JP5002768B2 - Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof - Google Patents

Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof Download PDF

Info

Publication number
JP5002768B2
JP5002768B2 JP2006094086A JP2006094086A JP5002768B2 JP 5002768 B2 JP5002768 B2 JP 5002768B2 JP 2006094086 A JP2006094086 A JP 2006094086A JP 2006094086 A JP2006094086 A JP 2006094086A JP 5002768 B2 JP5002768 B2 JP 5002768B2
Authority
JP
Japan
Prior art keywords
mass
copper
less
based alloy
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006094086A
Other languages
Japanese (ja)
Other versions
JP2007270171A (en
Inventor
清仁 石田
亮介 貝沼
浩一 畠山
義統 山岸
維林 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2006094086A priority Critical patent/JP5002768B2/en
Publication of JP2007270171A publication Critical patent/JP2007270171A/en
Application granted granted Critical
Publication of JP5002768B2 publication Critical patent/JP5002768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は曲げ加工性に優れた高導電性銅基合金およびその製造法に係り,詳しくは民生用製品,例えば情報・通信用の狭ピッチコネクタの原板,自動車用ハーネスコネクタの原板,半導体用リードフレームの原板および小型スイッチ,リレーの原板等を構成するのに適した曲げ加工性に優れた高導電性銅基合金およびその製造法に関するものである。   The present invention relates to a highly conductive copper-based alloy having excellent bending workability and a method for producing the same, and more particularly to a consumer product, for example, an information / communication narrow-pitch connector original plate, an automotive harness connector original plate, and a semiconductor lead. The present invention relates to a highly conductive copper base alloy excellent in bending workability suitable for constituting a frame original plate, a small switch, a relay original plate, and the like, and a method of manufacturing the same.

近時の携帯端末やモバイルの発展を背景に,パソコン,携帯電話,デジタルビデオ等に実装されるコネクタにおいては,そのピン厚さとピン幅は各々0.10〜30mmの範囲にあるが,最終製品の小型化により一層細幅,薄肉化する傾向にある。この場合,ピン端子に出入力される情報量の大量化と高速化の結果,通電電流から発生するジュール熱がコンタクトの温度を上昇させ,コンタクトを収容している絶縁物の許容温度を超えてしまうこともある。さらに,ピン端子の一部が電源用として使われることもあるので,材料には導体抵抗の低減,すなわち高い導電率が必要とされる。さらに,ピン端子の高速プレス成形加工に際して安定した形状精度を再現できる強度・ばね性と曲げ性の両立が不可欠である。   With the recent development of mobile terminals and mobile devices, connectors mounted on personal computers, mobile phones, digital video, etc. have pin thicknesses and pin widths in the range of 0.10 to 30 mm. There is a tendency to become narrower and thinner due to downsizing. In this case, as a result of an increase in the amount of information input to and output from the pin terminals and an increase in speed, the Joule heat generated from the energized current increases the contact temperature and exceeds the allowable temperature of the insulator housing the contact. Sometimes it ends up. In addition, since a part of the pin terminal may be used for a power source, the material needs to have a reduced conductor resistance, that is, a high conductivity. Furthermore, it is indispensable to have both strength, springiness and bendability so that stable shape accuracy can be reproduced during high-speed press forming of pin terminals.

他方,自動車電装品に実装されるコネクタにおいては,電子制御システムの増加に伴う回路数・実装密度の増大に対応すべく,コネクタの小型化による軽量化・省スペース化が要求され,例えばボックス型のメス端子幅が10年前主流だった2.3mmから現在では0.64mmまで小型化している。したがって,前記の携帯端末と同様に,高い導電率が必要となることは言うまでもない。加えて,ボックス型端子に成形加工した後の良好な接続特性を維持するために,板厚は従来とあまり変らず0.25mm程度である一方で,厳しい形状精度が要求されるために,ボックス部の内曲げ半径Rが0に近い状態や密着曲げに近い状態が強いられるようになり,従来に比べてより厳しい加工が要求されるようになった。   On the other hand, connectors mounted on automobile electrical components are required to be lighter and space-saving by reducing the size of the connector in order to cope with the increase in the number of circuits and mounting density accompanying the increase in electronic control systems. The female terminal width has been downsized from 2.3 mm, which was 10 years ago, to 0.64 mm. Therefore, it goes without saying that high electrical conductivity is required as in the portable terminal. In addition, in order to maintain good connection characteristics after being molded into a box-type terminal, the plate thickness is not much different from the conventional one, but is about 0.25 mm, while strict shape accuracy is required. A state where the inner bending radius R of the portion is close to 0 or a state close to close contact bending is forced, and more severe processing is required compared to the conventional case.

従来,これらの用途に対応する材料としてりん青銅やベリリウム銅が用いられていたが,りん青銅については,例えばCDA52100では,導電率が約12%IACS程度と決定的に低い。ベリリウム銅については要求性能を満足するもののBeを含むこと,材料供給不足,価格の点で課題が山積し,ベリリウム銅に代わる銅基合金の開発が切望されている。   Conventionally, phosphor bronze or beryllium copper has been used as a material corresponding to these applications. However, for phosphor bronze, for example, in CDA 52100, the conductivity is decisively low at about 12% IACS. As for beryllium copper, although it satisfies the required performance, there are many problems in terms of inclusion of Be, lack of material supply, and price, and the development of a copper-based alloy to replace beryllium copper is eagerly desired.

ベリリウム銅の代替最有力候補としてCu−Ni−Si系銅基合金が知られている。例えばCu−Ni−Si系銅基合金にMgを0.05〜0.3mass%加えた銅基合金(特許文献1〜4),Cu−Ni−Si系銅基合金にSn,Znを加えた銅基合金(特許文献5〜6)およびCu−Ni−Si系銅基合金にSn,Zn,Mg等を加えた銅基合金(特許文献7)等が開発され,高引張強さ,高耐熱性,高耐応力緩和特性及び比較的高い導電率を兼備する銅基合金としてコネクタ,リードフレーム等の用途に用いられている。
特開昭61−250134号公報 特開平8−325681号公報 特開平11−217639号公報 特開2001−49369号公報 特開平5−279825号公報 特開2000−80428号公報 特開2002−38228号公報
A Cu—Ni—Si based copper-based alloy is known as the most promising alternative to beryllium copper. For example, Cu-Ni-Si-based copper-based alloys were added with 0.05 to 0.3 mass% Mg (Patent Documents 1 to 4), and Cu-Ni-Si-based copper-based alloys were added with Sn and Zn. Copper-based alloys (Patent Documents 5 to 6) and Cu-Ni-Si based copper-based alloys with Sn, Zn, Mg, etc. added to them (Patent Document 7), etc. have been developed, with high tensile strength and high heat resistance It is used for connectors, lead frames, and other applications as a copper-based alloy that combines high performance, high stress relaxation properties and relatively high electrical conductivity.
JP-A-61-250134 Japanese Patent Laid-Open No. 8-325681 Japanese Patent Laid-Open No. 11-217639 JP 2001-49369 A JP-A-5-279825 JP 2000-80428 A JP 2002-38228 A

