JP4728535B2 - Copper-based alloy sheet for wiring components for electronic and electrical equipment - Google Patents

Copper-based alloy sheet for wiring components for electronic and electrical equipment Download PDF

Info

Publication number
JP4728535B2
JP4728535B2 JP2001275702A JP2001275702A JP4728535B2 JP 4728535 B2 JP4728535 B2 JP 4728535B2 JP 2001275702 A JP2001275702 A JP 2001275702A JP 2001275702 A JP2001275702 A JP 2001275702A JP 4728535 B2 JP4728535 B2 JP 4728535B2
Authority
JP
Japan
Prior art keywords
copper
mass
based alloy
electronic
electrical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001275702A
Other languages
Japanese (ja)
Other versions
JP2003082425A (en
Inventor
崇夫 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2001275702A priority Critical patent/JP4728535B2/en
Publication of JP2003082425A publication Critical patent/JP2003082425A/en
Application granted granted Critical
Publication of JP4728535B2 publication Critical patent/JP4728535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、自動車内機器に使用される端子やコネクタ、一般に使用される電子電気機器用配線部品(スイッチやリレー)、ICリードフレームなどに適した銅基合金に関する。
【0002】
【従来の技術】
近年、ナビゲーションシステム、エアバック、アンチロックブレーキシステムなど自動車に搭載される機器や安全装置などは確実に増加してきており、それに伴い車内スペースを最大限に利用するため、搭載機器類をコンパクトにパッケージ化することが重視され、機器類の小型化が、以前にも増して強く要求されるようになった。また重要な機器であっても車内ではなく温度が上昇し易いエンジンルームなどに設置されるようになった。
このため自動車内機器に使用される端子やコネクタには、小型化のための強度向上、高温下での使用に耐える耐応力緩和特性の向上、さらには自己の抵抗発熱を抑制するために導電率の向上が求められている。
このような特性向上は、高密度集積化が進む電子電気機器用配線部品、ICリードフレームなどにも求められている。
【0003】
【発明が解決しようとする課題】
ところで、前記自動車内機器用端子やコネクタ、電子電気機器用配線部品、ICリードフレームなどには、Cu−Ni−Si系合金、Cu−Cr系合金、Cu−Zr系合金などが使用されているが、Cu−Ni−Si系合金は導電率が低く、Cu−Cr系合金およびCu−Zr系合金は強度が低く、いずれも前記近年の厳しい特性要求に十分対応できないものである。
【0004】
このようなことから、本発明者らは、自動車内機器用端子やコネクタ、電子電気機器用配線部品、ICリードフレームなどに適した銅基合金について研究を行い、Cu−Mn−Ni−P系合金は機械的性質、導電率、耐応力緩和特性などに優れることを見いだし、さらに研究を進めて本発明を完成させるに至った。
本発明の目的は、機械的性質、導電率、耐応力緩和特性などに優れ、近年の厳しい特性要求にも十分対応し得る、自動車内機器用端子やコネクタ、電子電気機器用配線部品、ICリードフレームなどに適した銅基合金を提供することにある。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、Mnを0.2〜0.8mass%、Niを0.2〜0.8mass%、Pを0.1〜0.5mass%含み、残部がCuおよび不可避不純物からなり、添加元素の化合物が銅マトリックス中に析出し、引張強さが540N/mm 以上、伸びが5%以上、導電率が55%IACS以上、日本電子材料工業会標準規格(EMAS−3003)の片持ちブロック式で表面最大応力を400N/mm とし、150℃で1000時間後の耐応力緩和特性が50以下であることを特徴とする電子電気機器用配線部品用の銅基合金板材である。
【0006】
請求項2記載の発明は、〔Mn+Ni〕のPに対する質量(mass%)比(〔Mn+Ni〕/P)が2.0〜7.0であることを特徴とする請求項1記載の電子電気機器用配線部品用の銅基合金板材である。
【0007】
