JP5437519B1 - Cu-Co-Si-based copper alloy strip and method for producing the same - Google Patents

Cu-Co-Si-based copper alloy strip and method for producing the same Download PDF

Info

Publication number
JP5437519B1
JP5437519B1 JP2013158462A JP2013158462A JP5437519B1 JP 5437519 B1 JP5437519 B1 JP 5437519B1 JP 2013158462 A JP2013158462 A JP 2013158462A JP 2013158462 A JP2013158462 A JP 2013158462A JP 5437519 B1 JP5437519 B1 JP 5437519B1
Authority
JP
Japan
Prior art keywords
copper alloy
alloy strip
annealing
mass
based copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013158462A
Other languages
Japanese (ja)
Other versions
JP2015028201A (en
Inventor
康弘 岡藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013158462A priority Critical patent/JP5437519B1/en
Application granted granted Critical
Publication of JP5437519B1 publication Critical patent/JP5437519B1/en
Priority to TW103120813A priority patent/TWI550107B/en
Priority to KR1020140088298A priority patent/KR101612185B1/en
Priority to CN201410362021.8A priority patent/CN104342581B/en
Publication of JP2015028201A publication Critical patent/JP2015028201A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】導電率や強度を維持しつつ、加工性に優れたCu−Co−Si系銅合金条及びその製造方法並びに該銅合金板を用いた大電流用電子部品及び放熱用電子部品を提供する。
【解決手段】Co:0.5〜3.0質量%,Si:0.1〜1.0質量%を含有し、Co/Siの質量比:3.0〜5.0であって、残部が銅および不可避的不純物からなり、ランクフォード値rが0.9以上(但し、圧延平行方向に対して0度、45度、90度の方向に試料を引張試験して得られたr値をそれぞれr0、r45、r90としたとき、r=(r0+2×r45+r90)/4)であるCu−Co−Si系銅合金条である。
【選択図】なし
Provided are a Cu-Co-Si-based copper alloy strip excellent in workability while maintaining conductivity and strength, a method for producing the same, a high-current electronic component and a heat-dissipating electronic component using the copper alloy plate To do.
SOLUTION: Co: 0.5 to 3.0% by mass, Si: 0.1 to 1.0% by mass, Co / Si mass ratio: 3.0 to 5.0, the balance being copper and inevitable impurities, Rankford value r is 0.9 or more (provided that r = r0, r45, r90 obtained by tensile testing the sample in the direction of 0 °, 45 °, 90 ° with respect to the rolling parallel direction, r = It is a Cu—Co—Si based copper alloy strip which is (r0 + 2 × r45 + r90) / 4).
[Selection figure] None

Description

本発明は電子材料などの電子部品の製造に好適に使用可能なCu−Co−Si系銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用されるCu−Co−Si系銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適なCu−Co−Si系銅合金板及び該銅合金板を用いた電子部品に関するものである。   TECHNICAL FIELD The present invention relates to a Cu—Co—Si based copper alloy plate and a current carrying or heat radiating electronic component that can be suitably used for the production of electronic parts such as electronic materials. The present invention relates to a Cu—Co—Si based copper alloy plate used as a material for electronic components such as connectors, relays, switches, sockets, bus bars, lead frames, and heat sinks, and electronic components using the copper alloy plates. Among these, Cu— suitable for use in high current electronic parts such as connectors and terminals for high current used in electric vehicles, hybrid cars, etc., or for use in electronic parts for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a Co—Si based copper alloy plate and an electronic component using the copper alloy plate.

電子機器の端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための材料として、強度と導電率に優れた銅合金条が広く用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。ところで、近年、電子機器のコネクタにおいて高電流化が進んでおり、良好な曲げ性を有し,55%IACS以上の導電率、550MPa以上の耐力を有することが必要と考えられている。また、はんだ性を確保するため、コネクタ材料には良好なめっき性やはんだ濡れ性が求められる。   Copper alloy strips having excellent strength and conductivity are widely used as materials for transmitting electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, and heat sinks of electronic devices. Here, electrical conductivity and thermal conductivity are in a proportional relationship. By the way, in recent years, high currents have been developed in connectors of electronic devices, and it is considered necessary to have good bendability, conductivity of 55% IACS or more, and proof stress of 550 MPa or more. Moreover, in order to ensure solderability, the connector material is required to have good plating properties and solder wettability.

一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、高熱伝導率化が進んでおり、良好な曲げ性を有し、高強度を有することが必要と考えられている。このため、放熱用途の銅合金板においても、55%IACS以上の導電率、550MPa以上の耐力を有することが必要と考えられている。   On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, high thermal conductivity is progressing, and it is considered necessary to have good bendability and high strength. For this reason, it is considered that a copper alloy plate for heat dissipation needs to have a conductivity of 55% IACS or more and a proof stress of 550 MPa or more.