最近の銅基合金の使用環境はますます厳しくなり,前掲特許文献記載のCu−Ni−Si系銅基合金に対しても各種特性を併せ持ちながらさらなる高導電率化と高強度および良好な曲げ加工性との両立が必須となっている。特許文献1〜7に記載の合金でも導電率45%IACS以上では,引張強さと曲げ加工性が十分ではなく,他方,引張強さと曲げ加工性が良好であると導電率が45%IACSよりも劣ってしまうので,45%IACS以上の導電率と,高引張強さおよび優れた曲げ加工性を要求されるレベルまで同時に兼備させることは困難であった。   Recent copper-based alloys are used in increasingly severe environments. Even with the Cu-Ni-Si-based copper-based alloys described in the above-mentioned patent documents, while having various characteristics, further higher conductivity, higher strength and good bending work It is indispensable to balance with sex. Even in the alloys described in Patent Documents 1 to 7, when the electrical conductivity is 45% IACS or higher, the tensile strength and the bending workability are not sufficient, and on the other hand, when the tensile strength and the bending workability are good, the electrical conductivity is higher than that of 45% IACS. Therefore, it has been difficult to simultaneously achieve the required level of electrical conductivity of 45% IACS or higher, high tensile strength, and excellent bending workability.

またCu−Ni−Si系銅基合金は圧延方向に対して平行方向と垂直方向との特性差が大きく現れるので,各種特性の不具合が生じるという問題があり,その解決が望まれていた。   In addition, Cu—Ni—Si-based copper-based alloys have a problem in that various characteristic defects occur between the parallel direction and the perpendicular direction with respect to the rolling direction.

したがって本発明は,Cu−Ni−Si系銅基合金の高い引張強さと優れた曲げ加工性を両立しながら,45%IACS以上の導電率を有するバランスの良い特性を持ち,かつ圧延方向に対して平行方向と垂直方向の特性差が小さい銅基合金を得ることを課題としたものである。   Therefore, the present invention has a well-balanced characteristic having a conductivity of 45% IACS or more while satisfying both the high tensile strength and excellent bending workability of the Cu-Ni-Si-based copper-base alloy, and also in the rolling direction. Thus, an object of the present invention is to obtain a copper-based alloy having a small difference in characteristics between the parallel direction and the vertical direction.

前記の課題を達成せんとしてなされた本発明によれば,
Ni:1.0〜3.5mass%(質量%をいう),
Si:0.2〜0.8mass%,
B:0.002〜0.03mass%,
残部(「Remと表すことがある」):Cuおよび不可避的不純物
からなる銅基合金であって,
引張強さが650N/mm2以上,
導電率が45%IACS以上,
板面上の圧延方向に対して平行な方向の平均結晶粒径aと垂直な方向の平均結晶粒径bがいずれも10μm以下で且つその比a/bが0.5〜2.0である銅基合金を提供する。
According to the present invention made to achieve the above-mentioned problems,
Ni: 1.0 to 3.5 mass% (refers to mass%),
Si: 0.2-0.8 mass%,
B: 0.002 to 0.03 mass%,
The remainder (sometimes referred to as “Rem”): a copper-based alloy composed of Cu and inevitable impurities,
Tensile strength is 650 N / mm 2 or more,
Conductivity is 45% IACS or higher,
The average crystal grain size a in the direction parallel to the rolling direction on the plate surface and the average crystal grain size b in the direction perpendicular to the rolling direction are both 10 μm or less and the ratio a / b is 0.5 to 2.0. A copper-based alloy is provided.

この銅基合金は,好ましくは溶体化後の導電率(Ecb)と添加元素が完全固溶したときの導電率(Eca)との百分比100×(Ecb)/(Eca)が120%以下で,溶体化処理後の平均結晶粒径DAVが2超え〜20μm以下である。 This copper-based alloy preferably has a ratio 100 × (Ecb) / (Eca) of 120% or less of the electrical conductivity after solutionization (Ecb) and the electrical conductivity (Eca) when the additive element is completely dissolved, The average crystal grain size D AV after the solution treatment is more than 2 and not more than 20 μm.

この銅基合金は,Ca:0.0001〜0.005mass%,C:0.0001〜0.005mass%,P:0.01〜0.3mass%,Fe:0.01〜0.3mass%の1種または2種以上を合計で0.5mass%以下をさらに含有することができる。場合によっては,さらにCo:0.05〜0.5mass%,Ag:0.002〜0.2mass%,Sn:0.02〜2.0mass%,Zn:0.02〜2.0mass%の1種または2種以上を合計で2.0mass%以下をさらに含有することができる。そして,この銅基合金板はS含有量が15ppm以下で酸素含有量が30ppm以下であるのがよい。   This copper-based alloy is composed of Ca: 0.0001 to 0.005 mass%, C: 0.0001 to 0.005 mass%, P: 0.01 to 0.3 mass%, and Fe: 0.01 to 0.3 mass%. 1 type or 2 types or more can be further contained in total 0.5 mass% or less. In some cases, Co: 0.05 to 0.5 mass%, Ag: 0.002 to 0.2 mass%, Sn: 0.02 to 2.0 mass%, Zn: 0.02 to 2.0 mass%, 1 It is possible to further contain 2.0 mass% or less in total of two or more species. And this copper-based alloy plate is good that S content is 15 ppm or less, and oxygen content is 30 ppm or less.

この銅基合金は,導電率が45%IACS以上好ましくは48%IACS以上を示し,引張強さが650N/mm2以上好ましくは700N/mm2以上さらに好ましくは720N/mm2以上を有し且つ圧延方向に平行方向と垂直方向の引張強さの比が95〜105%であり,曲げ加工性(最大曲げ半径)が0〜1.0(MBR/t)好ましくは0〜0.5(MBR/t)で且つ圧延方向に平行方向と垂直方向の最大曲げ半径の比が95〜105%である。 The copper-based alloy, conductivity is 45% IACS or more preferably an least 48% IACS, the tensile strength is 650 N / mm 2 or more, preferably 700 N / mm 2 or more and more preferably and having a 720N / mm 2 or more The ratio of the tensile strength in the direction parallel to and perpendicular to the rolling direction is 95 to 105%, and the bending workability (maximum bending radius) is 0 to 1.0 (MBR / t), preferably 0 to 0.5 (MBR). / T) and the ratio of the maximum bending radius in the direction parallel to and perpendicular to the rolling direction is 95 to 105%.