請求項3記載の発明は、Mnを0.2〜0.8mass%、Niを0.2〜0.8mass%、Pを0.1〜0.5mass%含み、さらにSn0.05〜0.5mass%、Zn0.05〜1.0mass%のいずれか1種または2種を含み、残部がCuおよび不可避不純物からなり、添加元素の化合物が銅マトリックス中に析出し、引張強さが540N/mm 以上、伸びが5%以上、導電率が55%IACS以上、日本電子材料工業会標準規格(EMAS−3003)の片持ちブロック式で表面最大応力を400N/mm とし、150℃で1000時間後の耐応力緩和特性が50以下であることを特徴とする電子電気機器用配線部品用の銅基合金板材である。
【0008】
請求項4記載の発明は、〔Mn+Ni〕のPに対する質量(mass%)比(〔Mn+Ni〕/P)が2.0〜7.0であることを特徴とする請求項3記載の電子電気機器用配線部品用の銅基合金板材である。
【0009】
【発明の実施の形態】
請求項1記載発明において、Mn、Ni、Pの合金元素は、相互に反応して種々の化合物を生成して銅マトリックス中に析出し、または一部が固溶して、銅基合金の機械的性質、導電率、耐応力緩和特性を向上させる。
一方、前記端子やコネクタは接触抵抗を低減させるため、通常メッキが施され、その耐熱剥離性が良好なこと また製品形状への曲げ加工性が良好なことが求められるが、前記合金元素は、前記メッキ耐熱剥離性や曲げ加工性を損なうことがない。
【0010】
この発明において、Mn、Niの含有量をそれぞれ0.2〜0.8mass%、0.2〜0.8mass%に規定する理由は、いずれが下限値未満でも前記自動車内機器用端子やコネクタ、電子電気機器用配線部品、ICリードフレームなどに必要な機械的性質、耐応力緩和特性などが十分に得られなくなり、上限値を超えると導電率および曲げ加工性が低下するためである。
またPの含有量を0.1〜0.5mass%に規定する理由は、下限値未満ではMnとNiがPと化合物を形成できずに固溶するため、導電率を始め、引張強さおよび耐応力緩和特性が低下し、上限値を超えると鋳造性および熱間加工性が低下するためである。
【0011】
前記合金元素のMn、NiおよびPの効果は、〔Mn+Ni〕のPに対する質量(mass%)比(〔Mn+Ni〕/P)が2.0〜7.0のとき最も安定して発現される。〔Mn+Ni〕/Pが2.0未満のときは導電率が若干低下し、7.0を超えると強度が若干低下する。前記質量比は2.0〜5.0が最適である。
【0012】
請求項3記載の発明は、前記銅基合金(Cu−Mn−Ni−P合金)にSnまたは/およびZnを適量含有させたものであり、これら元素は機械的性質を改善し、さらにSnは耐応力緩和特性を高め、Znはメッキの耐熱剥離性を高める作用も有する。
前記Snの含有量を0.05〜0.5mass%に、前記Znの含有量を0.05〜1.0mass%にそれぞれ規定する理由は、いずれも下限値未満ではその効果が十分に得られず、いずれが上限値を超えても導電率が低下するためである。
【0013】
本発明では、前記合金元素の他、必要に応じてCr、Si、Mg、Ag、Co、Fe、Zr、Ti、V、Pb、Bi、Al、Tiなどの元素を、前記銅基合金の基本的特性を低下させない範囲で添加することができる。
【0014】
【実施例】
以下に本発明を実施例により詳細に説明する。
(実施例1)
表1に示す本請求項1記載発明で規定する組成の銅基合金(No.1〜8)を高周波溶解炉にて溶解し、これをDC法により厚さ30mm、幅100mm、長さ150mmの鋳塊に鋳造し、この鋳塊を900℃で60分間加熱して均質化処理を施したのち、その温度でそのまま熱間圧延を開始し、熱間圧延後、直ちに冷却して厚さ12mmの熱延材とし、この熱延材の両面を各1.5mm切削して酸化被膜を除去したのち、冷間圧延して厚さ0.36mmの冷延材とし、この冷延材に800℃で15秒間加熱後、直ちに15℃/秒以上の冷却速度で冷却する熱処理と、475℃で2時間加熱する熱処理をこの順に施し、次いで、厚さ0.25mmに冷間圧延したのち、350℃で2時間低温焼鈍して銅基合金板材を製造した。前記冷延材の2回の熱処理、および低温焼鈍はいずれも不活性ガス雰囲気中で行った。
【0015】
(実施例2)
表1に示す本請求項3記載発明の組成の銅基合金(No.9〜12)を用いた他は、実施例1と同じ方法により銅基合金板材を製造した。
【0016】
(比較例1)
表1に示す本発明規定外組成の銅基合金(No.13〜16)を用いた他は、実施例1と同じ方法により銅基合金板材を製造した。
【0017】
実施例1、2および比較例1で製造した各々の銅基合金板材について、機械的性質(引張強さ、伸び)、導電率、耐応力緩和特性、曲げ加工性およびメッキ耐熱剥離性を調べた。また従来の銅基合金板材(表1のNo.17〜19)についても同様の調査を行った。
(1)機械的性質はJIS Z 2201で規定する5号試験片を用い、JIS Z 2241に準拠して調べた。
(2)導電率は、JIS H 0505に準拠して調べた。
(3)耐応力緩和特性は、日本電子材料工業会標準規格(EMAS−3003)の片持ちブロック式を採用し、表面最大応力を400N/mm2 に設定して150℃の恒温槽に保持し、1000時間保持後の応力緩和率(S.R.R.)を調べた。
(4)曲げ加工性は、内側曲げ半径が0.1mmの180゜曲げを行い、曲げ部にクラックが生じないものは良好(○)、クラックが生じたものは不良(×)と判定した。
(5)メッキの耐熱剥離性は、試験片に厚さ3μmの光沢Snメッキを施し、これを大気中150℃で1000時間加熱したのち、90°の曲げおよび曲げ戻し試験を行い、曲げ部分のSnメッキの密着状況を目視観察した。メッキが剥離しなかった場合は密着性良好(○)、剥離した場合は密着性不良(×)と判定した。結果を表1に併記する。
【0018】
【表1】

