JP2011190469A - Copper alloy material, and method for producing the same - Google Patents

Copper alloy material, and method for producing the same Download PDF

Info

Publication number
JP2011190469A
JP2011190469A JP2010054824A JP2010054824A JP2011190469A JP 2011190469 A JP2011190469 A JP 2011190469A JP 2010054824 A JP2010054824 A JP 2010054824A JP 2010054824 A JP2010054824 A JP 2010054824A JP 2011190469 A JP2011190469 A JP 2011190469A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
mpa
alloy material
proof stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010054824A
Other languages
Japanese (ja)
Inventor
Tomoya Kuji
智也 久慈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010054824A priority Critical patent/JP2011190469A/en
Publication of JP2011190469A publication Critical patent/JP2011190469A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy material which allows to reduce the influence of mechanical strength caused by cooling velocity after solution treatment, and has high mechanical strength and excellent bending workability in combination, and a method for producing the same. <P>SOLUTION: The copper alloy material has a composition comprising 2.0 to 4.0 mass% Ni by the mass ratio (Ni/Si) of 3.0 to 4.5 to 0.5 to 1.5 mass% Si, and the balance Cu with inevitable impurities, ¾(the 0.2% proof stress of a quenched material)-(the 0.2% proof stress of an annealed material)¾≤50 MPa is satisfied, tensile strength is ≥800 MPa, 0.2% proof stress is ≥770 MPa, and the value (R/t) obtained by dividing the bending minimum radius R at which cracks are not generated in a W bending test by sheet thickness t is ≤1.0. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、銅合金材、及びその製造方法に係り、特に、電気・電子部品用途に適用される銅合金材、及びその製造方法に関するものである。   The present invention relates to a copper alloy material and a manufacturing method thereof, and more particularly to a copper alloy material applied to electric / electronic component applications and a manufacturing method thereof.

近年、各種の電気・電子機器において薄型化及び軽量化が進行している。それに伴い、電気・電子機器に使用される部品の小型化も進行している。   In recent years, various electric and electronic devices have been made thinner and lighter. Along with this, miniaturization of parts used in electrical and electronic equipment is also progressing.

この種の部品の小型化を実現するために、例えば端子やコネクタなどの電気・電子部品においては、電極間のピッチの狭いものが求められる傾向にある。こうした小型化によって、電気・電子部品に使用される素材においても、従来よりも薄肉であることが求められる傾向にある。   In order to reduce the size of this type of component, for example, electrical / electronic components such as terminals and connectors tend to require a narrow pitch between electrodes. Due to such downsizing, materials used for electric / electronic parts tend to be required to be thinner than before.

一方、使用される素材が薄肉であっても、電気・電子機器内の電気接続の信頼性を保つ必要があることから、従来よりも高いバネ性を持った素材が要求されている。この高いバネ性を確保するためには、素材の引張強さ及び耐力(以下、「機械的強度」ともいう。)を十分に高める必要がある。   On the other hand, even if the material used is thin, it is necessary to maintain the reliability of the electrical connection in the electric / electronic device, and therefore, a material having higher spring property than before is required. In order to ensure this high spring property, it is necessary to sufficiently increase the tensile strength and yield strength (hereinafter also referred to as “mechanical strength”) of the material.

更に、こうした小型化に伴い、従来よりも小さく複雑な形状の部品を一体成型で製作する要求も強くなっている。そのため、従来よりも厳しい条件で曲げ加工に適用できる高い曲げ加工性を有する素材が強く求められている。   Further, along with such miniaturization, there is an increasing demand for manufacturing a component having a smaller and more complicated shape than the conventional one by integral molding. Therefore, there is a strong demand for a material having high bending workability that can be applied to bending work under severer conditions than before.

更にまた、電気・電子機器の小型・薄型化及び軽量化と同時に、高性能化も進行している。この電気・電子機器の高性能化に伴う電極数の増加や通電電流の増加によって、発生するジュール熱も増加傾向にあり、従来よりも導電性のよい素材への要求も強まっている。   Furthermore, at the same time as electrical / electronic devices are becoming smaller, thinner and lighter, performance is also increasing. Due to the increase in the number of electrodes and the increase in energization current accompanying the improvement in performance of this electric / electronic device, the generated Joule heat tends to increase, and the demand for a material having better conductivity than before is increasing.

従来、高いバネ性が要求される電気・電子部品の素材には、リン青銅やベリリウム銅が広く使用されてきた。しかしながら、リン青銅の場合は、導電率が20%IACS程度に留まることから、前述したジュール熱の増加に対応できないという問題があった。一方、ベリリウム銅の場合は、高いバネ性と良好な導電性を兼備するものの、高価であることから、汎用的な部品に広く適用するのには限界があった。   Conventionally, phosphor bronze and beryllium copper have been widely used as materials for electrical and electronic parts that require high spring properties. However, in the case of phosphor bronze, the electrical conductivity is limited to about 20% IACS, and thus there is a problem that it cannot cope with the increase in the Joule heat described above. On the other hand, in the case of beryllium copper, although it has both high spring properties and good electrical conductivity, it is expensive and has a limit to be widely applied to general-purpose parts.

そこで、高いバネ性や良好な導電率の要求から、低コストの素材としてCu(銅)−Ni(ニッケル)−Si(珪素)系などの銅合金材が用いられてきている(例えば、特許文献1、特許文献2、特許文献3及び特許文献4参照)。   Therefore, a copper alloy material such as a Cu (copper) -Ni (nickel) -Si (silicon) system has been used as a low-cost material because of demands for high spring properties and good electrical conductivity (for example, patent documents). 1, Patent Document 2, Patent Document 3 and Patent Document 4).

Cu−Ni−Si系を主成分とする銅合金材は、NiSiを析出強化相とする析出強化型の合金であり、40%IACS前後の導電率を有する。そのため、ジュール熱の増加に対応することができる。この銅合金材は更に、ベリリウム銅に比べて低コストの製造が可能であり、端子、コネクタ、リードフレームなどの電気・電子部品として安価に提供できる。 The copper alloy material mainly composed of Cu—Ni—Si is a precipitation strengthening type alloy having Ni 2 Si as a precipitation strengthening phase, and has a conductivity of around 40% IACS. Therefore, it is possible to cope with an increase in Joule heat. Further, this copper alloy material can be manufactured at a lower cost than beryllium copper, and can be provided at low cost as electrical / electronic parts such as terminals, connectors, and lead frames.

特許第2572042号公報Japanese Patent No. 2572042 特許第2977845号公報Japanese Patent No. 2977745 特開2008−1937号公報Japanese Patent Laid-Open No. 2008-1937 特開2008−75152号公報JP 2008-75152 A

高いバネ性や高い機械的強度の要求に対しては、Cu−Ni−Si系をベースにSn(錫)、Mg(マグネシウム)、Fe(鉄)、Co(コバルト)、Ti(チタン)、Cr(クロム)等の元素を添加することで対応してきた。しかしながら、機械的強度が溶体化処理後の冷却速度に敏感に影響され、具体的には、冷却速度が遅くなると、Cu−Ni−Si系銅合金材の機械的強度が大きく低下するという問題があった。このため、量産時の歩留まりの向上が進まなかった。   For demands of high spring properties and high mechanical strength, Sn (tin), Mg (magnesium), Fe (iron), Co (cobalt), Ti (titanium), Cr based on the Cu-Ni-Si system This has been addressed by adding elements such as (chromium). However, the mechanical strength is sensitively influenced by the cooling rate after the solution treatment. Specifically, when the cooling rate is slow, the mechanical strength of the Cu—Ni—Si based copper alloy material is greatly reduced. there were. For this reason, the yield in mass production has not improved.

従って、本発明は、上記従来の課題を解決するためになされたものであり、その具体的な目的は、溶体化処理後の冷却速度に起因する機械的強度の影響を小さくすることを可能とし、高い機械的強度と優れた曲げ加工性を兼備させた銅合金材、及びその製造方法を提供することにある。   Accordingly, the present invention has been made to solve the above-described conventional problems, and a specific object thereof is to reduce the influence of mechanical strength due to the cooling rate after solution treatment. Another object of the present invention is to provide a copper alloy material having both high mechanical strength and excellent bending workability, and a method for producing the same.

本件発明者等は、上記従来の課題を解決すべく、溶体化処理後の冷却速度の機械的強度への影響について鋭意検討を重ねたところ、銅合金の焼入れ感受性が、銅合金材の特性へ大きく寄与するという知見を得た。すなわち、焼入れ感受性が高い場合は、小規模試作と比較して冷却速度が遅い傾向にある量産工程において、Cu−Ni−Si系銅合金材の特性を十分に発揮できない原因となる。量産されるCu−Ni−Si系銅合金材の体積は比較的大きくなることから、その表面側と芯側とで冷却速度が異なり、製造されたCu−Ni−Si系銅合金材の機械的強度を維持できず、さらにそのバラツキが生じやすくなる。逆に、焼入れ感受性が低い場合は、機械的強度の平均値が高いだけではなく、そのバラツキも生じにくい。   In order to solve the above-described conventional problems, the present inventors have conducted extensive studies on the influence of the cooling rate after solution treatment on the mechanical strength. As a result, the quenching susceptibility of the copper alloy becomes a characteristic of the copper alloy material. The knowledge that it contributes greatly was acquired. That is, when the quenching sensitivity is high, it becomes a cause that the characteristics of the Cu—Ni—Si based copper alloy material cannot be sufficiently exhibited in the mass production process in which the cooling rate tends to be slower than that of the small scale trial manufacture. Since the volume of the mass-produced Cu—Ni—Si based copper alloy material is relatively large, the cooling rate differs between the surface side and the core side, and the mechanical properties of the manufactured Cu—Ni—Si based copper alloy material The strength cannot be maintained, and the variation tends to occur. On the contrary, when quenching sensitivity is low, not only the average value of mechanical strength is high, but also its variation is less likely to occur.