この銅基合金板を製造するには,当該合金組成を有する熱延板または冷延板からなる中間製品を再結晶温度以上で溶体化処理したあと時効処理すること,溶体化後の導電率(Ecb)と添加元素が完全固溶したときの導電率(Eca)との百分比100×(Ecb)/(Eca)が120%以下となり、かつ溶体化処理後の平均結晶粒径DAVが2超え〜20μm以下という条件で前記の溶体化処理を行うこと,そして溶体化処理のあと時効処理の前または後にトータルの圧下率が60%以下の仕上げ冷延を行うこと,を特徴とする製造法によって有利に製造できる。 In order to produce this copper-based alloy sheet, an intermediate product comprising a hot-rolled sheet or a cold-rolled sheet having the alloy composition is subjected to a solution treatment at a recrystallization temperature or higher, followed by an aging treatment, and a conductivity after solution ( Ecb) is 100% (Ecb) / (Eca) as a percentage of the electrical conductivity (Eca) when the additive element is completely dissolved, and the average grain size D AV after solution treatment exceeds 2 By the above-mentioned solution treatment under a condition of ˜20 μm or less, and after the solution treatment and before or after the aging treatment, a finish cold rolling with a total rolling reduction of 60% or less is performed. It can be advantageously manufactured.

本発明により、45%IACS以上(更には48%IACS以上)の高導電率、650N/mm2以上(更には700N/mm2以上)の引張強さ及び良好な曲げ加工性をバランス良く併せ持ち,さらには平均結晶粒径・引張強さ・曲げ加工性等の特性に関して圧延方向に対して平行方向と垂直方向とで特性差が小さい均一特性の銅基合金を提供することができる。 The present invention, high conductivity of 45% IACS or more (even 48% IACS or more), 650 N / mm 2 or more (even 700 N / mm 2 or higher) combines a well-balanced tensile strength and good bending workability, Furthermore, it is possible to provide a copper-based alloy having a uniform characteristic in which the characteristic difference between the direction parallel to the rolling direction and the direction perpendicular to the rolling direction is small with respect to characteristics such as average crystal grain size, tensile strength, and bending workability.

本発明者らは,前記の課題は適切な合金成分のバランスと製造条件の規制によって達成できることを見い出した。すなわち,まず,この材料の曲げ加工性の向上には,材料圧延面において板面上の圧延方向に対して平行な方向の平均結晶粒径aと垂直な方向の平均結晶粒径bがいずれも10μm以下で且つ比a/bが0.5〜2.0の範囲に制御することが有効であることがわかった。また,溶体化等の再結晶温度域での熱処理から最終製品までの圧下率の合計を60%以下とすること,溶体化処理後の導電率が添加元素を完全に固溶させた時の導電率の120%以下であること,溶体化処理後の平均結晶粒径DAVが2μm超え20μm以下となるように熱処理温度と熱処理時間を制御すること,そして,溶体化処理時に十分添加元素を固溶させ,かつ結晶粒径を微細に保つためには溶体化処理温度で析出状態でありかつ粗大化しない元素としてBが有効であることが明らかとなり,このような条件を満たすことにより,導電率45%IACS以上と引張強さ650N/mm2以上を安定して両立させることができ,さらに良好な曲げ加工性を持ち,圧延方向に対して平行方向と垂直方向の特性差が小さい銅基合金を得ることができる。 The present inventors have found that the above-mentioned problems can be achieved by appropriate balance of alloy components and regulation of manufacturing conditions. That is, first, in order to improve the bending workability of this material, both the average crystal grain size a in the direction parallel to the rolling direction on the plate surface and the average crystal grain size b in the direction perpendicular to the rolling direction on the plate surface are both used. It was found that it is effective to control the ratio a / b within the range of 10 μm or less and 0.5 to 2.0. In addition, the total reduction ratio from the heat treatment in the recrystallization temperature range such as solution treatment to the final product should be 60% or less, and the conductivity after solution treatment is the conductivity when the additive element is completely dissolved. The heat treatment temperature and the heat treatment time are controlled so that the average crystal grain size D AV after the solution treatment is more than 2 μm and less than 20 μm, and the additive element is sufficiently solidified during the solution treatment. In order to dissolve and keep the crystal grain size fine, it becomes clear that B is effective as an element that is precipitated at the solution treatment temperature and does not become coarse. 45% IACS or more and a tensile strength of 650 N / mm 2 or more can be stably compatible, better bending has workability, copper-based alloy is less characteristic difference in a direction parallel and perpendicular to the rolling direction Can get Kill.

本発明の銅基合金における合金成分とそれらの含有量を規制する理由の概要を述べると次のとおりである。   An outline of the alloy components in the copper-based alloy of the present invention and the reasons for regulating their contents is as follows.

Ni及びSi:Ni及びSiは適切な条件での時効処理を行うことにより,Ni2Siの析出物を生成する。この析出物は材料の強度を大きく上昇させることができるだけでなく,これらの元素が析出した状態で存在することにより,母合金(Cu)のもつ熱伝導度を高い水準に維持できる。NiとSiの量が多すぎると,特に粒界での析出物の粗大化が起こりやすくなり,曲げ加工性などの加工性に悪い影響がある。Ni含有量が1.0mass%未満,Si含有量が0.2mass%未満では所要の強度が得られず,他方Ni含有量が3.5mass%を超え,Si含有量が0.8mass%を超える場合は加工性が悪化する。このため,Ni含有量は1.0〜3.5mass%,好ましくは1.5〜2.5mass%とし,Si含有量は0.2〜0.8mass%,好ましくは0.3〜0.6mass%とする。 Ni and Si: Ni and Si are subjected to an aging treatment under appropriate conditions to form Ni 2 Si precipitates. This precipitate can not only greatly increase the strength of the material, but also the presence of these elements in the deposited state can maintain the thermal conductivity of the master alloy (Cu) at a high level. When the amounts of Ni and Si are too large, the coarsening of precipitates at grain boundaries is likely to occur, which adversely affects workability such as bending workability. If the Ni content is less than 1.0 mass% and the Si content is less than 0.2 mass%, the required strength cannot be obtained, while the Ni content exceeds 3.5 mass% and the Si content exceeds 0.8 mass%. In this case, workability deteriorates. Therefore, the Ni content is 1.0 to 3.5 mass%, preferably 1.5 to 2.5 mass%, and the Si content is 0.2 to 0.8 mass%, preferably 0.3 to 0.6 mass%. %.

