JP4100629B2 - High strength and high conductivity copper alloy - Google Patents

High strength and high conductivity copper alloy Download PDF

Info

Publication number
JP4100629B2
JP4100629B2 JP2004121516A JP2004121516A JP4100629B2 JP 4100629 B2 JP4100629 B2 JP 4100629B2 JP 2004121516 A JP2004121516 A JP 2004121516A JP 2004121516 A JP2004121516 A JP 2004121516A JP 4100629 B2 JP4100629 B2 JP 4100629B2
Authority
JP
Japan
Prior art keywords
less
conductivity
precipitates
copper alloy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004121516A
Other languages
Japanese (ja)
Other versions
JP2005307223A (en
Inventor
雅俊 衛藤
光浩 大久保
智 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2004121516A priority Critical patent/JP4100629B2/en
Priority to KR1020050030924A priority patent/KR100674396B1/en
Priority to CNB200510065789XA priority patent/CN1329541C/en
Publication of JP2005307223A publication Critical patent/JP2005307223A/en
Application granted granted Critical
Publication of JP4100629B2 publication Critical patent/JP4100629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41KSTAMPS; STAMPING OR NUMBERING APPARATUS OR DEVICES
    • B41K1/00Portable hand-operated devices without means for supporting or locating the articles to be stamped, i.e. hand stamps; Inking devices or other accessories therefor
    • B41K1/003Portable hand-operated devices without means for supporting or locating the articles to be stamped, i.e. hand stamps; Inking devices or other accessories therefor combined with other articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41KSTAMPS; STAMPING OR NUMBERING APPARATUS OR DEVICES
    • B41K1/00Portable hand-operated devices without means for supporting or locating the articles to be stamped, i.e. hand stamps; Inking devices or other accessories therefor
    • B41K1/02Portable hand-operated devices without means for supporting or locating the articles to be stamped, i.e. hand stamps; Inking devices or other accessories therefor with one or more flat stamping surfaces having fixed images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41KSTAMPS; STAMPING OR NUMBERING APPARATUS OR DEVICES
    • B41K1/00Portable hand-operated devices without means for supporting or locating the articles to be stamped, i.e. hand stamps; Inking devices or other accessories therefor
    • B41K1/36Details

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、曲げ加工性に優れ、高強度、高導電性の電子電機部品用銅合金に関するものであり、特に小型、高集積化された半導体機器リード用及び端子コネクターばね用銅合金において、電気・熱伝導性に優れ、特に高強度特性に優れた電子部品用銅合金に関する。   The present invention relates to a copper alloy for electronic parts having excellent bending workability and high strength and high conductivity, and particularly in a small and highly integrated copper alloy for semiconductor device leads and terminal connector springs. -It is related with the copper alloy for electronic components which was excellent in thermal conductivity, and excellent in especially a high strength characteristic.

銅及び銅合金は、コネクタ、リード端子等の電子部品及びフレキシブル回路基板用として多用途に渡って幅広く利用されている材料であり、急速に展開するIT化は、情報機器の高機能化及び小型化・薄肉化に対応して銅及び銅合金に更なる特性(強度、曲げ加工性、導電性)の向上を要求している。
電子電機部品に用いられる端子やコネクターは、電子電気機器等の小型化、軽量化に伴い、高強度、高導電性、良好な曲げ加工性が要求されている。又、LSIの高集積化に伴い、消費電力の高い半導体素子が多く使用されるようになり、半導体機器のリードフレーム材には、放熱性及び導電性の良いCu−Ni−Si系銅合金が使用されるようになった。しかし、一般にIC等のリードフレーム加工では、原材料をスタンピング法、或いはエッチング法等によりリード端子部、ICとの導電接続部等を成形した後にリード端子部を直角に折り曲げることから、リードフレームには、導電性に加えて強度、とりわけ優れた曲げ加工性が要求され、このため、析出硬化型銅合金をリードフレームに適用した場合には、導電性に加えて強度、曲げ加工性が要求されるが、導電性と強度とは一般に両立しない。
従来技術では、Cu−Ni−Si系銅合金中のNi,Si,O成分量を調整し、析出物の粒径及び粒径0.03μm未満の析出物と0.03〜100μmの析出物との数比を調節した合金が知られている(例えば、特許文献1)。しかし、この特許文献1記載の発明は、打ち抜き加工等の剪断加工に適したCu−Ni−Si系銅合金を製造するものであり、導電性、剪断加工性に優れるものであったが、充分な曲げ加工性を具備するものではなかった。
特開平10−219374号公報
Copper and copper alloys are widely used materials for electronic parts such as connectors and lead terminals, and flexible circuit boards, and the rapid development of IT has led to higher functionality and smaller size of information equipment. The copper and copper alloys are required to have further improved characteristics (strength, bending workability, conductivity) in response to the reduction in thickness and thickness.
Terminals and connectors used in electronic electrical components are required to have high strength, high conductivity, and good bending workability as electronic and electrical devices become smaller and lighter. In addition, with high integration of LSI, semiconductor elements with high power consumption are often used, and Cu-Ni-Si based copper alloys with good heat dissipation and conductivity are used for lead frame materials of semiconductor devices. Came to be used. However, in general, in lead frame processing for ICs and the like, the lead terminals are bent at a right angle after forming the lead terminal part and the conductive connection part with the IC by stamping method or etching method, etc. In addition to conductivity, strength, in particular, excellent bending workability is required. Therefore, when precipitation hardening type copper alloy is applied to a lead frame, strength and bending workability are required in addition to conductivity. However, conductivity and strength are generally incompatible.
In the prior art, the amount of Ni, Si, O component in the Cu-Ni-Si-based copper alloy is adjusted, and the particle size of the precipitate, the precipitate having a particle size of less than 0.03 μm, the precipitate of 0.03 to 100 μm, An alloy with a controlled number ratio is known (for example, Patent Document 1). However, the invention described in Patent Document 1 is for producing a Cu—Ni—Si based copper alloy suitable for shearing such as punching, and is excellent in conductivity and shearing workability. It did not have a good bending workability.
JP-A-10-219374

