処理を行うことが望ましい。850〜900℃の加熱温度とすることが好ましい。
When hot rolling is performed after casting, it is desirable to make the segregation of Sn, Mg, Ni 2 Si phase, etc. occurring in the cast structure as uniform as possible by heating before hot rolling. Specifically, heating that is maintained for 1 hr or more in a temperature range of 800 ° C. or more that is in a homogeneous solid solution state in an equilibrium state is effective. The heating temperature is preferably 800 to 950 ° C. Hot rolling ends the final pass at a temperature of 650 ° C. or higher, and rapidly cools the temperature range of 650 ° C. or lower by water cooling or the like. After hot rolling, chamfering with an appropriate thickness is performed to remove Ni-Si based coarse precipitates and oxides generated on the surface.
When hot rolling is not performed, it is desirable to perform heat treatment for 2 hours or more at a temperature of 800 ° C. or higher after casting in order to homogenize the structure. The heating temperature is preferably 850 to 900 ° C.

次いで例えば60%以上の加工率で冷間圧延を行い、その後650〜850℃の温度で30min以下の溶体化処理を行う。その際、前述のように少なくとも250℃に達するまでの平均冷却速度を200℃/min以上とすることが重要である。溶体化処理後は直接上述の時効処理に供することも可能であるが、60%以下、好ましくは50%以下の範囲で冷間圧延を施した後に時効処理に供することが一層好ましい。この場合の冷間圧延率は15%以上を確保することが特に効果的である。なお、上記の冷間圧延率の範囲であれば、溶体化処理後の導電率(すなわちSi固溶指標Z)は概ね維持される。   Next, for example, cold rolling is performed at a processing rate of 60% or more, and then solution treatment is performed at a temperature of 650 to 850 ° C. for 30 minutes or less. At that time, it is important that the average cooling rate until reaching at least 250 ° C. is 200 ° C./min or more as described above. Although it is possible to use the aging treatment directly after the solution treatment, it is more preferable that the aging treatment is performed after cold rolling in the range of 60% or less, preferably 50% or less. In this case, it is particularly effective to secure a cold rolling rate of 15% or more. In addition, if it is the range of said cold rolling rate, the electrical conductivity (namely, Si solid solution parameter | index Z) after solution treatment will be substantially maintained.

一般に銅合金の製造は熱処理と冷間圧延を繰り返すことによって行われるが、本発明では、前記溶体化処理後に行われる最初の熱処理で時効処理を行う。その時効処理は上述したとおり徐冷を伴う条件で行う必要がある。時効処理後には、得られた析出物が形態変化しないよう、時効処理温度以上の加熱は避けるべきである。時効処理後には必要に応じて最終的な冷間圧延を行い、その後例えば250〜500℃未満、好ましくは250〜350℃の温度に20sec〜10min保持する歪取り焼鈍を行うことが望ましい。これにより強度、導電性、曲げ加工性等をさらに向上させることができる。   In general, a copper alloy is manufactured by repeating heat treatment and cold rolling. In the present invention, an aging treatment is performed in the first heat treatment performed after the solution treatment. As described above, the aging treatment needs to be performed under conditions involving slow cooling. After the aging treatment, heating above the aging treatment temperature should be avoided so that the resulting precipitate does not change in shape. After the aging treatment, it is desirable to perform final cold rolling as necessary, and then to perform strain relief annealing that is maintained at a temperature of, for example, 250 to less than 500 ° C., preferably 250 to 350 ° C. for 20 seconds to 10 minutes. Thereby, intensity | strength, electroconductivity, bending workability, etc. can be improved further.