B:Bは本合金において溶体化温度でも析出状態が保たれるという性質をもつ。このため結晶粒径の粗大化を防ぐことができると共に,他の添加元素の固溶と結晶粒径微細化を両立させることができる。また,鋳造時の結晶粒を微細化できるため,鋳造割れの防止や固溶元素の偏析の防止にも効果がある。Bを0.002mass%以上添加すると溶体化時の結晶粒粗大化防止に効果を示す。しかし0.03mass%より多く添加しても添加量に見合う効果が得られない。このようなことから,Bは0.002〜0.03mass%とするが,好ましくは0.004〜0.01mass%である。   B: B has the property that the precipitation state is maintained even at the solution temperature in this alloy. For this reason, coarsening of the crystal grain size can be prevented, and the solid solution of other additive elements can be made compatible with the refinement of the crystal grain size. In addition, since the crystal grains at the time of casting can be made fine, it is effective in preventing casting cracks and segregation of solid solution elements. When B is added in an amount of 0.002 mass% or more, the effect of preventing the coarsening of crystal grains during solution treatment is exhibited. However, even if added more than 0.03 mass%, an effect commensurate with the amount added cannot be obtained. For this reason, B is set to 0.002 to 0.03 mass%, preferably 0.004 to 0.01 mass%.

CaとC:CaとCについても結晶粒の微細化作用があり,Bと組み合わせて添加することにより,さらに結晶粒制御が容易でかつ効果的となる。Caについては鋳造時の脱酸効果もある。結晶粒の微細化に必要なCaとCの量はいずれも0.0001mass%以上であるが,0.005mass%を超えてもその効果は飽和する。   Ca and C: Ca and C also have a crystal grain refining effect, and by adding them in combination with B, crystal grain control becomes easier and more effective. Ca also has a deoxidizing effect during casting. The amount of Ca and C necessary for crystal grain refinement is 0.0001 mass% or more, but the effect is saturated even if the amount exceeds 0.005 mass%.

FeとP:FeとPは不純物として混入しやすい元素であるが,これらが含有されると固溶強化により材料強度を向上させることができる。FeとPの含有量はいずれも0.01mass%未満では十分な固溶強化を得ることができず,0.3mass%より多いと合金の導電率が著しく低下する。そのためFeとPの範囲はいずれも0.01〜0.3mass%,好ましくは0.03〜0.2mass%である。   Fe and P: Fe and P are elements that are likely to be mixed as impurities, but if they are contained, the material strength can be improved by solid solution strengthening. If the Fe and P contents are both less than 0.01 mass%, sufficient solid solution strengthening cannot be obtained, and if more than 0.3 mass%, the electrical conductivity of the alloy is significantly lowered. Therefore, the ranges of Fe and P are both 0.01 to 0.3 mass%, preferably 0.03 to 0.2 mass%.

CoとAg:CoはNiと置換することでSiとの金属間化合物をつくり,材料の強度を向上する効果がある。Agは溶体化処理および時効処理を安定化させる作用がある。このような効果を得るにはCoは0.05〜0.5mass%,Agは0.002〜0.2mass%であるのが望ましい。   Co and Ag: Co substitutes Ni to produce an intermetallic compound with Si, and has the effect of improving the strength of the material. Ag has the effect of stabilizing the solution treatment and the aging treatment. In order to obtain such an effect, it is desirable that Co is 0.05 to 0.5 mass%, and Ag is 0.002 to 0.2 mass%.

Sn:Snの添加により強度や対応力緩和特性の向上を図ることができることの他に,Snメッキスクラップの使用が可能となり,コスト面で有利になる。Sn量が0.02mass%未満では特性向上の効果を十分に得ることができず,2.0mass%より多いと導電率や曲げ加工性の低下が大きくなるので,Snの含有量は0.02〜2.0mass%とするのがよく,さらには0.05〜0.3mass%であるのがよい。   In addition to being able to improve the strength and response relaxation characteristics by adding Sn: Sn, it is possible to use Sn plating scrap, which is advantageous in terms of cost. If the Sn content is less than 0.02 mass%, the effect of improving the characteristics cannot be sufficiently obtained. If the Sn content is more than 2.0 mass%, the electrical conductivity and the bending workability decrease greatly, so the Sn content is 0.02. It is good to set it to -2.0mass%, Furthermore, it is good to be 0.05-0.3mass%.

Zn:Znは,はんだ耐熱剥離性および耐マイグレーション性を向上させる作用があるが,0.02mass%未満ではその効果が十分ではない。他方2.0mass%より多いとはんだ付け性や導電率の低下が大きくなる。そのため,Zn含有量は0.02〜2.0mass%とするのがよく,好ましくは0.05〜0.3mass%の範囲である。   Zn: Zn has the effect of improving the solder heat resistance and migration resistance, but if it is less than 0.02 mass%, the effect is not sufficient. On the other hand, when the amount is more than 2.0 mass%, the solderability and the decrease in conductivity become large. Therefore, the Zn content is preferably 0.02 to 2.0 mass%, and is preferably in the range of 0.05 to 0.3 mass%.

S含有量と酸素含有量:S含有量が増加すると熱間圧延時や溶体化処理時の粒界割れの原因となりやすい。また,酸素含有量が増加するとメッキ密着性や半田接合性を低下させ,またSiなどと酸化物を生成する原因となる。そのためS含有量を15ppm以下とし,酸素含有量を30ppm以下とするのがよい。   S content and oxygen content: Increasing the S content tends to cause grain boundary cracking during hot rolling or solution treatment. Further, when the oxygen content is increased, the plating adhesion and solder bonding properties are deteriorated, and oxides such as Si are generated. Therefore, the S content is preferably 15 ppm or less, and the oxygen content is preferably 30 ppm or less.

このような成分組成を有する本発明の銅基合金板の製造にあたっては,そのような成分組成に調整された溶湯を半連続鋳造あるいは連続鋳造で鋳造して得た鋳片を熱延あるいは冷間圧延したあと,再結晶温度以上の温度で溶体化処理を行い,次いで時効処理する。時効処理後は所望の板厚になるように仕上げ圧延し,必要に応じて歪とり焼鈍を行う。   In producing the copper-based alloy sheet of the present invention having such a component composition, a slab obtained by casting a molten metal adjusted to such a component composition by semi-continuous casting or continuous casting is hot-rolled or cold-rolled. After rolling, solution treatment is performed at a temperature above the recrystallization temperature, followed by aging treatment. After aging treatment, finish rolling to the desired thickness, and if necessary, perform strain relief and annealing.