そこで、本発明はCu−Ni−Si系銅合金の優れた熱伝導性、導電性を損なうことなく、ばね材及び半導体機器のリードフレーム材として充分な強度とを有し、曲げ加工性も兼備した銅合金を目的とした。   Therefore, the present invention has sufficient strength as a lead frame material for spring materials and semiconductor devices without compromising the excellent thermal conductivity and conductivity of the Cu—Ni—Si based copper alloy, and also has bending workability. The purpose was a copper alloy.

本発明者らは上記の目的を達成すべく、研究を重ねた結果、優れた強度、導電性及びばね性等を具備するCu−Ni−Si系銅合金の成分調整を行った上で、析出物の形状、大きさ及び面積率を規定範囲に調整することで高導電性と曲げ加工性を損なうことなく、従来にない高強度を有する銅合金が得られることを見出した。
本発明は、上記知見により完成されたものであり、銅合金においてNi:1.5%以上4.0%以下(尚、本発明の記載における成分割合を表す%は質量%である。)、Si:0.15%以上1.0%以下を含有し、NiとSiの含有量比率Ni/Si:3以上7以下であり、O:0.0050%以下で残部がCu及び不可避的不純物から成る成分組成とすると共に、Ni−Si系析出物の大きさにおいて、長径:a、短径:bとした時、a:20nm以上200nm以下で且つアスペクト比a/b:1以上3以下の析出物が銅合金中に含まれる全析出物の面積率で80%以上を占めることにより、導電性ばね材、又半導体機器のリード材として充分に満足できる優れた導電性及び熱伝導性、強度、ばね性、曲げ加工性を兼備せしめた点に特徴を有し、好ましくは引張強さ800〜1000MPa、導電率35〜55%IACSの特性値を示す。上記成分組成にZn、Mg、Sn及びInのうち1種以上を0.01%以上1.0%以下含有すると導電性及び熱伝導性や曲げ加工性を損なうことなく、強度及びばね性を一層優れたものにできる。
As a result of repeated research to achieve the above object, the present inventors have adjusted the components of a Cu-Ni-Si based copper alloy having excellent strength, conductivity, springiness, etc. It has been found that by adjusting the shape, size, and area ratio of an object within a specified range, a copper alloy having unprecedented high strength can be obtained without impairing high conductivity and bending workability.
The present invention has been completed based on the above findings. In a copper alloy, Ni: 1.5% or more and 4.0% or less (where,% in the description of the present invention is mass%), Si: 0.15% or more and 1.0% or less, Ni / Si content ratio Ni / Si: 3 or more and 7 or less, O: 0.0050% or less, the balance being Cu and inevitable impurities And a Ni—Si-based precipitate having a major axis: a and a minor axis: b, a: 20 nm to 200 nm and an aspect ratio a / b: 1 to 3 By occupying 80% or more in the area ratio of all precipitates contained in the copper alloy, excellent conductivity and thermal conductivity, strength, which can be sufficiently satisfied as a conductive spring material, or a lead material of semiconductor equipment, Specially designed for both springiness and bending workability Has, preferably a characteristic value of the tensile strength 800~1000MPa, conductivity 35 to 55% IACS. When one or more of Zn, Mg, Sn, and In are contained in the above component composition in an amount of 0.01% to 1.0%, the strength and springiness can be further increased without impairing conductivity, thermal conductivity, and bending workability. Can be excellent.

本発明の銅合金は、従来のCu−Ni−Si系銅合金として優れた導電性及び熱伝導性を損なうことなく、これまでにない優れた強度を備え、良好な曲げ加工性を兼備する。したがって、急速に展開するIT化に対応し、特に小型、高集積化されたリードフレーム、端子及びコネクター等の各種電気電子部品に適切な材料として提供することが可能となる。   The copper alloy of the present invention has excellent strength and unprecedented bending workability without impairing the conductivity and thermal conductivity that are excellent as a conventional Cu—Ni—Si based copper alloy. Therefore, it can be provided as an appropriate material for various electric and electronic parts such as lead frames, terminals, connectors and the like that are compatible with rapidly developing IT and are particularly small and highly integrated.

