JP6301618B2 - Copper alloy material and method for producing the same - Google Patents

Copper alloy material and method for producing the same Download PDF

Info

Publication number
JP6301618B2
JP6301618B2 JP2013191635A JP2013191635A JP6301618B2 JP 6301618 B2 JP6301618 B2 JP 6301618B2 JP 2013191635 A JP2013191635 A JP 2013191635A JP 2013191635 A JP2013191635 A JP 2013191635A JP 6301618 B2 JP6301618 B2 JP 6301618B2
Authority
JP
Japan
Prior art keywords
temperature
mass
copper alloy
alloy material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013191635A
Other languages
Japanese (ja)
Other versions
JP2015059225A (en
Inventor
清慈 廣瀬
清慈 廣瀬
恵人 藤井
恵人 藤井
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2013191635A priority Critical patent/JP6301618B2/en
Publication of JP2015059225A publication Critical patent/JP2015059225A/en
Application granted granted Critical
Publication of JP6301618B2 publication Critical patent/JP6301618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、端子、コネクタ、スイッチ、リレー、リードフレームなどの用途に好適な強度および導電性を有し、さらにはメッキおよびメッキの前処理性が良好である、銅合金材およびその製造方法に関するものである。   The present invention relates to a copper alloy material having a strength and conductivity suitable for applications such as terminals, connectors, switches, relays, lead frames, and the like, and having good pretreatment properties for plating and plating, and a method for producing the same. Is.

近年の電気・電子機器の小型化および高性能化に伴い、そのような機器に用いられるコネクタなどの材料にも、より厳しい特性が要求されるようになり、高強度と高導電率とを具備した銅合金材料の開発が進んでいる。   With the recent miniaturization and higher performance of electrical and electronic equipment, materials such as connectors used in such equipment have been required to have stricter characteristics, and have high strength and high electrical conductivity. The development of copper alloy materials is progressing.

従来のコネクタにおいては、高強度の特性が必要な場合、CDA合金ベリリウム銅(JIS−C1720合金)が使用されてきたが、金属ベリリウムの毒性の観点から、近年、金属ベリリウムの使用には懸念が広がっている。このため、コネクタなどの接点部材料には、ベリリウム銅と同等の特性を有し、かつ安価で、安全性の高い材料が強く望まれるようになった。そこで、そのようなベリリウム銅よりも高導電性を有する合金系として、近年開発が進められてきたのがCu−Ni−Si系合金(コルソン系合金)である。   In conventional connectors, CDA alloy beryllium copper (JIS-C1720 alloy) has been used when high strength characteristics are required. However, in recent years, there is a concern about the use of metal beryllium from the viewpoint of the toxicity of metal beryllium. It has spread. For this reason, contact materials for connectors and the like have been strongly desired to have materials having characteristics equivalent to those of beryllium copper, inexpensive, and highly safe. Therefore, as an alloy system having higher conductivity than such beryllium copper, a Cu—Ni—Si alloy (Corson alloy) has been developed in recent years.

Cu−Ni−Si系合金は、NiおよびSiを含有する金属間化合物(NiSi等)を銅合金母相中にナノメートルサイズにて均一に微細分散させることで、強度および導電率を向上させることができる。該化合物の粒子間の距離が短いほどより高強度特性が得られるため、NiおよびSiの量を増大させ、NiおよびSiを含有する化合物の分散量を増加させることによるCu−Ni−Si系合金のさらなる高強度化が図られている。 Cu-Ni-Si alloys improve strength and electrical conductivity by uniformly dispersing finely intermetallic compounds containing Ni and Si (Ni 2 Si, etc.) into the copper alloy matrix at a nanometer size. Can be made. Cu-Ni-Si alloy by increasing the amount of Ni and Si and increasing the amount of dispersion of the compound containing Ni and Si, because the shorter the distance between the particles of the compound, the higher the strength characteristics can be obtained. The strength is further increased.

