JPWO2010126046A1 - Cu-Ni-Si-Mg alloy with improved conductivity and bendability - Google Patents

Cu-Ni-Si-Mg alloy with improved conductivity and bendability Download PDF

Info

Publication number
JPWO2010126046A1
JPWO2010126046A1 JP2010539650A JP2010539650A JPWO2010126046A1 JP WO2010126046 A1 JPWO2010126046 A1 JP WO2010126046A1 JP 2010539650 A JP2010539650 A JP 2010539650A JP 2010539650 A JP2010539650 A JP 2010539650A JP WO2010126046 A1 JPWO2010126046 A1 JP WO2010126046A1
Authority
JP
Japan
Prior art keywords
precipitate
precipitates
heat treatment
alloy
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010539650A
Other languages
Japanese (ja)
Other versions
JP5261500B2 (en
Inventor
弘徳 加藤
弘徳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010539650A priority Critical patent/JP5261500B2/en
Publication of JPWO2010126046A1 publication Critical patent/JPWO2010126046A1/en
Application granted granted Critical
Publication of JP5261500B2 publication Critical patent/JP5261500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/08Alloys based on copper with lead as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Abstract

1.0〜4.5質量%のNi、0.16〜1.13質量%のSi、及び0.05〜0.30質量%のMgを含有し、残部がCu及び不可避的不純物からなるCu−Ni−Si−Mg系合金であり、Ni−Si−Mg析出物X及びNi−Si析出物Yを含み、析出物Xの平均粒径が0.05〜3.0μmであり、粒径が10μmを超える析出物Xが存在せず、かつ析出物Yの平均粒径が0.01〜0.10μmである、Cr、P、Mn、Ag、Co、Mo、As、Sb、Al、Hf、Zr、Ti、C、Fe、In、Ta、Sn又はZnを合計0.01〜2.0質量%含んでもよい銅合金。好ましくは析出物Xは103〜105個/mm2であり、析出物Yは1.0×108〜1.0×1011個/mm2である。本発明のCu−Ni−Si−Mg系合金は、高強度、高導電性及び良好な曲げ加工性を保持し、更に高温下における優れた耐応力緩和特性を示す。Cu containing 1.0 to 4.5% by mass of Ni, 0.16 to 1.13% by mass of Si, and 0.05 to 0.30% by mass of Mg with the balance being Cu and inevitable impurities -Ni-Si-Mg based alloy, including Ni-Si-Mg precipitate X and Ni-Si precipitate Y, and the average particle size of the precipitate X is 0.05 to 3.0 m, and the particle size is Cr, P, Mn, Ag, Co, Mo, As, Sb, Al, Hf, in which there is no precipitate X exceeding 10 μm and the average particle size of the precipitate Y is 0.01 to 0.10 μm, A copper alloy that may contain a total of 0.01 to 2.0 mass% of Zr, Ti, C, Fe, In, Ta, Sn, or Zn. Preferably, the precipitate X is 10 3 to 10 5 pieces / mm 2 and the precipitate Y is 1.0 × 10 8 to 1.0 × 10 11 pieces / mm 2. The Cu—Ni—Si—Mg alloy of the present invention retains high strength, high electrical conductivity and good bending workability, and further exhibits excellent stress relaxation resistance at high temperatures.

Description

本発明は、コネクタ、端子、リレー、スイッチ等の導電性バネ材として好適なCu−Ni−Si−Mg系合金に関する。   The present invention relates to a Cu—Ni—Si—Mg alloy suitable as a conductive spring material for connectors, terminals, relays, switches, and the like.

端子、コネクタ等に使用される電子材料用銅合金には、基本特性として高い強度、高い電気伝導性又は熱伝導性を両立させることが要求される。また、これらの特性以外にも曲げ加工性、耐応力緩和特性、耐熱性、めっきとの密着性、エッチング加工性、プレス打ち抜き性、耐食性が求められる。
高強度および高導電性の観点から、近年電子材料用合金としては、従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、時効硬化型銅合金の使用量が増加している。時効硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して合金の強度が高くなると同時に、銅中に固溶している添加元素量が減少して導電性が向上する。このため、強度、バネ性などの機械的特性に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。この時効硬化型銅合金のうち、Cu−Ni−Si系合金はコルソン合金として知られ、高強度と高導電性とを併せ持つ代表的な銅合金であり、電子機器用材料として実用化されている。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物(析出物Y)が粒子状に析出することにより強度と導電性が上昇する。
Copper alloys for electronic materials used for terminals, connectors, and the like are required to have both high strength, high electrical conductivity, and thermal conductivity as basic characteristics. In addition to these characteristics, bending workability, stress relaxation resistance, heat resistance, adhesion to plating, etching workability, press punching, and corrosion resistance are required.
From the viewpoint of high strength and high conductivity, the amount of age-hardened copper alloys has increased in recent years as an alloy for electronic materials, replacing solid solution strengthened copper alloys represented by conventional phosphor bronze, brass, etc. Yes. In age-hardened copper alloys, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed to increase the strength of the alloy, and at the same time, the amount of additive elements dissolved in copper Decreases and conductivity is improved. For this reason, it is possible to obtain a material having excellent mechanical properties such as strength and spring property and excellent electrical conductivity and thermal conductivity. Among these age-hardening-type copper alloys, Cu-Ni-Si-based alloys are known as Corson alloys, and are representative copper alloys that have both high strength and high conductivity, and have been put into practical use as materials for electronic devices. . In this copper alloy, the strength and conductivity are increased by the precipitation of fine Ni—Si intermetallic compounds (precipitates Y) in the form of particles in the copper matrix.

上記Cu−Ni−Si系合金の優れた性質、特に高強度と良好な曲げ加工性を保持し、かつ高温下における優れた耐応力緩和特性(コネクタにおいて長期にわたり適切な接触圧力を維持する能力)を示すCu−Ni−Si−Mg系合金が従来研究されている(特許文献1〜4)。Cu−Ni−Si−Mg系合金の一般的な製造プロセスでは、まず大気溶解炉において木炭被覆下で、電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱処理、熱間圧延、冷間圧延及び熱処理を行い、所望の厚み及び特性を有する条や箔に仕上げている。   Excellent properties of the above Cu-Ni-Si alloys, especially high strength and good bending workability, and excellent stress relaxation resistance at high temperatures (ability to maintain an appropriate contact pressure for a long time in the connector) Cu-Ni-Si-Mg based alloys exhibiting the above have been studied (Patent Documents 1 to 4). In a general manufacturing process of a Cu—Ni—Si—Mg alloy, first, raw materials such as electrolytic copper, Ni, and Si are melted under a charcoal coating in an atmospheric melting furnace to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, heat treatment, hot rolling, cold rolling and heat treatment are performed to finish the strips and foils having a desired thickness and characteristics.

特開2008−127668JP2008-127668 特開2005−307223JP 2005-307223 A 特開平10−110228JP-A-10-110228 特開2004−307905JP 2004-307905 A

Cu−Ni−Si−Mg系合金の製造では、Mgは他の添加元素に比べて酸化しやすいため、溶湯中の酸素と反応して酸化物となり溶湯上に浮上する。そのため酸化によるMg損失量を勘案して、通常Mgは過剰に添加される。一方、Ni−Si−Mg化合物(析出物X)は本合金系において初晶であるため、鋳造されたインゴット中に最初に晶出する。しかし、鋳造後の金属内部組織の不均一構造を均一にするために行われる均質化熱処理において析出物Xは固溶され、更にその後に溶体化処理も行われるため、従来のCu−Ni−Si−Mg系合金のMg成分は母材中に固溶された状態であり、析出物Xとしては存在しないのが通常であった。このようにMgが過剰に添加され、Mgが固溶された状態の従来のCu−Ni−Si−Mg系合金では、Mgが存在することにより電子が金属格子を通過することを阻害するので、Cu−Ni−Si系合金と同レベルの高い電気伝導性を得ることは困難であった。
しかし、近年の製品小型化に従い、コネクタ、端子、リレー、スイッチ等の導電性バネ材には、高い導電性を保持しつつ、より小さく厳しい曲げ及び強度が要求されている。
In the production of a Cu—Ni—Si—Mg based alloy, Mg is easily oxidized as compared with other additive elements, and therefore reacts with oxygen in the molten metal to become an oxide and float on the molten metal. Therefore, considering the amount of Mg loss due to oxidation, Mg is usually added excessively. On the other hand, since the Ni—Si—Mg compound (precipitate X) is a primary crystal in this alloy system, it is first crystallized in the cast ingot. However, in the homogenization heat treatment performed in order to make the non-uniform structure of the internal structure of the metal after casting uniform, the precipitate X is solid-solutioned, and further solution treatment is performed after that, so that conventional Cu-Ni-Si is used. The Mg component of the Mg-based alloy is in a state of being dissolved in the base material, and is usually not present as the precipitate X. In the conventional Cu-Ni-Si-Mg-based alloy in which Mg is excessively added and Mg is in a solid solution, the presence of Mg inhibits electrons from passing through the metal lattice. It was difficult to obtain the same high electrical conductivity as that of the Cu—Ni—Si alloy.
However, in accordance with recent miniaturization of products, conductive spring materials such as connectors, terminals, relays, and switches are required to have smaller and severe bending and strength while maintaining high conductivity.