表1に示す組成の銅合金を高周波溶解炉を用いて溶解し、大気中かつ木炭被覆下で半連続鋳造法により鋳造して厚さ20mmの鋳片を得た。この鋳片を910℃で2hr加熱保持したのち抽出して、厚さ3mmまで熱間圧延し、最終パス終了後700℃から水冷した。得られた熱延板を面削し厚さ2mmとしたのち、0.5mmまで冷間圧延を行った。その後、溶体化処理を650〜800℃×20sec〜5minの加熱条件で行った。溶体化処理における冷却は、強制空冷または水冷することにより650℃から250℃までの平均冷却速度を200℃/min以上にコントロールした。ただし一部の試料(No.26)では炉外で放冷することにより650℃から250℃までの平均冷却速度を約170℃/minと遅くした。冷却速度は試料表面に取り付けた熱電対により測定した。
溶体化処理後の材料について、導電率をJIS H0505に基づいて測定し、前述の(1)〜(4)式を用いて溶体化処理後のSi固溶指標Zを求めた。
A copper alloy having the composition shown in Table 1 was melted using a high-frequency melting furnace, and cast in the air and under a charcoal coating by a semi-continuous casting method to obtain a slab having a thickness of 20 mm. This slab was heated and held at 910 ° C. for 2 hours, extracted, hot-rolled to a thickness of 3 mm, and water-cooled from 700 ° C. after the final pass. The obtained hot-rolled sheet was chamfered to a thickness of 2 mm, and then cold-rolled to 0.5 mm. Thereafter, solution treatment was performed under heating conditions of 650 to 800 ° C. × 20 sec to 5 minutes. For cooling in the solution treatment, the average cooling rate from 650 ° C. to 250 ° C. was controlled to 200 ° C./min or higher by forced air cooling or water cooling. However, in some samples (No. 26), the average cooling rate from 650 ° C. to 250 ° C. was slowed down to about 170 ° C./min by cooling outside the furnace. The cooling rate was measured with a thermocouple attached to the sample surface.
About the material after solution treatment, electrical conductivity was measured based on JISH0505, and Si solid solution index Z after solution treatment was calculated using the above-mentioned formulas (1) to (4).

その後、厚さ0.35mmまで冷間圧延したのち、380〜550℃×2〜8hrの時効処理を施した。時効処理における冷却は炉冷とし、380℃から150℃までの温度域における冷却速度を5℃/min以下にコントロールした。なお、試料No.12は時効処理温度を380℃とし、他は400〜550℃の範囲とした。またNo.24は380℃から150℃までの温度域における冷却速度を10℃/minにコントロールした。冷却速度は熱電対により測定した。次いで厚さ0.3mmまで冷間圧延したのち、400〜500℃×20sec〜5minの範囲で歪取り焼鈍を行った。   Then, after cold rolling to a thickness of 0.35 mm, an aging treatment of 380 to 550 ° C. × 2 to 8 hours was performed. Cooling in the aging treatment was furnace cooling, and the cooling rate in the temperature range from 380 ° C. to 150 ° C. was controlled to 5 ° C./min or less. In Sample No. 12, the aging treatment temperature was 380 ° C., and the others were in the range of 400 to 550 ° C. In No. 24, the cooling rate in the temperature range from 380 ° C. to 150 ° C. was controlled to 10 ° C./min. The cooling rate was measured with a thermocouple. Next, after cold rolling to a thickness of 0.3 mm, strain relief annealing was performed in the range of 400 to 500 ° C. × 20 sec to 5 min.

Figure 0004810704
Figure 0004810704

得られた各銅合金板材について、引張強さ、伸び、硬さ、導電率、曲げ加工性、はんだ濡れ性、耐応力腐食割れ性を調べた。
引張強さおよび伸びは圧延方向に平行方向のJIS 5号試験片を用いてJIS Z2241に基づいて測定した。
硬さは板の表面についてマイクロビッカース硬度計により測定した。
導電率はJIS H0505に基づいて測定した。またその導電率から、前述の(1)〜(4)式を用いて時効処理後のSi固溶指標Zを求めた。
About each obtained copper alloy board | plate material, tensile strength, elongation, hardness, electrical conductivity, bending workability, solder wettability, and stress corrosion cracking resistance were investigated.
Tensile strength and elongation were measured based on JIS Z2241 using a JIS No. 5 test piece parallel to the rolling direction.
Hardness was measured with a micro Vickers hardness tester on the surface of the plate.
The conductivity was measured based on JIS H0505. Further, from the electrical conductivity, the Si solid solution index Z after the aging treatment was obtained using the above-mentioned formulas (1) to (4).