他方、電子機器などに用いられる銅合金には、通常貴金属などのめっきが施され、その下地処理として酸洗が行われるものの、Cu−Ni−Si系合金においては、その酸洗時にNiおよびSiを含有する化合物が酸化し、スマットとして表面に残存することがある。スマットがCu−Ni−Si系合金の表面に残存した場合、めっき異常(めっき剥離、めっきこぶ等)を引き起こすため、このようなスマットは、Cu−Ni−Si系合金の表面から可能な限り除去する必要がある。   On the other hand, copper alloys used for electronic devices are usually plated with precious metals and the like, and pickling is performed as a base treatment. However, in Cu—Ni—Si based alloys, Ni and Si are used during pickling. May oxidize and remain on the surface as a smut. If the smut remains on the surface of the Cu-Ni-Si-based alloy, it causes plating abnormalities (plating peeling, plating hump, etc.), so such smut is removed from the surface of the Cu-Ni-Si-based alloy as much as possible. There is a need to.

しかしながら、上述のように、Cu−Ni−Si系合金において、高強度および高導電率の要求に応じて、NiおよびSiを含有させる化合物の分散量を増加させると、酸洗時のスマットの発生量が多くなる傾向があるため、スマットが除去しきれずに残存してめっき異常を引き起こすという問題があった。特に電子機器の用途においては、めっき不良により、Au等の貴金属めっき後の耐食性が十分に得られないおそれがある。   However, as described above, in a Cu-Ni-Si alloy, if the amount of the compound containing Ni and Si is increased in accordance with the demand for high strength and high conductivity, smut is generated during pickling. Since the amount tends to increase, there is a problem in that the smut remains without being removed and causes plating abnormality. Particularly in applications of electronic devices, there is a possibility that corrosion resistance after plating of noble metals such as Au cannot be sufficiently obtained due to poor plating.

Cu−Ni−Si系合金材におけるスマットの残存量を低下させる手法として、例えば、特許文献1には、NiSiの析出物の粒径を10nm以下に限定すると共に、NiおよびSiの含有量を限定することにより、酸洗時のスマットの残存を抑制することが開示されている。 As a technique for reducing the remaining amount of smut in the Cu—Ni—Si based alloy material, for example, Patent Document 1 discloses that the Ni 2 Si precipitate particle size is limited to 10 nm or less, and the content of Ni and Si. It is disclosed that the smut remaining at the time of pickling is suppressed by limiting the thickness.

また、特許文献2には、5〜10μmの粗大な介在物を圧延平行な断面において50個/mm未満にする事で、エッチング性等を改善した電子材料用銅合金が開示されている。 Further, Patent Document 2 discloses a copper alloy for electronic materials in which etching properties and the like are improved by making coarse inclusions of 5 to 10 μm less than 50 pieces / mm 2 in a rolling parallel cross section.

特許第3056394号Japanese Patent No. 3056394 特許第3383615号Japanese Patent No. 3383615

しかしながら、特許文献1に記載された銅合金は、高濃度のZnを含有させることが必須であって、特にNiSiの析出物の粒径を10nm以下の範囲に粒径の制御をしなければ、スマットを有効に除去することができない。加えて、高強度及び高導電率を得るために、高濃度のNiおよびSiを含有させて生成した微細析出物の分散量をより向上させる必要がある場合には、スマットの除去は一層難しくなるという問題がある。
また、特許文献2に記載された銅合金は、5〜10μmの粗大な介在物が50個/mm未満であれば存在してもよい構成であるため、このような粗大な介在物の存在は、スマットの除去の観点からは好ましくない。加えて、高強度及び高導電率を得るために、高濃度のNiおよびSiを含有する微細析出物の分散量をより向上させる必要がある場合には、スマットの除去は一層難しくなるという問題がある。
このため、特許文献1及び2の技術は、いずれもスマットの除去のために、NiおよびSiを含有する化合物のサイズおよび量を制御したものであるが、より高強度および高導電率が要求される近年の銅合金においては、高濃度のNiおよびSiを含有する組成とし、従来の銅合金よりもスマットが発生しやすい状況であっても、洗浄により容易にスマットが除去できる技術を開発することが必要とされた。
However, it is essential for the copper alloy described in Patent Document 1 to contain a high concentration of Zn, and in particular, the grain size of the Ni 2 Si precipitate must be controlled within a range of 10 nm or less. Thus, the smut cannot be removed effectively. In addition, in order to obtain high strength and high conductivity, it is more difficult to remove smut when it is necessary to further improve the amount of fine precipitates produced by containing high concentrations of Ni and Si. There is a problem.
Moreover, since the copper alloy described in Patent Document 2 may be present if the number of coarse inclusions of 5 to 10 μm is less than 50 pieces / mm 2 , the existence of such coarse inclusions Is not preferable from the viewpoint of removing smut. In addition, in order to obtain high strength and high conductivity, when it is necessary to further improve the amount of fine precipitates containing high concentrations of Ni and Si, it is difficult to remove smut. is there.
For this reason, the techniques of Patent Documents 1 and 2 both control the size and amount of a compound containing Ni and Si for removing smut, but higher strength and higher conductivity are required. In recent copper alloys, a composition containing high concentrations of Ni and Si, and to develop a technology that can easily remove smuts by washing even in situations where smuts are more likely to occur than conventional copper alloys. Was needed.