しかしながら、60%IACS以上の導電率をNi-Si系銅合金で達成することは難しく,Co-Si系銅合金の開発が進められてきた。Co-Siを含む銅合金はCo2Siの固溶量が少ないため、Ni-Si系銅合金よりも導電率を高くすることができる。
このCo-Si系銅合金として、介在物の大きさを2μm以下として粗大な析出物を少なくすることで、めっき密着性に優れた銅合金が開示されている(特許文献1)。
However, it is difficult to achieve a conductivity of 60% IACS or higher with Ni-Si copper alloys, and Co-Si copper alloys have been developed. Since the copper alloy containing Co-Si has a small amount of Co2Si, the conductivity can be made higher than that of the Ni-Si based copper alloy.
As this Co—Si based copper alloy, a copper alloy excellent in plating adhesion is disclosed by setting the size of inclusions to 2 μm or less and reducing coarse precipitates (Patent Document 1).

特開2008-056977号公報JP 2008-056977 A

ところで、Co-Si系銅合金は導電率や強度に優れるものの、絞りや張り出しといった加工に適しておらず、加工時にクラックや形状不良が生じやすい。このため、電子機器のコネクタや放熱板等にCo-Si系銅合金を適用する場合の加工設計が困難になったり、加工が難しい場合は導電率(熱伝導率)が不足する他の合金を用いて必要な機能が得られなかったりといった不具合があった。
すなわち、本発明は上記の課題を解決するためになされたものであり、導電率や強度を維持しつつ、加工性に優れたCu−Co−Si系銅合金条及びその製造方法の提供を目的とする。さらには、本発明は、該銅合金板の製造方法、及び大電流用途又は放熱用途に好適な電子部品を提供することをも目的とする。
By the way, although a Co—Si based copper alloy is excellent in electrical conductivity and strength, it is not suitable for processing such as drawing or overhanging, and cracks and shape defects are likely to occur during processing. For this reason, it is difficult to design a process when applying a Co-Si based copper alloy to a connector or a heat sink of an electronic device, or if the processing is difficult, use another alloy that lacks conductivity (thermal conductivity). There was a problem that necessary functions could not be obtained.
That is, the present invention has been made to solve the above-described problems, and an object thereof is to provide a Cu—Co—Si based copper alloy strip excellent in workability while maintaining conductivity and strength, and a method for producing the same. And Furthermore, another object of the present invention is to provide a method for producing the copper alloy plate and an electronic component suitable for high current use or heat dissipation use.

本発明のCu−Co−Si系銅合金条は、Co:0.5〜3.0質量%,Si:0.1〜1.0質量%を含有し、Co/Siの質量比:3.0〜5.0であって、残部が銅および不可避的不純物からなり、ランクフォード値rが0.9以上(但し、圧延平行方向に対して0度、45度、90度の方向に試料を引張試験して得られたr値をそれぞれr0、r45、r90としたとき、r=(r0+2×r45+r90)/4)である。   The Cu—Co—Si based copper alloy strip of the present invention contains Co: 0.5 to 3.0 mass%, Si: 0.1 to 1.0 mass%, Co / Si mass ratio: 3.0 to 5.0, with the balance being copper. And the Rankford value r is 0.9 or more (however, the r values obtained by tensile testing the samples in the directions of 0 degree, 45 degrees and 90 degrees with respect to the rolling parallel direction are r0 respectively. , R45, r90, r = (r0 + 2 × r45 + r90) / 4).

本発明のCu−Co−Si系銅合金条において、圧延平行方向に対して0度、45度、90度の伸びをそれぞれE1、E45、E90としたとき、E1、E45、E90がいずれも5%以上であることが好ましい。
(降伏強度/引張強度)で表される降伏比が0.95以下であることが好ましい。但し、降伏強度及び引張強度の単位をMPaとして降伏比を求める。
Ni、Cr、Mg、Mn、Ag、P、Sn、Zn、As、Sb、Be、B、Ti、Zr、Al及びFeよりなる群から選ばれる1種以上を合計0.001〜2.5質量%含有することが好ましい。
In the Cu—Co—Si-based copper alloy strip of the present invention, when the elongations of 0 degree, 45 degrees, and 90 degrees with respect to the rolling parallel direction are E1, E45, and E90, respectively, E1, E45, and E90 are all 5 % Or more is preferable.
The yield ratio represented by (yield strength / tensile strength) is preferably 0.95 or less. However, the yield ratio is obtained with the unit of yield strength and tensile strength as MPa.
Containing 0.001 to 2.5 mass% in total of at least one selected from the group consisting of Ni, Cr, Mg, Mn, Ag, P, Sn, Zn, As, Sb, Be, B, Ti, Zr, Al, and Fe Is preferred.