この焼入れ感受性を低く抑えるためには、以下のような条件(イ)〜(ニ)を満たせばよいという知見が得られた。換言すると、以下の条件を満たせば、製品化される以前の溶体化処理後の冷却速度に起因する機械的強度の影響を低く抑えることができるとともに、高い機械的強度と優れた曲げ加工性等が得られ、最終製品となる電子・電気部品として実用上に問題を生じないことを見いだし、本発明に至った。
(イ)溶体化処理後冷間圧延前に急冷(水冷)した急冷材の0.2%耐力と、徐冷(空冷)した徐冷材の0.2%耐力との値を差し引いた値の絶対値を、ある特定値以下に規定すること、
(ロ)徐冷材の引張強さと徐冷材の0.2%耐力とのそれぞれを、ある特定の範囲に規定すること、
(ハ)徐冷材のW曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)を、ある特定の範囲に規定すること、
(ニ)上記(イ)〜(ハ)により、銅合金材の基本組成含有量と銅合金材の副組成含有量とを、ある特定の範囲に規定すること。
In order to suppress this quenching sensitivity to a low level, it was found that the following conditions (i) to (d) should be satisfied. In other words, if the following conditions are satisfied, the influence of the mechanical strength due to the cooling rate after the solution treatment before commercialization can be kept low, and the high mechanical strength and excellent bending workability, etc. As a result, it has been found that practical problems do not occur as electronic / electrical parts as final products, and the present invention has been achieved.
(B) Absolute value of the value obtained by subtracting the 0.2% proof stress of the quenched material rapidly cooled (water cooled) after solution treatment and before cold rolling, and the 0.2% proof stress of the gradually cooled (air cooled) material. Stipulated below a certain value,
(B) Specifying each of the tensile strength of the slow cooling material and the 0.2% yield strength of the slow cooling material within a certain range,
(C) The value (R / t) obtained by dividing the minimum bending radius R, which does not cause cracks in the W-bending test of the slow-cooled material, by the sheet thickness t (R / t) is specified in a certain range.
(D) By the above (a) to (c), the basic composition content of the copper alloy material and the sub-composition content of the copper alloy material are defined within a certain range.

[1]即ち、本発明は、上記目的を達成するため、2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量の比(Ni/Si)で含有し、残部がCu、及び不可避的不純物からなり、溶体化処理後に徐冷した徐冷材が、以下の(1)〜(4)の要件を満たすことを特徴とする銅合金材にある。
(1)|(溶体化処理後の急冷材の0.2%耐力)−(溶体化処理後の徐冷材の0.2%耐力)|≦50MPaであり、
(2)前記徐冷材の引張強さが800MPa以上であり、
(3)前記徐冷材の0.2%耐力が770MPa以上であり、
(4)前記徐冷材のW曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下であること。
[1] That is, in order to achieve the above object, the present invention provides 2.0 to 4.0% by mass of Ni to 3.0 to 4.5% by mass of Si to 0.5 to 1.5% by mass of Si. A slow cooling material that is contained in a mass ratio (Ni / Si), the balance is made of Cu and inevitable impurities, and is slowly cooled after solution treatment, satisfies the following requirements (1) to (4): It is in copper alloy material.
(1) | (0.2% yield strength of quenched material after solution treatment) − (0.2% yield strength of annealed material after solution treatment) | ≦ 50 MPa
(2) The annealed material has a tensile strength of 800 MPa or more,
(3) The 0.2% proof stress of the slow cooling material is 770 MPa or more,
(4) The value (R / t) obtained by dividing the minimum bending radius R at which no crack is generated in the W-bending test of the gradually cooled material by the thickness t is 1.0 or less.

[2]上記[1]記載の銅合金材は更に、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を含有することを特徴としている。 [2] The copper alloy material according to the above [1] further contains at least one of 0.01 to 0.05% by mass of Sn and 0.02 to 0.1% by mass of Mg. It is said.

[3]上記[1]又は[2]記載の銅合金材は更に、0.01〜0.7質量%のMn、0.01〜0.5質量%のAg、0.1〜2.0質量%のZnのいずれか1種以上を含有することを特徴としている。 [3] The copper alloy material according to [1] or [2] is further 0.01 to 0.7 mass% Mn, 0.01 to 0.5 mass% Ag, 0.1 to 2.0. It is characterized by containing one or more kinds of Zn of mass%.

[4]本発明は更に、上記目的を達成するため、2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量の比(Ni/Si)で含有し、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を含有し、残部がCu、及び不可避的不純物からなり、溶体化処理後に徐冷した徐冷材の引張強さが800MPa以上、前記徐冷材の0.2%耐力が770MPa以上、前記徐冷材のW曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下である銅合金材を製造するにあたり、前記徐冷材の0.2%耐力と溶体化処理後に急冷した急冷材の0.2%耐力とが下記式1を満たすことを特徴とする銅合金材の製造方法にある。
|(急冷材の0.2%耐力)−(徐冷材の0.2%耐力)|≦50MPa……式1
[4] In order to achieve the above object, the present invention further provides 2.0 to 4.0% by mass of Ni to 3.0 to 4.5% by mass of Si to 0.5 to 1.5% by mass of Si. (Ni / Si), 0.01 to 0.05% by mass of Sn, 0.02 to 0.1% by mass of Mg, and the balance being Cu, and inevitable The minimum bending radius R, which is composed of mechanical impurities and is slowly cooled after solution treatment, has a tensile strength of 800 MPa or more, 0.2% proof stress of the slow cooling material is 770 MPa or more, and does not generate cracks in the W bending test of the slow cooling material. In producing a copper alloy material having a value (R / t) divided by the thickness t of 1.0 or less, the 0.2% proof stress of the slow-cooled material and the 0.2% proof stress of the quenched material rapidly cooled after solution treatment Satisfies the following formula 1 in a method for producing a copper alloy material.
| (0.2% yield strength of quenched material) − (0.2% yield strength of annealed material) | ≦ 50 MPa …… Formula 1

[5]上記[4]記載の銅合金材の製造方法によれば、前記急冷材は、前記銅合金の溶体化処理後に冷却速度100°C/秒以上の冷却速度で急冷し、前記徐冷材は、冷却速度10°C/秒以下の冷却速度で徐冷することを特徴としている。 [5] According to the method for producing a copper alloy material according to [4] above, the quenching material is rapidly cooled at a cooling rate of 100 ° C./second or more after the solution treatment of the copper alloy, , And cooling at a cooling rate of 10 ° C./sec or less.

[6]上記[4]記載の銅合金材の製造方法によれば、前記銅合金に、0.01〜0.7質量%のMn、0.01〜0.5質量%のAg、0.1〜2.0質量%のZnのいずれか1種以上を添加することを含んでなることを特徴としている。 [6] According to the method for producing a copper alloy material according to [4] above, 0.01 to 0.7% by mass of Mn, 0.01 to 0.5% by mass of Ag, 0.0. It is characterized by comprising adding at least one of 1 to 2.0% by mass of Zn.

[7]本発明は更に、上記目的を達成するため、2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量の比(Ni/Si)で添加し、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を添加し、残部がCu、及び不可避的不純物からなる銅合金を準備する工程と、前記銅合金を圧延加工する工程と、圧延加工後の前記銅合金を、750〜950°Cの温度範囲で溶体化処理する工程と、溶体化処理後の前記銅合金を、10°C/秒以上の冷却速度で300°C以下まで冷却する工程と、冷却後の前記銅合金を、加工率30%以下の冷間圧延を行う工程と、冷間圧延後の前記銅合金を、370〜500°Cの温度範囲で1〜50時間の時効処理を行う工程を有することを特徴とする銅合金材の製造方法を提供する。 [7] In order to achieve the above object, the present invention further provides 2.0 to 4.0% by mass of Ni to 3.0 to 4.5% by mass of Si to 0.5 to 1.5% by mass of Si. (Ni / Si), 0.01 to 0.05% by mass of Sn, 0.02 to 0.1% by mass of Mg, and the balance being Cu and unavoidable A step of preparing a copper alloy composed of mechanical impurities, a step of rolling the copper alloy, a step of solution treatment of the copper alloy after rolling in a temperature range of 750 to 950 ° C., and a solution treatment A step of cooling the copper alloy after cooling to 300 ° C. or less at a cooling rate of 10 ° C./second or more, a step of performing cold rolling on the copper alloy after cooling at a processing rate of 30% or less, The copper alloy after hot rolling has a step of performing an aging treatment for 1 to 50 hours in a temperature range of 370 to 500 ° C. To provide a method of manufacturing a copper alloy material to symptoms.

[8]本発明は更に、上記目的を達成するため、2.0〜4.0質量%のNi、0.5〜1.5質量%のSiを、質量の比(Ni/Si)が3.0〜4.5の範囲で含有し、残部がCu、及び不可避的不純物からなるCu−Ni−Si合金に、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を添加し、溶体化処理後に冷却速度10°C/秒以下の冷却速度で徐冷した徐冷材が、以下の(1)〜(3)の要件を満たすことを特徴とする銅合金材を提供する。
(1)前記徐冷材の引張強さが800MPa以上であり、
(2)前記徐冷材の0.2%耐力が770MPa以上であり、
(3)前記徐冷材のW曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下であること。
[8] In order to achieve the above object, the present invention further comprises 2.0 to 4.0% by mass of Ni, 0.5 to 1.5% by mass of Si, and a mass ratio (Ni / Si) of 3 In a Cu-Ni-Si alloy containing 0.0 to 4.5, with the balance being Cu and inevitable impurities, 0.01 to 0.05 mass% Sn, 0.02 to 0.1 mass 1% or more of Mg is added, and the annealed material that is annealed at a cooling rate of 10 ° C / second or less after the solution treatment satisfies the following requirements (1) to (3). A copper alloy material is provided.
(1) Tensile strength of the slow cooling material is 800 MPa or more,
(2) 0.2% proof stress of the slow cooling material is 770 MPa or more,
(3) The value (R / t) obtained by dividing the minimum bending radius R at which no crack is generated in the W-bending test of the gradually cooled material by the plate thickness t is 1.0 or less.

[9]本発明は更に、上記目的を達成するため、2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量の比(Ni/Si)で含有し、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を含有し、引張強さが800MPa以上であり、0.2%耐力が770MPa以上であり、W曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下であることを特徴とする銅合金材を提供する。 [9] In order to achieve the above object, the present invention further provides 2.0 to 4.0% by mass of Ni to 3.0 to 4.5% by mass of Si to 0.5 to 1.5% by mass of Si. (Ni / Si), 0.01 to 0.05% by mass of Sn, 0.02 to 0.1% by mass of Mg, and tensile strength of 800 MPa or more The 0.2% proof stress is 770 MPa or more, and the value (R / t) obtained by dividing the minimum bending radius R, which does not cause cracks in the W bending test, by the plate thickness t (R / t) is 1.0 or less. A copper alloy material is provided.