本発明は、上記の従来技術の問題点に鑑み、高強度および高導電率を具備した銅合金材であって、さらにスマットの残存率が低く、かつAuめっき後の耐食性に優れた銅合金材およびその製造方法を提供することを目的とする。   The present invention is a copper alloy material having high strength and high electrical conductivity in view of the above-mentioned problems of the prior art, and further having a low residual rate of smut and excellent corrosion resistance after Au plating. And it aims at providing the manufacturing method.

本発明者らは、上記課題を解決するため鋭意検討を進めた結果、特定量のNiおよびSiを含有させた銅合金材において、NiおよびSiを含有する析出物(化合物)の長径をαnm、短径をβnmとするとき、短径βが2nm超10nm未満とし、析出物の長径αと短径βの比、すなわちアスペクト比の適正化を図ることで、高強度および高導電率特性を維持しつつ、スマット洗浄性も向上し、かつAuめっき後の耐食性にも優れた銅合金材およびその製造方法を提供できることを見出した。本発明は、この知見に基づき完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have determined that the major axis of the precipitate (compound) containing Ni and Si is α nm, in a copper alloy material containing a specific amount of Ni and Si. When the minor axis is β nm, the minor axis β is more than 2 nm and less than 10 nm, and the ratio of the major axis α to the minor axis β of the precipitate, that is, the aspect ratio is optimized to maintain high strength and high conductivity characteristics. However, the present inventors have found that a copper alloy material having improved smut cleaning properties and excellent corrosion resistance after Au plating and a method for producing the same can be provided. The present invention has been completed based on this finding.

すなわち、本発明の要旨構成は、以下の通りである。
(1)Ni:2.0〜6.0質量%、Si:0.3〜2.0質量%、Cr:0〜1.0質量%、Mg:0〜1.0質量%、Sn:0〜0.8質量%およびZn:0〜0.8質量%を含有し、残部がCuおよび不可避不純物からなる銅合金材であって、
NiおよびSiを含有する析出物の長径をαnm、短径をβnmとするとき、短径βが2nm超10nm未満であり、
前記析出物の長径の短径に対する比α/βが5未満であることを特徴とする銅合金材。
That is, the gist configuration of the present invention is as follows.
(1) Ni: 2.0 to 6.0 mass%, Si: 0.3 to 2.0 mass%, Cr: 0 to 1.0 mass%, Mg: 0 to 1.0 mass%, Sn: 0 -0.8 mass% and Zn: a copper alloy material containing 0-0.8 mass%, the balance consisting of Cu and inevitable impurities,
When the major axis of the precipitate containing Ni and Si is α nm and the minor axis is β nm, the minor axis β is more than 2 nm and less than 10 nm,
The copper alloy material, wherein the ratio α / β of the major axis to the minor axis of the precipitate is less than 5.

(2)Cr:0.05〜1.0質量%含有することを特徴とする、上記(1)に記載の銅合金材。   (2) Cr: The copper alloy material according to (1) above, containing 0.05 to 1.0% by mass.

(3)前記合金材に、Mg:0.05〜1.0質量%、Sn:0.05〜0.8質量%およびZn:0.05〜0.8質量%の群から選ばれる少なくとも1種の成分を、総量で0.05〜2.6質量%含有することを特徴とする、上記(1)または(2)に記載の銅合金材。   (3) The alloy material includes at least one selected from the group consisting of Mg: 0.05 to 1.0 mass%, Sn: 0.05 to 0.8 mass%, and Zn: 0.05 to 0.8 mass%. The copper alloy material according to (1) or (2) above, wherein the total amount of seed components is 0.05 to 2.6% by mass.

(4)表面のスマットの残存面積率が3%未満となることを特徴とする、上記(1)、(2)または(3)に記載の銅合金材。   (4) The copper alloy material according to (1), (2) or (3) above, wherein the remaining area ratio of the surface smut is less than 3%.