Figure 0004728535
【0019】
表1から明らかなように、本請求項1記載発明のNo.1〜8は、いずれも、前記自動車内機器用端子やコネクタ、電子機器用配線部品、ICリードフレームなどに要求されている、引張強さ50N/mm2以上、伸び%以上、導電率55%IACS以上、耐応力緩和特性50以下の当面の目標値を満足し、さらに曲げ加工性、メッキ耐熱剥離性にも優れた特性を示した。
特に〔Mn+Ni〕/Pの質量比が2.0〜7.0のNo.1、2、4、5、7、8は引張強さおよび導電率が優れた。
本請求項記載発明のNo.9〜12も優れた特性を示し、特にSnを添加したNo.9、10は耐応力緩和特性が、Znを添加したNo.11はメッキ耐熱剥離性が、SnとZnを添加したNo.12は耐応力緩和特性とメッキ耐熱剥離性がそれぞれ大幅に向上した。
比較例のNo.13はMnが少ないため引張強さと耐応力緩和特性が低く、No.14はPが少ないため引張強さ、導電率および耐応力緩和特性が低く、No.15はPが多いため熱間加工中に割れが生じて正常に製造することができず、No.16はNiが多いため導電率および曲げ加工性が低下した。
従来の銅基合金板材のNo.17(Cu−Ni−Si合金)は導電率が、No.18(Cu−Mg合金)は引張強さが、No.19(Cu−Sn−Fe合金)は導電率および曲げ加工性がそれぞれ低下した。
【0020】
【発明の効果】
以上に述べたように、本発明の銅基合金は、機械的性質、導電率および耐応力緩和特性に優れ、曲げ加工性およびメッキ密着性も良好であり、従って、厳しい特性が要求されている自動車内機器用端子やコネクタ、電子電気機器用配線部品、ICリードフレームなどにも十分使用でき、工業上顕著な効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper-based alloy suitable for terminals and connectors used in in-vehicle equipment, wiring parts for electronic and electrical equipment (switches and relays) generally used, IC lead frames, and the like.
[0002]
[Prior art]
In recent years, navigation systems, airbags, anti-lock brake systems and other equipment and safety devices mounted on automobiles have been steadily increasing, and in order to make maximum use of the space in the car, the on-board equipment is packaged compactly. As a result, the downsizing of equipment has become more demanding than ever before. Even important equipment is installed not in the car but in the engine room where the temperature tends to rise.
For this reason, terminals and connectors used in in-car devices have improved strength for miniaturization, improved stress relaxation resistance to withstand use at high temperatures, and conductivity to suppress their own resistance heat generation. Improvement is demanded.
Such improvement in characteristics is also required for wiring components for electronic and electrical equipment, IC lead frames, and the like that are becoming increasingly densely integrated.
[0003]
[Problems to be solved by the invention]
By the way, Cu—Ni—Si based alloys, Cu—Cr based alloys, Cu—Zr based alloys and the like are used for the terminals and connectors for in-car devices, wiring parts for electronic and electrical devices, IC lead frames and the like. However, the Cu—Ni—Si based alloy has low electrical conductivity, and the Cu—Cr based alloy and Cu—Zr based alloy have low strength, and none of them can sufficiently meet the recent severe characteristic requirements.
[0004]
For these reasons, the present inventors have studied copper-based alloys suitable for terminals and connectors for in-vehicle equipment, wiring parts for electronic and electrical equipment, IC lead frames, etc., and Cu-Mn-Ni-P series. The alloy was found to be excellent in mechanical properties, electrical conductivity, stress relaxation resistance, etc., and further research was made to complete the present invention.
The object of the present invention is excellent in mechanical properties, electrical conductivity, stress relaxation resistance, etc., and can sufficiently meet recent severe characteristics demands. Terminals and connectors for automobile equipment, wiring parts for electronic and electrical equipment, IC leads The object is to provide a copper-based alloy suitable for a frame or the like.
[0005]
[Means for Solving the Problems]
The invention of claim 1 includes 0.2 to 0.8 mass% of Mn, 0.2 to 0.8 mass% of Ni, 0.1 to 0.5 mass% of P, and the balance is made of Cu and inevitable impurities. The compound of the additive element is precipitated in the copper matrix, the tensile strength is 540 N / mm 2 or more, the elongation is 5% or more, the conductivity is 55% IACS or more, Japan Electronic Materials Association Standard (EMAS-3003) A copper-based alloy sheet for wiring parts for electronic and electrical equipment , characterized by a cantilever block type having a maximum surface stress of 400 N / mm 2 and a stress relaxation resistance after 1000 hours at 150 ° C. of 50 or less. is there.
[0006]
According to a second aspect of the invention, electrical and electronic devices according to claim 1, wherein the [Mn + Ni] mass with respect to P of (mass%) ratio ([Mn + Ni] / P) is 2.0 to 7.0 This is a copper-based alloy plate material for wiring parts .
[0007]