次に、本発明において銅合金の組成、析出物の大きさ、アスペクト比等の数値範囲を限定した理由をその作用と共に説明する。
[Ni量]
Niは合金の強度及び耐熱性を確保する作用があると共に後述するSiとの化合物を析出させ、合金の強度上昇に寄与する。しかし、その含有量が1.5%未満であると所望の強度が得られず、一方、4.0%を超えてNiを含有させると熱間圧延時の加工性が低下すると共に製品の曲げ加工性及び導電率の低下が顕著となる。更にその上、析出物の大粒子の面積率を増してしまい好ましくない。従って本発明の合金のNi含有量は1.5%以上4.0%以下、好ましくは2.5〜3.5%である。
[Si量]
Siは、Niとの化合物を析出して合金の強度及び耐熱性を向上させる。Si含有量が0.15%未満であると化合物の析出が不充分であるため、所望の強度が得られない。一方、Si含有量が1.0%を超えて含有させると熱間圧延時の加工性が低下すると共に導電率の低下が顕著となる。更にその上、析出物の大粒子の面積率を増してしまい好ましくない。従って本発明の合金のSi含有量は0.15%以上1.0%以下、好ましくは0.4〜0.9%である。
[Ni/Si比]
NiとSiの含有量が上記範囲内にあってもNiとSiの含有比率Ni/Siが3未満又は7を超えると、Ni−Si系析出物の適切な組成比から外れるために3未満の場合にはSi、7を超えた場合にはNiの固溶する量が増大してしまい、導電率の低下が顕著となり好ましくない。従って本発明の合金のNi/Si比は3以上7以下、好ましくは4.0〜5.5である。
Next, the reason why the numerical ranges such as the composition of the copper alloy, the size of the precipitates, and the aspect ratio are limited in the present invention will be described together with the operation thereof.
[Ni content]
Ni has the effect of ensuring the strength and heat resistance of the alloy and precipitates a compound with Si, which will be described later, thereby contributing to an increase in the strength of the alloy. However, if the content is less than 1.5%, the desired strength cannot be obtained. On the other hand, if the Ni content exceeds 4.0%, the workability during hot rolling deteriorates and the product is bent. A decrease in workability and electrical conductivity is significant. Furthermore, the area ratio of large particles of precipitates is increased, which is not preferable. Therefore, the Ni content of the alloy of the present invention is 1.5% to 4.0%, preferably 2.5 to 3.5%.
[Si content]
Si precipitates a compound with Ni to improve the strength and heat resistance of the alloy. If the Si content is less than 0.15%, precipitation of the compound is insufficient, so that the desired strength cannot be obtained. On the other hand, when the Si content exceeds 1.0%, the workability during hot rolling is lowered and the conductivity is significantly lowered. Furthermore, the area ratio of large particles of precipitates is increased, which is not preferable. Therefore, the Si content of the alloy of the present invention is 0.15% or more and 1.0% or less, preferably 0.4 to 0.9%.
[Ni / Si ratio]
If the Ni / Si content ratio Ni / Si is less than 3 or more than 7 even if the Ni and Si content is within the above range, it is less than 3 in order to deviate from the appropriate composition ratio of the Ni-Si based precipitate. In this case, when Si exceeds 7, the amount of Ni dissolved increases, which is not preferable because the decrease in conductivity becomes remarkable. Therefore, the Ni / Si ratio of the alloy of the present invention is 3 or more and 7 or less, preferably 4.0 to 5.5.

[O量]
Oは、Siと合金中で反応しやすく、Siが合金中に酸化物の状態で存在するとNiとSiの化合物の析出を阻害し、高強度が得られず、曲げ加工性が劣化する。従って、本発明の合金のO含有量は、0.0050%以下、好ましくは0.0030%以下である。
[Zn、Mg、Sn、In量]
Zn、Mg、Sn及びIn量は、いずれも合金の導電性を大きく低下させずに主として固溶強化により強度を向上させる作用を有している。従って必要によりこれらの金属を1種類以上を添加するが、その含有量が総量で0.01%未満であると固溶強化による強度向上の効果が得られず、一方、総量で1.0%以上を添加すると合金の導電率及び曲げ加工性低下が顕著になる。このため、単独添加又は2種類以上の複合添加されるZn、Mg、Sn及びIn量は、0.01%以上1.0%以下、好ましくは総量で0.05%以上0.8%以下である。尚、これらの元素は本発明においては、意図的に添加される元素であり、総量で0.01%以上の場合には、不可避的不純物とはみなさない。即ち、請求項2に係る本発明は、これらの元素が意図的に添加されて総量で0.01%以上となり、かつ他の要件も満たす合金である。
[O amount]
O easily reacts with Si in the alloy. When Si is present in the alloy in an oxide state, the precipitation of Ni and Si compounds is hindered, high strength cannot be obtained, and bending workability deteriorates. Therefore, the O content of the alloy of the present invention is 0.0050% or less, preferably 0.0030% or less.
[Zn, Mg, Sn, In amount]
The amounts of Zn, Mg, Sn, and In all have the effect of improving the strength mainly by solid solution strengthening without significantly reducing the conductivity of the alloy. Therefore, if necessary, one or more of these metals are added. If the total content is less than 0.01%, the effect of improving the strength by solid solution strengthening cannot be obtained, while the total amount is 1.0%. When the above is added, the electrical conductivity of an alloy and bending workability fall will become remarkable. Therefore, the amount of Zn, Mg, Sn and In added individually or in combination of two or more types is 0.01% or more and 1.0% or less, preferably 0.05% or more and 0.8% or less in total. is there. In the present invention, these elements are intentionally added elements. When the total amount is 0.01% or more, these elements are not regarded as inevitable impurities. That is, the present invention according to claim 2 is an alloy in which these elements are intentionally added to give a total amount of 0.01% or more and satisfy other requirements.