(5)溶解、鋳造、均質化熱処理、熱間加工、冷間加工、溶体化処理、時効熱処理、仕上げ冷間加工を少なくともこの順で有する銅合金材の製造方法であって、
前記均質化熱処理では、第1段階として1000℃以上1055℃以下の温度で30分以上1時間以下行い、続けて第2段階として、800℃以上1000℃未満に冷却し、
前記熱間加工は、前記均質化処理後から連続で行い、600℃以上の温度で終了し、
前記溶体化処理は、800℃以上1000℃以下、5秒以上300秒以下の範囲とし、
前記時効熱処理は、前記溶体化処理の後に冷間加工を施さずに行い、かつ、室温から200℃までを、0.3℃/分以上4℃/分未満の昇温速度で加熱する第1昇温段階と、200℃から保持温度までを、2℃/分以上4℃/分以下でかつ前記第1昇温段階における昇温速度よりも大きい昇温速度で加熱する第2昇温段階との2段昇温段階で昇温し、引き続き400℃以上500℃以下の温度で0.5時間以上6時間以下保持し、その後、保持温度から200℃までを、3℃/分以上の冷却速度で冷却することを特徴とする、銅合金材の製造方法。
(5) A method for producing a copper alloy material having at least melting, casting, homogenizing heat treatment, hot working, cold working, solution treatment, aging heat treatment, and finish cold working in this order,
In the homogenization heat treatment, the first stage is performed at a temperature of 1000 ° C. or more and 1055 ° C. or less for 30 minutes or more and 1 hour or less, and subsequently, the second stage is cooled to 800 ° C. or more and less than 1000 ° C.,
The hot working is continuously performed after the homogenization treatment, and is finished at a temperature of 600 ° C. or higher.
The solution treatment is performed in a range of 800 ° C. to 1000 ° C., 5 seconds to 300 seconds,
The aging heat treatment is performed without performing cold working after the solution treatment, and is heated from room temperature to 200 ° C. at a temperature increase rate of 0.3 ° C./min to less than 4 ° C./min. A temperature raising stage, and a second temperature raising stage for heating from 200 ° C. to the holding temperature at a temperature rising rate of 2 ° C./min to 4 ° C./min and higher than the temperature rising rate in the first temperature rising stage; The temperature is raised in the two-stage heating stage of the above, and subsequently held at a temperature of 400 ° C. or more and 500 ° C. or less for 0.5 hour or more and 6 hours or less. The manufacturing method of the copper alloy material characterized by cooling with.

本発明によれば、比較的高濃度のNiおよびSiを含有させた銅合金材において、NiおよびSiを含有する析出物(化合物)の長径をαnm、短径をβnmとするとき、短径βが2nm超10nm未満とし、析出物(化合物)の長径αと短径βの比、すなわちアスペクト比の適正化を図ることによって、高強度および高導電率特性を維持・向上しつつ、スマット洗浄性も向上し、かつAuめっき後の耐食性にも優れた銅合金材の提供が可能になった。
また、本発明によれば、溶体化処理中、NiおよびSiを固溶させる温度、ならびに、時効熱処理中、室温〜200℃までの昇温温度および200℃〜保持温度までの昇温温度、引き続く保持温度および保持時間、その後の保持温度〜200℃までの冷却の際の冷却速度の適正化を図ることで、上述した、高強度および高導電率特性を維持しつつ、スマット洗浄性も向上し、かつAuめっき後の耐食性にも優れた銅合金材の製造方法の提供が可能になった。
According to the present invention, in a copper alloy material containing relatively high concentrations of Ni and Si, when the major axis of the precipitate (compound) containing Ni and Si is α nm and the minor axis is β nm, the minor axis β By maintaining the ratio of the major axis α to the minor axis β of the precipitate (compound), that is, the aspect ratio, by maintaining and improving the high strength and high conductivity characteristics, the smut cleaning property is maintained. In addition, it has become possible to provide a copper alloy material having excellent corrosion resistance after Au plating.
Further, according to the present invention, the temperature at which Ni and Si are dissolved during the solution treatment, and the temperature rising temperature from room temperature to 200 ° C. and the temperature rising temperature from 200 ° C. to the holding temperature during the aging heat treatment, continue. By maintaining the holding temperature and holding time, and the cooling rate at the subsequent holding temperature to 200 ° C., the smut cleaning performance is improved while maintaining the above-described high strength and high conductivity characteristics. In addition, it has become possible to provide a method for producing a copper alloy material having excellent corrosion resistance after Au plating.