[10]上記[9]記載の銅合金材は更に、前記銅合金材は更に、0.01〜0.7質量%のMn、0.01〜0.5質量%のAg、0.1〜2.0質量%のZnのいずれか1種以上を含有することを特徴としている。 [10] In the copper alloy material according to [9], the copper alloy material further includes 0.01 to 0.7 mass% Mn, 0.01 to 0.5 mass% Ag, 0.1 to 0.1 mass%. It is characterized by containing any one or more of 2.0% by mass of Zn.

本発明によると、溶体化処理後の冷却速度に起因する機械的強度の影響を小さくすることで、量産工程で発生しやすい銅合金材の表面部と芯部との冷却速度の違いによる機械的強度のバラツキを少なくして安定化させ、更には、従来の銅合金材よりも優れた機械的強度と曲げ加工性を兼備させることが可能となる。   According to the present invention, the mechanical strength due to the difference in cooling rate between the surface portion and the core portion of the copper alloy material, which is likely to occur in the mass production process, is reduced by reducing the influence of the mechanical strength due to the cooling rate after the solution treatment. It becomes possible to stabilize by reducing the variation in strength, and further to have mechanical strength and bending workability superior to those of conventional copper alloy materials.

本発明の好適な実施の形態に係る銅合金材を製造する工程を示したフロー図である。It is the flowchart which showed the process of manufacturing the copper alloy material which concerns on suitable embodiment of this invention.

以下、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described.

(銅合金材の組成)
この実施の形態における銅合金材の組成は、2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量比(Ni/Si)で含有するとともに、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を含有し、残部がCu及び不可避的不純物からなる。好ましくは、0.01〜0.7質量%のMn(マンガン)、0.01〜0.5質量%のAg(銀)、0.1〜2.0質量%のZn(亜鉛)のいずれか1種以上を更に含有することが好適である。このCu−Ni−Si系の銅合金材は、例えば端子、コネクタ、スイッチ、リレー、リードフレームなどの電気・電子部品に用いられる材料に効果的に使用することができる。
(Composition of copper alloy material)
The composition of the copper alloy material in this embodiment is as follows. The mass ratio of Ni is 2.0 to 4.0 mass% with respect to 0.5 mass% to 1.5 mass% Si (Ni / Si), 0.01 to 0.05% by mass of Sn, 0.02 to 0.1% by mass of Mg and at least one of Mg and inevitable impurities. . Preferably, any one of 0.01 to 0.7% by mass of Mn (manganese), 0.01 to 0.5% by mass of Ag (silver), 0.1 to 2.0% by mass of Zn (zinc) It is preferable to further contain one or more kinds. This Cu—Ni—Si based copper alloy material can be effectively used as a material used for electric / electronic parts such as terminals, connectors, switches, relays, and lead frames.

以上のように構成された実施の形態に係る銅合金材の合金成分の添加理由と限定理由とを以下に説明する。   The reasons for adding and limiting the alloy components of the copper alloy material according to the embodiment configured as described above will be described below.

(Ni及びSi)
Ni及びSiは、これらを主成分とする金属間化合物を材料中に析出・分散させるために添加する元素である。この金属間化合物によって材料の機械的強度やバネ性が高まるとともに、良好な導電率を保つことができる。このNi及びSiの含有量が少ないと、金属間化合物を十分に分散することはできず、高い機械的強度を得ることもできない。一方、Ni及びSiの含有量が多すぎると、鋳造性が低下し、製造が困難になる。
(Ni and Si)
Ni and Si are elements added to precipitate and disperse intermetallic compounds containing these as main components in the material. This intermetallic compound increases the mechanical strength and springiness of the material, and can maintain good electrical conductivity. When the contents of Ni and Si are small, the intermetallic compound cannot be sufficiently dispersed, and high mechanical strength cannot be obtained. On the other hand, when there is too much content of Ni and Si, castability will fall and manufacture will become difficult.

この実施の形態においては、Niの含有量を2.0〜4.0質量%とし、Siの含有量を0.5〜1.5質量%とし、これらの質量比Ni/Siを3.0〜4.5としているが、更に好ましくは、Niの含有量を2.0〜3.5質量%に規定し、Siの含有量を0.5〜0.9質量%に規定し、質量比Ni/Siを4.0〜4.5に規定することが好適である。これにより、効果的に高い機械的強度と優れた曲げ加工性とを両立させることができる。   In this embodiment, the Ni content is 2.0 to 4.0 mass%, the Si content is 0.5 to 1.5 mass%, and the mass ratio Ni / Si is 3.0. To 4.5, more preferably, the Ni content is specified to be 2.0 to 3.5% by mass, the Si content is specified to be 0.5 to 0.9% by mass, and the mass ratio is It is preferable to define Ni / Si to 4.0 to 4.5. Thereby, it is possible to effectively achieve both high mechanical strength and excellent bending workability.

(Sn及びMg)
Sn及びMgは、Cu母相を固溶強化させるために添加する元素である。このSn及びMgの添加量が少ないと、十分な機械的特性やバネ性が得られない。Sn及びMgの添加量が多すぎると、Sn及びMgがCu−Ni−Si系銅合金の主成分と金属間化合物を形成し、Ni及びSiの析出核として作用し、焼入れ感受性を高く、すなわち、鋭敏化する原因となる。
(Sn and Mg)
Sn and Mg are elements added for strengthening the solid solution of the Cu matrix. If the amount of Sn and Mg added is small, sufficient mechanical properties and spring properties cannot be obtained. If the added amount of Sn and Mg is too large, Sn and Mg form an intermetallic compound with the main component of the Cu-Ni-Si-based copper alloy, and act as Ni and Si precipitation nuclei, resulting in high quenching sensitivity, Cause sensitization.

この実施の形態にあっては、Snを0.01〜0.05質量%とし、Mgを0.02〜0.1質量%としているが、更に好ましくは、Snを0.01〜0.03質量%に規定し、Mgを0.02〜0.08質量%に規定することが好適である。これにより、高強度と低焼入れ感受性とを実現することができる。   In this embodiment, Sn is 0.01 to 0.05% by mass and Mg is 0.02 to 0.1% by mass. More preferably, Sn is 0.01 to 0.03%. It is preferable to prescribe | regulate to mass% and to prescribe Mg to 0.02-0.08 mass%. Thereby, high intensity | strength and low quenching sensitivity are realizable.

(Mn)
Mnは、曲げ加工性を改善するために添加する元素である。Mnの添加量が多すぎる場合は、導電率の低下などの原因となるので好ましくない。さらに、Mnの添加量が多すぎる場合は、焼入れ感受性を高くする原因となる。
(Mn)
Mn is an element added to improve bending workability. An excessive amount of Mn is not preferable because it causes a decrease in electrical conductivity. Furthermore, when there is too much addition amount of Mn, it becomes a cause which raises quenching sensitivity.

この実施の形態では、Mnを0.01〜0.7質量%としているが、更に好ましくは、Mnを0.01〜0.1質量%に規定することが好適である。これにより、高い機械的強度や高い導電率とともに、良好な曲げ加工性を実現することができる。   In this embodiment, Mn is set to 0.01 to 0.7% by mass, but it is more preferable to define Mn to 0.01 to 0.1% by mass. Thereby, favorable bending workability is realizable with high mechanical strength and high electrical conductivity.

(Ag)
Agは、耐熱性を高めるとともに、低Ni、Si濃度でも、高い機械的強度を得るために添加する元素である。Agの添加量が多すぎる場合は、焼入れ感受性の鋭敏化の原因となるので好ましくない。
(Ag)
Ag is an element added to increase heat resistance and to obtain high mechanical strength even at low Ni and Si concentrations. When the amount of Ag added is too large, it is not preferable because it causes sensitization of quenching sensitivity.

この実施の形態によれば、Agを0.01〜1.0質量%としているが、好ましくは、Agを0.01〜0.5質量%に規定することが好適である。更に好ましくは、Agを0.1〜0.5質量%に規定することが望ましい。これにより、高い耐熱性や高い機械的強度が実現できる。   According to this embodiment, Ag is set to 0.01 to 1.0% by mass, but it is preferable to define Ag to 0.01 to 0.5% by mass. More preferably, it is desirable to define Ag to 0.1 to 0.5% by mass. Thereby, high heat resistance and high mechanical strength are realizable.

(Zn)
Znは、めっき密着性、はんだ濡れ性や耐マイグレーションといった端子・コネクタ用の材料に要求される副次的な特性を向上させるために添加する元素である。Znの添加量が多すぎる場合は、導電率の低下、焼入れ感受性の鋭敏化などの原因になるので好ましくない。
(Zn)
Zn is an element added to improve secondary characteristics required for the material for terminals and connectors, such as plating adhesion, solder wettability, and migration resistance. If the amount of Zn added is too large, it is not preferable because it causes a decrease in electrical conductivity and sensitization of quenching sensitivity.

この実施の形態においては、Znを0.1〜2.0質量%としているが、更に好ましくは、Znを0.5〜0.15質量%に規定することが望ましい。これにより、良好な導電率や低い焼入れ感受性とともに、めっき密着性などの副次的な特性を良好にすることができる。   In this embodiment, Zn is 0.1 to 2.0% by mass, but it is more preferable that Zn is 0.5 to 0.15% by mass. Thereby, secondary characteristics, such as plating adhesiveness, can be made favorable with favorable electrical conductivity and low quenching sensitivity.

(機械的特性の評価)
上記組成からなる銅合金材としては、溶体化処理後に急冷(水冷)した急冷材と徐冷(空冷)した徐冷材とのそれぞれの機械的特性(焼入れ感受性)を評価することが肝要である。更には、同一材料内の0.2%耐力のバラツキ(標準偏差)や0.2%耐力の最大値と最小値との差により機械的特性を評価してもよい。
(Evaluation of mechanical properties)
As for the copper alloy material having the above composition, it is important to evaluate the respective mechanical properties (quenching sensitivity) of the rapidly cooled (water-cooled) quenched material and the gradually cooled (air-cooled) slowly cooled material after the solution treatment. Further, the mechanical characteristics may be evaluated based on a variation (standard deviation) of 0.2% proof stress in the same material or a difference between the maximum value and the minimum value of 0.2% proof stress.