本発明者は、Cu−Ni−Si−Mg系合金ではMgは均質化熱処理後に完全に固溶されていた従来技術を改良して、鋳造条件と均質化熱処理条件とを調節して特定サイズのMg含有析出物Xが合金中に有しながら、析出物Yは従来と同様のサイズ、分布のままとすることによって、優れた効果を奏することを発見した。その知見に基づき、Ni−Si−Mg化合物(析出物X)及びNi−Si化合物(析出物Y)それぞれのサイズ及び好ましくは量並びに割合を調整し、本発明の導電性と曲げ性に優れるCu−Ni−Si−Mg系合金を完成させた。
本発明は、下記のとおりである。
(1)1.0〜4.5質量%のNi、0.16〜1.13質量%のSi、及び0.05〜0.30質量%のMgを含有し、残部がCu及び不可避的不純物からなるCu−Ni−Si−Mg系合金であり、Ni−Si−Mg析出物X及びNi−Si析出物Yを含み、析出物Xの平均粒径が0.05〜3.0μmであり、粒径が10μmを超える析出物Xが存在せず、かつ析出物Yの平均粒径が0.01〜0.10μmである銅合金。
(2)上記析出物Xは圧延方向に直角な断面1平方mm当たり1.0×103〜1.0×105個含まれる(1)の銅合金。
(3)上記析出物Yは圧延方向に直角な断面1平方mm当たり1.0×108〜1.0×1011個含まれる(1)又は(2)の銅合金。
(4)Cr、P、Mn、Ag、Co、Mo、As、Sb、Al、Hf、Zr、Ti、C、Fe、In、Ta、Sn及びZnの群から選ばれた少なくとも一種を合計で0.01〜2.0質量%含む上記いずれかの銅合金。
The present inventor has improved the prior art in which Mg is completely dissolved in a Cu-Ni-Si-Mg alloy after the homogenization heat treatment, and adjusted the casting conditions and the homogenization heat treatment conditions to adjust the specific size. It was discovered that while the Mg-containing precipitate X has in the alloy, the precipitate Y exhibits an excellent effect by keeping the same size and distribution as the conventional one. Based on the knowledge, the size and preferably the amount and ratio of each of the Ni—Si—Mg compound (precipitate X) and the Ni—Si compound (precipitate Y) are adjusted, and Cu having excellent conductivity and bendability of the present invention. A Ni—Si—Mg alloy was completed.
The present invention is as follows.
(1) 1.0 to 4.5 mass% Ni, 0.16 to 1.13 mass% Si, and 0.05 to 0.30 mass% Mg, with the balance being Cu and inevitable impurities A Cu—Ni—Si—Mg based alloy comprising Ni—Si—Mg precipitates X and Ni—Si precipitates Y, the average particle size of the precipitates X being 0.05 to 3.0 μm, A copper alloy in which no precipitate X having a particle size of more than 10 μm exists and the average particle size of the precipitate Y is 0.01 to 0.10 μm.
(2) The copper alloy according to (1), wherein the precipitate X is included in an amount of 1.0 × 10 3 to 1.0 × 10 5 per square mm of the cross section perpendicular to the rolling direction.
(3) The precipitate Y is a copper alloy according to (1) or (2) containing 1.0 × 10 8 to 1.0 × 10 11 per square mm of the cross section perpendicular to the rolling direction.
(4) At least one selected from the group consisting of Cr, P, Mn, Ag, Co, Mo, As, Sb, Al, Hf, Zr, Ti, C, Fe, In, Ta, Sn, and Zn is 0 in total. Any one of the above copper alloys containing 0.01 to 2.0% by mass.

本発明のCu−Ni−Si−Mg系合金は、Cu−Ni−Si系合金と同レベルの高強度、高導電性、良好な曲げ加工性及び応力緩和特性を保持し、更に高温下における優れた耐熱めっき剥離性を示す。   The Cu—Ni—Si—Mg based alloy of the present invention retains the same high strength, high conductivity, good bending workability and stress relaxation properties as the Cu—Ni—Si based alloy, and is excellent at high temperatures. Excellent heat-resistant plating peelability.

2段階均質化熱処理の概略であり、処理中の材料の温度履歴を示す。2 is a schematic of a two-stage homogenization heat treatment, showing the temperature history of the material being processed.

(1)Ni濃度
本発明のCu−Ni−Si−Mg系合金では、Ni濃度が1.0質量%未満であると析出物X又はYが充分に析出しないため目的とする強度が得られない。Ni濃度が4.5質量%を超えると、鋳造インゴット中に粗大な析出物が形成され易く、熱間圧延で割れが発生しやすくなる。
(1) Ni concentration In the Cu-Ni-Si-Mg-based alloy of the present invention, if the Ni concentration is less than 1.0 mass%, the precipitate X or Y does not sufficiently precipitate, so that the intended strength cannot be obtained. . If the Ni concentration exceeds 4.5% by mass, coarse precipitates are likely to be formed in the casting ingot, and cracks are likely to occur during hot rolling.

(2)Si濃度
Siの添加濃度は、0.16〜1.13質量%とする。Si量が0.16質量%未満になると、析出物X又はYが充分に析出せずNi固溶量が増大するため高い導電性が得られない。Si量が1.13質量%を超えると、母材表面のSi濃度が増大するため耐熱めっき剥離性が悪化する。
(2) Si concentration The additive concentration of Si is 0.16 to 1.13% by mass. When the amount of Si is less than 0.16% by mass, the precipitate X or Y does not sufficiently precipitate and the amount of Ni solid solution increases, so that high conductivity cannot be obtained. When the amount of Si exceeds 1.13% by mass, the Si concentration on the surface of the base material increases, so that the heat-resistant plating peelability deteriorates.

(3)Mg濃度
Mg濃度が0.05質量%未満では、目的とするMg添加効果である耐応力緩和特性(クリープ変形に対する耐性)が得られない。0.30質量%を超えると、析出物Xのサイズが大きく又は個数が多くなるため熱間加工性が悪化する。また、固溶Mg量が増大するため導電性が劣る。
(3) Mg concentration When the Mg concentration is less than 0.05% by mass, the intended stress relaxation resistance (resistance to creep deformation), which is the effect of adding Mg, cannot be obtained. When it exceeds 0.30 mass%, the size of the precipitate X is large or the number of the precipitates X is large, so that hot workability is deteriorated. Moreover, since the amount of solid solution Mg increases, electroconductivity is inferior.