本発明のCu−Co−Si系銅合金条の製造方法は、前記Cu−Co−Si系銅合金条の製造方法であって、熱間圧延、第1の焼鈍、加工度10%以上の第1の冷間圧延、溶体化処理、時効処理をこの順で行い、かつ、前記第1の焼鈍と前記第1の冷間圧延とを2回以上繰り返し、前記第1の焼鈍は、焼鈍前後で引張強度が10〜40%減少する条件とする。   The method for producing a Cu—Co—Si based copper alloy strip according to the present invention is a method for producing the Cu—Co—Si based copper alloy strip, which includes hot rolling, first annealing, and a workability of 10% or more. 1 cold rolling, solution treatment, and aging treatment are performed in this order, and the first annealing and the first cold rolling are repeated twice or more. The first annealing is performed before and after annealing. The tensile strength is reduced by 10 to 40%.

本発明は更に別の一側面において、上記Cu−Co−Si系銅合金条を用いた大電流用電子部品である。   In still another aspect, the present invention is an electronic component for large current using the Cu—Co—Si based copper alloy strip.

本発明は更に別の一側面において、上記Cu−Co−Si系銅合金条を用いた放熱用電子部品である。   In another aspect of the present invention, there is provided a heat dissipation electronic component using the Cu—Co—Si based copper alloy strip.

本発明によれば、導電率や強度を維持しつつ、加工性に優れたCu−Co−Si系銅合金条及びその製造方法、並びに大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。   According to the present invention, it is possible to provide a Cu—Co—Si based copper alloy strip excellent in workability while maintaining conductivity and strength, a manufacturing method thereof, and an electronic component suitable for high current use or heat dissipation use. Is possible. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, etc., and particularly dissipates the material or large amount of heat of electronic parts that carry a large current. It is useful as a material for electronic parts.

以下、本発明の実施形態に係るCu−Co−Si系銅合金条について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the Cu—Co—Si based copper alloy strip according to the embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

まず、銅合金条の組成の限定理由について説明する。
<Co及びSi>
Co及びSiは、時効処理を行うことによりCoとSiが微細なCoSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのCoSiの析出に伴い、導電性が向上する。ただし、Co濃度が0.5%未満の場合、またはSi濃度が0.1(Co%の1/5)%未満の場合は、他方の成分を添加しても所望とする強度が得られない。また、Co濃度が3.0%を超える場合、またはSi濃度が1.0(Co%の1/3)%を超える場合は十分な強度が得られるものの、導電性が低くなり、更には強度の向上に寄与しない粗大なCo−Si系粒子(晶出物及び析出物)が母相中に生成し、曲げ加工性、エッチング性およびめっき性の低下を招く。よって、Coの含有量を0.5〜3.0質量%とする。好ましくは、Coの含有量を1.0〜2.0質量%とする。同様に、Siの含有量を0.1〜1.0質量%とする。好ましくは、Siの含有量を0.2〜0.7質量%とする。
First, the reasons for limiting the composition of the copper alloy strip will be described.
<Co and Si>
Co and Si are subjected to an aging treatment to form precipitated particles of an intermetallic compound mainly composed of Co 2 Si in which Co and Si are fine, and remarkably increase the strength of the alloy. Further, the conductivity is improved with the precipitation of Co 2 Si in the aging treatment. However, when the Co concentration is less than 0.5%, or when the Si concentration is less than 0.1 (1/5 of Co%), the desired strength cannot be obtained even if the other component is added. Also, if the Co concentration exceeds 3.0%, or if the Si concentration exceeds 1.0 (1/3 of Co%)%, sufficient strength can be obtained, but the conductivity is lowered and further contributes to improvement of strength. Coarse Co—Si-based particles (crystallized product and precipitate) that are not formed are generated in the matrix phase, leading to a decrease in bending workability, etching property, and plating property. Therefore, the Co content is set to 0.5 to 3.0 mass%. Preferably, the Co content is 1.0 to 2.0 mass%. Similarly, the Si content is 0.1 to 1.0 mass%. Preferably, the Si content is 0.2 to 0.7 mass%.

Co/Siの質量比を3.0〜5.0とすると、析出硬化後の強度と導電率を共に向上させることができる。Co/Siの質量比が3.0未満であるとCoSiとして析出しないSiの濃度が多くなって導電率が低下する。Co/Siの質量比が5を超えるとCoSiとして析出しないCoの濃度が多くなって導電率が低下する。 When the mass ratio of Co / Si is 3.0 to 5.0, both strength and conductivity after precipitation hardening can be improved. If the Co / Si mass ratio is less than 3.0, the concentration of Si that does not precipitate as Co 2 Si increases and the conductivity decreases. When the mass ratio of Co / Si exceeds 5, the concentration of Co that does not precipitate as Co 2 Si increases and the conductivity decreases.