[Ni−Si系析出物の大きさと面積率]
Ni−Si系析出物の長径をa(nm)、短径をb(nm)とすると、aが20nm未満の析出物は、加工歪η=2以上の圧延加工を行うと、析出物が銅中に再固溶してしまい導電率を低下させてしまう。ここで、加工歪ηは、圧延前の板厚をt0、圧延後の板厚をtとした場合、η=ln(t0/t)で表される。又、aが200nmを超えると合金中の析出物の分散間隔が大きくなり過ぎるために、強度の上昇が得られなくなる。従って、本発明の合金中のNi−Si系析出物の大きさはa:20nm以上200nm以下である。又析出物のアスペクト比をa/bで表すと、a/bが3を超える場合には、η=2以上の圧延加工を行うと析出物が銅中に再固溶してしまい導電率を低下させてしまう。従って析出物のアスペクト比a/bは1以上3以下である。一方、上記範囲内の析出物に関する合金中の析出物の面積率が80%未満の場合は、aが200nmを超える析出物が多く存在することになる。そして例えば、aが200nmを超える析出物や溶解鋳造時に生じた晶出物が熱間圧延や溶体化処理で固溶しなかった1000nm以上のNi−Si系の粒子(晶出物)が多く存在する時には、圧延加工での加工硬化によっても所望の強度は得られない。従って、上記範囲内の析出物の面積率は全析出物(全てのNi−Si系析出物)中の80%以上である。
上記本発明の要件を満たすCu−Ni−Si系銅合金は、通常当業者が製造において採用する、インゴット鋳造、熱間圧延、溶体化処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍等において、適宜加熱温度、時間、冷却速度、圧延加工度等を選択することにより製造することが出来る。本発明の合金は優れた導電性及び熱伝導性、強度、ばね性、曲げ加工性を兼備し、引張強さが好ましくは800〜950MPa、更に好ましくは800〜1000MPa、導電率が好ましくは35〜55%IACSの特性値を示す。
[Size and area ratio of Ni-Si based precipitates]
When the major axis of the Ni-Si-based precipitate is a (nm) and the minor axis is b (nm), a precipitate with a of less than 20 nm is subjected to rolling with a work strain η = 2 or more. It will re-dissolve inside and reduce the electrical conductivity. Here, the processing strain η is represented by η = ln (t 0 / t), where t 0 is the thickness before rolling and t is the thickness after rolling. On the other hand, if a exceeds 200 nm, the dispersion interval of precipitates in the alloy becomes too large, so that an increase in strength cannot be obtained. Therefore, the size of the Ni—Si based precipitate in the alloy of the present invention is a: 20 nm or more and 200 nm or less. In addition, when the aspect ratio of the precipitate is expressed by a / b, when a / b exceeds 3, when the rolling process is performed with η = 2 or more, the precipitate is re-dissolved in the copper and the conductivity is increased. It will decrease. Therefore, the aspect ratio a / b of the precipitate is 1 or more and 3 or less. On the other hand, when the area ratio of precipitates in the alloy relating to precipitates within the above range is less than 80%, there are many precipitates in which a exceeds 200 nm. And, for example, there are many Ni-Si-based particles (crystallized products) of 1000 nm or more in which precipitates with a exceeding 200 nm and crystallized products generated during melt casting were not dissolved by hot rolling or solution treatment. When doing so, the desired strength cannot be obtained even by work hardening in rolling. Therefore, the area ratio of precipitates within the above range is 80% or more of all precipitates (all Ni—Si based precipitates).
The Cu—Ni—Si based copper alloy that satisfies the above requirements of the present invention is usually employed by those skilled in the art for ingot casting, hot rolling, solution treatment, intermediate cold rolling, aging treatment, final cold rolling, In strain relief annealing and the like, it can be produced by appropriately selecting the heating temperature, time, cooling rate, rolling degree, and the like. The alloy of the present invention has excellent conductivity and thermal conductivity, strength, springiness, and bending workability, and preferably has a tensile strength of 800 to 950 MPa, more preferably 800 to 1000 MPa, and a conductivity of preferably 35 to 35. The characteristic value of 55% IACS is shown.