The invention of claim 3 includes 0.2 to 0.8 mass% of Mn, 0.2 to 0.8 mass% of Ni, 0.1 to 0.5 mass% of P, and further 0.05 to 0.5 mass of Sn. %, include one or two of Zn0.05~1.0Mass%, balance Ri Do Cu and inevitable impurities, the compound of the additive element is precipitated in the copper matrix, a tensile strength of 540N / mm 2 or more, elongation of 5% or more, conductivity of 55% IACS or more, the maximum surface stress and 400 N / mm 2 in a cantilever block expression of Japan electronic materials Manufacturers Association standard (EMAS-3003), 1000 hours at 0.99 ° C. A copper-based alloy sheet for wiring parts for electronic and electrical equipment , characterized by having a later stress relaxation resistance of 50 or less .
[0008]
According to a fourth aspect of the present invention, there is provided the electronic and electrical apparatus according to the third aspect, wherein the ratio ([Mn + Ni] / P) of [Mn + Ni] to P is 2.0 to 7.0. This is a copper-based alloy plate material for wiring parts .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In claim 1, the alloy elements of Mn, Ni, and P react with each other to form various compounds and precipitate in the copper matrix, or a part of the alloy elements dissolves in the machine of the copper-based alloy. Improve mechanical properties, electrical conductivity, and stress relaxation resistance.
On the other hand, in order to reduce the contact resistance, the terminal and the connector are usually plated and have good heat-resistant peelability and good bending workability into the product shape. The plating heat-resistant peelability and bending workability are not impaired.
[0010]
In this invention, the reason for prescribing the contents of Mn and Ni to 0.2 to 0.8 mass% and 0.2 to 0.8 mass%, respectively, is that the terminal or connector for in-vehicle equipment, even if either is less than the lower limit, This is because sufficient mechanical properties, stress relaxation resistance, and the like necessary for wiring parts for electronic and electrical equipment, IC lead frames, etc. cannot be obtained, and when the upper limit is exceeded, conductivity and bending workability are reduced.
Moreover, the reason for prescribing the content of P to 0.1 to 0.5 mass% is that Mn and Ni cannot form a compound with P if they are less than the lower limit value, so that solid solution is formed. This is because the stress relaxation resistance is lowered, and if the upper limit is exceeded, castability and hot workability are lowered.
[0011]
The effects of Mn, Ni, and P of the alloy elements are most stably expressed when the mass (mass%) ratio of [Mn + Ni] to P ([Mn + Ni] / P) is 2.0 to 7.0. When [Mn + Ni] / P is less than 2.0, the conductivity is slightly lowered, and when it exceeds 7.0, the strength is slightly lowered. The mass ratio is optimally 2.0 to 5.0.
[0012]
The invention according to claim 3 is the copper base alloy (Cu—Mn—Ni—P alloy) containing an appropriate amount of Sn or / and Zn, and these elements improve the mechanical properties, and further Sn is Zn has the effect of enhancing the stress relaxation resistance and enhancing the heat-resistant peelability of the plating.
The reason for defining the Sn content to be 0.05 to 0.5 mass% and the Zn content to be 0.05 to 1.0 mass%, respectively, is sufficient if the lower limit is satisfied. This is because the electrical conductivity is lowered even if any exceeds the upper limit.
[0013]
In the present invention, in addition to the alloy elements, elements such as Cr, Si, Mg, Ag, Co, Fe, Zr, Ti, V, Pb, Bi, Al, and Ti are added to the basic of the copper-based alloy as necessary. It can be added within a range not deteriorating the mechanical characteristics.
[0014]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
The copper base alloys (Nos. 1 to 8) having the composition specified in the invention of claim 1 shown in Table 1 were melted in a high frequency melting furnace, and this was melted by a DC method with a thickness of 30 mm, a width of 100 mm, and a length of 150 mm After casting into an ingot, this ingot was heated at 900 ° C. for 60 minutes for homogenization, and then hot rolling was started at that temperature. After hot rolling, the ingot was immediately cooled to a thickness of 12 mm. A hot-rolled material was cut off on both sides of the hot-rolled material by 1.5 mm to remove the oxide film, and then cold-rolled to obtain a cold-rolled material having a thickness of 0.36 mm. After heating for 15 seconds, heat treatment immediately cooling at a cooling rate of 15 ° C./second or more and heat treatment heating at 475 ° C. for 2 hours are performed in this order, then cold-rolled to a thickness of 0.25 mm, and then 350 ° C. A copper-based alloy sheet was produced by low-temperature annealing for 2 hours. Both the heat treatment and low temperature annealing of the cold-rolled material were performed in an inert gas atmosphere.