(4)析出物X(Ni−Si−Mg析出物)
析出物X(Ni−Si−Mg析出物)は、本発明の銅合金中に形成されたNi、Si及びMgを含有する析出物(第二相粒子)をいう。析出物X中のMg割合は、通常0.5〜16質量%程度である。0.5質量%未満の場合、成分分析ではMgの存在が検出できず析出物Y(Ni−Si析出物)との区別が不可能である。そのため、本発明ではNi及びSiを含む析出物であってMg割合が0.5%未満のものは析出物Yとして扱う。多数の析出物Xを分析した結果、本発明の合金組成及び目的とする析出物X及びYの粒径であると、析出物X中のMg量は16質量%以内であった。
本発明の析出物X及び析出物Yは、鋳造時の晶出物であり時効処理時の析出物でもある。本発明では析出物Xを存在させることにより、母材のMg濃度が低下して導電性が改善され、均質化熱処理後の溶体化処理でも残存する析出物Xの存在により結晶粒成長に対するピン止め効果として良い影響を与え、従来例より細かい平均結晶粒径を得ることができる。
(4) Precipitate X (Ni-Si-Mg precipitate)
Precipitate X (Ni—Si—Mg precipitate) refers to a precipitate (second phase particle) containing Ni, Si and Mg formed in the copper alloy of the present invention. The Mg ratio in the precipitate X is usually about 0.5 to 16% by mass. When the amount is less than 0.5% by mass, the presence of Mg cannot be detected by component analysis and cannot be distinguished from the precipitate Y (Ni—Si precipitate). Therefore, in the present invention, a precipitate containing Ni and Si and having a Mg ratio of less than 0.5% is treated as a precipitate Y. As a result of analyzing a large number of precipitates X, the amount of Mg in the precipitates X was within 16% by mass with the alloy composition of the present invention and the particle sizes of the target precipitates X and Y.
The precipitate X and precipitate Y of the present invention are crystallized products during casting and also precipitates during aging treatment. In the present invention, the presence of the precipitate X reduces the Mg concentration of the base material and improves the conductivity, and pinning of the crystal growth is caused by the presence of the precipitate X remaining in the solution treatment after the homogenization heat treatment. It has a good effect as an effect, and an average crystal grain size finer than the conventional example can be obtained.

本発明の析出物Xの平均粒径は、0.05〜3.0μm、更に好ましくは0.50〜3.0μmである。平均粒径が0.05μm未満の場合は、析出物の大きさが小さ過ぎるために強度に寄与しないと共に、母相に固溶するMg量が多くなるため目的の導電性が得られない。一方、析出物Xの平均粒径が3.0μmを超える場合には、析出物が粗大化し強度への寄与をしなくなると共に、熱間割れが発生しやすくなり加工性に劣る。更に、粒径が10μmを超える析出物Xが存在する場合には、著しく曲げ加工性が悪化する。   The average particle size of the precipitate X of the present invention is 0.05 to 3.0 μm, more preferably 0.50 to 3.0 μm. When the average particle size is less than 0.05 μm, the size of the precipitate is too small to contribute to the strength, and the amount of Mg dissolved in the matrix increases, so that the intended conductivity cannot be obtained. On the other hand, when the average particle size of the precipitate X exceeds 3.0 μm, the precipitate becomes coarse and does not contribute to the strength, and hot cracking is likely to occur, resulting in poor workability. Further, when the precipitate X having a particle size exceeding 10 μm exists, the bending workability is remarkably deteriorated.

本発明の合金中の析出物Xの個数は、圧延方向に直角な断面1平方mm当たり好ましくは1.0×103〜1.0×105個である。析出物Xの数が103個未満である場合、数が少なすぎるため析出物Xを析出させても導電性と曲げ性の向上に寄与しない。一方、析出物Xの数が105個を超えると析出物Yを形成するべきNi及びSiが消費されてしまい、析出物Yが充分に形成されずにCu−Ni−Si系合金本来の高強度が担保できない。The number of precipitates X in the alloy of the present invention is preferably 1.0 × 10 3 to 1.0 × 10 5 per square mm of the cross section perpendicular to the rolling direction. When the number of the precipitates X is less than 10 3 , the number is too small, so that even if the precipitates X are precipitated, they do not contribute to the improvement of conductivity and bendability. On the other hand, when the number of the precipitates X exceeds 10 5, Ni and Si that should form the precipitates Y are consumed, and the precipitates Y are not sufficiently formed, and the Cu—Ni—Si based alloy inherently high Strength cannot be secured.

本発明の析出物Xは、主に合金鋳造時に発生する析出物に由来する。従来は、圧延段階での割れを防ぐために、鋳造の次工程で加熱することにより均質化熱処理を行い、析出物はすべて固溶させていた。本発明では、この均質化熱処理条件を制御し、インゴットの鋳造組織を均質化しつつ、目的のサイズ及び数の析出物Xとなるように晶出物を残すこととした。なお、析出物Xは融点が高いため、均質化熱処理後の溶体化熱処理工程や時効工程を経ても、熱影響の拡散により粒径は若干変化するものの、消失はしない。   The precipitate X of the present invention is mainly derived from precipitates generated during alloy casting. Conventionally, in order to prevent cracking in the rolling stage, the homogenization heat treatment was performed by heating in the next process of casting, and all precipitates were dissolved. In the present invention, this homogenization heat treatment condition is controlled, and the crystallized matter is left so that the desired size and number of precipitates X can be obtained while homogenizing the cast structure of the ingot. In addition, since the precipitate X has a high melting point, even though it undergoes a solution heat treatment step and an aging step after the homogenization heat treatment, the particle size slightly changes due to diffusion of the heat effect, but does not disappear.

(5)析出物Y(Ni−Si析出物)
析出物Y(Ni−Si析出物)は、本発明の銅合金中に形成されたNi及びSiを含有する析出物(第二相粒子)をいい、通常の組成はNi2Si等で表される。
析出物Yは、通常のコルソン合金の製造と同様に、製造工程中で溶体化処理を行いNiとSiを母材に充分固溶させておいて、時効処理により母材から析出させることにより生成する。また、粒径や密度はこれらの熱処理条件により制御を行うことができる。析出物Yの平均粒径は、0.01〜0.10μm、好ましくは0.05〜0.10μmである。析出物Yの平均粒径が0.01μm未満の場合は、大きさが小さ過ぎるために強度に寄与しない。一方、析出物Yの平均粒径が0.10μm以上の場合には粗大であるため強度への寄与をしなくなる。なお、粒径が3.0μmを超える析出物Yが存在する場合には、強度及び応力緩和性が悪化しやすい。
析出物Yの個数は、好ましくは1×108〜1×1011個、更に好ましくは1×109〜1×1011個であり、1×108個未満の場合には、析出物の数が少ないために強度に寄与しない。一方、析出物の個数が1×1011個を超える場合には曲げ加工性を低下させる。
(5) Precipitate Y (Ni-Si precipitate)
Precipitate Y (Ni-Si precipitate) refers to a precipitate (second phase particle) containing Ni and Si formed in the copper alloy of the present invention, and its normal composition is represented by Ni 2 Si or the like. The
Precipitate Y is formed by solution treatment in the manufacturing process, Ni and Si are sufficiently dissolved in the base material, and precipitated from the base material by aging treatment, in the same manner as in the manufacture of ordinary Corson alloy. To do. The particle size and density can be controlled by these heat treatment conditions. The average particle size of the precipitate Y is 0.01 to 0.10 μm, preferably 0.05 to 0.10 μm. When the average particle size of the precipitate Y is less than 0.01 μm, the size is too small and does not contribute to the strength. On the other hand, when the average particle size of the precipitate Y is 0.10 μm or more, the precipitate Y is coarse and does not contribute to the strength. In addition, when the precipitate Y with a particle size exceeding 3.0 μm exists, the strength and the stress relaxation property are likely to deteriorate.
The number of precipitates Y is preferably 1 × 10 8 to 1 × 10 11, more preferably 1 × 10 9 to 1 × 10 11 , and when the number is less than 1 × 10 8 , the number of precipitates is Does not contribute to strength because it is small. On the other hand, when the number of precipitates exceeds 1 × 10 11, bending workability is lowered.