次に、本発明に従う代表的なCu−Ni−Si系の銅合金材について、以下に説明する。なお、以下に示す実施形態は、本発明を具体的に説明するために用いた代表的な実施形態を例示したにすぎず、本発明の範囲において、種々の実施形態をとり得る。また、本発明の銅合金材は圧延加工によって成形されるものであり、板や条等に成形される場合は特に「板材」と呼び、棒や線等に成形される場合は「棒材」や「線材」と呼ぶ。   Next, a typical Cu—Ni—Si based copper alloy material according to the present invention will be described below. In addition, embodiment shown below has illustrated only typical embodiment used in order to demonstrate this invention concretely, and can take various embodiment in the scope of this invention. In addition, the copper alloy material of the present invention is formed by rolling, and is particularly called “plate material” when formed into a plate or strip, and “bar material” when formed into a rod or wire. Or “wire”.

(合金成分)
はじめに、本発明の銅合金材に用いられる合金元素について説明する。Cu−Ni−Si系の銅合金は、NiおよびSiを含有する化合物(主としてNiSi化合物)をナノメートルオーダーで銅母相に均一分散析出させることで、強度および導電率を向上させる時効析出型合金である。
(Alloy components)
First, the alloy elements used for the copper alloy material of the present invention will be described. Cu-Ni-Si-based copper alloys are aging precipitation that improves strength and electrical conductivity by uniformly dispersing and precipitating Ni and Si-containing compounds (mainly Ni 2 Si compounds) on the copper matrix in the nanometer order. Type alloy.

本発明においてNi(ニッケル)の含有量は2.0〜6.0質量%、Si(ケイ素)の含有量は0.3〜2.0質量%である。Ni、Siのいずれかの元素の含有量が下限値未満では、時効析出による強度向上が不十分であり、一方、いずれかの元素の含有量が上限値を超えると鋳造時での形成する晶出物の形成が多くなり、その結果、未固溶の化合物が増大し、スマット発生量が著しく増加してしまう。それ故、強度向上の点から、特に好ましいNiの含有量は3.5質量%以上、Siの含有量は0.4質量%以上であり、また、製造性の観点から、特に好ましいNiの含有量は5.0質量%以下、Siの含有量は1.8質量%以下が好ましい。   In the present invention, the content of Ni (nickel) is 2.0 to 6.0 mass%, and the content of Si (silicon) is 0.3 to 2.0 mass%. If the content of any element of Ni or Si is less than the lower limit, the strength improvement due to aging precipitation is insufficient. On the other hand, if the content of any element exceeds the upper limit, crystals formed during casting The formation of exudates increases, resulting in an increase in undissolved compounds and a significant increase in the amount of smut generated. Therefore, the Ni content is particularly preferably 3.5% by mass or more and the Si content is 0.4% by mass or more from the point of strength improvement, and the Ni content is particularly preferable from the viewpoint of manufacturability. The amount is preferably 5.0% by mass or less, and the Si content is preferably 1.8% by mass or less.

次に、クロム(Cr)、マグネシウム(Mg)、スズ(Sn)、亜鉛(Zn)を含有する場合の各元素の含有量の範囲について説明する。これらの元素は、必要に応じて、Cr:0.05〜1.0質量%、Mg:0.05〜1.0質量%、Sn:0.05〜0.8質量%およびZn:0.05〜0.8質量%の群から選ばれる少なくとも1種を含有させることができる。   Next, the content range of each element in the case of containing chromium (Cr), magnesium (Mg), tin (Sn), and zinc (Zn) will be described. If necessary, these elements are Cr: 0.05 to 1.0% by mass, Mg: 0.05 to 1.0% by mass, Sn: 0.05 to 0.8% by mass, and Zn: 0. At least 1 sort (s) chosen from the group of 05-0.8 mass% can be contained.