[0015]
(Example 2)
A copper-based alloy sheet was produced in the same manner as in Example 1 except that the copper-based alloy (Nos. 9 to 12) having the composition of the invention of claim 3 shown in Table 1 was used.
[0016]
(Comparative Example 1)
A copper-based alloy sheet was produced in the same manner as in Example 1 except that the copper-based alloy (Nos. 13 to 16) having a composition outside the scope of the present invention shown in Table 1 was used.
[0017]
For each copper-based alloy sheet produced in Examples 1 and 2 and Comparative Example 1, mechanical properties (tensile strength, elongation), electrical conductivity, stress relaxation resistance, bending workability, and plating heat resistance peelability were examined. . The same investigation was conducted on conventional copper-based alloy sheet materials (Nos. 17 to 19 in Table 1).
(1) The mechanical properties were examined in accordance with JIS Z 2241 using a No. 5 test piece specified in JIS Z 2201.
(2) The conductivity was examined according to JIS H 0505.
(3) The stress relaxation resistance adopts a cantilever block type of the Japan Electronic Materials Industry Standard (EMAS-3003), and the maximum surface stress is set to 400 N / mm 2 and held in a thermostatic chamber at 150 ° C. The stress relaxation rate (SR) after 1000 hours was examined.
(4) As for the bending workability, 180 ° bending with an inner bending radius of 0.1 mm was performed, and it was determined that a crack did not occur in a bent portion was good (◯), and a crack was determined as poor (×).
(5) The heat-resistant peelability of the plating was determined by applying a glossy Sn plating with a thickness of 3 μm to the test piece, heating it in the atmosphere at 150 ° C. for 1000 hours, performing a 90 ° bending and unbending test, The adhesion state of Sn plating was visually observed. When the plating did not peel, it was determined that the adhesion was good (◯), and when the plating was peeled, the adhesion was poor (x). The results are also shown in Table 1.
[0018]
[Table 1]
Figure 0004728535
[0019]
As is apparent from Table 1, the No. 1 of the invention described in claim 1 is used. 1-8 are both the automobile the instrument terminals and connectors for electronic apparatus wiring parts, etc. are required IC lead frame, tensile strength 5 4 0N / mm 2 or more, elongation more than 5%, conductive It satisfies the current target values of 55% IACS or higher and stress relaxation resistance of 50 or lower, and also exhibits excellent characteristics in bending workability and plating heat resistance peelability.
In particular, the [Mn + Ni] / P mass ratio is 2.0 to 7.0. 1, 2, 4, 5, 7, and 8 were excellent in tensile strength and electrical conductivity.
No. 3 of the present invention. Nos. 9 to 12 also showed excellent characteristics, especially No. Nos. 9 and 10 have the stress relaxation resistance No. 1 with Zn added. No. 11 is a plating heat-resistant peelable No. 11 with Sn and Zn added. No. 12 significantly improved both the stress relaxation resistance and the plating heat release resistance.
Comparative Example No. No. 13 has low Mn, so its tensile strength and stress relaxation resistance are low. No. 14 has low P, so its tensile strength, conductivity and stress relaxation resistance are low. No. 15 has a large amount of P, and thus cracks occur during hot working and cannot be manufactured normally. No. 16 had a large amount of Ni, so the conductivity and bending workability were reduced.
The conventional copper base alloy sheet No. 17 (Cu—Ni—Si alloy) has a conductivity of No. No. 18 (Cu-Mg alloy) has a tensile strength of No.18. 19 (Cu—Sn—Fe alloy) decreased in electrical conductivity and bending workability.
[0020]
【The invention's effect】
As described above, the copper-based alloy of the present invention is excellent in mechanical properties, electrical conductivity and stress relaxation resistance, has good bending workability and plating adhesion, and therefore requires severe characteristics. It can be used well for terminals and connectors for in-car devices, wiring parts for electronic and electrical devices, IC lead frames, etc., and has a remarkable industrial effect.