曲げ加工性は、JCBA T307(日本伸銅協会規格)に準じたW曲げ試験方法によって、曲げ軸が圧延方向に対し直角方向(GW)および平行方向(BW)となる曲げ試験をそれぞれ実施してMBR/t(tは板厚)により評価した。
はんだ濡れ性はJIS C0053に準拠した方法で調べ、非活性ロジンフラックスに5秒間浸漬したのち、215℃のはんだ(60%Sn−40%Pb)浴に3秒間浸漬し、はんだの濡れ面積が90%以上のものを○(良好)、90%未満のものを×(不良)と評価した。
The bending workability is determined by performing a bending test in which the bending axis is perpendicular to the rolling direction (GW) and parallel direction (BW) by the W bending test method according to JCBA T307 (Japan Copper and Brass Association Standard). Evaluation was performed by MBR / t (t is the plate thickness).
The solder wettability was investigated by a method according to JIS C0053, immersed in an inactive rosin flux for 5 seconds, and then immersed in a 215 ° C. solder (60% Sn-40% Pb) bath for 3 seconds. % (Good) and less than 90% were evaluated as x (bad).

耐応力腐食割れ性はASTM G37−85に準拠した方法で調べ、圧延方向に平行方向の試験片にて曲げビーム試験を72h行った後、試験片表面を酸および水で洗い、光学顕微鏡を用いて試験片表面を倍率50倍で観察し、割れが認められないものを○(良好)、割れが認められたものを×(不良)と評価した。
結果を表2に示す。
The stress corrosion cracking resistance was examined by a method according to ASTM G37-85, and after performing a bending beam test for 72 hours with a test piece parallel to the rolling direction, the surface of the test piece was washed with acid and water, and an optical microscope was used. The surface of the test piece was observed at a magnification of 50 times, and the case where no cracks were observed was evaluated as ◯ (good), and the case where cracks were observed was evaluated as x (defective).
The results are shown in Table 2.

Figure 0004810704
Figure 0004810704

表2からわかるように、本発明例のものはいずれも引張強さ650N/mm2以上の高強度を呈し、導電率も25%IACS以上を有していた。また、曲げ加工性はBWにおけるMBR/t値で2.0以下をクリアした。さらに、はんだ濡れ性、耐応力腐食割れ性も良好であった。なお、No.3とNo.12は同組成の合金であるが、時効処理温度380℃のNo.12に比べ時効処理温度を400℃以上としたNo.3の方が強度向上効果が大きかった。 As can be seen from Table 2, all of the examples of the present invention exhibited high strength with a tensile strength of 650 N / mm 2 or more and conductivity of 25% IACS or more. Moreover, the bending workability cleared 2.0 or less in MBR / t value in BW. Furthermore, solder wettability and stress corrosion cracking resistance were also good. Although No. 3 and No. 12 are alloys having the same composition, No. 3 with an aging treatment temperature of 400 ° C. or higher had a greater strength improvement effect than No. 12 with an aging treatment temperature of 380 ° C. .

これに対し比較例No.21はZn含有量が多いため導電率が低く、曲げ加工性、はんだ濡れ性、および耐応力腐食割れ性にも劣った。No.22および23はそれぞれSi含有量およびNi含有量が少ないため、Ni−Si系析出物による強度向上が不十分であった。これらはNiまたはSiの含有量が少ないためにZ値による特性評価はできない。No.24は時効処理後の冷却速度が速すぎたため導電性に劣り、Si固溶指標Zが0.9を超えた。このため、強度および耐応力腐食割れ性が悪かった。No.25も同組成の合金であるが、溶体化処理における冷却速度が遅すぎたため溶体化処理後(時効処理前)のSi固溶指標Zが0.3を超え、時効処理後にZが0.55〜0.9の範囲になったにもかかわらず、強度レベルが低かった。No.26はZn含有量が少ないためはんだ濡れ性に劣った。   On the other hand, Comparative Example No. 21 had a low conductivity because of a large Zn content, and was inferior in bending workability, solder wettability, and stress corrosion cracking resistance. No. 22 and No. 23 had insufficient Si content and Ni content, respectively, so that the strength improvement by Ni—Si based precipitates was insufficient. Since the content of Ni or Si is small, the characteristics cannot be evaluated by the Z value. No. 24 was inferior in conductivity because the cooling rate after the aging treatment was too fast, and the Si solid solution index Z exceeded 0.9. For this reason, strength and stress corrosion cracking resistance were poor. No. 25 is an alloy having the same composition, but the cooling rate in the solution treatment was too slow, so the Si solid solution index Z after the solution treatment (before the aging treatment) exceeded 0.3, and Z was 0 after the aging treatment. The strength level was low despite being in the range of .55 to 0.9. No. 26 was inferior in solder wettability because of low Zn content.