試料の製造
電気銅或いは無酸素銅を主原料とし、ニッケル(Ni)、シリコン(Si)、亜鉛(Zn)、銅マグネシウム母合金(Cu−Mg)、錫(Sn)、インジウム(In)を副原料とし、高周波溶解炉にて真空中又はアルゴン雰囲気中で溶製し、25×50×150mmのインゴットに鋳造した。次にインゴットを熱間圧延及び溶体化処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.15mmの平板とした。
得られた板材各種の試験片を採取して試験を行い、「強度」、「導電率」、「曲げ加工性」の評価を行った。
目的の大きさの析出物を析出させるための方法
目的の大きさの析出物を析出させるための方法の一例を下記に示す。
(1)析出物の長径a:20〜200nmの場合
インゴットを750〜950℃に0.5〜12時間加熱し、鋳造時に生じたNi−Si系晶出物を固溶させた後、熱間圧延を行う。熱間圧延終了時に材料温度700〜900℃、好ましくは850〜900℃から水冷を行う。熱間圧延終了時に700℃以上の材料温度が得られない場合は、再度700〜950℃に0.5時間以上加熱後、水冷し溶体化を十分に行う。その後加工歪η=0〜2.5の冷間圧延、300〜650℃で0.1〜24時間の時効処理を行う。
(2)析出物の長径a:20nm未満の場合
熱間圧延は上記(1)と同様に行い、加工歪η=0〜2.5の冷間圧延後、300〜450℃で0.5〜24時間の時効処理を行う。
(3)析出物の長径a:200nm超の場合
熱間圧延前のインゴットの加熱は上記(1)と同様に行い、熱間圧延後の積極的な冷却は行わず、放冷(空冷)する。加工歪η=0〜2.5の冷間圧延後、550〜700℃で0.1〜24時間の時効処理を行う。
析出物の評価
走査型電子顕微鏡及び透過型電子顕微鏡を使用して、最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、断面の析出物を10視野観察し、撮影した写真の画像を画像解析装置(株式会社ニレコ製、商品名ルーゼックス)を用いて長径aが5nm以上の析出物のすべてについて個々に長径a、短径b,及び面積を測定した。図1及び図2に実施例1の析出物の長径及び短径測定値の頻度分布を示す。尚、本発明において、析出物の全面積は、長径aが5μm以上の析出物の面積の総和をいうが、その析出物の全面積に対して、長径aが20nm〜200nm、アスペクト比a/bが1〜3である析出物の面積総和の割合を面積率C(%)として算出した。又、測定した全析出物の長径の平均値とした平均長径ataとこの平均長径ataと測定した全析出物の短径の平均値の平均短径btaで求めた平均のアスペクト比ata/btaを表1−2及び表2−2に参考として記載した。これは、面積率C(%)の記載だけでは、析出物の大きさを知ることできないためである。
尚、最終冷間圧延(通常は加工歪η=2以上)により、長径20nm以下のNi−Si系析出物又は長径20nmを超えているがアスペクト比が3を超える析出物は固溶してしまうが、20nm以上かつアスペクト比が1〜3の析出物は最終冷間圧延後もその長径、短径及びアスペクト比を保つことを確認した。又、析出物の面積率Cも、200nmを超える析出物は固溶しないため最終冷間圧延後もほとんど変化しない。
試験片の物性評価
「強度」については、JIS Z 2241に規定された引張試験に従って13号B試験片を用いて行い、引張強さを測定した。
「導電率」は4端子法を用いて試験片の電気抵抗を測定し、標準軟銅(体積抵抗率が1.7241μΩcmのもの)との電気伝導度の比を百分率で表し、%IACSで表示した。
「曲げ加工性」については、W曲げ試験機で10mm幅の試験片を曲げ半径0.15mmの金型で50kNの荷重で曲げ試験した曲げ部表面を光学顕微鏡(100倍)で観察することにより割れの有無を調査評価し、割れ発生のない場合を○、割れが発生した場合を×で表示した。
Manufacture of samples Mainly made of electrolytic copper or oxygen-free copper, nickel (Ni), silicon (Si), zinc (Zn), copper magnesium master alloy (Cu-Mg), tin (Sn), indium (In) The raw material was melted in a high-frequency melting furnace in a vacuum or argon atmosphere, and cast into a 25 × 50 × 150 mm ingot. Next, the ingot was subjected to hot rolling and solution treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing in this order to obtain a flat plate having a thickness of 0.15 mm.
Various test pieces of the obtained plate material were collected and tested, and “strength”, “conductivity”, and “bending workability” were evaluated.
Method for Precipitating Precipitates of Target Size An example of a method for depositing precipitates of the target size is shown below.
(1) Major axis a of precipitate: 20 to 200 nm After heating the ingot to 750 to 950 ° C. for 0.5 to 12 hours to dissolve the Ni—Si-based crystallized material generated during casting, Roll. At the end of hot rolling, water cooling is performed from a material temperature of 700 to 900 ° C, preferably from 850 to 900 ° C. When a material temperature of 700 ° C. or higher cannot be obtained at the end of hot rolling, the solution is heated again to 700 to 950 ° C. for 0.5 hour or longer and then cooled with water to sufficiently perform solution treatment. Thereafter, cold rolling at a working strain η = 0 to 2.5 and aging treatment at 300 to 650 ° C. for 0.1 to 24 hours are performed.
(2) Major axis a of the precipitate: less than 20 nm Hot rolling is performed in the same manner as in (1) above, and after cold rolling with a working strain η = 0 to 2.5, 0.5 to 300 to 450 ° C. Perform aging treatment for 24 hours.
(3) When the major axis a of the precipitate exceeds 200 nm The ingot before hot rolling is heated in the same manner as in (1) above, and is not cooled actively after hot rolling, but allowed to cool (air cooling). . After cold rolling with a working strain η = 0 to 2.5, an aging treatment is performed at 550 to 700 ° C. for 0.1 to 24 hours.
Evaluation of Precipitates Using a scanning electron microscope and a transmission electron microscope, the alloy strip before the final cold rolling was cut parallel to the rolling direction at right angles to the thickness, and the precipitates in the cross section were observed with 10 fields of view and photographed. The major axis a, the minor axis b, and the area of each of the precipitates having a major axis a of 5 nm or more were measured using an image analysis apparatus (trade name Luzex, manufactured by Nireco Corporation). FIG. 1 and FIG. 2 show the frequency distribution of the major axis and minor axis measurement values of the precipitate of Example 1. In the present invention, the total area of the precipitates refers to the sum of the areas of the precipitates having a major axis a of 5 μm or more. The major axis a is 20 nm to 200 nm, the aspect ratio a / The ratio of the total area of the precipitates in which b is 1 to 3 was calculated as the area ratio C (%). Also, the average aspect ratio a determined by the average major axis a ta as the average value of the major axis of all the measured precipitates, the average major axis a ta and the average minor axis b ta of the average minor axis of all the measured precipitates. ta / b ta is described in Tables 1-2 and 2-2 for reference. This is because the size of the precipitate cannot be known only by describing the area ratio C (%).
In addition, by the final cold rolling (usually processing strain η = 2 or more), a Ni—Si-based precipitate having a major axis of 20 nm or less or a precipitate having a major axis exceeding 20 nm but having an aspect ratio exceeding 3 is dissolved. However, it was confirmed that a precipitate having an aspect ratio of 1 to 3 at 20 nm or more maintained its major axis, minor axis and aspect ratio even after the final cold rolling. Also, the area ratio C of the precipitates hardly changes even after the final cold rolling because the precipitates exceeding 200 nm are not dissolved.
About physical property evaluation "strength" of a test piece, it carried out using the No. 13 B test piece according to the tensile test prescribed | regulated to JISZ2241, and measured the tensile strength.
“Conductivity” is a four-terminal method for measuring the electrical resistance of a test piece, and the ratio of electrical conductivity to standard annealed copper (with a volume resistivity of 1.7241 μΩcm) is expressed as a percentage and expressed in% IACS. .
Regarding “bending workability”, the surface of a bending part obtained by bending a test piece having a width of 10 mm with a W bending tester using a die having a bending radius of 0.15 mm and a load of 50 kN was observed with an optical microscope (100 times). The presence / absence of cracks was investigated and evaluated. The case where no cracks occurred was indicated by ○ and the case where cracks occurred was indicated by ×.