溶体化処理は,NiやSiなどの析出物生成元素を固溶状態とすることを主目的とする熱処理であるが,再結晶温度以上で行う。ここで再結晶を行なわせるのは,これ以降の工程では結晶粒の制御は実質的に行なわないので,溶体化処理時において最終板材の結晶粒状態を可能な限り制御する。すなわち,この溶体化処理において,析出物生成元素の固溶と結晶粒制御を同時に行うのである。前者の固溶状態は導電率の測定によって評価することができる。本発明においては,溶体化後の導電率(Ecb)と添加元素が完全固溶したときの導電率(Eca)との百分比100×(Ecb)/(Eca)が120%以下となるように溶体化の温度と時間を規制すると同時に,最終製品板の平均結晶粒径DAVが2μm超え〜20μm以下となるように再結晶を行なわせるように温度と時間を規制する。 The solution treatment is a heat treatment whose main purpose is to bring precipitate-generating elements such as Ni and Si into a solid solution state, but is performed at a temperature higher than the recrystallization temperature. Here, the recrystallization is performed because the crystal grains are not substantially controlled in the subsequent steps, so that the crystal grain state of the final plate is controlled as much as possible during the solution treatment. That is, in this solution treatment, solid solution of the precipitate-generating element and crystal grain control are performed simultaneously. The former solid solution state can be evaluated by measuring conductivity. In the present invention, the solution ratio is such that the 100% (Ecb) / (Eca) ratio of the conductivity (Ecb) after solution treatment and the conductivity (Eca) when the additive element is completely dissolved is 120% or less. The temperature and time are controlled so that recrystallization is performed so that the average crystal grain size D AV of the final product plate is 2 μm to 20 μm.

ここで,添加元素が完全固溶したときの導電率(Eca)は,その合金の溶体化温度を上昇させてももはや導電率が変化しないときのものを言う。これを説明するために図1を示した。図1は,Ni=2.0mass%,Si=0.4mass%,残部Cuの合金(▲印で示す)と,Ni=3.0mass%,Si=0.6mass%,残部Cuの合金(■で示す)を例として,550℃から900℃まで50℃ごとに熱処理温度を変えて得られた材料の導電率の測定結果を示している。各熱処理温度での保持時間はいずれも5分間である。図1によれば両試料のカーブは550℃〜750℃の間において実質的に重なっているが、いずれの試料とも熱処理温度(溶体化処理温度)の上昇とともに導電率が低下する(析出元素の固溶に伴って導電性が低下する)が,各合金ごとに或る値まで導電率が低下すると,その後は温度が上昇しても導電率は一定値を示してもはや変化しないことがわかる。この一定値の導電率を本明細書では“添加元素が完全に固溶したときの導電率(Eca)”と言う。また,溶体化後の導電率(Ecb)とは溶体化処理したすぐの材料から採取した試料の導電率を言う。   Here, the electrical conductivity (Eca) when the additive element is completely dissolved means that the electrical conductivity no longer changes even when the solution temperature of the alloy is raised. To illustrate this, FIG. 1 is shown. FIG. 1 shows an alloy of Ni = 2.0 mass%, Si = 0.4 mass%, and remaining Cu (shown by ▲) and an alloy of Ni = 3.0 mass%, Si = 0.6 mass%, remaining Cu (■ The measurement result of the conductivity of the material obtained by changing the heat treatment temperature every 50 ° C. from 550 ° C. to 900 ° C. is shown as an example. The holding time at each heat treatment temperature is 5 minutes. According to FIG. 1, the curves of both samples substantially overlap each other between 550 ° C. and 750 ° C., but the conductivity of both samples decreases as the heat treatment temperature (solution treatment temperature) increases (precipitation element concentration). It can be seen that, when the conductivity decreases to a certain value for each alloy, the conductivity shows a constant value and no longer changes even if the temperature rises. In this specification, this constant conductivity is referred to as “conductivity when the additive element is completely dissolved (Eca)”. Further, the electric conductivity (Ecb) after solution treatment refers to the electric conductivity of a sample collected from a material immediately after solution treatment.

溶体化・再結晶化の処理のあとは,時効処理と仕上げ圧延並びに必要に応じた歪とり焼鈍を行う。時効処理では均一で微細な析出物を生成させることによって,高い強度を発現させることができる。そのさい,NiとSiが過不足なく固溶した状態から金属間化合物を析出させることによって,またBの共存化で析出させることによって,粒界で析出物の粗大化を抑制しながら微細で均一な析出物を生成させることができる。時効処理温度は400〜550℃好ましくは420〜470℃で,処理時間は30〜1200分好ましくは120〜420分であればよい。   After solution treatment and recrystallization treatment, aging treatment, finish rolling, and strain relief annealing as necessary are performed. In the aging treatment, high strength can be expressed by generating uniform and fine precipitates. At that time, by precipitating the intermetallic compound from the state where Ni and Si are in solid solution without excess and deficiency, and by coexisting with B coexistence, it is fine and uniform while suppressing the coarsening of the precipitate at the grain boundary. Such precipitates can be produced. The aging treatment temperature is 400 to 550 ° C., preferably 420 to 470 ° C., and the treatment time is 30 to 1200 minutes, preferably 120 to 420 minutes.

仕上げ圧延と歪とり焼鈍は最終製品の結晶粒の状態が本発明で規定する範囲内となる条件で行う必要がある。すなわち,板面上の圧延方向に対して平行な方向の平均結晶粒径aと垂直な方向の平均結晶粒径bがいずれも10μm以下で且つ比a/bが0.5〜2.0の製品板を得ることが肝要である。このためには,仕上げ圧延率は圧下率60%以下とし,歪とり焼鈍もこれを行う場合には,歪除去を目的とした軽度なものとするのがよい。所望厚みまで仕上げ圧延と歪とり焼鈍は数回繰り返すこともできるが,この場合もトータルの圧下率が60%以下とする必要がある。仕上げ圧延は時効処理の前および/または後の段階で行うことができるが,時効処理後に仕上げ圧延を行う場合には圧下率30%以下とし,歪とり焼鈍は省略するか,低温での焼鈍を行うのが望ましい。   Finish rolling and strain relief annealing must be performed under conditions such that the state of the crystal grains of the final product is within the range defined by the present invention. That is, the average crystal grain size a in the direction parallel to the rolling direction on the plate surface and the average crystal grain size b in the direction perpendicular to each other are both 10 μm or less and the ratio a / b is 0.5 to 2.0. It is important to obtain a product board. For this purpose, the finish rolling rate should be 60% or less, and if the strain relief annealing is performed, it should be light for the purpose of strain removal. Finish rolling and strain relief annealing to the desired thickness can be repeated several times, but in this case as well, the total rolling reduction needs to be 60% or less. Finish rolling can be performed before and / or after the aging treatment, but if the finish rolling is performed after the aging treatment, the rolling reduction should be 30% or less, and the strain relief annealing should be omitted or annealed at a low temperature. It is desirable to do it.