〔Si固溶指標Zの算出例〕
上記の本発明例No.3の例を挙げて、Si固溶指標Zの求め方を説明する。
[1]溶体化処理後のSi固溶指標Z
(i)Siが全て固溶した場合の計算上の導電率b(%IACS)の算出
表1のNo.3において、質量%で表される各元素の含有量は、Ni(mass%)=1.99、Si(mass%)=0.41、Zn(mass%)=5.13、Sn(mass%)=0.31であり、残部はCuであるからCu(mass%)=100−(Ni(mass%)+Si(mass%)+Zn(mass%)+Sn(mass%))=92.16である。
この組成を、補正せずにそのまま、質量%から原子%に換算する。各元素のXの原子量MXを使って、例えばNi(at%)の場合、以下のようにして求まる。
Ni(at%)=100×(Ni(mass%)/MNi)/(Cu(mass%)/MCu+Ni(mass%)/MNi+Si(mass%)/MSi+Zn(mass%)/MZn+Sn(mass%)/MSn
=100×(1.99/58.69)/(92.16/63.55+1.99/58.69+0.41/28.09+5.13/65.39)=2.15
他の元素についても同様にして、Si(at%)=0.92、Zn(at%)=4.97、Sn(at%)=0.17と求まる。残部はCuであるからその他の元素の原子%(Fe(at%)など)は全て0(ゼロ)とする。
[Calculation example of Si solid solution index Z]
The example of said invention example No. 3 is given and the method of calculating | requiring the Si solid solution parameter | index Z is demonstrated.
[1] Si solid solution index Z after solution treatment
(I) Calculation of electrical conductivity b (% IACS) when Si is completely dissolved In No. 3 of Table 1, the content of each element represented by mass% is Ni (mass%) = 1.99, Si (mass%) = 0.41, Zn (mass%) = 5.13, Sn (mass%) = 0.31 and the balance is Cu, so Cu (mass%) = 100− (Ni (mass%) + Si (mass%) + Zn (mass%) + Sn (mass%)) = 92.16.
This composition is converted from mass% to atomic% without correction. For example, in the case of Ni (at%), the X atomic weight M X of each element is obtained as follows.
Ni (at%) = 100 × (Ni (mass%) / M Ni ) / (Cu (mass%) / M Cu + Ni (mass%) / M Ni + Si (mass%) / M Si + Zn (mass%) / M Zn + Sn (mass%) / M Sn )
= 100 × (1.99 / 58.69) / (92.16 / 63.55 + 1.99 / 58.69 + 0.41 / 28.09 + 5.13 / 65.39) = 2.15
Similarly for other elements, Si (at%) = 0.92, Zn (at%) = 4.97, and Sn (at%) = 0.17. Since the balance is Cu, the atomic% of other elements (Fe (at%), etc.) are all 0 (zero).

これらの原子%の値を前記(3)式に代入すると、
ρS=17.24+(12.2×Ni(at%)+39.5×Si(at%)+3×Zn(at%)+28.8×Sn(at%)+67×P(at%)+96.6×Fe(at%)+6×Mg(at%)+63×Co(at%)+40×Cr(at%))−(0.3×12.2×Ni(at%)2+4.9×39.5×Si(at%)2+2.7×3×Zn(at%)2+3.2×28.8×Sn(at%)2+20×96.6×Fe(at%)2)/100
=17.24+(12.2×2.15+39.5×0.92+3×4.97+28.8×0.17+67×0+96.6×0+6×0+63×0+40×0)−(0.3×12.2×2.152+4.9×39.5×0.922+2.7×3×4.972+3.2×28.8×0.172+20×96.6×02)/100
=95.78
これを前記(2)式に代入すると、
p=17.24/ρS×100
=17.24/95.78×100
=18.00
したがって、b=18.00である。
Substituting these atomic% values into the equation (3),
ρ S = 17.24 + (12.2 × Ni (at%) + 39.5 × Si (at%) + 3 × Zn (at%) + 28.8 × Sn (at%) + 67 × P (at%) + 96. 6 × Fe (at%) + 6 × Mg (at%) + 63 × Co (at%) + 40 × Cr (at%)) − (0.3 × 12.2 × Ni (at%) 2 + 4.9 × 39 0.5 × Si (at%) 2 + 2.7 × 3 × Zn (at%) 2 + 3.2 × 28.8 × Sn (at%) 2 + 20 × 96.6 × Fe (at%) 2 ) / 100
= 17.24+ (12.2 × 2.15 + 39.5 × 0.92 + 3 × 4.97 + 28.8 × 0.17 + 67 × 0 + 96.6 × 0 + 6 × 0 + 63 × 0 + 40 × 0) − (0.3 × 12.2 × 2.15 2 + 4.9 × 39.5 × 0.92 2 + 2.7 × 3 × 4.97 2 + 3.2 × 28.8 × 0.17 2 + 20 × 96.6 × 0 2 ) / 100
= 95.78
Substituting this into the equation (2),
p = 17.24 / ρ S × 100
= 17.24 / 95.78 × 100
= 18.00
Therefore, b = 18.00.