Claims (4)

Mnを0.2〜0.8mass%、Niを0.2〜0.8mass%、Pを0.1〜0.5mass%含み、残部がCuおよび不可避不純物からなり、
添加元素の化合物が銅マトリックス中に析出し、引張強さが540N/mm 以上、伸びが5%以上、導電率が55%IACS以上、日本電子材料工業会標準規格(EMAS−3003)の片持ちブロック式で表面最大応力を400N/mm とし、150℃で1000時間後の耐応力緩和特性が50以下であることを特徴とする電子電気機器用配線部品用の銅基合金板材
Mn of 0.2~0.8mass%, Ni of 0.2~0.8Mass%, a P containing 0.1 to 0.5 mass%, Ri Do a balance of Cu and inevitable impurities,
Compound of additive element precipitates in copper matrix, tensile strength is 540 N / mm 2 or more, elongation is 5% or more, conductivity is 55% IACS or more, Japan Electronic Materials Association Standard (EMAS-3003) fragment A copper-based alloy sheet for wiring parts for electronic and electrical equipment , characterized in that the maximum stress on the surface is 400 N / mm 2 and the stress relaxation resistance after 1000 hours at 150 ° C. is 50 or less .
〔Mn+Ni〕のPに対する質量(mass%)比(〔Mn+Ni〕/P)が2.0〜7.0であることを特徴とする請求項1記載の電子電気機器用配線部品用の銅基合金板材2. The copper-based alloy for wiring parts for electronic devices according to claim 1, wherein a mass (mass%) ratio of [Mn + Ni] to P ([Mn + Ni] / P) is 2.0 to 7.0. Board material . Mnを0.2〜0.8mass%、Niを0.2〜0.8mass%、Pを0.1〜0.5mass%含み、さらにSn0.05〜0.5mass%、Zn0.05〜1.0mass%のいずれか1種または2種を含み、残部がCuおよび不可避不純物からなり、
添加元素の化合物が銅マトリックス中に析出し、引張強さが540N/mm 以上、伸びが5%以上、導電率が55%IACS以上、日本電子材料工業会標準規格(EMAS−3003)の片持ちブロック式で表面最大応力を400N/mm とし、150℃で1000時間後の耐応力緩和特性が50以下であることを特徴とする電子電気機器用配線部品用の銅基合金板材
It contains 0.2 to 0.8 mass% of Mn, 0.2 to 0.8 mass% of Ni, 0.1 to 0.5 mass% of P, Sn 0.05 to 0.5 mass%, Zn 0.05 to 1. include one or two of 0Mass%, Ri Do the balance is Cu and inevitable impurities,
Compound of additive element precipitates in copper matrix, tensile strength is 540 N / mm 2 or more, elongation is 5% or more, conductivity is 55% IACS or more, Japan Electronic Materials Association Standard (EMAS-3003) fragment A copper-based alloy sheet for wiring parts for electronic and electrical equipment , characterized in that the maximum stress on the surface is 400 N / mm 2 and the stress relaxation resistance after 1000 hours at 150 ° C. is 50 or less .
〔Mn+Ni〕のPに対する質量(mass%)比(〔Mn+Ni〕/P)が2.0〜7.0であることを特徴とする請求項3記載の電子電気機器用配線部品用の銅基合金板材4. The copper-based alloy for wiring parts for electronic devices according to claim 3, wherein a mass (mass%) ratio of [Mn + Ni] to P ([Mn + Ni] / P) is 2.0 to 7.0. Board material .
JP2001275702A 2001-09-11 2001-09-11 Copper-based alloy sheet for wiring components for electronic and electrical equipment Expired - Lifetime JP4728535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275702A JP4728535B2 (en) 2001-09-11 2001-09-11 Copper-based alloy sheet for wiring components for electronic and electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275702A JP4728535B2 (en) 2001-09-11 2001-09-11 Copper-based alloy sheet for wiring components for electronic and electrical equipment