本発明に係る高強度高導電性銅合金の実施例を、表1−1、及び表2−1に示す成分組成の銅合金について、比較例とともに説明する。本発明の合金実施例1〜7は、アスペクト比が1〜1.6の30nmから100nm程度の微細な析出物を含み、優れた強度、導電率及び曲げ加工性を具備していた。一方、比較例8〜17までの結果を検討すると、比較例8〜11については、本発明の合金組成の範囲から外れた組成での合金である。比較例8は、Niの添加量が1.5%未満となっているためにNi−Si系析出物の析出量が少なくなるため、充分な強度が得られない。比較例9は、Siの添加量が1.0%を超えるため、Siの固溶量が増してしまい導電率の低下を生じ、かつ曲げ加工性が劣る。比較例10は、Ni/Si比が析出物の適切な組成比から外れるために、Niの固溶する量が増大して導電率の低下が生じ、又Ni−Si系析出物の析出量が少なくなるため、充分な強度が得られない。比較例11は、副成分としてZn,Mg,Snの添加量が総じて1.0%を超えているため、強度は充分であるものの、これらの固溶により導電率が低下し、又曲げ加工性が劣る。尚、比較例11でのZn,Mg及びSnは不可避的不純物ではないので請求項1に係る発明例に該当せず、1.0%を超えるZn,Mg及びSn量を含有するため請求項2に係る発明例にも該当しない。 The Example of the high intensity | strength highly conductive copper alloy which concerns on this invention is described with a comparative example about the copper alloy of the component composition shown to Table 1-1 and Table 2-1. Alloy Examples 1 to 7 of the present invention included fine precipitates having an aspect ratio of 1 to 1.6 of about 30 nm to 100 nm, and had excellent strength, conductivity, and bending workability. On the other hand, when the results of Comparative Examples 8 to 17 are examined, Comparative Examples 8 to 11 are alloys having compositions outside the range of the alloy composition of the present invention. In Comparative Example 8, since the amount of Ni added is less than 1.5%, the amount of Ni—Si-based precipitates is reduced, so that sufficient strength cannot be obtained. In Comparative Example 9, since the addition amount of Si exceeds 1.0%, the solid solution amount of Si increases, resulting in a decrease in electrical conductivity and poor bending workability. In Comparative Example 10, since the Ni / Si ratio deviates from the appropriate composition ratio of the precipitate, the amount of Ni dissolved increases, resulting in a decrease in conductivity. Therefore, sufficient strength cannot be obtained. In Comparative Example 11, the addition amount of Zn, Mg, and Sn as subcomponents generally exceeds 1.0%, so that the strength is sufficient, but the conductivity decreases due to their solid solution, and bending workability is also increased. Is inferior. Since Zn, Mg and Sn in Comparative Example 11 are not inevitable impurities, they do not fall under the invention example according to claim 1 and contain more than 1.0% of Zn, Mg and Sn. It does not correspond to the invention example concerning.