この実施の形態では、焼入れ感受性は、急冷材及び徐冷材の引張強さ、0.2%耐力、伸びの測定結果と、急冷材及び徐冷材のW曲げ試験の評価結果と、急冷材の0.2%耐力及び徐冷材の0.2%耐力の差を算出して機械的特性のバラツキの評価結果とにより判断される。焼入れ感受性は、低いことが望ましい。焼入れ感受性が低い場合は、急冷材及び徐冷材の0.2%耐力、それらの差分の絶対値、引張強さの値が大きくなる。焼入れ感受性を評価することで、銅合金材の基本組成となるCu、Ni、Snの含有量を特定の範囲内に規定することができるとともに、銅合金材の副組成となるMg、Mn、Ag、Zn等の含有量を特定の範囲内に規定することが可能となる。   In this embodiment, the quenching sensitivity is determined by measuring the tensile strength, 0.2% proof stress and elongation of the quenched material and slow-cooled material, the evaluation result of the W-bending test of the quenched material and the slowly-cooled material, and 0.2 of the quenched material. The difference between the% proof stress and the 0.2% proof stress of the slow-cooled material is calculated and judged from the evaluation result of the variation in mechanical characteristics. It is desirable that the quenching sensitivity is low. When quenching sensitivity is low, the 0.2% proof stress, the absolute value of the difference between them, and the value of tensile strength increase. By evaluating the quenching sensitivity, the contents of Cu, Ni, and Sn, which are the basic composition of the copper alloy material, can be defined within a specific range, and Mg, Mn, and Ag that are the sub-composition of the copper alloy material , Zn and the like can be defined within a specific range.

(急冷材の0.2%耐力と徐冷材の0.2%耐力の評価)
上記のように構成された組成からなる銅合金材を用いることで、溶体化処理後に冷却速度100°C/秒以上の冷却速度で急速冷却した急冷材の0.2%耐力と、溶体化処理後に冷却速度10°C/秒以下の冷却速度で徐冷した徐冷材の0.2%耐力との関係が、下記式1を満たすことが好適である。
|(急冷材の0.2%耐力)−(徐冷材の0.2%耐力)|≦50MPa……式1
(Evaluation of 0.2% yield strength of quenching material and 0.2% yield strength of slow cooling material)
By using a copper alloy material having the composition configured as described above, 0.2% proof stress of a rapidly cooled material rapidly cooled at a cooling rate of 100 ° C./second or more after solution treatment, and a solution treatment It is preferable that the relationship with the 0.2% proof stress of a slow-cooled material that is subsequently cooled at a cooling rate of 10 ° C./second or less satisfies the following formula 1.
| (0.2% yield strength of quenched material)-(0.2% yield strength of annealed material) |

ここで、上記式1において、50MPaの値は、この実施の形態のCu−Ni−Si系銅合金材における急冷材の0.2%耐力と徐冷材の0.2%耐力との値を差し引いた値の絶対値が、従来のCu−Ni−Si系銅合金材における急冷材の0.2%耐力と徐冷材の0.2%耐力との値を差し引いた値の絶対値の半分以下の値である。この値が小さくなることで、量産工程で発生しやすい銅合金材の表面部と芯部との冷却速度の違いによる機械的強度のバラツキを低減することができるようになる。更には、冷却速度が比較的遅くなりやすい大規模な量産工程においても、小規模試作の機械的特性に近づけることができるようになる。   Here, in the above formula 1, the value of 50 MPa is obtained by subtracting the 0.2% proof stress of the quenching material and the 0.2% proof stress of the slow cooling material in the Cu—Ni—Si based copper alloy material of this embodiment. The absolute value of the value is less than half the absolute value of the value obtained by subtracting the 0.2% proof stress of the quenched material and the 0.2% proof stress of the slow-cooled material in the conventional Cu-Ni-Si based copper alloy material. is there. By reducing this value, it becomes possible to reduce variations in mechanical strength due to a difference in cooling rate between the surface portion and the core portion of the copper alloy material that is likely to occur in the mass production process. Furthermore, even in a large-scale mass production process in which the cooling rate tends to be relatively slow, the mechanical characteristics of a small-scale trial can be approached.

(徐冷材の引張強さ、0.2%耐力、及びR/tの評価)
上記組成からなる銅合金材を用いて、適切な条件下で加工処理及び熱処理を行なうことで、徐冷材の引張強さが800MPa以上を有するとともに、徐冷材の0.2%耐力が770MPa以上を有し、W曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が、0以上1.0以下になる材料を得ることができる。
(Evaluation of tensile strength, 0.2% proof stress, and R / t of annealed material)
By performing processing and heat treatment under appropriate conditions using a copper alloy material having the above composition, the annealed material has a tensile strength of 800 MPa or more, and the annealed material has a 0.2% proof stress of 770 MPa or more. A material in which the value (R / t) obtained by dividing the minimum bending radius R by which the crack is not generated in the W bending test by the thickness t (R / t) is 0 or more and 1.0 or less can be obtained.

ここで、引張強さが800MPa以上であり、0.2%耐力が770MPa以上であるということは、低ベリリウム銅に匹敵する強度を有するということである。これらの値は、電子・電気部品として実用上に問題を生じない高いバネ性を確保するための強度として十分な値となる。   Here, that the tensile strength is 800 MPa or more and the 0.2% proof stress is 770 MPa or more means that it has a strength comparable to low beryllium copper. These values are sufficient as strength to ensure high spring properties that do not cause practical problems as electronic / electrical parts.

W曲げ試験は、JIS H3110、JIS H3130、及び日本伸銅協会の技術標準JCBA T307に規定された銅合金条の曲げ加工性を評価する試験方法である。曲げ部表面に割れが観察される曲げ最小半径Rを板厚tで除した値R/tが、0以上1.0以下になる曲げ加工性があれば、銅合金材は、電子・電気部品として実用上に問題を生じない良好な曲げ加工性を持った材料として評価される。望ましくは、R/tの値が0以上0.5以下の範囲になることが好適である。   The W bending test is a test method for evaluating the bending workability of copper alloy strips defined in JIS H3110, JIS H3130, and the technical standard JCBA T307 of the Japan Copper and Brass Association. If there is a bending workability in which the value R / t obtained by dividing the minimum bending radius R at which the crack is observed on the surface of the bent portion by the thickness t is 0 or more and 1.0 or less, the copper alloy material is an electronic / electrical component. It is evaluated as a material with good bending workability that does not cause any practical problems. Desirably, the value of R / t is in the range of 0 to 0.5.

(銅合金材の製造方法)
この実施の形態に係る銅合金材は、図1に示したような工程で順番に処理を行うことにより効果的に製造される。その製法は、例えば定法に従い上記組成を有する銅合金を素材として鋳造した後に(ステップS1)、熱間圧延加工(ステップS2)、溶体化処理(ステップS3)、急冷処理(ステップS4)あるいは徐冷処理(ステップS5)のいずれかの冷却(焼入れ)処理、冷間圧延加工(ステップS6)、及び時効処理(ステップS7)を有する。
(Manufacturing method of copper alloy material)
The copper alloy material according to this embodiment is effectively manufactured by sequentially performing the processes as shown in FIG. For example, a copper alloy having the above composition is cast as a raw material according to a conventional method (step S1), followed by hot rolling (step S2), solution treatment (step S3), rapid cooling (step S4), or slow cooling. It has a cooling (quenching) process, a cold rolling process (step S6), and an aging process (step S7).

(鋳造及び熱間圧延加工)
熱間圧延加工(図1のステップS2)においては、得られたインゴット(図1のステップS1)を定法に従い加熱して熱間圧延加工し、所望の厚さの銅合金を製作する。
(Casting and hot rolling)
In the hot rolling process (step S2 in FIG. 1), the obtained ingot (step S1 in FIG. 1) is heated and hot-rolled according to a conventional method to produce a copper alloy having a desired thickness.

(溶体化処理)
溶体化処理(図1のステップS3)においては、合金元素を固溶させるために十分な高温で加熱するとともに、冷却過程で金属化合物が再析出することを防ぐために速やかに冷却することが必要である。このことから、図1のステップS1及びS2により製作した銅合金を、先ず750〜950°Cに昇温する。好ましくは、昇温保持温度を800〜900°Cの温度範囲にすることが好適である。これは、低い温度では、合金元素の固溶が不十分になり、最終的に高い機械的強度が得られず、高い温度では、母相の結晶粒粗大化によって機械的強度が低下するためである。その最高到達温度に昇温した後、その昇温温度で0.5〜2分間程度保持する。その後、10°C/秒以上の速さで300°Cまで冷却する(図1のステップS5)。
(Solution treatment)
In the solution treatment (step S3 in FIG. 1), it is necessary to heat at a sufficiently high temperature to dissolve the alloy elements, and to cool rapidly in order to prevent the metal compound from re-depositing during the cooling process. is there. Therefore, the temperature of the copper alloy manufactured in steps S1 and S2 in FIG. 1 is first raised to 750 to 950 ° C. Preferably, the temperature rising holding temperature is in the temperature range of 800 to 900 ° C. This is because, at low temperatures, the alloy elements are not sufficiently dissolved, and ultimately high mechanical strength cannot be obtained, and at high temperatures, the mechanical strength decreases due to coarsening of the crystal grains of the parent phase. is there. After raising the temperature to the maximum temperature, the temperature is maintained for about 0.5 to 2 minutes. Then, it cools to 300 degreeC with the speed | rate of 10 degreeC / second or more (step S5 of FIG. 1).

(冷間圧延加工)
溶体化処理後の冷間圧延加工(図1のステップS6)では、例えば目的とする最終板厚まで冷間圧延を行う。この冷間圧延の目的は、銅合金の中に格子欠陥を適度に導入させることで、転位強化や析出物の生成サイトとして活用し、より多くの析出物を分散させ、その析出物の作用により機械的強度を向上させることにある。
(Cold rolling)
In the cold rolling process (step S6 in FIG. 1) after the solution treatment, for example, the cold rolling is performed to a target final plate thickness. The purpose of this cold rolling is to introduce lattice defects into the copper alloy appropriately, and to use it as a dislocation strengthening and precipitate generation site, to disperse more precipitates, and by the action of the precipitates The purpose is to improve the mechanical strength.

冷間圧延加工率が高すぎると、最終的に出来上がった銅合金材の材料の伸びが大きく低下するという問題がある。この伸びの低下は、曲げ加工時に割れが起こりやすくなることにつながるため、冷間圧延の加工率を低く抑える必要がある。この実施の形態では、加工率を30%以下に規定している。望ましくは、15%以下に規定することが好適である。これにより、伸びの低下を抑えることができる。   If the cold rolling processing rate is too high, there is a problem that the elongation of the finally obtained copper alloy material is greatly reduced. Since this decrease in elongation leads to cracking during bending, it is necessary to keep the processing rate of cold rolling low. In this embodiment, the processing rate is defined as 30% or less. Desirably, it is preferable to define it to 15% or less. Thereby, the fall of elongation can be suppressed.