(6)Ni、Si、Mg以外の添加元素
Cr、P、Mn、Ag、Co及びMoは強度の改善と耐熱性の向上に効果があり、As、Sbはめっき剥離性の改善に効果があり、Al、Hf、Zr、Ti、C、Fe、In、Ta、Sn及びZnは溶体化処理における結晶粒径の粗大化防止に効果がある。
これら元素の添加量は0.01質量%未満では添加効果が得られず、2.0質量%を超えると導電性が低下してしまう。
(6) Additive elements other than Ni, Si and Mg Cr, P, Mn, Ag, Co and Mo are effective in improving strength and heat resistance, and As and Sb are effective in improving plating peelability. , Al, Hf, Zr, Ti, C, Fe, In, Ta, Sn, and Zn are effective in preventing the coarsening of the crystal grain size in the solution treatment.
If the addition amount of these elements is less than 0.01% by mass, the effect of addition cannot be obtained, and if it exceeds 2.0% by mass, the conductivity is lowered.

(7)製造方法
本発明の銅合金の製造方法は、析出強化型銅合金で一般的な製造プロセス(溶解・鋳造→均質化熱処理→熱間圧延→中間冷間圧延→中間溶体化→最終冷間圧延→時効、又は、溶解・鋳造→均質化熱処理→熱間圧延→中間冷間圧延→中間溶体化→時効→最終冷間圧延)を使用するが、その工程内で均質化熱処理条件を調整して目的の銅合金を製造する。なお、中間圧延、中間溶体化については、必要に応じて複数回繰り返してもよい。
本発明の銅合金を製造するには、均質化熱処理条件、溶体化処理及び焼鈍の条件を厳密に制御することが重要である。すなわち、均質化熱処理では、鋳造で発生したNi−Si−Mg析出物Xは本発明の範囲内となるように残し、Ni−Si析出物Yは充分になくす条件で行われなければならない。なお、溶体化処理では、NiとSiが十分に固溶して、析出物Yが存在しない条件が望ましいが、残った析出物Xが消滅しないような条件であればよい。最後の時効については、平均粒径が小さな析出物Yが充分に析出する条件であればよく、この条件は従来の時効条件と同様でよい。
(7) Manufacturing Method The manufacturing method of the copper alloy of the present invention is a general manufacturing process (melting / casting → homogenization heat treatment → hot rolling → intermediate cold rolling → intermediate solution forming → final cooling) with a precipitation strengthened copper alloy. Hot rolling → intermediate cold rolling → intermediate solution rolling → aging → final cold rolling), but the homogenization heat treatment conditions are adjusted within the process. Thus, the target copper alloy is manufactured. In addition, about intermediate rolling and intermediate solution forming, you may repeat several times as needed.
In order to produce the copper alloy of the present invention, it is important to strictly control the conditions for the homogenization heat treatment, the solution treatment, and the annealing. That is, in the homogenization heat treatment, the Ni—Si—Mg precipitate X generated by casting is left so as to be within the scope of the present invention, and the Ni—Si precipitate Y must be sufficiently removed. In the solution treatment, it is desirable that Ni and Si are sufficiently solid-solubilized so that the precipitate Y does not exist. However, the condition may be such that the remaining precipitate X does not disappear. About the last aging, what is necessary is just the conditions which precipitate Y with a small average particle diameter fully precipitates, and this conditions may be the same as the conventional aging conditions.

溶解・鋳造工程では、電気銅、Ni、Si、Mg等の原料を溶解し、所望の組成の溶湯を得てインゴットに鋳造する。そのインゴットの均質化熱処理及び熱間圧延において、鋳造で発生したNi−Si析出物Yを消失させ、かつNi−Si−Mg析出物Xを本発明の範囲内に調整するためには、均質化熱処理を2段で行うと良い。その場合、1段目の均質化熱処理として炉内の雰囲気温度を800℃以上890℃未満で設定し、材料温度が設定温度に達してから0.5〜2.5時間保持する。更に、残った粗大なNi−Si−Mg析出物Xの平均粒径を小さくするために、2段目の均質化熱処理として炉内の雰囲気温度を890℃〜980℃に設定し、材料温度が設定温度に達した時から0.5〜1.2時間保持した後、すぐに熱間圧延を行うとよい。1段目と2段目の加熱は一つの炉にて連続して行えばよく、1段目の熱処理ゾーンから2段目の熱処理ゾーンに移動させることで行われる。この2段階均質化熱処理の材料の温度履歴の概略を図1に示す。また、別々の炉にてインゴットの温度が低下しないように1段目の炉から取り出したらすぐに2段目の炉に挿入して2段目の加熱を開始することでもよい。
1段目の保持温度が800℃未満ではNi−Si析出物Yが充分に固溶せず、析出物Xは平均粒径が大きいまま残存し、一方、890℃以上では、析出物Xも固溶して消失してしまう。また、2段目の保持温度が890℃未満では、析出物Xは消失しないが、析出物Xの粒子が大きいまま残存する可能性があり、一部の析出物Yも固溶せずに残存する可能性がある。一方、2段目の保持温度が980℃を超えると析出物Xが全て固溶してしまう可能性がある。
この均質化熱処理では、バーナーや誘電体等の公知の手段により加熱が行われる。加熱に際しては、出力エネルギー及び炉内のインゴット重量をそれぞれ一定に保つように注意する。同一設定温度でもインゴット重量が軽い場合には加熱し過ぎになり、インゴット重量が重い場合には加熱が不充分になる危険性がある。
In the melting / casting step, raw materials such as electrolytic copper, Ni, Si, and Mg are melted to obtain a molten metal having a desired composition and cast into an ingot. In the homogenization heat treatment and hot rolling of the ingot, in order to eliminate the Ni-Si precipitate Y generated by casting and adjust the Ni-Si-Mg precipitate X within the scope of the present invention, the homogenization is performed. Heat treatment is preferably performed in two stages. In that case, the atmosphere temperature in the furnace is set at 800 ° C. or more and less than 890 ° C. as the first stage homogenization heat treatment, and is held for 0.5 to 2.5 hours after the material temperature reaches the set temperature. Furthermore, in order to reduce the average particle size of the remaining coarse Ni—Si—Mg precipitate X, the atmosphere temperature in the furnace was set to 890 ° C. to 980 ° C. as the second stage homogenization heat treatment, and the material temperature was It is preferable to perform hot rolling immediately after holding for 0.5 to 1.2 hours after reaching the set temperature. The first and second stage heating may be performed continuously in one furnace, and is performed by moving from the first stage heat treatment zone to the second stage heat treatment zone. An outline of the temperature history of the material of this two-stage homogenization heat treatment is shown in FIG. Alternatively, in order to prevent the temperature of the ingot from decreasing in a separate furnace, it may be inserted into the second stage furnace as soon as it is taken out from the first stage furnace, and the second stage heating may be started.
When the first stage holding temperature is less than 800 ° C., the Ni—Si precipitate Y is not sufficiently dissolved, and the precipitate X remains with a large average particle diameter, whereas at 890 ° C. or higher, the precipitate X is also solid. Dissolve and disappear. In addition, when the second stage holding temperature is less than 890 ° C., the precipitate X does not disappear, but the particles of the precipitate X may remain large, and some of the precipitate Y remains without being dissolved. there's a possibility that. On the other hand, if the second stage holding temperature exceeds 980 ° C., the precipitate X may be completely dissolved.
In this homogenization heat treatment, heating is performed by a known means such as a burner or a dielectric. When heating, care is taken to keep the output energy and the ingot weight in the furnace constant. If the ingot weight is light even at the same set temperature, it will be overheated, and if the ingot weight is heavy, there is a risk that the heating will be insufficient.