さらに、Ni、Cr、Mg、Mn、Ag、P、Sn、Zn、As、Sb、Be、B、Ti、Zr、Al及びFeよりなる群から選ばれる1種以上を合計0.001〜2.5質量%含有することが好ましい。これら元素は固溶強化や析出強化等により強度上昇に寄与する。これら元素の合計量が0.001質量%未満であると上記効果が得られない場合がある。又、これら元素の合計量が2.5質量%を超えると導電率が低下したり、熱間圧延で割れる場合がある。   Furthermore, a total of 0.001 to 2.5% by mass of one or more selected from the group consisting of Ni, Cr, Mg, Mn, Ag, P, Sn, Zn, As, Sb, Be, B, Ti, Zr, Al, and Fe is contained. It is preferable to do. These elements contribute to an increase in strength by solid solution strengthening or precipitation strengthening. If the total amount of these elements is less than 0.001% by mass, the above effect may not be obtained. On the other hand, if the total amount of these elements exceeds 2.5% by mass, the electrical conductivity may be lowered or cracked by hot rolling.

本発明のCu−Co−Si系銅合金条の厚みは特に限定されないが、例えば0.03〜0.6mmとすることができる。   The thickness of the Cu—Co—Si based copper alloy strip of the present invention is not particularly limited, but may be 0.03 to 0.6 mm, for example.

<ランクフォード値r>
次に、銅合金条の特徴となる規定について説明する。本発明者らは、Cu−Co−Si系銅合金条を所定の条件で製造することで、ランクフォード値rが0.9以上となる合金が得られることがわかった。これは、下記の条件で焼鈍と圧延を繰り返すことで、圧延方向と板厚方向における結晶粒の形状や歪の導入のされ方が均一になり、変形時の板厚方向の減少が抑制されるためと考えられる。
ここで、rは、板の厚み方向と板幅方向のどちらに変形しやすいかという塑性ひずみ値を示し、rが高いほど深絞り性に優れる。
rは理論的には、次式により求められる。
r=ln(Wo /W)/ln(to /t)
ここで、Wo 、Wは変形前、後の板幅であり、to 、tは変形前、後の板厚である。ただし、試験片を取り出す個所によってrが変化するため、本発明においては、
式1:r=(r0+2×r45+r90)/4
(但し、圧延平行方向に対して0度、45度、90度の方向に試料を引張試験して得られたr値をそれぞれr0、r45、r90とする)によってrを求める。
<Rankford value r>
Next, the rules that characterize the copper alloy strip will be described. The inventors of the present invention found that an alloy having a Rankford value r of 0.9 or more can be obtained by producing a Cu—Co—Si based copper alloy strip under predetermined conditions. This is because annealing and rolling are repeated under the following conditions, the shape of crystal grains in the rolling direction and the plate thickness direction and how to introduce strain become uniform, and the reduction in the plate thickness direction during deformation is suppressed. This is probably because of this.
Here, r indicates a plastic strain value indicating whether the plate is easily deformed in the thickness direction or the plate width direction, and the higher r is, the better the deep drawability is.
Theoretically, r is obtained by the following equation.
r = ln (Wo / W) / ln (t0 / t)
Here, Wo and W are plate widths before and after deformation, and to and t are plate thicknesses before and after deformation. However, since r varies depending on where the test piece is taken out, in the present invention,
Formula 1: r = (r0 + 2 × r45 + r90) / 4
(However, r is determined by r0, r45, and r90, respectively, obtained by subjecting the sample to a tensile test in directions of 0, 45, and 90 degrees with respect to the rolling parallel direction).