このようにして,B添加のCu−Ni−Si系銅基合金において,溶体化・再結晶工程で溶体化後の導電率(Ecb)を添加元素が完全固溶したときの導電率(Eca)との百分比100×(Ecb)/(Eca)が120%以下となるように制御し、且つ、溶体化処理後の平均結晶粒径DAVが2超え〜20μm以下である条件を採用し,その後の時効処理および仕上げ圧延・歪とり焼鈍での条件を規制することによって,導電率が45%IACS以上,引張強さが650N/mm2以上,板面上の圧延方向に対して平行な方向の平均結晶粒径aと垂直な方向の平均結晶粒径bがいずれも10μm以下で且つ比a/bが0.5〜2.0である曲げ加工性に優れた高導電性銅基合金板を得ることができる。 In this way, in the B-added Cu-Ni-Si-based copper-based alloy, the conductivity (Ecb) after solution treatment in the solution solution / recrystallization process is the conductivity (Eca) when the added element is completely dissolved. 100 × (Ecb) / (Eca) is controlled to be 120% or less, and the condition that the average crystal grain size D AV after the solution treatment is 2 to 20 μm or less is adopted. By regulating the conditions of aging treatment and finish rolling / strain relief annealing, the electrical conductivity is 45% IACS or more, the tensile strength is 650 N / mm 2 or more, and the direction parallel to the rolling direction on the plate surface A highly conductive copper-based alloy plate excellent in bending workability in which the average crystal grain size b in the direction perpendicular to the average crystal grain size a is 10 μm or less and the ratio a / b is 0.5 to 2.0. Obtainable.

表1に示す成分組成の銅基合金を高周波溶解炉を用いて溶解し,大気中でかつ木炭被覆下で厚さ20mmの鋳塊を得た。この鋳塊を910℃で2hr加熱保持した後,厚み3mmまで熱間圧延を行い,700℃から水冷した。次いで表面を面削して厚み2mmとした後,0.5mmまで冷間圧延を行なった。   A copper-base alloy having the composition shown in Table 1 was melted using a high-frequency melting furnace, and an ingot having a thickness of 20 mm was obtained in the atmosphere and covered with charcoal. The ingot was heated and held at 910 ° C. for 2 hours, then hot-rolled to a thickness of 3 mm, and water-cooled from 700 ° C. Next, the surface was chamfered to a thickness of 2 mm, and then cold-rolled to 0.5 mm.

得られた各々の冷延板を,組成によって異なる650〜900℃の範囲内の或る温度(表1に示す温度)で10分未満の溶体化処理を行なった。次いで冷間圧延→時効処理(表2に示す450〜500℃の温度で4hr)→仕上げ圧延→歪とり焼鈍(いずれも350℃)を行なった。溶体化処理後の冷間圧延はトータルで表2に示す圧下率となるようにした。溶体化後の冷間圧延の圧下率(トータルの圧下率)は次式に従って算出した。
圧下率(%)=100×〔(溶体化時の板厚)−(製品板厚)〕/(溶体化時の板厚)
Each of the obtained cold-rolled sheets was subjected to a solution treatment for less than 10 minutes at a certain temperature (temperature shown in Table 1) within a range of 650 to 900 ° C., which varies depending on the composition. Then, cold rolling → aging treatment (4 hours at a temperature of 450 to 500 ° C. shown in Table 2) → finish rolling → distortion annealing (both 350 ° C.) was performed. The cold rolling after the solution treatment was performed so that the reduction ratio shown in Table 2 was obtained in total. The rolling reduction (total rolling reduction) of the cold rolling after solution treatment was calculated according to the following formula.
Reduction ratio (%) = 100 × [(Thickness during solution treatment) − (Thickness of product)] / (Thickness during solution treatment)

このようにして得られた各合金板の諸特性を表1〜2に示した。各特性の測定は次の通りである。
引張強さ:JIS-Z2241の金属材料引張試験方法に従った。
導電率:JIS-H0505の非鉄金属材料の体積抵抗率および導電率測定方法に従った。
硬さ:JIS-Z2244のビッカース硬さ測定方法に従った。
曲げ加工性(W曲げ):JCBA T307(日本伸銅協会規格)に準じたW曲げ試験方法によって、曲げ軸が圧延方向に対して平行方向(GW)および直角方向(BW)となる曲げ試験をそれぞれ実施して、最大曲げ半径(MBR/t)で示した。
平均結晶粒径:JIS-H0501の切断法を用いて評価した。圧延方向に平行方向と垂直方向の結晶粒度はそれぞれの方向で切断法を用いることによって値を求めた。
Various characteristics of each alloy plate thus obtained are shown in Tables 1-2. The measurement of each characteristic is as follows.
Tensile strength: The metal material tensile test method of JIS-Z2241 was followed.
Conductivity: According to the volume resistivity and conductivity measuring method of non-ferrous metal material of JIS-H0505.
Hardness: The Vickers hardness measurement method of JIS-Z2244 was followed.
Bending workability (W-bending): A bending test in which the bending axis is parallel (GW) and perpendicular (BW) to the rolling direction by the W-bending test method according to JCBA T307 (Japan Copper and Brass Association Standard). Each was carried out and indicated by the maximum bending radius (MBR / t).
Average crystal grain size: Evaluated using the cutting method of JIS-H0501. The grain size in the direction parallel to and perpendicular to the rolling direction was determined by using a cutting method in each direction.

Figure 0005002768
Figure 0005002768

Figure 0005002768
Figure 0005002768

表1〜2から明らかなように, 本発明の実施例のNo.1〜12の合金板は導電率45%以上を維持しながら優れた引張強さと曲げ加工性を有しており,しかも,それらの機械的性質は圧延方向に対して平行方向と垂直方向の差が極めて小さい。   As is apparent from Tables 1 and 2, the alloy plates of Nos. 1 to 12 of the examples of the present invention have excellent tensile strength and bending workability while maintaining an electrical conductivity of 45% or more, Their mechanical properties have a very small difference between the direction parallel to and perpendicular to the rolling direction.