均質化熱処理の第1段目の炉内の雰囲気温度を800℃以上890℃未満で、0.5〜2.5時間保持することにより、Ni−Si−Mg系析出物Xはほとんど変化しないが、Ni−Si系析出物Yの平均粒径は小さくなる。続いて、第2段目の熱処理を890℃〜980℃で、0.5〜1.2時間とすることで、Ni−Si−Mg系析出物Xの平均粒径は小さくなり、一部は消失するが、残った析出物Xは、所定のサイズ、個数となる一方、第1段目の熱処理を経ても残っていたNi−Si系析出物Yはすべて消失する。上記2段階均質化熱処理後に熱間圧延が行われた後、Ni−Si−Mg系析出物Xは熱間圧延後のサイズと個数で最後まで存在する。一方、Ni−Si系析出物Yは溶体化・冷間圧延を経て時効処理によって所定のサイズと個数が析出する。   The Ni—Si—Mg-based precipitate X is hardly changed by maintaining the atmosphere temperature in the first stage furnace of the homogenization heat treatment at 800 ° C. or more and less than 890 ° C. for 0.5 to 2.5 hours. The average particle diameter of the Ni—Si based precipitate Y becomes small. Subsequently, by performing the second stage heat treatment at 890 ° C. to 980 ° C. for 0.5 to 1.2 hours, the average particle size of the Ni—Si—Mg based precipitate X becomes small, and part of Although it disappears, the remaining precipitates X have a predetermined size and number, while all the Ni—Si based precipitates Y that have remained after the first heat treatment disappear. After hot rolling is performed after the two-stage homogenization heat treatment, Ni—Si—Mg-based precipitates X exist to the end in the size and number after hot rolling. On the other hand, the Ni-Si-based precipitate Y undergoes solution treatment and cold rolling, and a predetermined size and number are precipitated by aging treatment.

熱間圧延後には、中間圧延及び中間溶体化を、本発明の目的の範囲内において回数及び順番を適宜選択して行う。中間圧延の最終パスの加工度が30%未満であると、析出物Yの析出の起点となる転位の量が少ないために析出物Yの個数が少なくなり強度が低下する。一方、加工度が99%を超えると転位の量が多くなり析出物Yの個数は多くなるが、析出物Yの平均粒径が小さくなり過ぎて強度が低下する。したがって、特に最終パスの中間圧延加工度は、30%〜99%にすることが好ましい。
中間溶体化は、溶解鋳造時の晶出粒子や、熱間圧延後の析出粒子を固溶させてできるかぎり析出物Yをなくすために充分に行う。例えば、溶体化処理温度が500℃未満だと固溶が不充分であり、所望の強度を得ることが出来ない。一方、溶体化処理温度が850℃を超えると材料が溶解する可能性がある。従って、材料温度を500℃〜850℃に加熱する溶体化処理を行うのが好ましい。溶体化処理の時間は60秒〜2時間とするのが好ましい。
After the hot rolling, intermediate rolling and intermediate solution forming are performed by appropriately selecting the number of times and the order within the range of the object of the present invention. If the degree of work in the final pass of the intermediate rolling is less than 30%, the number of precipitates Y is reduced because the amount of dislocations that are the starting points of precipitation Y is reduced, and the strength is lowered. On the other hand, when the degree of work exceeds 99%, the amount of dislocations increases and the number of precipitates Y increases, but the average particle size of the precipitates Y becomes too small and the strength decreases. Therefore, the intermediate rolling degree of the final pass is preferably 30% to 99%.
The intermediate solution treatment is sufficiently performed to eliminate the precipitate Y as much as possible by dissolving the crystallized particles during melt casting and the precipitated particles after hot rolling. For example, when the solution treatment temperature is less than 500 ° C., the solid solution is insufficient and the desired strength cannot be obtained. On the other hand, when the solution treatment temperature exceeds 850 ° C., the material may be dissolved. Therefore, it is preferable to perform a solution treatment in which the material temperature is heated to 500 ° C to 850 ° C. The solution treatment time is preferably 60 seconds to 2 hours.

なお、溶体化処理温度と時間の関係として、同じ熱処理効果(例えば、析出物Yの同じ平均粒径)を得るため、常識的には、高温の場合には時間は短く、低温の場合には長くなければならない。例えば、本発明においては、600℃の場合には1時間、750℃の場合には2、3分〜30分が望ましい。
溶体化処理後の冷却速度は、一般的には固溶成分が第二相粒子(析出物Y)として析出しないように急冷する。
最終圧延の加工度は0〜50%、好ましくは5〜20%である。50%を超えると曲げ加工性が低下する。
本発明の最終時効工程は、従来技術と同様に行われ、本発明の範囲内の微細な第二相粒子(析出物Y及び、場合によっては析出物Xも含む)を均一に析出させる。
As a relation between the solution treatment temperature and time, in order to obtain the same heat treatment effect (for example, the same average particle diameter of the precipitate Y), it is common sense that the time is short at a high temperature and at a low temperature. It must be long. For example, in the present invention, 1 hour is desirable at 600 ° C. and 2 to 3 minutes to 30 minutes at 750 ° C.
The cooling rate after the solution treatment is generally rapidly cooled so that the solid solution component does not precipitate as second phase particles (precipitate Y).
The degree of work of final rolling is 0 to 50%, preferably 5 to 20%. If it exceeds 50%, the bending workability deteriorates.
The final aging step of the present invention is performed in the same manner as in the prior art, and fine second-phase particles (including the precipitate Y and, optionally, the precipitate X) within the scope of the present invention are uniformly precipitated.

実施例1(銅合金の製造)
高周波誘導炉を用い5kgの高純度銅を溶解した。溶銅表面を木炭片で覆った後、所定量のNi、SiおよびMgを添加し、溶銅温度を1200℃に調整した。その後、溶湯を金型に鋳込み、幅65mm、厚み20mmのインゴットを製造した。製造したインゴットの成分については、JIS H1292に従い、インゴットからサンプルを切り出し、蛍光X線分析により構成元素の量を分析した。
次に、このインゴットを表1に記載された均質化熱処理を行った後、厚さ8mmまで熱間圧延した。この段階でも、鋳造時に生成したNi−SiとNi−Si−Mgの析出物は残留している。上記熱間圧延された板表面の酸化スケ−ルを研削除去した後、板厚0.2mmまで冷間圧延した。溶体化処理として750℃〜800℃で20秒間加熱し水中で急冷した後、化学研磨により表面酸化膜を除去した。その後、加工度25%の冷間圧延を行い、時効処理として不活性雰囲気において460℃で7.5時間加熱した。
Example 1 (Manufacture of copper alloy)
Using a high frequency induction furnace, 5 kg of high purity copper was dissolved. After covering the molten copper surface with charcoal pieces, predetermined amounts of Ni, Si and Mg were added to adjust the molten copper temperature to 1200 ° C. Thereafter, the molten metal was cast into a mold to produce an ingot having a width of 65 mm and a thickness of 20 mm. About the component of the manufactured ingot, according to JISH1292, the sample was cut out from the ingot and the quantity of the structural element was analyzed by the fluorescent X ray analysis.
Next, this ingot was subjected to homogenization heat treatment described in Table 1, and then hot-rolled to a thickness of 8 mm. Even at this stage, precipitates of Ni—Si and Ni—Si—Mg generated during casting remain. The hot-rolled plate surface oxidized scale was ground and removed, and then cold-rolled to a plate thickness of 0.2 mm. As a solution treatment, the surface oxide film was removed by chemical polishing after heating at 750 ° C. to 800 ° C. for 20 seconds and quenching in water. Thereafter, cold rolling with a workability of 25% was performed, and the aging treatment was performed at 460 ° C. for 7.5 hours in an inert atmosphere.