比較例12〜17については、本発明の合金の析出状態から外れる合金である。比較例12は、析出物の大きさが20nm未満であるため、加工中に固溶してしまい、導電率が低下した。比較例13は、析出物のアスペクト比が3を超えたため、加工中に固溶してしまい、曲げ加工性が劣る。比較例14は、析出物の大きさが200nmを超えたため析出物の分散間隔が大きくなってしまい、所望の強度が得られない。比較例15は、20nmから200nmの大きさの析出物以外に、粗大な析出物が多く見られ、このために全体としての析出物による強化が低下した。図3及び図4に比較例16の析出物の長径及び短径測定値の頻度分布を示す。比較例16は、アスペクト比が3を超えており、図3及び図4に示すように粗大な析出物が存在するため、面積率Cが60%と小さな値になっており、強度及び導電率が低下している。比較例17は、比較例12と同様に、析出物の大きさが20nm未満であるため、加工中に固溶してしまい、導電率が低下した。 About Comparative Examples 12-17, it is an alloy remove | deviated from the precipitation state of the alloy of this invention. In Comparative Example 12, since the size of the precipitate was less than 20 nm, the precipitate was dissolved during processing, and the electrical conductivity was lowered. In Comparative Example 13, since the aspect ratio of the precipitate exceeded 3, the solid solution was dissolved during processing, and the bending workability was inferior. In Comparative Example 14, since the size of the precipitate exceeds 200 nm, the dispersion interval of the precipitate becomes large, and a desired strength cannot be obtained. In Comparative Example 15, in addition to precipitates having a size of 20 nm to 200 nm, many coarse precipitates were observed, and as a result, the strengthening by the precipitates as a whole decreased. 3 and 4 show the frequency distribution of measured values of the major axis and the minor axis of the precipitate of Comparative Example 16. FIG. In Comparative Example 16, the aspect ratio exceeds 3, and there are coarse precipitates as shown in FIGS. 3 and 4, so the area ratio C is as small as 60%. Has fallen. In Comparative Example 17, as in Comparative Example 12, since the size of the precipitate was less than 20 nm, the solid solution was dissolved during processing, and the electrical conductivity was lowered.

Figure 0004100629
表中「−」は「添加せず」を表す。
Figure 0004100629
In the table, “-” represents “not added”.

Figure 0004100629
Figure 0004100629

Figure 0004100629
Figure 0004100629

Figure 0004100629
Figure 0004100629

実施例1の析出物の長径測定値の頻度分布を示すグラフである。4 is a graph showing a frequency distribution of measured long diameters of precipitates of Example 1. 実施例1の析出物の短径測定値の頻度分布を示すグラフである。2 is a graph showing a frequency distribution of measured minor axis values of precipitates of Example 1. FIG. 比較例16の析出物の長径測定値の頻度分布を示すグラフである。It is a graph which shows the frequency distribution of the major axis measured value of the precipitate of the comparative example 16. 比較例16の析出物の短径測定値の頻度分布を示すグラフである。It is a graph which shows the frequency distribution of the short axis measured value of the precipitate of the comparative example 16.

Claims (2)

質量割合にて、
Ni:1.5%以上4.0%以下、
Si:0.15%以上1.0%以下を含有し、
NiとSiの含有量比率Ni/Si:3以上7以下であり、
O:0.0050%以下で残部がCu及び不可避的不純物から成る銅合金において、
長径:a、短径:bとした時、aが20nm以上200nm以下で且つ、最終冷間圧延前においてアスペクト比a/bが1以上3以下のNi−Si系析出物が銅合金中に含まれる全析出物の面積率で80%以上を占め
引張強さ:800〜950MPa且つ導電率:35〜55%IACSであることを特徴とする、優れた導電率、曲げ加工性を兼備した電子部品用高強度高導電性銅合金。
In mass proportion
Ni: 1.5% to 4.0%,
Si: 0.15% or more and 1.0% or less,
Ni / Si content ratio Ni / Si: 3 or more and 7 or less,
O: In a copper alloy of 0.0050% or less and the balance being Cu and inevitable impurities,
When the major axis is “a” and the minor axis is “b”, the copper alloy contains Ni—Si-based precipitates in which “a” is 20 nm to 200 nm and the aspect ratio a / b is 1 to 3 before the final cold rolling. accounting for 80% or more by area ratio of all the precipitates,
Tensile strength: 800~950MPa and conductivity: 35 to 55% IACS der Rukoto characterized, excellent electrical conductivity, bending workability electronic parts for high strength and high conductivity copper alloy having both.
質量割合にて、
Ni:1.5%以上4.0%以下、
Si:0.15%以上1.0%以下を含有し、
NiとSiの含有量比率Ni/Si:3以上7以下、
O:0.0050%以下で、
Zn、Mg、Sn及びInのうち1種以上を合計で0.01%以上1.0%以下を含有し、残部がCu及び不可避的不純物から成る銅合金において、
長径:a、短径:bとした時、aが20nm以上200nm以下で且つ、最終冷間圧延前においてアスペクト比a/bが1以上3以下のNi−Si系析出物が銅合金中に含まれる全析出物の面積率で80%以上を占め、
引張強さ:800〜1000MPa且つ導電率:35〜55%IACSであることを特徴とする電子部品用高強度高導電性銅合金。
In mass proportion
Ni: 1.5% to 4.0%,
Si: 0.15% or more and 1.0% or less,
Ni / Si content ratio Ni / Si: 3 or more and 7 or less,
O: 0.0050% or less,
In a copper alloy containing 0.01% or more and 1.0% or less in total of one or more of Zn, Mg, Sn and In, with the balance being Cu and inevitable impurities,
When the major axis is “a” and the minor axis is “b”, the copper alloy contains Ni—Si-based precipitates in which “a” is 20 nm to 200 nm and the aspect ratio a / b is 1 to 3 before the final cold rolling. Occupy 80% or more in the area ratio of all precipitates
Tensile strength: 800~1000MPa and conductivity: 35 to 55% you being a IACS electronic components for high-strength and high conductivity copper alloy.
JP2004121516A 2004-04-16 2004-04-16 High strength and high conductivity copper alloy Expired - Lifetime JP4100629B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004121516A JP4100629B2 (en) 2004-04-16 2004-04-16 High strength and high conductivity copper alloy
KR1020050030924A KR100674396B1 (en) 2004-04-16 2005-04-14 Copper alloy with high strength and high conductivity
CNB200510065789XA CN1329541C (en) 2004-04-16 2005-04-18 High strength high conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121516A JP4100629B2 (en) 2004-04-16 2004-04-16 High strength and high conductivity copper alloy