そして、Cu−Co−Si系銅合金条を製造する条件として、インゴットを熱間圧延、第1の焼鈍、加工度10%以上の第1の冷間圧延、溶体化処理、時効処理をこの順で行い、かつ、第1の焼鈍と第1の冷間圧延とを2回以上繰り返し、第1の焼鈍は、焼鈍前後で引張強度が20〜40%減少する条件とすると、r≧0.9の合金条が得られる。
なお、溶体化処理と時効処理との間に最終冷間圧延を行ってもよい。
第1の焼鈍と第1の冷間圧延を上記条件で行うことで、上記したように、圧延方向と板厚方向と板幅方向の結晶粒の形状や歪の導入のされ方が均一になり、変形時の板厚方向の減少が抑制されると考えられる。
第1の焼鈍と第1の冷間圧延との繰り返し回数が2回未満であると、上記した効果が得られず、rが0.9未満となる。
第1の焼鈍において、焼鈍前後で引張強度が20%未満しか減少しない場合、上記した効果が得られず、rが0.9未満となる。一方、焼鈍前後で引張強度が40%を超えると結晶粒径が大きくなりすぎ、rが0.9未満となる。第1の焼鈍は、焼鈍前後で引張強度が15〜30%減少する条件とすると好ましい。
第1の冷間圧延の加工度が10%未満の場合、上記した効果が得られず、rが0.9未満となる。なお、第1の冷間圧延の加工度の上限は、例えば97%である。加工度が97%を超えると2回目の冷間圧延の加工度が10%未満となる。第1の冷間圧延の加工度が15〜50%であると好ましい。
As the conditions for producing the Cu—Co—Si copper alloy strip, the ingot is subjected to hot rolling, first annealing, first cold rolling with a workability of 10% or more, solution treatment, and aging treatment in this order. And the first annealing and the first cold rolling are repeated two or more times, and the first annealing is performed under the condition that the tensile strength is reduced by 20 to 40% before and after annealing. Article is obtained.
Note that final cold rolling may be performed between the solution treatment and the aging treatment.
By performing the first annealing and the first cold rolling under the above-mentioned conditions, as described above, the shape of the crystal grains in the rolling direction, the plate thickness direction, and the plate width direction and the way of introducing strain become uniform. It is considered that the reduction in the thickness direction during deformation is suppressed.
If the number of repetitions of the first annealing and the first cold rolling is less than 2, the above effect cannot be obtained, and r is less than 0.9.
In the first annealing, when the tensile strength is reduced by less than 20% before and after annealing, the above effect cannot be obtained, and r is less than 0.9. On the other hand, if the tensile strength exceeds 40% before and after annealing, the crystal grain size becomes too large and r becomes less than 0.9. The first annealing is preferably performed under conditions where the tensile strength decreases by 15 to 30% before and after annealing.
When the workability of the first cold rolling is less than 10%, the above effect cannot be obtained and r is less than 0.9. In addition, the upper limit of the workability of the first cold rolling is, for example, 97%. When the workability exceeds 97%, the workability of the second cold rolling becomes less than 10%. The workability of the first cold rolling is preferably 15 to 50%.

熱間圧延と第1の焼鈍との間に冷間圧延(初期冷間圧延)を行ってもよく、その加工度は0〜98%とすることができる。
その他の条件は、通常のCu−Co−Si系銅合金条の製造条件と同等とすることができる。
Cold rolling (initial cold rolling) may be performed between the hot rolling and the first annealing, and the working degree can be set to 0 to 98%.
Other conditions can be made equivalent to the manufacturing conditions of a normal Cu—Co—Si based copper alloy strip.

E1、E45、E90がいずれも5%以上であると、rを確実に0.9以上とすることができ、銅合金条の加工性が向上するので好ましい。
(降伏強度/引張強度)で表される降伏比が0.95以下であると、一様伸び領域(力の増加にしたがって歪みが増加する領域)が得られる荷重域が広くなり、良好な成型形状が得られるため好ましい。
When E1, E45, and E90 are all 5% or more, r can be reliably set to 0.9 or more, and the workability of the copper alloy strip is improved, which is preferable.
When the yield ratio represented by (yield strength / tensile strength) is 0.95 or less, the load range in which a uniform elongation region (a region in which strain increases as the force increases) is obtained becomes wide, and good molding is achieved. Since a shape is obtained, it is preferable.

電気銅を原料とし、大気溶解炉を用いて表1、表2に示す組成の銅合金を溶製し、インゴットに鋳造した。このインゴットを850〜1000℃で熱間圧延を行ない、適宜面削等を行い10mmの厚みとした。その後、表1、表2に示す条件で初期冷間圧延を行った(一部の試料は初期冷間圧延を行わなかった)。
次に、それぞれ表1、表2に示す条件で、第1の焼鈍及び第1の冷間圧延を2回又は3回繰り返し行った。さらに、850〜1000℃で5〜100秒の溶体化処理を行い、次に加工度0〜20%の最終冷間圧延を行い、さらに時効処理(強度が最大となる温度で5時間)を行い、0.2mmの厚みの試料を製造した。
各試料につき、以下の評価を行った。
Using copper as a raw material, copper alloys having the compositions shown in Tables 1 and 2 were melted using an atmospheric melting furnace and cast into ingots. This ingot was hot-rolled at 850 to 1000 ° C., and was appropriately chamfered to a thickness of 10 mm. Thereafter, initial cold rolling was performed under the conditions shown in Tables 1 and 2 (some samples were not subjected to initial cold rolling).
Next, the first annealing and the first cold rolling were repeated twice or three times under the conditions shown in Tables 1 and 2, respectively. Further, a solution treatment is performed at 850 to 1000 ° C. for 5 to 100 seconds, then a final cold rolling with a workability of 0 to 20% is performed, and further an aging treatment (5 hours at a temperature at which the strength is maximum) is performed. A sample with a thickness of 0.2 mm was manufactured.
Each sample was evaluated as follows.