このようにして作製した試料に対して次の評価を行った。
(1)析出物の個数および大きさの測定
圧延方向に直角な断面を、直径1μmのダイヤモンド砥粒を用いた機械研磨により鏡面に仕上げ、FE−SEM(電解放射型走査電子顕微鏡)を用い、400倍の倍率で、長さが0.05mm以上の析出物の個数を計測した。観察面積は60mm2とし観察面積内の析出物の個数を数え上げた。また、計測対象の析出物の成分としてNi及びSi、又はNi、Si及びMgが含まれることを、FE−SEM(電解放射型走査電子顕微鏡)のEDS(エネルギー分散型X線分析)を用いて全ての析出物に対して成分分析することにより確認した。ここで析出物XとYの区別は検出精度の問題からNi、Si及びMgを含む析出物であってもMgの割合が0.5%未満のものは析出物Yとして扱う。
また、平均粒径を計測する際に、平均粒径10μm以上のNi−Si−Mg析出物Xの有無を確認した。粒径はFE−SEMで撮影した写真の析出物の一番長い部分の長さとした。平均粒径は観察面積内すべての結晶粒径を足し、結晶粒の個数で割った単純平均で求めている。
The following evaluation was performed on the sample thus fabricated.
(1) Measurement of the number and size of precipitates A cross section perpendicular to the rolling direction is mirror-finished by mechanical polishing using diamond abrasive grains having a diameter of 1 μm, and an FE-SEM (electrolytic emission scanning electron microscope) is used. The number of precipitates having a length of 0.05 mm or more was measured at a magnification of 400 times. The observation area was 60 mm 2 and the number of precipitates in the observation area was counted. In addition, the use of EDS (energy dispersive X-ray analysis) of FE-SEM (electrolytic emission scanning electron microscope) that Ni and Si or Ni, Si and Mg are included as components of precipitates to be measured. It confirmed by analyzing a component with respect to all the deposits. Here, the distinction between the precipitates X and Y is a precipitate containing Ni, Si, and Mg because of the problem of detection accuracy.
Moreover, when measuring an average particle diameter, the presence or absence of the Ni-Si-Mg precipitate X with an average particle diameter of 10 micrometers or more was confirmed. The particle diameter was the length of the longest part of the deposit of the photograph image | photographed with FE-SEM. The average grain size is obtained by a simple average obtained by adding all crystal grain sizes in the observation area and dividing by the number of crystal grains.

(2)母材の導電率測定
試料から試験片を切り取り、機械研磨と化学エッチングにより表面酸化層を完全に除去した後、4端子法により導電率(%IACS)を測定した。本発明で目的とする好ましい導電率は、45%IACS以上である。
(2) Conductivity measurement of base material A test piece was cut out from a sample, and the surface oxide layer was completely removed by mechanical polishing and chemical etching, and then the conductivity (% IACS) was measured by a four-terminal method. The preferred electrical conductivity aimed at in the present invention is 45% IACS or higher.

(3)曲げ加工性
JIS H 3130に記載のW曲げ試験を、曲げ半径Rが0になるように行った。試験方向はBad Way(曲げ軸が圧延方向と平行な方向)とした。試験片は幅10mm、長さ30mmの短冊形とした。次に、上記曲げRにてW曲げを行った試験片に対し、光学顕微鏡を用いて曲げ部断面を目視にて観察し、曲げ加工性の良否を判断した。評価基準は次の通りである。○:しわ、亀裂が無い、△:材料表面にしわがある、×:亀裂が発生。
(3) Bending workability The W bending test described in JIS H 3130 was performed so that the bending radius R was zero. The test direction was Bad Way (the direction in which the bending axis was parallel to the rolling direction). The test piece was a strip having a width of 10 mm and a length of 30 mm. Next, the cross section of the bending part was visually observed using an optical microscope for the test piece subjected to W bending with the bending R, and the quality of the bending workability was judged. The evaluation criteria are as follows. ○: No wrinkles or cracks, Δ: Wrinkles on the material surface, ×: Cracks occurred.

(4)引張強度
引張り方向が圧延方向と平行になる方向に、JIS Z 2201(2003年)に規定された13B号試験片を採取した。この試験片を用いてJIS Z 2241(2003年)に従って引張試験を行い、引張強度を求めた。本発明で目的とする好ましい引張強度は、760MPa以上である。
(4) Tensile strength No. 13B test piece defined in JIS Z 2201 (2003) was collected in a direction in which the tensile direction was parallel to the rolling direction. Using this test piece, a tensile test was performed according to JIS Z 2241 (2003) to obtain a tensile strength. The preferable tensile strength aimed at in the present invention is 760 MPa or more.

(5)応力緩和特性
高温下での耐応力緩和特性として、応力緩和率(日本伸銅協会(JCBA)の技術標準:JCBA T309)を測定した。この試験は、幅10mmの短冊試験片を片持ちはりに取付け、高温の曲げ状態で所定時間保持後のたわみ変位(自由端における所定位置の変位)を初期状態と比較し、温度によるへたりを評価する方法である。試験後と初期状態のたわみが変わらない場合の応力緩和率の値は0%となり、試験後のたわみが初期状態より大きくなるほど、応力緩和率の値が大きくなる(応力が低下する)。応力緩和率は下式で与えられる(但し、y=所定時間経過後のたわみ変位(mm)、y1=初期たわみ(mm)、y0=設定高さ(mm))。
応力緩和率=(y−y1)/y0×100(%)
(5) Stress relaxation property As the stress relaxation property at high temperature, the stress relaxation rate (Technical Standard of Japan Copper and Brass Association (JCBA): JCBA T309) was measured. In this test, a strip test piece having a width of 10 mm is attached to a cantilever beam, the deflection displacement (displacement at a predetermined position at the free end) after being held for a predetermined time in a high-temperature bending state is compared with the initial state, and a sag due to temperature is observed. It is a method to evaluate. When the deflection after the test and the initial state does not change, the value of the stress relaxation rate is 0%, and as the deflection after the test becomes larger than the initial state, the value of the stress relaxation rate increases (stress decreases). The stress relaxation rate is given by the following equation (where, y = deflection displacement (mm) after elapse of a predetermined time, y 1 = initial deflection (mm), y 0 = set height (mm)).
Stress relaxation rate = (y−y 1 ) / y 0 × 100 (%)

又、設定高さy0は下式で与えられる(但し、L=標点距離(mm)、σ0=負荷応力(kg/mm2);0.2%耐力の80%または0.2%耐力以下の任意の応力、E=ヤング率(kg/mm2)、t=板厚(mm))。
0=(2/3)×L×L×σ0/(E×t)
Further, the set height y 0 is given by the following equation (where L = target distance (mm), σ 0 = load stress (kg / mm 2 ); 0.2% proof stress 80% or 0.2% Arbitrary stress below yield strength, E = Young's modulus (kg / mm 2 ), t = plate thickness (mm)).
y 0 = (2/3) × L × L × σ 0 / (E × t)

応力緩和の測定は、試料を150℃とし、一定の緩和率を示すまで測定を行った。およそ1000時間でほぼ一定の応力緩和率を示したので、この値を応力緩和率とした。
一般的に使用されるコルソン合金の150℃×1000h後の応力緩和率は10%程度である。従って、以下の各発明例及び比較例の評価において、応力緩和率が9%以下のものを高温下での耐応力緩和特性が良好であるとみなした。
The stress relaxation was measured until the sample was 150 ° C. and showed a certain relaxation rate. Since a substantially constant stress relaxation rate was exhibited in about 1000 hours, this value was taken as the stress relaxation rate.
The stress relaxation rate after 150 ° C. × 1000 h of a commonly used Corson alloy is about 10%. Therefore, in the evaluation of each of the following invention examples and comparative examples, those having a stress relaxation rate of 9% or less were considered to have good stress relaxation resistance at high temperatures.

Figure 2010126046
Figure 2010126046

上記表中「-*」は他の元素の無添加を表す。
発明例1〜10については、第1段目の均質化熱処理が800℃から890℃未満×2時間、第2段目の熱処理が890℃〜980℃×0.5〜1.2hであるので、熱間圧延後では、析出物Xは10μmを超える粗大粒が存在せず、かつ平均粒径が0.05〜3.0μmであり、析出物Yはすべて固溶し、消失していた。その後、溶体化・冷間圧延を経て時効処理において、析出物Yを平均粒径が0.01〜0.10μmとなるような時効条件にて析出させることができた。その結果、高強度、高導電性、良好な曲げ加工性と応力緩和性を得ることができた。
In the above table, “-*” represents no addition of other elements.
In Invention Examples 1 to 10, the first stage homogenization heat treatment is 800 ° C. to less than 890 ° C. × 2 hours, and the second stage heat treatment is 890 ° C. to 980 ° C. × 0.5 to 1.2 h. After the hot rolling, the precipitate X had no coarse particles exceeding 10 μm, the average particle size was 0.05 to 3.0 μm, and all the precipitate Y was dissolved and disappeared. Thereafter, in the aging treatment after solution heat treatment and cold rolling, the precipitate Y could be precipitated under the aging conditions such that the average particle diameter was 0.01 to 0.10 μm. As a result, high strength, high conductivity, good bending workability and stress relaxation were obtained.