(時効処理)
時効処理(図1のステップS7)は、強化に寄与する微細な金属間化合物を析出させるために行うものである。低温下で長い時間過熱させることが好ましいが、極度の低温では、金属間化合物の析出に非常に多くの時間がかかるため、大規模な量産工程には不向きである。
(Aging treatment)
The aging treatment (step S7 in FIG. 1) is performed to precipitate fine intermetallic compounds that contribute to strengthening. It is preferable to heat at a low temperature for a long time, but at an extremely low temperature, it takes a lot of time to precipitate an intermetallic compound, so that it is not suitable for a large-scale mass production process.

一方、析出を促進させるために温度を上げると、析出する金属間化合物のサイズが粗大になり、高い機械的強度が得られない。この実施の形態にあっては、時効処理の温度範囲を370〜500°Cに規定している。更に好ましくは、400〜470°Cの温度範囲において、1〜50時間程度で時効処理を行うことが望ましい。これにより、高い機械的強度と優れた曲げ加工性を得ることができる。   On the other hand, when the temperature is raised to promote precipitation, the size of the intermetallic compound that precipitates becomes coarse, and high mechanical strength cannot be obtained. In this embodiment, the temperature range of the aging treatment is regulated to 370 to 500 ° C. More preferably, it is desirable to perform the aging treatment in a temperature range of 400 to 470 ° C. for about 1 to 50 hours. Thereby, high mechanical strength and excellent bending workability can be obtained.

(急冷処理及び徐冷処理)
この急冷処理(図1のステップS4)及び徐冷処理(図1のステップS5)の目的とするところは、溶体化処理後の冷却速度を急冷した急冷材の焼入れ感受性と、溶体化処理後の冷却速度を徐冷した徐冷材の焼入れ感受性とを評価することにある。評価するにあたっては、溶体化処理後の急冷材及び徐冷材を先行して時効処理した後、機械的特性や曲げ加工性を評価する。これにより、その溶体化処理、焼入れ処理、冷間圧延加工、及び時効処理のそれぞれの条件が設定される。
(Rapid cooling treatment and slow cooling treatment)
The purpose of the rapid cooling process (step S4 in FIG. 1) and the slow cooling process (step S5 in FIG. 1) is that the quenching sensitivity of the quenched material that has rapidly cooled the cooling rate after the solution treatment, and the after-solution treatment. The purpose is to evaluate the quenching sensitivity of the slow-cooled material with a slow cooling rate. In the evaluation, the quenching material and the slow cooling material after the solution treatment are first subjected to aging treatment, and then mechanical properties and bending workability are evaluated. Thereby, each condition of the solution treatment, quenching treatment, cold rolling, and aging treatment is set.

急冷処理においては、溶体化された銅合金を冷却速度100〜1000°C/秒で急冷する。徐冷処理では、銅合金を冷却速度1〜10°C/秒で徐冷する。この加工及び熱処理した急冷材と徐冷材とを用い、急冷材及び徐冷材の引張強さ、0.2%耐力、伸び、W曲げ試験で割れが発生しない曲げ最小半径Rと厚さtとの比R/t、及び急冷材の0.2%耐力と徐冷材の0.2%耐力との差に基づく焼入れ感受性により品質評価を行う(図1のステップS8)。   In the rapid cooling treatment, the solutionized copper alloy is rapidly cooled at a cooling rate of 10 to 1000 ° C./second. In the slow cooling treatment, the copper alloy is slowly cooled at a cooling rate of 1 to 10 ° C./second. Using this processed and heat-treated quenched and annealed material, the ratio of the minimum bending radius R to the thickness t where cracks do not occur in the tensile strength, 0.2% proof stress, elongation, and W bending test of the quenched and annealed material / T and the quality evaluation is performed based on the quenching sensitivity based on the difference between the 0.2% proof stress of the quenched material and the 0.2% proof stress of the gradually cooled material (step S8 in FIG. 1).

急冷材と徐冷材との焼入れ処理をそれぞれ行い、急冷材の0.2%耐力と徐冷材の0.2%耐力との差が、|(急冷材の0.2%耐力)−(徐冷材の0.2%耐力)|≦50MPaの関係を満たすか否か、徐冷材の引張強さが800MPa以上であるか否か、徐冷材の0.2%耐力が770MPa以上であるか否か、徐冷材のW曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下であるか否かをそれぞれ判断する。これらの条件を満足すれば、規模の大きな量産設備を用いて冷却速度が遅くなった場合でも、機械的特性や曲げ加工性、ばらつきの差が少なくなるため、製造設備毎のバラツキが少なくなる。   The quenching treatment of the quenching material and the slow cooling material is performed respectively, and the difference between the 0.2% proof stress of the quenching material and the 0.2% proof stress of the slow cooling material is | (0.2% proof stress of the quenching material) − (0. 2% yield strength) | ≦ 50 MPa, whether the tensile strength of the annealed material is 800 MPa or more, whether the 0.2% yield strength of the annealed material is 770 MPa or more, the W-bending test of the annealed material Whether or not the value (R / t) obtained by dividing the minimum bending radius R at which cracks do not occur by the plate thickness t (R / t) is 1.0 or less is determined. If these conditions are satisfied, even if the cooling rate is slowed down using a large-scale mass production facility, the difference in mechanical characteristics, bending workability, and variation is reduced, so that variations among manufacturing facilities are reduced.

(実施の形態の効果)
上記実施の形態によれば、以下の様々な効果を奏することができる。
(1)溶体化後の冷却速度に起因する機械的強度に左右されることなく、その機械的強度を小さく抑制することが可能となり、大規模な量産工程においても、小規模試作と同程度の機械的特性を得ることができる。
(2)上記(1)の格別な効果により、800MPa以上の高い引張強さ、770MPa以上の高い0.2%耐力、及び優れた曲げ加工性を併せ持った電気・電子機器部品用の銅合金材を効果的に得ることができる。
(3)上記(1)及び(2)の格別な効果により、量産工程で発生しやすい銅合金材の表面部と芯部との冷却速度の違いによる機械的特性のバラツキを低減することができるようになり、安定した機械的特性を有する電気・電子機器部品用の銅合金材を効果的に得ることが可能となる。
(4)上記(1)及び(2)の格別な効果により、銅合金材を使用する電気・電子機器部品においては、小型化の対応が容易となり、設計の自由度を大幅に広げることができる。
(5)格別な製法や装置を用いることなく、従来の銅合金材と同等の製作コストで製造することができる。そのため、電気・電子機器部品に対する製造技術を安価に向上させることができるようになり、その発展に大きく寄与することが可能である。
(Effect of embodiment)
According to the above embodiment, the following various effects can be achieved.
(1) It is possible to suppress the mechanical strength to a small extent without being influenced by the mechanical strength resulting from the cooling rate after solution treatment. Mechanical properties can be obtained.
(2) A copper alloy material for electrical and electronic equipment parts having both a high tensile strength of 800 MPa or more, a high 0.2% proof stress of 770 MPa or more, and excellent bending workability due to the exceptional effect of (1) above. Can be effectively obtained.
(3) Due to the special effects of (1) and (2) above, it is possible to reduce variations in mechanical properties due to the difference in cooling rate between the surface portion and the core portion of the copper alloy material that is likely to occur in the mass production process. As a result, it is possible to effectively obtain a copper alloy material for electric / electronic device parts having stable mechanical characteristics.
(4) Due to the special effects of (1) and (2) above, electrical / electronic equipment parts using copper alloy materials can be easily reduced in size, and the design flexibility can be greatly expanded. .
(5) It can be manufactured at a manufacturing cost equivalent to that of a conventional copper alloy material without using a special manufacturing method or apparatus. Therefore, it becomes possible to improve the manufacturing technology for electrical / electronic device parts at low cost, and can greatly contribute to the development.

なお、本発明は、上記実施の形態から当業者が容易に変更可能な技術的範囲をも当然に包含するものである。   The present invention naturally includes a technical range that can be easily changed by those skilled in the art from the above-described embodiments.

以下に、本発明の更に具体的な実施の形態として、実施例及び比較例を挙げて詳細に説明する。なお、これらの実施例は、上記実施の形態の典型的な一例を挙げており、本発明は、これらの実施例及び比較例に限定されるものではないことは勿論である。   Hereinafter, examples and comparative examples will be described in detail as more specific embodiments of the present invention. These examples give typical examples of the above-described embodiments, and the present invention is of course not limited to these examples and comparative examples.

実施例1〜12及び比較例1〜11の銅合金材を以下に詳述する条件で製造し、得られた各銅合金材の組成について比較と評価を行った。表1に各銅合金材の組成を示す。表1において、不可避不純物はCuに含めて表記した。   The copper alloy materials of Examples 1 to 12 and Comparative Examples 1 to 11 were produced under the conditions described in detail below, and the compositions of the obtained copper alloy materials were compared and evaluated. Table 1 shows the composition of each copper alloy material. In Table 1, inevitable impurities are included in Cu.

[実施例1]
実施例1の銅合金材を製造するために、先ず、2.5質量%のNi、0.6質量%のSi、及び0.05質量%のMgを含有し、残部がCuと不可避不純物からなる銅合金を、無酸素銅を母材にして高周波溶解炉(Ar雰囲気)で溶製し、直径30mm、長さ250mmのインゴットに鋳造した。得られたインゴットを900°Cに加熱して押出加工(熱間加工)し、幅20mm、厚さ8mmとなる板状の銅合金を製作した。
[Example 1]
In order to produce the copper alloy material of Example 1, first, 2.5% by mass of Ni, 0.6% by mass of Si, and 0.05% by mass of Mg are contained, and the balance is made up of Cu and inevitable impurities. The resulting copper alloy was melted in a high-frequency melting furnace (Ar atmosphere) using oxygen-free copper as a base material, and cast into an ingot having a diameter of 30 mm and a length of 250 mm. The obtained ingot was heated to 900 ° C. and extruded (hot processing) to produce a plate-like copper alloy having a width of 20 mm and a thickness of 8 mm.

この板状の銅合金を、0.25mm程度の厚さまで冷間圧延(外部から熱を加えずに圧延)し、溶体化のために、850°C程度のソルトバスで1分間程度保持した。その後、銅合金を水冷(冷却速度500〜1000°C/秒)、あるいは空冷(冷却速度1〜10°C/秒)することで、急冷材あるいは徐冷材を製作した。   This plate-like copper alloy was cold-rolled to a thickness of about 0.25 mm (rolled without applying heat from the outside), and held in a salt bath at about 850 ° C. for about 1 minute for solution treatment. Thereafter, the copper alloy was water-cooled (cooling rate: 500 to 1000 ° C./second) or air-cooled (cooling rate: 1 to 10 ° C./second) to produce a rapid cooling material or a slow cooling material.