<引張強度(TS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張強度(TS)を測定した。
<0.2%耐力(YS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における0.2%耐力(YS)を測定した。0.2%耐力(YS)を降伏強度とした。
<Tensile strength (TS)>
The tensile strength (TS) in the direction parallel to the rolling direction was measured by a tensile tester according to JIS-Z2241.
<0.2% yield strength (YS)>
The 0.2% yield strength (YS) in the direction parallel to the rolling direction was measured with a tensile tester in accordance with JIS-Z2241. 0.2% yield strength (YS) was taken as the yield strength.

<破断伸び>
引張試験機により、JIS−Z2241に従い、圧延平行方向に対して0度、45度、90度の向きに引っ張り、試験片が破断したときの標点間の長さLと、試験前の標点距離L0との差を%で求めた。圧延平行方向に対して0度、45度、90度の破断伸びをそれぞれE1、E45、E90とした。
<r値>
引張試験機により、JIS−Z2241に従い、圧延平行方向に対してそれぞれ0度、45度、90度の向きに引っ張った。伸びが5%(破断伸びが5%以下の場合は2.5%)のときの板幅と長さを測り、引張試験前後の板幅をそれぞれW、Wとし、引張試験前後の長さをそれぞれL、Lとし、r値=ln(Wo /W)/ln(WL/WLo)によってr値を算出した。
圧延平行方向に対して0度、45度、90度のr値をそれぞれr0、r45、r90とし、r=(r0+2×r45+r90)/4によって算出した。
<降伏比>
上記したYS/TSの比で求めた。
<Elongation at break>
Using a tensile tester, in accordance with JIS-Z2241, pulling in the direction of 0 degree, 45 degree, 90 degree with respect to the rolling parallel direction, the length L between the gauge points when the specimen breaks, and the gauge points before the test The difference from the distance L0 was determined in%. The breaking elongations of 0 °, 45 °, and 90 ° with respect to the rolling parallel direction were E1, E45, and E90, respectively.
<R value>
The tensile tester was pulled in directions of 0 degrees, 45 degrees, and 90 degrees with respect to the rolling parallel direction in accordance with JIS-Z2241. Measure the plate width and length when the elongation is 5% (or 2.5% when the breaking elongation is 5% or less), and set the width before and after the tensile test as W 0 and W, respectively, and the length before and after the tensile test, respectively L 0 and L were used, and the r value was calculated by r value = ln (Wo / W) / ln (W L / W 0 Lo).
The r values of 0 degree, 45 degree, and 90 degree with respect to the rolling parallel direction were set to r0, r45, and r90, respectively, and calculated by r = (r0 + 2 × r45 + r90) / 4.
<Yield ratio>
It calculated | required by ratio of said YS / TS.

<導電率(%IACS)>
得られた試料の導電率(%IACS)を4端子法により測定した。
<絞り加工性>
JIS-Z2247に従ったエリクセン試験法により、試料に亀裂が入るまでの押し込み深さが3mm以上のものを、絞り加工性○(良好)とし、3mm未満のものを絞り加工性×(不良)とした。
<Conductivity (% IACS)>
The conductivity (% IACS) of the obtained sample was measured by the 4-terminal method.
<Drawing workability>
According to the Erichsen test method in accordance with JIS-Z2247, a sample having a depth of penetration of 3 mm or more until cracking occurs in the sample is defined as drawability ○ (good), and a sample having a depth of less than 3 mm is defined as drawability × (bad). did.

得られた結果を表1に示す。なお、各実施例は、いずれもTSが550MPa以上、導電率が55%IACS以上であった。   The obtained results are shown in Table 1. In each example, TS was 550 MPa or more and conductivity was 55% IACS or more.

Figure 0005437519
Figure 0005437519

Figure 0005437519
Figure 0005437519

表1、表2から明らかなように、第1の焼鈍と加工度10%以上の第1の冷間圧延とを2回以上繰り返し、第1の焼鈍を焼鈍前後で引張強度が20〜40%減少する条件として製造した各実施例の場合、rが0.9以上となり、絞り加工性が向上した。   As is clear from Tables 1 and 2, the first annealing and the first cold rolling with a workability of 10% or more are repeated twice or more, and the first annealing is 20-40% in tensile strength before and after annealing. In each of the examples manufactured as a decreasing condition, r was 0.9 or more, and drawing workability was improved.