Crは、Cr−Siの2元系およびNi−Cr−Siの多元系の形でケイ化物を形成し、溶体化処理時に粒界の移動を抑制して母相結晶粒径を微細にすると共に、粒界反応型析出の抑制に寄与する。Crの添加量が0.05質量%未満であると、その粒界移動および粒界反応型析出抑制の効果が得られず、一方で、Crを1.0質量%を超えて添加しても、強度、粒界移動および粒界反応型析出抑制に寄与せず、粗大な粒子の数が増加し、その結果、強度およびめっき性が劣ってしまう。したがって、Crの含有量は、0.05〜1.0質量%が好ましく、また、Crは、NiおよびSi以外の添加元素と併せて、総量で2.0質量%未満に制限することが好ましい。   Cr forms silicides in the form of binary system of Cr-Si and multi-system of Ni-Cr-Si, and suppresses the movement of grain boundaries during solution treatment to make the parent phase crystal grain size finer. This contributes to suppression of grain boundary reaction type precipitation. If the amount of Cr added is less than 0.05% by mass, the effects of grain boundary migration and grain boundary reaction type precipitation suppression cannot be obtained, while Cr exceeding 1.0% by mass may be added. , It does not contribute to strength, grain boundary migration and grain boundary reaction type precipitation control, and the number of coarse particles increases, resulting in poor strength and plating properties. Therefore, the content of Cr is preferably 0.05 to 1.0% by mass, and Cr is preferably limited to a total amount of less than 2.0% by mass in combination with additive elements other than Ni and Si. .

Mgは、母相に固溶する形態で存在し、粒界反応型析出の形成を抑制すると共に、応力緩和特性の改善効果がある。Mgの添加量が0.05質量%未満では、その改善効果が期待できず、一方、Mgを1.0質量%を超えて添加すると、導電率を著しく低下させてしまう。したがって、Mgの含有量は、0.05〜1.0質量%が好ましく、また、Mgは、NiおよびSi以外の添加元素と併せて、総量で2.0質量%未満に制限することが好ましい。   Mg exists in a form that dissolves in the matrix phase, and suppresses the formation of grain boundary reaction type precipitation and has an effect of improving stress relaxation characteristics. If the amount of Mg added is less than 0.05% by mass, the improvement effect cannot be expected. On the other hand, if Mg is added in an amount exceeding 1.0% by mass, the conductivity is significantly lowered. Therefore, the content of Mg is preferably 0.05 to 1.0% by mass, and Mg is preferably limited to a total amount of less than 2.0% by mass in combination with additive elements other than Ni and Si. .

Snは、母相に固溶する形態で存在し、粒界反応型析出の形成を抑制すると共に、応力緩和特性を改善する。Snの添加量が0.05質量%未満ではその改善効果が弱く、一方、Snを0.8質量%を超えて添加すると、導電率の低下を引き起こし、また、特に熱間加工性を著しく低下させてしまう。したがって、Snの含有量は、0.05〜0.8質量%が好ましいが、Ni−Si系の化合物で十分応力緩和特性が満たせるのであれば、Snは添加しなくてもよい。また、Snは、NiおよびSi以外の添加元素と併せて、総量で2.0質量%未満に制限することが好ましい。   Sn exists in a solid solution form in the matrix phase, and suppresses the formation of grain boundary reaction type precipitation and improves the stress relaxation characteristics. If the addition amount of Sn is less than 0.05% by mass, the improvement effect is weak. On the other hand, if Sn is added in excess of 0.8% by mass, the electrical conductivity is lowered, and particularly hot workability is remarkably reduced. I will let you. Therefore, the Sn content is preferably 0.05 to 0.8% by mass, but Sn may not be added as long as the stress relaxation characteristics can be sufficiently satisfied with a Ni—Si compound. In addition, Sn is preferably limited to a total amount of less than 2.0% by mass together with additive elements other than Ni and Si.

Znは、母相に固溶する形態で存在し、熱間加工性を向上させ、また、めっき密着性を向上させる一方で、粒界反応型析出を助長させる効果がある。Znの添加量が0.05質量%未満ではその改善効果が弱く、一方、Znを0.8質量%を超えて添加すると、導電率の低下を引き起こし、また粒界反応型析出を助長させ、強度が低下してしまう。したがって、Znの含有量は、0.05〜0.8質量%が好ましいが、析出物の制御により、めっき密着性が十分確保できる場合には添加しなくてもよい。また、Znは、NiおよびSi以外の添加元素と併せて、総量で2.0質量%未満に制限することが好ましい。   Zn exists in the form of a solid solution in the matrix phase, and has the effect of enhancing the hot workability and improving the plating adhesion while promoting the grain boundary reaction type precipitation. When the addition amount of Zn is less than 0.05% by mass, the improvement effect is weak. On the other hand, when Zn is added in excess of 0.8% by mass, the conductivity is lowered, and grain boundary reaction type precipitation is promoted. Strength will fall. Therefore, the Zn content is preferably 0.05 to 0.8% by mass, but it may not be added if the plating adhesion can be sufficiently secured by controlling the precipitates. In addition, Zn is preferably limited to a total amount of less than 2.0% by mass together with additive elements other than Ni and Si.