これに対して,B無添加の比較例13と14では,実施例とほぼ同一の溶体化条件でも結晶粒が粗大化し,曲げ加工性が悪化している。
比較例15,16および17では溶体化処理条件が低いため,溶体化後の導電率が添加元素を完全に固溶させた場合の導電率と比較して高くなり,100×(Ecb)/(Eca)が120%を超えている。そのため最終製品の引っ張り強さが低い。
On the other hand, in Comparative Examples 13 and 14 with no B added, the crystal grains are coarsened even under the same solution conditions as in the Examples, and the bending workability is deteriorated.
In Comparative Examples 15, 16 and 17, since the solution treatment conditions are low, the conductivity after solution treatment is higher than that in the case where the additive element is completely dissolved, and 100 × (Ecb) / ( Eca) is over 120%. Therefore, the tensile strength of the final product is low.

比較例18及び19はそれぞれB,Siが本発明で規定する範囲を外れている例であるが,Bが過剰の比較例18では焼鈍・冷延時に割れが発生し,Siが過剰の比較例19では最終工程後の導電率が低く且つ曲げ加工性も悪い。   Comparative Examples 18 and 19 are examples in which B and Si are outside the range defined in the present invention. In Comparative Example 18 in which B is excessive, cracks occur during annealing and cold rolling, and Comparative Example in which Si is excessive. In No. 19, the electrical conductivity after the final process is low and the bending workability is also poor.

比較例20と21ではそれぞれ酸素、Sが本発明で規定する範囲より多いものであるが,酸素が多い比較例20では焼鈍、冷延工程で割れが生じ,Sの多い比較例21では熱延時に破断が生じて,いずれも製造性が悪い。
比較例22は溶体化処理温度が高く,溶体化後の結晶粒が粗大化している。そのため,曲げ加工性が著しく悪い。比較例23では溶体化後の圧下率が高いために,曲げ加工性が悪いばかりか,圧延方向に対して平行方向と垂直方向の結晶粒径の差が大きくなり,それに伴って特性差も大きくなっている。
In Comparative Examples 20 and 21, oxygen and S are larger than the ranges specified in the present invention, respectively. However, in Comparative Example 20 with a large amount of oxygen, cracking occurs in the annealing and cold rolling processes, and in Comparative Example 21 with a large amount of S, hot rolling is performed. Sometimes ruptures occur, both of which are not manufacturable.
In Comparative Example 22, the solution treatment temperature is high, and the crystal grains after solution treatment are coarsened. Therefore, bending workability is extremely bad. In Comparative Example 23, since the rolling reduction after solution treatment is high, not only the bending workability is poor, but the difference in the crystal grain size between the parallel direction and the perpendicular direction with respect to the rolling direction increases, and the characteristic difference also increases accordingly. It has become.

添加元素が完全固溶したときの導電率(Eca)を説明するための溶体化処理温度と導電率の関係を示す図である。It is a figure which shows the relationship between solution treatment temperature and electrical conductivity for demonstrating electrical conductivity (Eca) when an additional element carries out complete solid solution.

Claims (7)

Ni:1.0〜3.5mass%、Si:0.2〜0.8mass%、B:0.002〜0.03mass%、残部:Cuおよび不可避的不純物からなる銅基合金であって、溶体化後の導電率(Ecb)と添加元素が完全固溶したときの導電率(Eca)との百分比100×(Ecb)/(Eca)が120%以下で、溶体化処理後の平均結晶粒径D AV が2超え〜20μm以下であり、引張強さが700N/mm 2 以上で圧延方向に平行方向と垂直方向の引張強さの比が95〜105%、導電率が45%IACS以上、曲げ加工性が0〜1.0(MBR/t)で圧延方向に平行方向と垂直方向の該MBR/t値の比が95〜105%、板面上の圧延方向に対して平行な方向の平均結晶粒径aと垂直な方向の平均結晶粒径bがいずれも10μm以下で且つ比a/bが0.5〜2.0である銅基合金。 Ni: 1.0~3.5mass%, Si: 0.2~0.8mass %, B: 0.002~0.03mass%, the balance: a Cu and copper-based alloy inevitable impurities, solution 100% (Ecb) / (Eca) of the conductivity (Ecb) after crystallization and the conductivity (Eca) when the additive element is completely solid solution is 120% or less, and the average crystal grain size after solution treatment D AV is more than 2 to 20 μm or less, the tensile strength is 700 N / mm 2 or more, the ratio of the tensile strength in the direction parallel to and perpendicular to the rolling direction is 95 to 105%, the conductivity is 45% IACS or more, bending The workability is 0 to 1.0 (MBR / t), the ratio of the MBR / t value in the direction parallel to and perpendicular to the rolling direction is 95 to 105%, the average in the direction parallel to the rolling direction on the plate surface The average crystal grain size b in the direction perpendicular to the crystal grain size a is 10 μm or less. In and the ratio a / b is 0.5 to 2.0 copper-based alloy. Ni:1.5〜3mass%、Si:0.32〜0.57mass%、B:0.003〜0.02mass%、残部:Cuおよび不可避的不純物からなる銅基合金であって、溶体化後の導電率(Ecb)と添加元素が完全固溶したときの導電率(Eca)との百分比100×(Ecb)/(Eca)が102〜106%で、溶体化処理後の平均結晶粒径D AV が4〜9μmであり、引張強さが701〜803N/mm 2 で圧延方向に平行方向と垂直方向の引張強さの比が98〜103%、導電率が45.8〜53.8%IACS曲げ加工性が0〜0.8(MBR/t)で圧延方向に平行方向と垂直方向の該MBR/t値の比が100%、板面上の圧延方向に対して平行な方向の平均結晶粒径aと垂直な方向の平均結晶粒径bがいずれも1.9〜4.9μmで且つ比a/bが0.9〜1.8である銅基合金。 Ni: 1.5-3 mass% , Si: 0.32-0.57 mass% , B: 0.003-0.02 mass% , balance: Cu-based alloy composed of Cu and inevitable impurities , after solutionization The ratio 100% (Ecb) / (Eca) of the electrical conductivity (Ecb) of the alloy and the electrical conductivity (Eca) when the additive element is completely dissolved is 102 to 106%, and the average grain size D after the solution treatment AV is 4 to 9 μm, tensile strength is 701 to 803 N / mm 2 , the ratio of tensile strength in the direction parallel to and perpendicular to the rolling direction is 98 to 103%, and conductivity is 45.8 to 53.8%. IACS , the bending workability is 0 to 0.8 (MBR / t), the ratio of the MBR / t value in the direction parallel to and perpendicular to the rolling direction is 100%, and the direction parallel to the rolling direction on the plate surface The average crystal grain size b in the direction perpendicular to the average crystal grain size a is 1. A copper-based alloy having 9 to 4.9 μm and a ratio a / b of 0.9 to 1.8 . Ca:0.0001〜0.005mass%、C:0.0001〜0.005mass%、P:0.01〜0.3mass%、Fe:0.01〜0.3mass%の1種または2種以上を合計で0.5mass%以下をさらに含有する請求項1または2に記載の銅基合金。   Ca: 0.0001-0.005 mass%, C: 0.0001-0.005 mass%, P: 0.01-0.3 mass%, Fe: 0.01-0.3 mass%, one or more The copper base alloy according to claim 1, further containing a total of 0.5 mass% or less. Co:0.05〜0.5mass%、Ag:0.002〜0.2mass%、Sn:0.02〜2.0mass%、Zn:0.02〜2.0mass%の1種または2種以上を合計で2.0mass%以下をさらに含有する請求項1、2または3に記載の銅基合金。   Co: 0.05 to 0.5 mass%, Ag: 0.002 to 0.2 mass%, Sn: 0.02 to 2.0 mass%, Zn: 0.02 to 2.0 mass%, or one or more types The copper base alloy according to claim 1, further comprising 2.0 mass% or less in total. S含有量が15ppm以下で酸素含有量が30ppm以下である請求項1ないし4のいずれかに記載の銅基合金。   The copper-based alloy according to any one of claims 1 to 4, wherein the S content is 15 ppm or less and the oxygen content is 30 ppm or less. 請求項1ないし5のいずれかに記載の銅基合金を製造するにさいし、当該合金組成を有する熱延板または冷延板からなる中間製品を680〜850℃で溶体化処理したあと450〜500℃で時効処理すること、そして溶体化処理のあと時効処理の前または後にトータルの圧下率が60%以下の仕上げ冷延を行うこと、を特徴とする請求項1ないし5のいずれかに記載の銅基合金を製造する方法。 When the copper-based alloy according to any one of claims 1 to 5 is manufactured, an intermediate product comprising a hot-rolled sheet or a cold-rolled sheet having the alloy composition is subjected to a solution treatment at 680 to 850 ° C and then 450 to 500. The aging treatment at 0 ° C. , and after the solution treatment and before or after the aging treatment, a finish cold rolling with a total rolling reduction of 60% or less is performed . A method for producing a copper-based alloy. 請求項1ないし5のいずれかに記載の銅基合金を製造するにさいし、当該合金組成を有する熱延板または冷延板からなる中間製品を680〜850℃で10分未満溶体化処理したあと450〜500℃で30〜1200分時効処理すること、そして溶体化処理のあと時効処理の前または後にトータルの圧下率が60%以下の仕上げ冷延を行うこと、を特徴とする請求項1ないし5のいずれかに記載の銅基合金を製造する方法。 6. After manufacturing the copper-based alloy according to any one of claims 1 to 5, after subjecting an intermediate product comprising a hot-rolled sheet or a cold-rolled sheet having the alloy composition at a temperature of 680 to 850 ° C. for less than 10 minutes. 450 to 500 ° C. in 30 to 1200 minutes aging treatment can be, and the total rolling reduction before or after the after aging treatment solution treatment for 60% or less of the finish cold rolling, claims 1, characterized in A method for producing the copper-based alloy according to any one of 5 .
JP2006094086A 2006-03-30 2006-03-30 Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof Active JP5002768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094086A JP5002768B2 (en) 2006-03-30 2006-03-30 Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094086A JP5002768B2 (en) 2006-03-30 2006-03-30 Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007270171A JP2007270171A (en) 2007-10-18
JP5002768B2 true JP5002768B2 (en) 2012-08-15