比較例11〜15では均質化熱処理は1段で行われた。比較例11では、均質化熱処理温度が870℃と低いため、熱処理では析出物Xのサイズは小さくならず、10μm以上の粗大な析出物Xが製品中に残った。一方、均質化熱処理前にサイズの大きかった析出物Yは、870℃の均質化熱処理温度では消失せずに残存してしまう。均質化熱処理後の熱間圧延を経ても残存していた析出物Yは、溶体化、圧延、時効処理(発明例1〜10と同じ条件)を経ても消失しない。そのため、粗大析出物Yが存在しない場合であれば平均粒径が0.1μm以下となるような時効条件で析出物Yを析出させても、粗大析出物Yが時効前から存在するため、平均粒径が0.10μmを超え、また、析出物Yの個数も少なくなる。そのため、比較例11は、析出物Xの大きな析出物の存在で曲げ加工性が悪く、析出物Yの個数が少ないことにより強度も劣る。更に、多数の析出物X中にMgが多く存在するために固溶Mg量が低下して応力緩和特性も悪い。   In Comparative Examples 11 to 15, the homogenization heat treatment was performed in one stage. In Comparative Example 11, since the homogenization heat treatment temperature was as low as 870 ° C., the size of the precipitate X was not reduced by the heat treatment, and coarse precipitates X of 10 μm or more remained in the product. On the other hand, the precipitate Y having a large size before the homogenization heat treatment remains without disappearing at the homogenization heat treatment temperature of 870 ° C. Precipitate Y remaining after hot rolling after homogenization heat treatment does not disappear even after solution treatment, rolling, and aging treatment (same conditions as in Invention Examples 1 to 10). Therefore, even if the precipitate Y is precipitated under aging conditions such that the average particle size is 0.1 μm or less if the coarse precipitate Y is not present, the coarse precipitate Y exists from before the aging, so the average The particle size exceeds 0.10 μm, and the number of precipitates Y decreases. For this reason, Comparative Example 11 has poor bending workability due to the presence of large precipitates X, and the strength is inferior due to the small number of precipitates Y. Furthermore, since a large amount of Mg is present in a large number of precipitates X, the amount of solid solution Mg is reduced and the stress relaxation characteristics are also poor.

比較例12、13では、均質化熱処理温度が比較例11より高いため、10μm以上の粗大析出物Xは無いが、時間が比較的短いため、析出物Xの平均粒径は3.0μm以下にはならず、サイズの大きかった析出物Yは均質化熱処理を経ても消失しなかった。その結果、比較例12、13は、析出物Yの平均粒径が0.10μmを超えると共に個数が少なかったため強度に劣り、析出物Xの個数が多く平均粒径も大きいので応力緩和特性も悪い。
比較例14、15では、従来技術と同様に析出物X及び析出物Yが全て消失するような条件で均質化熱処理を行った。その後の時効処理で、析出物Yがそれぞれ1.7×108個、1.2×108個析出したため高強度を得ることができたが、析出物Xが存在しないので、母材中のMgの量が過剰となり、導電率が劣った。
比較例16の均質化熱処理では、析出物Xの平均粒径及び最大粒径の制御は可能であった。しかし、第1段目の熱処理温度が低いために、第2段目の温度が900℃でも熱処理前にサイズの大きかった析出物Yは小さくなるが消失しないため、析出物Yの平均粒径は0.10μmを超え、析出物Yの個数も少なかった。その結果、強度が劣った。
比較例17は、第2段目の均質化熱処理の時間が短すぎるため、熱間圧延後にも粗大な析出物Xが残り、析出物Xの平均粒径も3.0μmを超え、さらにサイズの大きな析出物Yが残ったが析出物Y全体の個数は少なかった。その結果、強度、曲げ加工性、応力緩和特性が劣っていた。
比較例18は2段目の熱処理時間が長すぎるため、析出物Xの平均粒径が0.05μm未満となり個数も少なく、導電率が劣っている。
In Comparative Examples 12 and 13, since the homogenization heat treatment temperature is higher than that in Comparative Example 11, there is no coarse precipitate X of 10 μm or more, but since the time is relatively short, the average particle size of the precipitate X is 3.0 μm or less. The precipitate Y having a large size did not disappear even after the homogenization heat treatment. As a result, Comparative Examples 12 and 13 were inferior in strength because the average particle size of the precipitate Y exceeded 0.10 μm and the number was small, and the stress relaxation characteristics were also poor because the number of precipitates X was large and the average particle size was large. .
In Comparative Examples 14 and 15, the homogenization heat treatment was performed under the conditions such that all of the precipitate X and the precipitate Y disappeared as in the prior art. In the subsequent aging treatment, 1.7 × 10 8 precipitates and 1.2 × 10 8 precipitates were precipitated, respectively, so that high strength could be obtained. However, since the precipitate X does not exist, The amount of Mg was excessive and the conductivity was inferior.
In the homogenization heat treatment of Comparative Example 16, the average particle size and maximum particle size of the precipitate X could be controlled. However, since the heat treatment temperature of the first stage is low, the precipitate Y which was large before the heat treatment becomes small but does not disappear even if the temperature of the second stage is 900 ° C. Therefore, the average particle size of the precipitate Y is The number of precipitates Y was less than 0.10 μm. As a result, the strength was inferior.
In Comparative Example 17, since the time for the second stage homogenization heat treatment is too short, coarse precipitates X remain after hot rolling, and the average particle size of the precipitates X exceeds 3.0 μm, and the size Large precipitates Y remained, but the total number of precipitates Y was small. As a result, the strength, bending workability, and stress relaxation characteristics were inferior.
In Comparative Example 18, the heat treatment time in the second stage is too long, so the average particle size of the precipitate X is less than 0.05 μm, the number is small, and the conductivity is inferior.

発明例19〜22、比較例23〜30により、Cu−Ni−Mg系合金に他の元素を添加した合金においても本発明が有効であることがわかる。比較例23〜26では均質化熱処理は1段で行われ、析出物Xが存在しなかったため導電率が低かった。比較例27、28は1段目の均質化熱処理温度が低かったため析出物Yの個数が少ない一方、平均粒径は大きかった。そのため引張強度に劣った。比較例29、30は2段目の均質化熱処理時間が短かったため、析出物Xの粒径が大きく、10μm以上の粗大な析出物Xが製品中に残ったが、析出物Yの個数は少なかった。そのため、引張強度、曲げ加工性、応力緩和特性に劣った。更に比較例29は、析出物Xの個数が多かったため応力緩和特性がより劣るものであった。
なお、耐熱めっき剥離性に関しては、発明例は実際の使用上問題が生じない耐熱めっき剥離性を示したが、発明例20は他の実施例に比べて更に優れた耐熱めっき剥離性を示した。
The invention examples 19-22 and the comparative examples 23-30 show that this invention is effective also in the alloy which added another element to the Cu-Ni-Mg type alloy. In Comparative Examples 23 to 26, the homogenization heat treatment was performed in one stage, and since the precipitate X was not present, the conductivity was low. In Comparative Examples 27 and 28, the number of precipitates Y was small because the first-stage homogenization heat treatment temperature was low, but the average particle size was large. Therefore, it was inferior in tensile strength. In Comparative Examples 29 and 30, the second stage homogenization heat treatment time was short, so the particle size of the precipitate X was large, and coarse precipitates X of 10 μm or more remained in the product, but the number of precipitates Y was small. It was. Therefore, it was inferior in tensile strength, bending workability, and stress relaxation characteristics. Furthermore, in Comparative Example 29, since the number of precipitates X was large, the stress relaxation characteristics were inferior.
In addition, regarding the heat-resistant plating peelability, the invention example showed a heat-resistant plating peelability that does not cause a problem in actual use, but the invention example 20 showed a further excellent heat-resistant plating peelability compared to other examples. .