(ii)Siが全て析出した場合(固溶量ゼロの場合)の計算上の導電率c(%IACS)の算出
上述のように、表1のNo.3において、質量%で表される各元素の含有量は、Ni(mass%)=1.99、Si(mass%)=0.41、Zn(mass%)=5.13、Sn(mass%)=0.31、Cu(mass%)=92.16である。ただしここでは、Ni含有量(質量%)を前記(4)式によるNiAに、またSi含有量(質量%)を前記(5)式によるSiAにそれぞれ補正する。
(4)式より、
NiA=Ni(mass%)−2×(58.69/28.09)×Si(mass%)
=1.99−2×(58.69/28.09)×0.41
=0.28
(5)式より、
SiA=Si(mass%)−(1/2)×(28.09/58.69)×Ni(mass%)
=0.41−(1/2)×(28.09/58.69)×1.99
=−0.07
この計算値は負であるから、(5)式のただし書きより、
SiA=0
となる。したがって、上述(i)の手順において、Ni(mass%)を0.28、Si(mass%)を0にそれぞれ変えたこと以外、同じ方法で(2)式のpを求めると、そのpがcの値となる。
(Ii) Calculation of electrical conductivity c (% IACS) in the case where all Si is precipitated (in the case where the amount of solid solution is zero) As described above, in No. 3 of Table 1, each represented by mass% Element content is Ni (mass%) = 1.99, Si (mass%) = 0.41, Zn (mass%) = 5.13, Sn (mass%) = 0.31, Cu (mass% ) = 92.16. However, here, the Ni content (mass%) is corrected to Ni A according to the equation (4), and the Si content (mass%) is corrected to Si A according to the equation (5).
From equation (4)
Ni A = Ni (mass%)-2 × (58.69 / 28.09) × Si (mass%)
= 1.99-2 × (58.69 / 28.09) × 0.41
= 0.28
From equation (5)
Si A = Si (mass%)-(1/2) × (28.09 / 58.69) × Ni (mass%)
= 0.41-(1/2) x (28.09 / 58.69) x 1.9.
= -0.07
Since this calculated value is negative, from the proviso in equation (5),
Si A = 0
It becomes. Therefore, in the procedure of (i) described above, when p in equation (2) is obtained by the same method except that Ni (mass%) is changed to 0.28 and Si (mass%) is changed to 0, the p becomes It becomes the value of c.