一方、第1の焼鈍を焼鈍前後で引張強度が40%を超えて減少するようにした比較例1〜4の場合、rが0.9未満となり、絞り加工性が劣った。
第1の焼鈍と第1の冷間圧延とを1回しか繰り返さなかった比較例5の場合も、rが0.9未満となり、絞り加工性が劣った。
第1の焼鈍と第1の冷間圧延とを行わなかった比較例6の場合も、rが0.9未満となり、絞り加工性が劣った。
第1の冷間圧延の加工度を10%未満とした比較例7の場合も、rが0.9未満となり、絞り加工性が劣った。
On the other hand, in the case of Comparative Examples 1 to 4 in which the first annealing was performed so that the tensile strength was reduced by more than 40% before and after annealing, r was less than 0.9 and the drawability was inferior.
In the case of Comparative Example 5 in which the first annealing and the first cold rolling were repeated only once, r was less than 0.9, and the drawability was inferior.
Also in the case of the comparative example 6 which did not perform 1st annealing and 1st cold rolling, r became less than 0.9 and the drawability was inferior.
Also in the case of the comparative example 7 which made the workability of the 1st cold rolling less than 10%, r became less than 0.9 and the drawability was inferior.

Claims (7)

Co:0.5〜3.0質量%,Si:0.1〜1.0質量%を含有し、Co/Siの質量比:3.0〜5.0であって、残部が銅および不可避的不純物からなり、
ランクフォード値rが0.9以上(但し、圧延平行方向に対して0度、45度、90度の方向に試料を引張試験して得られたr値をそれぞれr0、r45、r90としたとき、r=(r0+2×r45+r90)/4)であるCu−Co−Si系銅合金条。
Co: 0.5-3.0% by mass, Si: 0.1-1.0% by mass, Co / Si mass ratio: 3.0-5.0, with the balance consisting of copper and inevitable impurities,
Rankford value r is 0.9 or more (provided that r values obtained by tensile testing the samples in directions of 0, 45, and 90 degrees with respect to the rolling parallel direction are r0, r45, and r90, respectively) R = (r0 + 2 × r45 + r90) / 4), a Cu—Co—Si based copper alloy strip.
圧延平行方向に対して0度、45度、90度の伸びをそれぞれE1、E45、E90としたとき、E1、E45、E90がいずれも5%以上である請求項1記載のCu−Co−Si系銅合金条。 The Cu-Co-Si according to claim 1, wherein E1, E45, and E90 are each 5% or more when elongations of 0, 45, and 90 degrees with respect to the rolling parallel direction are E1, E45, and E90, respectively. Copper alloy strip. (降伏強度/引張強度)で表される降伏比が0.95以下である請求項1又は2記載のCu−Co−Si系銅合金条。 The Cu-Co-Si-based copper alloy strip according to claim 1 or 2, wherein a yield ratio represented by (yield strength / tensile strength) is 0.95 or less. Ni、Cr、Mg、Mn、Ag、P、Sn、Zn、As、Sb、Be、B、Ti、Zr、Al及びFeよりなる群から選ばれる1種以上を合計0.001〜2.5質量%含有する請求項1又は2記載のCu−Co−Si系銅合金条。 Claims containing 0.001 to 2.5% by mass in total of at least one selected from the group consisting of Ni, Cr, Mg, Mn, Ag, P, Sn, Zn, As, Sb, Be, B, Ti, Zr, Al and Fe. Item 3. A Cu—Co—Si copper alloy strip according to item 1 or 2. 請求項1〜4の何れかに記載のCu−Co−Si系銅合金条の製造方法であって、
熱間圧延、第1の焼鈍、加工度10%以上の第1の冷間圧延、溶体化処理、時効処理をこの順で行い、かつ、前記第1の焼鈍と前記第1の冷間圧延とを2回以上繰り返し、
前記第1の焼鈍は、焼鈍前後で引張強度が10〜40%減少する条件とするCu−Co−Si系銅合金条の製造方法。
It is a manufacturing method of the Cu-Co-Si system copper alloy strip according to any one of claims 1 to 4,
Hot rolling, first annealing, first cold rolling with a workability of 10% or more, solution treatment, aging treatment are performed in this order, and the first annealing and the first cold rolling Repeat twice or more,
The first annealing is a method for producing a Cu—Co—Si based copper alloy strip in which the tensile strength is reduced by 10 to 40% before and after annealing.
請求項1〜4の何れか1項に記載のCu−Co−Si系銅合金条を用いた大電流用電子部品。   The electronic component for large currents using the Cu-Co-Si type copper alloy strip of any one of Claims 1-4. 請求項1〜4の何れか1項に記載のCu−Co−Si系銅合金条を用いた放熱用電子部品   A heat dissipating electronic component using the Cu-Co-Si-based copper alloy strip according to any one of claims 1 to 4.
JP2013158462A 2013-07-31 2013-07-31 Cu-Co-Si-based copper alloy strip and method for producing the same Active JP5437519B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013158462A JP5437519B1 (en) 2013-07-31 2013-07-31 Cu-Co-Si-based copper alloy strip and method for producing the same
TW103120813A TWI550107B (en) 2013-07-31 2014-06-17 Cu-Co-Si copper alloy strip and method for producing the same
KR1020140088298A KR101612185B1 (en) 2013-07-31 2014-07-14 Cu-co-si-based copper alloy strip and method of manufacturing the same
CN201410362021.8A CN104342581B (en) 2013-07-31 2014-07-28 Cu Co Si series copper alloy strips and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158462A JP5437519B1 (en) 2013-07-31 2013-07-31 Cu-Co-Si-based copper alloy strip and method for producing the same