次に、急冷材あるいは徐冷材に対して、厚さ0.2mm程度まで冷間圧延(外部から熱を加えずに圧延)を行った。このとき、材料には加工熱のみがかかっている。その後、急冷材あるいは徐冷材に450°C程度の温度で4時間程度保持する時効処理を行った。   Next, the rapid cooling material or the slow cooling material was cold-rolled (rolled without applying heat from the outside) to a thickness of about 0.2 mm. At this time, only the processing heat is applied to the material. Thereafter, an aging treatment was performed on the rapidly cooled material or the slowly cooled material at a temperature of about 450 ° C. for about 4 hours.

以上のように製作された実施例1の銅合金材について、急冷材及び徐冷材の引張試験とW曲げ試験とを実施した。引張試験は、JIS Z2241に準拠した方法で行い、引張強さ、0.2%耐力、及び伸びを測定した。一方のW曲げ試験は、曲げ軸が銅合金材の圧延方向と平行になるように採取した試験片を用いて、JIS H3110、JIS H3130に準拠した方法で行い、その試験片の表面に割れが発生しない曲げ最小半径R(mm)と、その試験片の厚さt(mm)との比R/tで評価した。そして、急冷材の0.2%耐力から徐冷材の0.2%耐力を減算し、焼入れ感受性を評価した。   About the copper alloy material of Example 1 manufactured as mentioned above, the tension test and W bending test of the quenching material and the slow cooling material were implemented. The tensile test was performed by a method based on JIS Z2241, and the tensile strength, 0.2% proof stress, and elongation were measured. On the other hand, the W bending test is performed by a method according to JIS H3110 and JIS H3130 using a test piece taken so that the bending axis is parallel to the rolling direction of the copper alloy material, and the surface of the test piece is cracked. Evaluation was based on the ratio R / t between the minimum bending radius R (mm) that did not occur and the thickness t (mm) of the test piece. And the 0.2% yield strength of the slow cooling material was subtracted from the 0.2% yield strength of the quenched material, and the quenching sensitivity was evaluated.

その結果、徐冷材の引張強さは803MPaとなり、徐冷材の0.2%耐力は779MPaとなり、徐冷材の伸びは7.2、R/t=0となった。急冷材の0.2%耐力と徐冷材の0.2%耐力との差は11MPaとなった。この実施の形態における初期の目的である焼入れ感受性に優れ、高い機械的強度、並びに良好な曲げ加工性を兼ね備えた銅合金材が得られた。急冷材及び徐冷材の引張強さ、0.2%耐力、及び伸びの測定結果と、W曲げ試験の評価結果とを表2にまとめて示す。   As a result, the tensile strength of the annealed material was 803 MPa, the 0.2% yield strength of the annealed material was 779 MPa, and the elongation of the annealed material was 7.2 and R / t = 0. The difference between the 0.2% yield strength of the quenched material and the 0.2% yield strength of the slow-cooled material was 11 MPa. A copper alloy material having excellent quenching sensitivity, which is an initial object in this embodiment, and having high mechanical strength and good bending workability was obtained. Table 2 summarizes the measurement results of the tensile strength, 0.2% proof stress, and elongation of the quenched material and slow-cooled material, and the evaluation results of the W-bending test.

[実施例2〜12]
表1に示す実施例2〜12の銅合金材を、上記実施例1と同様の製法及び工程を用いて製作した。
[Examples 2 to 12]
The copper alloy material of Examples 2-12 shown in Table 1 was manufactured using the manufacturing method and process similar to the said Example 1. FIG.

実施例2〜5の銅合金材は、Ni/Siの質量比を4.0〜4.5の範囲でNiとSiとの添加量を変化させた一例を例示している。一方、実施例6の銅合金材は、Ni/Siの質量比を3.08に変更した一例である。   The copper alloy materials of Examples 2 to 5 exemplify an example in which the addition amount of Ni and Si is changed within a mass ratio of Ni / Si of 4.0 to 4.5. On the other hand, the copper alloy material of Example 6 is an example in which the mass ratio of Ni / Si is changed to 3.08.

実施例7及び8の銅合金材は、上記実施例2と同様にNiとSiとの添加量比を4とし、Mg添加量を0.03に変更した一例を例示している。   The copper alloy materials of Examples 7 and 8 exemplify an example in which the additive amount ratio of Ni and Si is set to 4 and the Mg additive amount is changed to 0.03 as in Example 2 above.

実施例9の銅合金材は、Mgに替えて0.03質量%のSnを添加した一例を例示している。   The copper alloy material of Example 9 illustrates an example in which 0.03% by mass of Sn is added instead of Mg.

実施例10の銅合金材は、上記実施例2と同じ組成に0.2質量%のMnを更に添加した一例であり、実施例11の銅合金材は、上記実施例1と同じ組成に0.2質量%のAgを添加した一例である。実施例12の銅合金材は、上記実施例2と同じ組成に0.2質量%のZnを添加した一例を例示している。   The copper alloy material of Example 10 is an example in which 0.2% by mass of Mn is further added to the same composition as in Example 2 above, and the copper alloy material of Example 11 is 0 in the same composition as in Example 1 above. This is an example in which 2% by mass of Ag is added. The copper alloy material of Example 12 illustrates an example in which 0.2% by mass of Zn is added to the same composition as in Example 2 above.

以上のように製作された実施例2〜12の銅合金材にあっても、上記実施例1と同様に、急冷材及び徐冷材の引張強さ、0.2%耐力、並びに伸びを評価するとともに、W曲げ試験の結果を評価した。表2において、実施例2〜12の銅合金材の引張強さ、0.2%耐力、及び伸びの測定結果と、W曲げ試験の評価結果とをまとめて示す。   Even in the copper alloy materials of Examples 2 to 12 manufactured as described above, as in Example 1, the tensile strength, 0.2% proof stress, and elongation of the quenching material and the slow cooling material were evaluated. The results of the W bending test were evaluated. In Table 2, the measurement results of the tensile strength, 0.2% proof stress, and elongation of the copper alloy materials of Examples 2 to 12 and the evaluation results of the W bending test are collectively shown.

表2から明らかなように、実施例2〜12の銅合金材のいずれも、本発明の初期の目的である焼入れ感受性に優れ、高い機械的強度と良好な曲げ加工性とを兼備した銅合金材料が得られることが分かった。   As is apparent from Table 2, all of the copper alloy materials of Examples 2 to 12 are excellent in quenching sensitivity, which is the initial purpose of the present invention, and have both high mechanical strength and good bending workability. The material was found to be obtained.

[比較例]
表1に示す比較例1〜11の銅合金材を、上記実施例1と同様の製法及び工程を用いて製作した。これらの銅合金材についても、上記実施例1と同様に、急冷材及び徐冷材の引張強さ、0.2%耐力、並びに伸びを評価するとともに、W曲げ試験の結果を評価した。表2において、比較例1〜11の銅合金材の引張強さ、0.2%耐力、及び伸びの測定結果と、W曲げ試験の評価結果とをまとめて示す。
[Comparative example]
The copper alloy materials of Comparative Examples 1 to 11 shown in Table 1 were manufactured using the same manufacturing method and process as in Example 1 above. For these copper alloy materials, as in Example 1, the tensile strength, 0.2% proof stress, and elongation of the quenched and annealed materials were evaluated, and the results of the W bending test were evaluated. In Table 2, the measurement results of the tensile strength, 0.2% proof stress, and elongation of the copper alloy materials of Comparative Examples 1 to 11 and the evaluation results of the W bending test are collectively shown.

[比較例1]
比較例1の銅合金材は、上記実施例2と同じ基本組成成分に、副成分であるMgを添加しない一例を例示している。表2から明らかなように、比較例1の銅合金では、上記各実施例と比較して、急冷材と徐冷材の0.2%耐力の差については、50MPa以内となり、良好な値を示したが、十分な引張強さと0.2%耐力とが得られないということが分かった。
[Comparative Example 1]
The copper alloy material of Comparative Example 1 exemplifies an example in which Mg, which is a subsidiary component, is not added to the same basic composition component as in Example 2 above. As is clear from Table 2, in the copper alloy of Comparative Example 1, the difference in 0.2% proof stress between the quenched material and the slow-cooled material was within 50 MPa as compared with each of the above examples, and showed a good value. However, it was found that sufficient tensile strength and 0.2% proof stress cannot be obtained.

[比較例2及び3]
比較例2及び3の銅合金は、基本組成成分Siの添加量、及びNi/Si質量比が規定範囲を外れた一例を例示している。表2から明らかなように、比較例2及び3の銅合金材では、上記各実施例と比較して、急冷材と徐冷材の0.2%耐力の差については、50MPa以内となり、良好な値を示したが、十分な引張強さと0.2%耐力とが得られないということが分かった。
[Comparative Examples 2 and 3]
The copper alloys of Comparative Examples 2 and 3 exemplify an example in which the addition amount of the basic composition component Si and the Ni / Si mass ratio are outside the specified range. As is clear from Table 2, in the copper alloy materials of Comparative Examples 2 and 3, the difference in 0.2% proof stress between the quenched material and the slow-cooled material is within 50 MPa, which is a good value as compared with the above examples. However, it was found that sufficient tensile strength and 0.2% yield strength could not be obtained.

[比較例4及び5]
比較例4及び5の銅合金は、上記実施例2と同じ基本組成成分に、副成分であるMgを規定範囲外の添加量で添加した一例である。表2から明らかなように、Mgの添加量が比較例4のように少ないと、上記各実施例と比較して、(急冷材)と(徐冷材)の0.2%耐力の差分については、50MPa以内となり、良好な値を示したが、一方、十分な引張強さと0.2%耐力とが得られないということが分かった。Mgの添加量が比較例5のように多い場合には、急冷材の0.2%耐力と徐冷材の0.2%耐力とに大きな差が生じており、焼入れ感受性が良好とは言い難い。
[Comparative Examples 4 and 5]
The copper alloys of Comparative Examples 4 and 5 are examples in which Mg, which is a subcomponent, is added to the same basic composition component as in Example 2 in an addition amount outside the specified range. As is clear from Table 2, when the amount of Mg added is small as in Comparative Example 4, the difference in 0.2% proof stress between (quenched material) and (gradually cooled material) as compared with each of the above examples, Although it was within 50 MPa and showed a good value, it was found that sufficient tensile strength and 0.2% yield strength could not be obtained. When the amount of Mg added is large as in Comparative Example 5, there is a large difference between the 0.2% proof stress of the quenching material and the 0.2% proof stress of the slow cooling material, and it is difficult to say that the quenching sensitivity is good.