具体的には、まず、質量%を原子%に換算すると、Ni(at%)=0.30、Si(at%)=0、Zn(at%)=5.00、Sn(at%)=0.17と求まる。残部はCuであるからその他の元素の原子%(Fe(at%)など)は全て0(ゼロ)である。
これらの原子%の値を前記(3)式に代入すると、
ρS=17.24+(12.2×Ni(at%)+39.5×Si(at%)+3×Zn(at%)+28.8×Sn(at%)+67×P(at%)+96.6×Fe(at%)+6×Mg(at%)+63×Co(at%)+40×Cr(at%))−(0.3×12.2×Ni(at%)2+4.9×39.5×Si(at%)2+2.7×3×Zn(at%)2+3.2×28.8×Sn(at%)2+20×96.6×Fe(at%)2)/100
=17.24+(12.2×0.30+39.5×0+3×5.00+28.8×0.17+67×0+96.6×0+6×0+63×0+40×0)−(0.3×12.2×0.302+4.9×39.5×02+2.7×3×5.002+3.2×28.8×0.172+20×96.6×02)/100
=38.74
これを前記(2)式に代入すると、
p=17.24/ρS×100
=17.24/38.74×100
=44.50
したがって、c=44.50である。
Specifically, first, when mass% is converted to atomic%, Ni (at%) = 0.30, Si (at%) = 0, Zn (at%) = 5.00, Sn (at%) = It is obtained as 0.17. Since the balance is Cu, the atomic% (Fe (at%), etc.) of other elements are all 0 (zero).
Substituting these atomic% values into the equation (3),
ρ S = 17.24 + (12.2 × Ni (at%) + 39.5 × Si (at%) + 3 × Zn (at%) + 28.8 × Sn (at%) + 67 × P (at%) + 96. 6 × Fe (at%) + 6 × Mg (at%) + 63 × Co (at%) + 40 × Cr (at%)) − (0.3 × 12.2 × Ni (at%) 2 + 4.9 × 39 0.5 × Si (at%) 2 + 2.7 × 3 × Zn (at%) 2 + 3.2 × 28.8 × Sn (at%) 2 + 20 × 96.6 × Fe (at%) 2 ) / 100
= 17.24 + (12.2 × 0.30 + 39.5 × 0 + 3 × 5.00 + 28.8 × 0.17 + 67 × 0 + 96.6 × 0 + 6 × 0 + 63 × 0 + 40 × 0) − (0.3 × 12.2 × 0) .30 2 + 4.9 × 39.5 × 0 2 + 2.7 × 3 × 5.00 2 + 3.2 × 28.8 × 0.17 2 + 20 × 96.6 × 0 2 ) / 100
= 38.74
Substituting this into the equation (2),
p = 17.24 / ρ S × 100
= 17.24 / 38.74 × 100
= 44.50
Therefore, c = 44.50.

(iii)Zの算出
表2より、No.3の溶体化処理後の導電率aは23.4(%IACS)である。
前記(1)式に、a=23.4、b=18.00、c=44.50を代入すると、
Z=(a−b)/(c−b)
=(23.4−18.00)/(44.50−18.00)
=0.20
よって、No.3の溶体化処理後におけるSi固溶指標Zは0.20と算出された。
(Iii) Calculation of Z From Table 2, the conductivity a after the solution treatment of No. 3 is 23.4 (% IACS).
Substituting a = 23.4, b = 18.00, and c = 44.50 into the equation (1),
Z = (a−b) / (c−b)
= (23.4-18.00) / (44.50-18.00)
= 0.20
Therefore, the Si solid solution index Z after the solution treatment of No. 3 was calculated to be 0.20.

[2]時効処理後のSi固溶指標Z
前記(1)式に代入するためのbおよびcは、上述[1]のものと共通である。
また、表2より、No.3の時効処理後の導電率aは35.1(%IACS)である。
前記(1)式に、a=35.1、b=18.00、c=44.50を代入すると、
Z=(a−b)/(c−b)
=(35.1−18.00)/(44.50−18.00)
=0.65
よって、No.3の時効処理後におけるSi固溶指標Zは0.65と算出された。
[2] Si solid solution index Z after aging treatment
B and c for substituting into the equation (1) are the same as those in the above [1].
Moreover, from Table 2, the electrical conductivity a after the aging treatment of No. 3 is 35.1 (% IACS).
Substituting a = 35.1, b = 18.00, and c = 44.50 into the equation (1),
Z = (a−b) / (c−b)
= (35.1-18.00) / (44.50-18.00)
= 0.65
Therefore, the Si solid solution index Z after the aging treatment of No. 3 was calculated as 0.65.

Claims (6)