Claims (4)

1.0〜4.5質量%のNi、0.16〜1.13質量%のSi、及び0.05〜0.30質量%のMgを含有し、残部がCu及び不可避的不純物からなるCu−Ni−Si−Mg系合金であり、Ni−Si−Mg析出物X及びNi−Si析出物Yを含み、析出物Xの平均粒径が0.05〜3.0μmであり、粒径が10μmを超える析出物Xが存在せず、かつ析出物Yの平均粒径が0.01〜0.10μmである銅合金。   Cu containing 1.0 to 4.5% by mass of Ni, 0.16 to 1.13% by mass of Si, and 0.05 to 0.30% by mass of Mg with the balance being Cu and inevitable impurities -Ni-Si-Mg based alloy, including Ni-Si-Mg precipitate X and Ni-Si precipitate Y, the average particle diameter of the precipitate X being 0.05 to 3.0 m, the particle diameter being A copper alloy in which no precipitate X exceeding 10 μm exists and the average particle size of the precipitate Y is 0.01 to 0.10 μm. 上記析出物Xは圧延方向に直角な断面1平方mm当たり1.0×103〜1.0×105個含まれる請求項1の銅合金。2. The copper alloy according to claim 1, wherein the precipitate X is included in an amount of 1.0 × 10 3 to 1.0 × 10 5 per square mm of a cross section perpendicular to the rolling direction. 上記析出物Yは圧延方向に直角な断面1平方mm当たり1.0×108〜1.0×1011個含まれる請求項1又は2の銅合金。3. The copper alloy according to claim 1, wherein the precipitate Y is contained in an amount of 1.0 × 10 8 to 1.0 × 10 11 per square mm of a cross section perpendicular to the rolling direction. Cr、P、Mn、Ag、Co、Mo、As、Sb、Al、Hf、Zr、Ti、C、Fe、In、Ta、Sn及びZnの群から選ばれた少なくとも一種を合計で0.01〜2.0質量%含む請求項1〜3いずれか1項記載の銅合金。   A total of 0.01 to at least one selected from the group consisting of Cr, P, Mn, Ag, Co, Mo, As, Sb, Al, Hf, Zr, Ti, C, Fe, In, Ta, Sn, and Zn. The copper alloy according to any one of claims 1 to 3, comprising 2.0% by mass.
JP2010539650A 2009-04-30 2010-04-27 Cu-Ni-Si-Mg alloy with improved conductivity and bendability Active JP5261500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010539650A JP5261500B2 (en) 2009-04-30 2010-04-27 Cu-Ni-Si-Mg alloy with improved conductivity and bendability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009111253 2009-04-30
JP2009111253 2009-04-30
JP2010539650A JP5261500B2 (en) 2009-04-30 2010-04-27 Cu-Ni-Si-Mg alloy with improved conductivity and bendability
PCT/JP2010/057468 WO2010126046A1 (en) 2009-04-30 2010-04-27 Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY

Publications (2)

Publication Number Publication Date
JPWO2010126046A1 true JPWO2010126046A1 (en) 2012-11-01
JP5261500B2 JP5261500B2 (en) 2013-08-14

Family

ID=43032190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010539650A Active JP5261500B2 (en) 2009-04-30 2010-04-27 Cu-Ni-Si-Mg alloy with improved conductivity and bendability

Country Status (6)

Country Link
JP (1) JP5261500B2 (en)
KR (1) KR101207250B1 (en)
CN (1) CN102105611B (en)
DE (1) DE112010001811B4 (en)
TW (1) TWI406959B (en)
WO (1) WO2010126046A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130264093A1 (en) * 2011-01-24 2013-10-10 La Farga Lacambra, S.A.U. Electrical Conductor for Transporting Electrical Energy and Corresponding Production Method
JP2013098098A (en) * 2011-11-02 2013-05-20 Otsuka Techno Kk Breaker
CN103122423A (en) * 2011-11-19 2013-05-29 大连得达科技发展有限公司 Alloy material
JP5773929B2 (en) * 2012-03-28 2015-09-02 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent bending workability and stress relaxation resistance
CN102719698B (en) * 2012-06-21 2014-04-09 铜陵金威铜业有限公司 CuNiSiMg alloy material and preparation method thereof as well as method for preparing strip using alloy material
CN102876915A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 High-conductivity copper alloy material and preparation method thereof
CN102925746B (en) * 2012-11-29 2014-09-17 宁波兴业鑫泰新型电子材料有限公司 High-performance Cu-Ni-Si system copper alloy, and preparation method and processing method thereof
CN103421983B (en) * 2013-08-23 2015-08-19 苏州长盛机电有限公司 A kind of preparation method of pack fong
JP6301618B2 (en) * 2013-09-17 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
CN104561646B (en) * 2014-11-10 2018-05-01 华玉叶 A kind of preparation process of high strength copper alloy plate
CN104480346A (en) * 2014-12-25 2015-04-01 春焱电子科技(苏州)有限公司 Tantalum contained copper alloy for electronic material
CN104616829B (en) * 2015-01-09 2017-01-11 芜湖航天特种电缆厂股份有限公司 Anti-creeping conductor for cable as well as preparation method and application of such conductor
CN105420541A (en) * 2015-11-03 2016-03-23 顾建 High-strength copper alloy material
CN105914393B (en) * 2016-06-29 2018-11-06 江苏远航精密合金科技股份有限公司 A kind of lithium-ion-power cell Ni-based conductor material and preparation method thereof
CN107086063A (en) * 2017-03-22 2017-08-22 合肥浦尔菲电线科技有限公司 A kind of novel conductive wire and preparation method thereof
JP6670277B2 (en) * 2017-09-14 2020-03-18 Jx金属株式会社 Cu-Ni-Si based copper alloy with excellent mold wear
CN108467967B (en) * 2018-06-06 2019-11-08 宁波金田铜业(集团)股份有限公司 A kind of ageing strengthening copper alloy band and preparation method thereof
CN110076210A (en) * 2019-05-13 2019-08-02 浙江力博实业股份有限公司 A kind of preparation method of relay high-fire resistance copper strips
JP2023513664A (en) * 2020-12-23 2023-04-03 コリア インスティテュート オブ マテリアルズ サイエンス Copper-nickel-silicon-manganese (Cu-Ni-Si-Mn) alloy containing G phase and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110228A (en) 1996-08-14 1998-04-28 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JP2004307905A (en) 2003-04-03 2004-11-04 Sumitomo Metal Ind Ltd Cu ALLOY, AND ITS PRODUCTION METHOD
CN100545282C (en) * 2004-02-27 2009-09-30 古河电气工业株式会社 Copper alloy
JP4020881B2 (en) 2004-04-13 2007-12-12 日鉱金属株式会社 Cu-Ni-Si-Mg copper alloy strip
JP4100629B2 (en) 2004-04-16 2008-06-11 日鉱金属株式会社 High strength and high conductivity copper alloy
JP4959141B2 (en) 2005-02-28 2012-06-20 Dowaホールディングス株式会社 High strength copper alloy
JP5355865B2 (en) 2006-06-01 2013-11-27 古河電気工業株式会社 Copper alloy wire manufacturing method and copper alloy wire
JP4275697B2 (en) * 2006-11-24 2009-06-10 三菱伸銅株式会社 Copper alloy and lead frame material for electronic equipment
TW200915349A (en) * 2007-09-28 2009-04-01 Nippon Mining Co Cu-Ni-Si-Co based copper alloy for electronic material and its production method

Also Published As

Publication number Publication date
KR20110022698A (en) 2011-03-07
CN102105611A (en) 2011-06-22
TW201042063A (en) 2010-12-01
KR101207250B1 (en) 2012-12-03
DE112010001811B4 (en) 2019-05-02
DE112010001811T5 (en) 2012-08-09
CN102105611B (en) 2014-09-17
WO2010126046A1 (en) 2010-11-04
JP5261500B2 (en) 2013-08-14
TWI406959B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
TWI503425B (en) Copper alloy for electronic device, manufacturing method thereof, and rolled copper alloy for electronic device
KR101615830B1 (en) Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
KR101554833B1 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4804266B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same
JP2009203510A (en) Copper alloy having both of high strength and high electroconductivity
JP5682278B2 (en) Copper alloy for electronic and electrical equipment
JP5045782B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP2021046590A (en) Copper alloy, drawn copper article and electronic apparatus component
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP7172089B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheets for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5261500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250