Mg、Sn、Znを含有させる場合には、Mg、Sn、Znの群から選ばれる1種以上の元素を総量で0.05〜2.6質量%含有させることができ、Mg、Sn、Znの添加によって得られる上述の特性に基づき、必要に応じて、規定された添加量で、本発明の銅合金に添加することができる。   When Mg, Sn, Zn is contained, one or more elements selected from the group of Mg, Sn, Zn can be contained in a total amount of 0.05 to 2.6% by mass, and Mg, Sn, Zn Based on the above-mentioned characteristics obtained by the addition of, it can be added to the copper alloy of the present invention in a prescribed addition amount as necessary.

(組織形態)
次に、本発明における銅合金の良好な組織形態について説明する。本発明において除去の対象となるスマットは、主として合金成分中に含有されているSiが、酸洗時に酸化されて吸着されることで、銅合金材の表面に残存する。NiおよびSiを含有する析出物の体積率を増加させるとスマットの形成量は多くなるが、本発明者らは、上述のように当該析出物の形状を制御する事により、その後のスマットの洗浄性が大きく異なることを見出した。つまり、銅合金中の析出物(化合物)のうち、前記析出物の、長径αnmと短径βnmの比α/β(アスペクト比)を、5未満(α/β<5)に制御すること、すなわち、当該析出物の形状を制御することにより、スマットの洗浄性を向上させることができる。α/βが5以上であると、酸化物が銅合金材の表面上に露呈せずに基材に部分的に埋没したものが増加し、その結果、スマットの洗浄性が劣ってしまう。したがって、当該析出物の長径αnmと短径βnmの比α/βは、5未満(α/β<5)を満たす必要があり、1以上4以下の範囲内であることが好ましい。なお、α/βの値は、1に近いほど析出物が球形に近い形状となる。
(Organizational form)
Next, the favorable structure | tissue form of the copper alloy in this invention is demonstrated. In the smut to be removed in the present invention, Si contained mainly in the alloy component is oxidized and adsorbed at the time of pickling to remain on the surface of the copper alloy material. When the volume fraction of the precipitate containing Ni and Si is increased, the amount of smut formed increases, but the present inventors controlled the shape of the precipitate as described above, and subsequently washed the smut. I found that the sex is very different. That is, among the precipitates (compounds) in the copper alloy, the ratio α / β (aspect ratio) of the major axis αnm to the minor axis βnm of the deposit is controlled to be less than 5 (α / β <5). That is, the smut detergency can be improved by controlling the shape of the precipitate. When α / β is 5 or more, the oxide is not exposed on the surface of the copper alloy material but is partially buried in the base material, and as a result, the smut is poorly cleaned. Therefore, the ratio α / β of the major axis αnm to the minor axis βnm of the precipitate needs to satisfy less than 5 (α / β <5), and is preferably in the range of 1 or more and 4 or less. Note that the closer the value of α / β is to 1, the closer the precipitate is to a spherical shape.

NiおよびSiを含有する析出物の粒子径の大きさは、特に強度に影響を及ぼし得るため、一定の範囲に制御する必要がある。材料の強度と析出物の関係は、一般的にオロワン機構やカッティング機構によって説明され、粒径の大小によって支配的な機構が異なると言われている。本発明においても、NiおよびSiを含有する析出物の粒子径が大きすぎると、オロワン機構による強化が支配的になり、粒径が大きくなるにつれて強度が低下する。また、NiおよびSiを含有する析出物の粒子径が小さすぎると、カッティング機構による強化が支配的になり、粒径が小さくなるにつれて強度が低下する。そのため、NiおよびSiを含有する析出物の短径βは、2nm<β<10nmであることを必要とする。また、NiおよびSiを含有する析出物の長径αは、2nm<α<50nmである。   Since the particle size of the precipitate containing Ni and Si can affect the strength, it is necessary to control it within a certain range. The relationship between the strength of the material and the precipitate is generally explained by the Orowan mechanism or the cutting mechanism, and it is said that the dominant mechanism differs depending on the size of the particle size. Also in the present invention, when the particle diameter of the precipitate containing Ni and Si is too large, strengthening by the Orowan mechanism becomes dominant, and the strength decreases as the particle diameter increases. Moreover, when the particle diameter of the precipitate containing Ni and Si is too small, strengthening by the cutting mechanism becomes dominant, and the strength decreases as the particle diameter decreases. Therefore, the minor axis β of the precipitate containing Ni and Si needs to be 2 nm <β <10 nm. The major axis α of the precipitate containing Ni and Si is 2 nm <α <50 nm.