質量%で、Ni:0.4〜4.5%、Si:0.15〜0.9%、Zn:5〜15%、残部Cuおよび不可避的不純物からなる組成を有し、下記(1)式のSi固溶指標Zが0.55〜0.9であり、かつ引張強さが650N/mm 2 以上である銅合金の製造法であって、下記(1)式のSi固溶指標Zが0.3以下となるように溶体化処理した材料に、60%以下の冷間圧延を施し、その後、380〜550℃の温度域で加熱保持後150℃以下の温度域まで平均冷却速度5℃/min以下で徐冷する時効処理を施すことにより同Zを0.55〜0.9に調整する、前記銅合金の製造法。
Z=(a−b)/(c−b) ……(1)
ただし、
a:被測定材の実測された導電率(%IACS)、
b:Siが全て固溶した場合の計算上の導電率(%IACS)であり、原子%に換算された各合金元素の含有量を下記(3)式に代入することによって下記(2)式により定まるp値、
c:Siが全て析出した場合の計算上の導電率(%IACS)であり、Ni含有量(質量%)を下記(4)式のNiA(質量%)に、Si含有量(質量%)を下記(5)式のSiA(質量%)にそれぞれ補正したうえで、原子%に換算された各合金元素の含有量を下記(3)式に代入することによって下記(2)式により定まるp値、
である。
p=17.24/ρS×100 ……(2)
ρS=17.24+(12.2×Ni(at%)+39.5×Si(at%)+3×Zn(at%)+28.8×Sn(at%)+67×P(at%)+96.6×Fe(at%)+6×Mg(at%)+63×Co(at%)+40×Cr(at%))−(0.3×12.2×Ni(at%)2+4.9×39.5×Si(at%)2+2.7×3×Zn(at%)2+3.2×28.8×Sn(at%)2+20×96.6×Fe(at%)2)/100 ……(3)
NiA=Ni(mass%)−2×(58.69/28.09)×Si(mass%)、ただし上式でNiA<0となるときは、NiA=0とする ……(4)
SiA=Si(mass%)−(1/2)×(28.09/58.69)×Ni(mass%)、ただし上式でSiA<0となるときは、SiA=0とする ……(5)
ここで、Ni(mass%)およびSi(mass%)は、それぞれ質量%で表された合金中のNi含有量およびSi含有量である。
The composition is composed of Ni: 0.4 to 4.5%, Si: 0.15 to 0.9%, Zn: 5 to 15%, the balance Cu and unavoidable impurities, and the following (1) A method for producing a copper alloy having a Si solid solution index Z of 0.5 to 0.9 and a tensile strength of 650 N / mm 2 or more, wherein the Si solid solution index Z of the following formula (1) Is subjected to cold rolling of 60% or less, and then heated and maintained in a temperature range of 380 to 550 ° C. and then an average cooling rate of 5 to 150 ° C. or less. The manufacturing method of the said copper alloy which adjusts the said Z to 0.55-0.9 by giving the aging treatment which anneals slowly at degrees C / min or less.
Z = (ab) / (cb) (1)
However,
a: Measured conductivity (% IACS) of measured material,
b: Calculated conductivity (% IACS) when all of Si is solid-solved. By substituting the content of each alloy element converted to atomic% into the following formula (3), the following formula (2) P value determined by
c: Calculated conductivity (% IACS) when all of Si is deposited, Ni content (mass%) is changed to Ni A (mass%) of the following formula (4), Si content (mass%) the after having corrected each of the following (5) Si a (mass%) of the equation defined by the following equation (2) by substituting the content of each alloying element is converted to atomic% in the following equation (3) p-value,
It is.
p = 17.24 / ρ S × 100 (2)
ρ S = 17.24 + (12.2 × Ni (at%) + 39.5 × Si (at%) + 3 × Zn (at%) + 28.8 × Sn (at%) + 67 × P (at%) + 96. 6 × Fe (at%) + 6 × Mg (at%) + 63 × Co (at%) + 40 × Cr (at%)) − (0.3 × 12.2 × Ni (at%) 2 + 4.9 × 39 0.5 × Si (at%) 2 + 2.7 × 3 × Zn (at%) 2 + 3.2 × 28.8 × Sn (at%) 2 + 20 × 96.6 × Fe (at%) 2 ) / 100 ...... (3)
Ni A = Ni (mass%)-2 × (58.69 / 28.09) × Si (mass%) However, when Ni A <0 in the above formula, Ni A = 0 (4) )
Si A = Si (mass%) − (1/2) × (28.09 / 58.69) × Ni (mass%) However, when Si A <0 in the above formula, Si A = 0 is set. ...... (5)
Here, Ni (mass%) and Si (mass%) are the Ni content and Si content in the alloy expressed by mass%, respectively.
前記銅合金が、さらにSn:2.0%以下、P:0.2%以下、Fe:1.0%以下、Mg:0.5%以下、Co:4.0%以下、Cr:4.0%以下のうち1種以上を含有するものである請求項1に記載の銅合金の製造法。The copper alloy is further Sn: 2.0% or less, P: 0.2% or less, Fe: 1.0% or less, Mg: 0.5% or less, Co: 4.0% or less, Cr: 4. The method for producing a copper alloy according to claim 1, comprising one or more of 0% or less. 前記銅合金が、さらにSn:0.01〜2.0%、P:0.005〜0.2%、Fe:0.005〜1.0%、Mg:0.005〜0.5%、Co:0.005〜4.0%、Cr:0.005〜4.0%のうち1種以上を含有するものである請求項1に記載の銅合金の製造法。The copper alloy is further Sn: 0.01-2.0%, P: 0.005-0.2%, Fe: 0.005-1.0%, Mg: 0.005-0.5%, 2. The method for producing a copper alloy according to claim 1, comprising at least one of Co: 0.005 to 4.0% and Cr: 0.005 to 4.0%. 前記銅合金が導電率25%IACS以上を有するものである請求項1〜3のいずれかに記載の銅合金の製造法。The method for producing a copper alloy according to claim 1, wherein the copper alloy has a conductivity of 25% IACS or more. 溶体化処理は、材料を650〜850℃に保持後、650から250℃まで平均冷却速度が200℃/min以上となるように冷却する条件で行うものである請求項1〜4のいずれかに記載の銅合金の製造法。 Solution treatment, the material after holding in 650 to 850 ° C., in either 650 from claims 1 to 4 average cooling rate until 250 ° C. is made in conditions of cooling so that 200 ° C. / min or more The manufacturing method of the copper alloy of description. 時効処理後に冷間圧延を行い、その後250〜500℃で20sec〜10min保持する歪取り焼鈍を施す請求項のいずれかに記載の銅合金の製造法。 The method for producing a copper alloy according to any one of claims 1 to 5 , wherein cold rolling is performed after the aging treatment, and then stress relief annealing is performed at 250 to 500 ° C for 20 seconds to 10 minutes.
JP2006002311A 2006-01-10 2006-01-10 Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking Active JP4810704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002311A JP4810704B2 (en) 2006-01-10 2006-01-10 Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002311A JP4810704B2 (en) 2006-01-10 2006-01-10 Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JP2007182615A JP2007182615A (en) 2007-07-19
JP4810704B2 true JP4810704B2 (en) 2011-11-09