Publications (2)

Publication Number Publication Date
JP2003082425A JP2003082425A (en) 2003-03-19
JP4728535B2 true JP4728535B2 (en) 2011-07-20

Family

ID=19100519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275702A Expired - Lifetime JP4728535B2 (en) 2001-09-11 2001-09-11 Copper-based alloy sheet for wiring components for electronic and electrical equipment

Country Status (1)

Country Link
JP (1) JP4728535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY143219A (en) 2004-02-27 2011-03-31 Furukawa Electric Co Ltd Copper alloy
DE102013014500A1 (en) * 2013-09-02 2015-03-05 Kme Germany Gmbh & Co. Kg copper alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727051A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Copper nickel tin alloy for integrated circuit conductor and its manufacture
JPS6379929A (en) * 1987-08-26 1988-04-09 Nippon Telegr & Teleph Corp <Ntt> Copper-nickel-tin alloy for integrated circuit conductor and its production
JPH11189834A (en) * 1997-10-23 1999-07-13 Furukawa Electric Co Ltd:The High strength trolley wire and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727051A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Copper nickel tin alloy for integrated circuit conductor and its manufacture
JPS6379929A (en) * 1987-08-26 1988-04-09 Nippon Telegr & Teleph Corp <Ntt> Copper-nickel-tin alloy for integrated circuit conductor and its production
JPH11189834A (en) * 1997-10-23 1999-07-13 Furukawa Electric Co Ltd:The High strength trolley wire and its manufacture

Also Published As

Publication number Publication date
JP2003082425A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP5437519B1 (en) Cu-Co-Si-based copper alloy strip and method for producing the same
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP5468798B2 (en) Copper alloy sheet
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2016014165A (en) Copper alloy material, method for producing copper alloy material, lead frame and connector
JP5002768B2 (en) Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof
JP4728535B2 (en) Copper-based alloy sheet for wiring components for electronic and electrical equipment
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH05311364A (en) Manufacture of high strength and high conductivity copper alloy
KR20160001634A (en) Copper alloy material, method for producing copper alloy material, lead frames and connectors
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same
JPH0565571B2 (en)
JP2000273561A (en) Copper base alloy for terminal and its production
JPH0676630B2 (en) Copper alloy for wiring connector
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3