Publications (2)

Publication Number Publication Date
JP5437519B1 true JP5437519B1 (en) 2014-03-12
JP2015028201A JP2015028201A (en) 2015-02-12

Family

ID=50396682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158462A Active JP5437519B1 (en) 2013-07-31 2013-07-31 Cu-Co-Si-based copper alloy strip and method for producing the same

Country Status (4)

Country Link
JP (1) JP5437519B1 (en)
KR (1) KR101612185B1 (en)
CN (1) CN104342581B (en)
TW (1) TWI550107B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912626B (en) * 2015-05-20 2017-09-29 黄钦生 A kind of automobile ultralow emission device
JP2017089003A (en) * 2015-11-03 2017-05-25 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
US11326242B2 (en) * 2017-02-04 2022-05-10 Materion Corporation Copper-nickel-tin alloys
CN108118186A (en) * 2018-02-06 2018-06-05 重庆熵臻科技有限公司 A kind of transformer durable copper alloy type Materials And Manufacturing Processes of environment-friendly type high-melting-point
JP6879971B2 (en) * 2018-03-30 2021-06-02 Jx金属株式会社 Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP6816056B2 (en) * 2018-03-30 2021-01-20 Jx金属株式会社 Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP6928597B2 (en) * 2018-12-13 2021-09-01 古河電気工業株式会社 Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830035B2 (en) * 2010-04-14 2011-12-07 Jx日鉱日石金属株式会社 Cu-Si-Co alloy for electronic materials and method for producing the same
JP4708497B1 (en) 2010-06-03 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si alloy plate and method for producing the same
JP4834781B1 (en) * 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 Cu-Co-Si alloy for electronic materials
JP2013104082A (en) * 2011-11-11 2013-05-30 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
CN104342581B (en) 2017-08-04
TW201518520A (en) 2015-05-16
CN104342581A (en) 2015-02-11
JP2015028201A (en) 2015-02-12
KR101612185B1 (en) 2016-04-12
TWI550107B (en) 2016-09-21
KR20150015367A (en) 2015-02-10

Similar Documents

Publication Publication Date Title
JP5437519B1 (en) Cu-Co-Si-based copper alloy strip and method for producing the same
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
EP2570506B1 (en) Copper alloy for electronic device, method for producing this alloy, and copper alloy rolled material for this device
JP2008095185A (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
US9653191B2 (en) Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP6749121B2 (en) Copper alloy plate with excellent strength and conductivity
KR101599653B1 (en) Plate-like conductor for bus bar, and bus bar comprising same
JP4642119B2 (en) Copper alloy and method for producing the same
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP6749122B2 (en) Copper alloy plate with excellent strength and conductivity
JP5437520B1 (en) Cu-Co-Si-based copper alloy strip and method for producing the same
JP5688178B1 (en) Copper alloy material, copper alloy material manufacturing method, lead frame and connector
JP2011190469A (en) Copper alloy material, and method for producing the same
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same
JP2016037646A (en) Cu-Co-Ti-BASED COPPER ALLOY STRIP AND MANUFACTURING METHOD THEREFOR
JP2014208868A (en) Copper alloy and high-current connector terminal material
JP2013067849A (en) Cu-Co-Si-BASED COPPER ALLOY STRIP AND METHOD FOR PRODUCING THE SAME
JP2012012630A (en) Method of manufacturing copper alloy for electronic material
JP2015017280A (en) Cu-Zr-Ti-BASED COPPER ALLOY STRIP

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250