Family

ID=38338948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002311A Active JP4810704B2 (en) 2006-01-10 2006-01-10 Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP4810704B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281031B2 (en) * 2010-03-31 2013-09-04 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy with excellent bending workability
JP5684022B2 (en) * 2011-03-28 2015-03-11 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in stress relaxation resistance, fatigue resistance after bending and spring characteristics, and method for producing the same
JP5572754B2 (en) 2012-12-28 2014-08-13 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
WO2014115307A1 (en) * 2013-01-25 2014-07-31 三菱伸銅株式会社 Copper-alloy plate for terminal/connector material, and method for producing copper-alloy plate for terminal/connector material
CN105112715B (en) * 2015-09-08 2017-10-20 长沙中工新材料有限公司 The method that CuZnNiSi alloys and preparation method thereof and the alloy prepare band
CN108384986B (en) * 2018-05-07 2020-02-21 宁波博威合金材料股份有限公司 Copper alloy material and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800269B2 (en) * 1997-07-23 2006-07-26 株式会社神戸製鋼所 High strength copper alloy with excellent stamping workability and silver plating
JP4501818B2 (en) * 2005-09-02 2010-07-14 日立電線株式会社 Copper alloy material and method for producing the same

Also Published As

Publication number Publication date
JP2007182615A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP5040140B2 (en) Cu-Ni-Si-Zn-based copper alloy
JP4809602B2 (en) Copper alloy
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4959141B2 (en) High strength copper alloy
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP4887851B2 (en) Ni-Sn-P copper alloy
JP2006283120A (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
KR100622320B1 (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP2010248592A (en) Method for producing copper alloy and copper alloy
KR101114116B1 (en) Copper Alloy Material for Electric and Electronic Apparatuses, and Electric and Electronic Components
JP4810704B2 (en) Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking
WO2010067863A1 (en) Ni-Si-Co COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP4210239B2 (en) Titanium copper excellent in strength, conductivity and bending workability, and its manufacturing method
TWI763982B (en) Copper alloy plate and method for producing same
JP5002768B2 (en) Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof
JP5150908B2 (en) Copper alloy for connector and its manufacturing method
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP5002767B2 (en) Copper alloy sheet and manufacturing method thereof
JP2008001937A (en) Copper alloy material for terminal/connector, and its manufacturing method
JPH0718355A (en) Copper alloy for electronic appliance and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4810704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250