[比較例6]
比較例6の銅合金は、上記実施例2と同じ基本組成成分に、副成分であるSnを規定範囲以下の添加量で添加した一例である。表2から明らかなように、急冷材と徐冷材の0.2%耐力の差については、50MPa以内となり、良好な値を示したが、引張強さおよび0.2%耐力は良好な値を示すとは言い難い。
[Comparative Example 6]
The copper alloy of Comparative Example 6 is an example in which Sn, which is a subcomponent, is added to the same basic composition component as in Example 2 in an addition amount not more than a specified range. As is apparent from Table 2, the difference in 0.2% yield strength between the quenched material and the slow-cooled material was within 50 MPa and showed good values, but the tensile strength and 0.2% yield strength showed good values. It's hard to say.

[比較例7]
比較例7の銅合金材は、上記実施例2と同じ基本組成成分に、副成分であるSnを規定範囲以上の添加量で添加した一例である。表2から明らかなように、引張強さ、0.2%耐力および急冷材と徐冷材の0.2%耐力の差について、良好であるとは言い難い。
[Comparative Example 7]
The copper alloy material of Comparative Example 7 is an example in which Sn, which is a subcomponent, is added to the same basic composition component as in Example 2 in an addition amount of a specified range or more. As is clear from Table 2, it is difficult to say that the tensile strength, 0.2% proof stress, and the difference between the 0.2% proof stress of the quenched material and the slowly cooled material are good.

[比較例8〜11]
比較例8の銅合金材は、上記実施例2と同じ組成成分に、副成分であるMnを規定範囲以上の添加量で添加した一例を例示している。比較例9の銅合金材は、上記実施例1と同じ組成成分に、副成分であるAgを規定範囲以上の添加量で添加した一例である。比較例10の銅合金材は、上記実施例2と同じ組成成分に、副成分であるAgを規定範囲以上の添加量で添加した一例である。比較例11の銅合金材は、上記特許文献3を参考として試作した一例である。表2から明らかなように、比較例8〜11の銅合金材のいずれも、焼入れ感受性が高くなり、徐冷材の0.2%耐力は、急冷材の0.2%耐力と比較して大きく低下していることが分かった。
[Comparative Examples 8 to 11]
The copper alloy material of Comparative Example 8 exemplifies an example in which Mn, which is a subcomponent, is added to the same composition component as in Example 2 in an addition amount of a specified range or more. The copper alloy material of Comparative Example 9 is an example in which Ag, which is a subcomponent, is added to the same composition component as in Example 1 in an addition amount of a specified range or more. The copper alloy material of Comparative Example 10 is an example in which Ag, which is a subcomponent, is added to the same composition component as in Example 2 in an addition amount of a specified range or more. The copper alloy material of Comparative Example 11 is an example that was prototyped with reference to Patent Document 3 described above. As is apparent from Table 2, all of the copper alloy materials of Comparative Examples 8 to 11 have high quenching sensitivity, and the 0.2% proof stress of the slow-cooled material is greatly reduced compared to the 0.2% proof stress of the quenched material. I found out that

(焼入れ感受性の低減と0.2%耐力のバラツキについて)
以下に、焼入れ感受性と0.2%耐力とについて、表2および表3に基づいて具体的に説明する。なお、表2および表3は、上記実施例及び上記比較例における0.2%耐力の典型的な一例を挙げており、本発明は、この実施例及び比較例に限定されるものではない。
(About reduction of quenching sensitivity and variation of 0.2% proof stress)
Hereinafter, quenching sensitivity and 0.2% proof stress will be specifically described based on Tables 2 and 3. Tables 2 and 3 list typical examples of the 0.2% proof stress in the above examples and comparative examples, and the present invention is not limited to these examples and comparative examples.

先ず、表1および表2から分かるように、急冷材と徐冷材の0.2%耐力の差で評価される焼入れ感受性は、Sn、Mg、Mn、ZnおよびAgによって制御できることがわかる。すなわち、Snは0.05質量%、Mgは0.03質量%、Mnは0.7質量%、Agは0.5質量%、Znは2.0質量%の上限をいずれか一つでも超えると、焼入れ感受性が高くなる。   First, as can be seen from Tables 1 and 2, it can be seen that the quenching sensitivity evaluated by the difference in 0.2% proof stress between the quenched material and the slowly cooled material can be controlled by Sn, Mg, Mn, Zn and Ag. That is, Sn is 0.05% by mass, Mg is 0.03% by mass, Mn is 0.7% by mass, Ag is 0.5% by mass, and Zn exceeds any upper limit of 2.0% by mass. And quenching sensitivity becomes high.

表3は焼入れ感受性の違いによって、すなわち、急冷材と徐冷材の0.2%耐力の差の違いによって、時効処理後の同一銅合金材の0.2%耐力のばらつきが異なることを示している。以下、詳述する。   Table 3 shows that the variation in 0.2% yield strength of the same copper alloy material after aging treatment differs depending on the difference in quenching sensitivity, that is, the difference in 0.2% yield strength between the quenched material and the slow-cooled material. . Details will be described below.

表3に例示した実施例7及び比較例5は、表1に示すように、同一の組成成分であるNi、Si、MgをCuに添加したものであるが、比較例5の銅合金材では、Mgの添加量が規定範囲を超えている。   In Example 7 and Comparative Example 5 illustrated in Table 3, as shown in Table 1, Ni, Si, and Mg, which are the same composition components, are added to Cu, but in the copper alloy material of Comparative Example 5, , Mg addition amount exceeds the specified range.

これらの銅合金材を長手方向に10箇所(N=10)サンプリングして引張試験片を作製し、JIS Z2241に規定する引張試験に準じた条件により、それぞれの長手位置における0.2%耐力の測定を行なった。そして、0.2%耐力の平均値と、0.2%耐力の標準偏差を求めた。その結果を表3にまとめて示す。   Ten specimens (N = 10) of these copper alloy materials are sampled in the longitudinal direction to prepare tensile test pieces, and 0.2% proof stress at each longitudinal position is obtained according to the conditions in accordance with the tensile test specified in JIS Z2241. Measurements were made. And the average value of 0.2% yield strength and the standard deviation of 0.2% yield strength were calculated | required. The results are summarized in Table 3.

表3から明らかなように、比較例5における銅合金の0.2%耐力の平均値は、実施例7の銅合金材のそれとほぼ同程度である。   As is clear from Table 3, the average value of the 0.2% proof stress of the copper alloy in Comparative Example 5 is approximately the same as that of the copper alloy material of Example 7.

しかしながら、実施例7の銅合金材は、焼入れ感受性が低く、0.2%耐力のバラツキ(標準偏差)が小さい。   However, the copper alloy material of Example 7 has low quenching sensitivity and small 0.2% proof stress variation (standard deviation).

一方、比較例5の銅合金材では、焼入れ感受性が高く、焼入れ感受性が低い実施例7の銅合金材と比較して、0.2%耐力のバラツキ(標準偏差)が大きい。   On the other hand, in the copper alloy material of Comparative Example 5, the 0.2% yield strength variation (standard deviation) is large as compared with the copper alloy material of Example 7 having high quenching sensitivity and low quenching sensitivity.

以上より、上記各実施例1〜12のごとくMg、Sn、Ag、Zn、Mnの添加量を制御することで、焼入れ感受性を低く抑制し、同一材料内の0.2%耐力のバラツキを低減することができるということが確認できた。   From the above, by controlling the addition amount of Mg, Sn, Ag, Zn, and Mn as in the above Examples 1 to 12, quenching sensitivity is suppressed to a low level, and variation in 0.2% yield strength within the same material is reduced. I was able to confirm that I can do it.

Figure 2011190469
Figure 2011190469

Figure 2011190469
Figure 2011190469

Figure 2011190469
Figure 2011190469

Claims (10)