Publications (2)

Publication Number Publication Date
JP2005307223A JP2005307223A (en) 2005-11-04
JP4100629B2 true JP4100629B2 (en) 2008-06-11

Family

ID=35263076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121516A Expired - Lifetime JP4100629B2 (en) 2004-04-16 2004-04-16 High strength and high conductivity copper alloy

Country Status (3)

Country Link
JP (1) JP4100629B2 (en)
KR (1) KR100674396B1 (en)
CN (1) CN1329541C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247922B2 (en) * 2006-09-12 2009-04-02 古河電気工業株式会社 Copper alloy sheet for electrical and electronic equipment and method for producing the same
JP4143662B2 (en) * 2006-09-25 2008-09-03 日鉱金属株式会社 Cu-Ni-Si alloy
WO2009123159A1 (en) * 2008-03-31 2009-10-08 古河電気工業株式会社 Copper alloy material for electric and electronic apparatuses, and electric and electronic components
CN102105611B (en) 2009-04-30 2014-09-17 Jx日矿日石金属株式会社 Cu-Ni-Si-Mg-based alloy having improved electrical conductivity and bendability
WO2011125264A1 (en) * 2010-04-07 2011-10-13 古河電気工業株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
KR101261370B1 (en) 2011-05-16 2013-05-06 한국기계연구원 Manufacturing method of copper alloy with improved strength and electrical conductivity
JP5432201B2 (en) * 2011-03-30 2014-03-05 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
CN103781924B (en) 2011-09-20 2015-11-25 三菱伸铜株式会社 The manufacture method of copper alloy plate and copper alloy plate
KR101472348B1 (en) 2012-11-09 2014-12-15 주식회사 풍산 Copper alloy material for electrical and electronic components and process for producing same
JP6301618B2 (en) * 2013-09-17 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
JP6102987B2 (en) * 2015-06-12 2017-03-29 株式会社オートネットワーク技術研究所 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire and wire harness
CN106086518A (en) * 2016-07-05 2016-11-09 宁波博威合金板带有限公司 Copper alloy and application thereof containing nisiloy cobalt
CN109609801A (en) * 2018-12-06 2019-04-12 宁波博威合金材料股份有限公司 High property copper alloy and preparation method thereof
CN112375939B (en) * 2020-11-16 2021-11-09 福州大学 Cu-Ni-Zr-V-B copper alloy material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594221A (en) * 1985-04-26 1986-06-10 Olin Corporation Multipurpose copper alloys with moderate conductivity and high strength
JP2839927B2 (en) * 1990-02-07 1998-12-24 株式会社神戸製鋼所 Method for producing copper alloy excellent in strength, conductivity and migration resistance
JP3232951B2 (en) * 1995-04-03 2001-11-26 凸版印刷株式会社 Method and apparatus for producing multi-dot diffraction grating array
KR20010023699A (en) * 1997-09-05 2001-03-26 듀어러 코포레이션 Copper based alloy featuring precipitation hardening and solid-solution hardening

Also Published As

Publication number Publication date
KR100674396B1 (en) 2007-01-26
JP2005307223A (en) 2005-11-04
CN1683579A (en) 2005-10-19
CN1329541C (en) 2007-08-01
KR20060045691A (en) 2006-05-17

Similar Documents

Publication Publication Date Title
KR100674396B1 (en) Copper alloy with high strength and high conductivity
JP4247922B2 (en) Copper alloy sheet for electrical and electronic equipment and method for producing the same
EP2426225B1 (en) Copper alloy with high strength, high electrical conductivity, and excellent bendability
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
TWI382097B (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
TWI475119B (en) Cu-Zn-Sn-Ni-P alloy
JP4950734B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP6749121B2 (en) Copper alloy plate with excellent strength and conductivity
JP2007270305A (en) Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT
CN101784684B (en) High-strength high-electroconductivity copper alloy possessing excellent hot workability
TW201430151A (en) Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, conductive component for electronic/electric device, and terminal
JP4493083B2 (en) High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
JP5101149B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4175920B2 (en) High strength copper alloy
JP4391382B2 (en) Copper alloy for coaxial connector excellent in machinability and method for producing the same
JP5079574B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4750602B2 (en) Copper alloy with excellent hot workability
JP7133326B2 (en) Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation
JP2008056974A (en) Copper alloy superior in hot workability
KR100994651B1 (en) High strength and electric conductivity copper alloy excellent in hot workability
TW201615853A (en) Cu-Ni-Si alloy and method of producing the alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4100629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250