Family

ID=38673277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094086A Active JP5002768B2 (en) 2006-03-30 2006-03-30 Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5002768B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851596B2 (en) * 2007-11-01 2012-01-11 古河電気工業株式会社 Method for producing copper alloy material
JP4629080B2 (en) * 2007-11-05 2011-02-09 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchanger
CN101939453A (en) * 2008-02-08 2011-01-05 古河电气工业株式会社 Copper alloy material for electric and electronic components
CN102471830A (en) * 2009-09-25 2012-05-23 三菱综合材料株式会社 Copper alloy trolley cable
CN102666889A (en) * 2009-12-02 2012-09-12 古河电气工业株式会社 Copper alloy sheet and process for producing same
JP4888586B2 (en) * 2010-06-18 2012-02-29 日立電線株式会社 Rolled copper foil

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376839A (en) * 1986-09-18 1988-04-07 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JPS63109134A (en) * 1986-10-23 1988-05-13 Furukawa Electric Co Ltd:The Copper alloy for lead frame and its production
JPS63149345A (en) * 1986-12-15 1988-06-22 Nippon Mining Co Ltd High strength copper alloy having high electrical conductivity and improved heat resistance
JPH02163331A (en) * 1988-12-15 1990-06-22 Nippon Mining Co Ltd High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH04339575A (en) * 1991-03-12 1992-11-26 Kobe Steel Ltd Manufacture of resistance welding electrode
JPH0987814A (en) * 1995-09-27 1997-03-31 Nikko Kinzoku Kk Production of copper alloy for electronic equipment
JP2002302722A (en) * 2001-04-09 2002-10-18 Chuetsu Metal Works Co Ltd High strength bronze alloy and production method therefor
JP3759053B2 (en) * 2002-02-21 2006-03-22 三菱電線工業株式会社 Precipitation strengthened copper alloy trolley wire and manufacturing method thereof
JP4255330B2 (en) * 2003-07-31 2009-04-15 日鉱金属株式会社 Cu-Ni-Si alloy member with excellent fatigue characteristics

Also Published As

Publication number Publication date
JP2007270171A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4959141B2 (en) High strength copper alloy
JP5619389B2 (en) Copper alloy material
JP5040140B2 (en) Cu-Ni-Si-Zn-based copper alloy
JP2009242921A (en) Cu-Ni-Si-Co-Cr-BASED ALLOY FOR ELECTRONIC MATERIAL
JP4785092B2 (en) Copper alloy sheet
JP5002768B2 (en) Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof
JP2006161148A (en) Copper alloy
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
EP2270242A1 (en) Copper alloy material for electric and electronic apparatuses, and electric and electronic components
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP2016014165A (en) Copper alloy material, method for producing copper alloy material, lead frame and connector
JP2007107062A (en) Cu-ni-si-based copper alloy for electronic material
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP3807387B2 (en) Copper alloy for terminal / connector and manufacturing method thereof
JP4175920B2 (en) High strength copper alloy
JP5688178B1 (en) Copper alloy material, copper alloy material manufacturing method, lead frame and connector
JP4728704B2 (en) Copper alloy for electrical and electronic equipment
JP5002767B2 (en) Copper alloy sheet and manufacturing method thereof
JP7129911B2 (en) Wire rod for connector terminal
JP3856018B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JP7133326B2 (en) Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation
JP4728535B2 (en) Copper-based alloy sheet for wiring components for electronic and electrical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5002768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250