2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量の比(Ni/Si)で含有し、残部がCu、及び不可避的不純物からなり、溶体化処理後に徐冷した徐冷材が、以下の(1)〜(4)の要件を満たすことを特徴とする銅合金材。
(1)|(溶体化処理後の急冷材の0.2%耐力)−(溶体化処理後の徐冷材の0.2%耐力)|≦50MPaであり、
(2)前記徐冷材の引張強さが800MPa以上であり、
(3)前記徐冷材の0.2%耐力が770MPa以上であり、
(4)前記徐冷材のW曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下であること。
2.0 to 4.0 mass% Ni is contained in a ratio of 3.0 to 4.5 mass (Ni / Si) with respect to 0.5 to 1.5 mass% Si, the balance being Cu, A copper alloy material, characterized in that a slow cooling material comprising inevitable impurities and gradually cooled after solution treatment satisfies the following requirements (1) to (4).
(1) | (0.2% yield strength of quenched material after solution treatment) − (0.2% yield strength of annealed material after solution treatment) | ≦ 50 MPa
(2) The annealed material has a tensile strength of 800 MPa or more,
(3) The 0.2% proof stress of the slow cooling material is 770 MPa or more,
(4) The value (R / t) obtained by dividing the minimum bending radius R at which no crack is generated in the W-bending test of the gradually cooled material by the thickness t is 1.0 or less.
前記銅合金材は更に、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を含有することを特徴とする請求項1に記載の銅合金材。   2. The copper alloy material according to claim 1, further comprising at least one of 0.01 to 0.05 mass% of Sn and 0.02 to 0.1 mass% of Mg. Copper alloy material. 前記銅合金材は更に、0.01〜0.7質量%のMn、0.01〜0.5質量%のAg、0.1〜2.0質量%のZnのいずれか1種以上を含有することを特徴とする請求項1または2に記載の銅合金材。   The copper alloy material further contains at least one of 0.01 to 0.7% by mass of Mn, 0.01 to 0.5% by mass of Ag, and 0.1 to 2.0% by mass of Zn. The copper alloy material according to claim 1 or 2, characterized in that: 2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量の比(Ni/Si)で含有し、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を含有し、残部がCu、及び不可避的不純物からなり、溶体化処理後に徐冷した徐冷材の引張強さが800MPa以上、前記徐冷材の0.2%耐力が770MPa以上、前記徐冷材のW曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下である銅合金材を製造するにあたり、
前記徐冷材の0.2%耐力と溶体化処理後に急冷した急冷材の0.2%耐力とが下記式1を満たすことを特徴とする銅合金材の製造方法。
|(急冷材の0.2%耐力)−(徐冷材の0.2%耐力)|≦50MPa……式1
2.0 to 4.0 mass% Ni is contained at a mass ratio (Ni / Si) of 3.0 to 4.5 with respect to 0.5 to 1.5 mass% Si, and 0.01 to Tensile strength of slow-cooled material containing 0.05% by mass of Sn or 0.02 to 0.1% by mass of Mg, the balance being Cu and unavoidable impurities, and gradually cooled after solution treatment The value (R / t) obtained by dividing the minimum bending radius R by which the strength is 800 MPa or more, the 0.2% proof stress of the slow cooling material is 770 MPa or more, and no crack is generated in the W bending test of the slow cooling material by the thickness t (1.0). In producing the following copper alloy material,
A method for producing a copper alloy material, wherein the 0.2% proof stress of the slow-cooled material and the 0.2% proof strength of the quenched material quenched after the solution treatment satisfy the following formula 1.
| (0.2% yield strength of quenched material) − (0.2% yield strength of annealed material) | ≦ 50 MPa …… Formula 1
前記急冷材は、前記銅合金の溶体化処理後に冷却速度100°C/秒以上の冷却速度で急冷し、前記徐冷材は、冷却速度10°C/秒以下の冷却速度で徐冷することを特徴とする請求項4に記載の銅合金材の製造方法。   The quenching material is rapidly cooled after the solution treatment of the copper alloy at a cooling rate of 100 ° C / sec or more, and the slow cooling material is slowly cooled at a cooling rate of 10 ° C / sec or less. The method for producing a copper alloy material according to claim 4. 前記銅合金に、0.01〜0.7質量%のMn、0.01〜0.5質量%のAg、0.1〜2.0質量%のZnのいずれか1種以上を添加することを含んでなることを特徴とする請求項4に記載の銅合金材の製造方法。   Adding at least one of 0.01 to 0.7% by mass of Mn, 0.01 to 0.5% by mass of Ag, and 0.1 to 2.0% by mass of Zn to the copper alloy. The manufacturing method of the copper alloy material of Claim 4 characterized by the above-mentioned. 2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量の比(Ni/Si)で添加し、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を添加し、残部がCu、及び不可避的不純物からなる銅合金を準備する工程と、
前記銅合金を圧延加工する工程と、
圧延加工後の前記銅合金を、750〜950°Cの温度範囲で溶体化処理する工程と、
溶体化処理後の前記銅合金を、10°C/秒以上の冷却速度で300°C以下まで冷却する工程と、
冷却後の前記銅合金を、加工率30%以下の冷間圧延を行う工程と、
冷間圧延後の前記銅合金を、370〜500°Cの温度範囲で1〜50時間の時効処理を行う工程を有することを特徴とする銅合金材の製造方法。
2.0 to 4.0% by mass of Ni is added at a mass ratio (Ni / Si) of 3.0 to 4.5 with respect to 0.5 to 1.5% by mass of Si, and 0.01 to Adding one or more of 0.05% by mass of Sn and 0.02 to 0.1% by mass of Mg, and preparing a copper alloy consisting of Cu and inevitable impurities in the balance;
Rolling the copper alloy;
A step of subjecting the copper alloy after the rolling process to a solution treatment in a temperature range of 750 to 950 ° C .;
Cooling the copper alloy after the solution treatment to 300 ° C. or lower at a cooling rate of 10 ° C./second or more;
A step of cold rolling the copper alloy after cooling at a processing rate of 30% or less;
The manufacturing method of the copper alloy material characterized by having the process of performing the aging treatment for 1 to 50 hours in the temperature range of 370-500 degreeC for the said copper alloy after cold rolling.
2.0〜4.0質量%のNi、0.5〜1.5質量%のSiを、質量の比(Ni/Si)が3.0〜4.5の範囲で含有し、残部がCu、及び不可避的不純物からなるCu−Ni−Si合金に、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を添加し、溶体化処理後に冷却速度10°C/秒以下の冷却速度で徐冷した徐冷材が、以下の(1)〜(3)の要件を満たすことを特徴とする銅合金材。
(1)前記徐冷材の引張強さが800MPa以上であり、
(2)前記徐冷材の0.2%耐力が770MPa以上であり、
(3)前記徐冷材のW曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下であること。
It contains 2.0 to 4.0 mass% Ni, 0.5 to 1.5 mass% Si in a mass ratio (Ni / Si) in the range of 3.0 to 4.5, with the balance being Cu. In addition, one or more of 0.01 to 0.05% by mass of Sn and 0.02 to 0.1% by mass of Mg are added to a Cu—Ni—Si alloy composed of inevitable impurities to form a solution. A copper alloy material, characterized in that a slow-cooled material that is gradually cooled at a cooling rate of 10 ° C / second or less after the processing satisfies the following requirements (1) to (3).
(1) Tensile strength of the slow cooling material is 800 MPa or more,
(2) 0.2% proof stress of the slow cooling material is 770 MPa or more,
(3) The value (R / t) obtained by dividing the minimum bending radius R at which no crack is generated in the W-bending test of the gradually cooled material by the plate thickness t is 1.0 or less.
2.0〜4.0質量%のNiを0.5〜1.5質量%のSiに対して3.0〜4.5の質量の比(Ni/Si)で含有し、0.01〜0.05質量%のSn、0.02〜0.1質量%のMgのいずれか1種以上を含有し、引張強さが800MPa以上であり、0.2%耐力が770MPa以上であり、W曲げ試験で割れが発生しない曲げ最小半径Rを板厚tで除した値(R/t)が1.0以下であることを特徴とする銅合金材。   2.0 to 4.0 mass% Ni is contained at a mass ratio (Ni / Si) of 3.0 to 4.5 with respect to 0.5 to 1.5 mass% Si, and 0.01 to It contains any one or more of 0.05% by mass of Sn and 0.02 to 0.1% by mass of Mg, has a tensile strength of 800 MPa or more, 0.2% proof stress of 770 MPa or more, W A copper alloy material characterized in that a value (R / t) obtained by dividing a minimum bending radius R at which bending does not occur in a bending test by a sheet thickness t (R / t) is 1.0 or less. 前記銅合金材は更に、0.01〜0.7質量%のMn、0.01〜0.5質量%のAg、0.1〜2.0質量%のZnのいずれか1種以上を含有することを特徴とする請求項9に記載の銅合金材。   The copper alloy material further contains at least one of 0.01 to 0.7% by mass of Mn, 0.01 to 0.5% by mass of Ag, and 0.1 to 2.0% by mass of Zn. The copper alloy material according to claim 9.
JP2010054824A 2010-03-11 2010-03-11 Copper alloy material, and method for producing the same Pending JP2011190469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054824A JP2011190469A (en) 2010-03-11 2010-03-11 Copper alloy material, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054824A JP2011190469A (en) 2010-03-11 2010-03-11 Copper alloy material, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011190469A true JP2011190469A (en) 2011-09-29

Family

ID=44795691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054824A Pending JP2011190469A (en) 2010-03-11 2010-03-11 Copper alloy material, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011190469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430572A (en) * 2011-11-23 2012-05-02 北京工业大学 Manufacturing process for non-magnetic Cu-base alloy basebands in strong cubic texture
CN109504873A (en) * 2017-09-14 2019-03-22 捷客斯金属株式会社 The excellent Cu-Ni-Si series copper alloy of die wear
JP7166476B1 (en) 2022-03-29 2022-11-07 Jx金属株式会社 A strip-shaped copper alloy material and a method for using the same, a semiconductor lead frame, a semiconductor integrated circuit and an electronic device using the strip-shaped copper alloy material, a method for manufacturing a lead frame, and a method for using the strip-shaped copper alloy material as a lead frame

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430572A (en) * 2011-11-23 2012-05-02 北京工业大学 Manufacturing process for non-magnetic Cu-base alloy basebands in strong cubic texture
CN109504873A (en) * 2017-09-14 2019-03-22 捷客斯金属株式会社 The excellent Cu-Ni-Si series copper alloy of die wear
CN109504873B (en) * 2017-09-14 2021-02-12 捷客斯金属株式会社 Cu-Ni-Si copper alloy having excellent die wear properties
JP7166476B1 (en) 2022-03-29 2022-11-07 Jx金属株式会社 A strip-shaped copper alloy material and a method for using the same, a semiconductor lead frame, a semiconductor integrated circuit and an electronic device using the strip-shaped copper alloy material, a method for manufacturing a lead frame, and a method for using the strip-shaped copper alloy material as a lead frame
JP7300051B1 (en) 2022-03-29 2023-06-28 Jx金属株式会社 Lead frames and semiconductor packages
JP7300049B1 (en) 2022-03-29 2023-06-28 Jx金属株式会社 Method for manufacturing lead frame preform and method for manufacturing semiconductor package
JP2023147168A (en) * 2022-03-29 2023-10-12 Jx金属株式会社 Method for manufacturing lead frame element article and method for manufacturing semiconductor package
JP2023145952A (en) * 2022-03-29 2023-10-12 Jx金属株式会社 Strip-shaped copper alloy material and method of using the same, semiconductor lead frame using strip-shaped copper alloy material, semiconductor integrated circuit and electronic equipment, and method for manufacturing lead frame and method of using strip-shaped copper alloy material as lead frame
JP2023147170A (en) * 2022-03-29 2023-10-12 Jx金属株式会社 Lead frame and semiconductor package

Similar Documents

Publication Publication Date Title
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP2008196042A (en) Copper alloy sheet for electrical/electronic component having excellent strength and formability
JP5619389B2 (en) Copper alloy material
KR101114116B1 (en) Copper Alloy Material for Electric and Electronic Apparatuses, and Electric and Electronic Components
JPWO2008123433A1 (en) Cu-Ni-Si alloy for electronic materials
JPWO2010126046A1 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP2006009137A (en) Copper alloy
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
WO2013018399A1 (en) Highly bendable cu-co-si alloy wire
JP2013095976A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP4556841B2 (en) High strength copper alloy material excellent in bending workability and manufacturing method thereof
JP2007107062A (en) Cu-ni-si-based copper alloy for electronic material
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
JP2011190469A (en) Copper alloy material, and method for producing the same
JP6301734B2 (en) Copper alloy material and method for producing the same
JP6029296B2 (en) Cu-Zn-Sn-Ca alloy for electrical and electronic equipment
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2016176105A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same