Cu−Ni−Si系の銅合金材では、めっき前の酸洗工程でスマットと呼ばれる析出物の溶け残りが表面に残留し、めっき不良の原因となることから、このようなスマットの量を可能な限り低くする必要がある。スマットの残留量は、一般的な測定方法によって測定することができ、例えば、製造した合金材を脱脂洗浄した後、硫酸と過酸化水素水を含む酸洗液中に所定時間浸積させ、引き続き超音波洗浄することで、合金材の表面に残留したスマット量を測定することができる。スマットの残存面積率が3%以上であると、上述のように、スマットの発生によるめっき不良が増大することから、スマットの残存面積率は、3%未満であることが好ましい。   In Cu-Ni-Si based copper alloy materials, the undissolved deposits called smuts remain on the surface in the pickling process before plating, causing plating defects. It needs to be as low as possible. The residual amount of smut can be measured by a general measurement method. For example, after degreasing and cleaning the manufactured alloy material, it is immersed in a pickling solution containing sulfuric acid and hydrogen peroxide solution for a predetermined time, and subsequently By ultrasonic cleaning, the amount of smut remaining on the surface of the alloy material can be measured. If the remaining area ratio of the smut is 3% or more, as described above, defective plating due to the occurrence of the smut increases, so the remaining area ratio of the smut is preferably less than 3%.

(製造方法)
次に、本発明の銅合金材の製造方法について説明する。本発明の銅合金材は、例えば、溶解、鋳造、均質化処理、熱間加工、冷間加工、溶体化処理、時効熱処理、仕上げ冷間加工をこの順で有する製造方法によって製造することが可能である。なお、熱間加工後には面削を行っても良い。仕上げ冷間加工の後には、調質のための低温焼鈍を行っても良い。各工程において、例えば、以下のような制御を実施することで、上述の組織形態を達成しつつ、良好な特性を具備した銅合金材を製造することができる。
(Production method)
Next, the manufacturing method of the copper alloy material of this invention is demonstrated. The copper alloy material of the present invention can be manufactured by a manufacturing method having, for example, melting, casting, homogenizing treatment, hot working, cold working, solution treatment, aging heat treatment, and finish cold working in this order. It is. Note that chamfering may be performed after hot working. After the finish cold working, low temperature annealing for tempering may be performed. In each process, for example, by performing the following control, it is possible to manufacture a copper alloy material having good characteristics while achieving the above-described structure form.

溶解、鋳造は公知の方法で行うことができる。上述した本発明の銅合金材の成分を有する銅合金を溶解し、鋳造する。鋳造において、成分の偏析が起こると、局所的にNi、Si濃度の高低が発生し、強度の変動や、スマットの発生ムラ等を引き起こす。凝固過程での冷却方式制御等で、そのような偏析をなるべく除去することが望ましいが、次に記載する均質化処理を実施することで、影響度を少なくすることができる。   Melting and casting can be performed by known methods. The above-described copper alloy having the components of the copper alloy material of the present invention is melted and cast. When segregation of components occurs in casting, the Ni and Si concentrations locally increase and decrease, causing fluctuations in strength, uneven generation of smut, and the like. Although it is desirable to remove such segregation as much as possible by controlling the cooling system in the solidification process or the like, the degree of influence can be reduced by carrying out the homogenization described below.

均質化処理は、2段階の工程で行う。まず、第1段階では1000℃以上1055℃以下の温度にて30分以上1時間以下の保持を実施する。その後、第2段階では、800℃以上1000℃未満の温度に一度冷却する。1000℃未満に冷却すればよいので保持は特に要しないが、保持する場合は30分未満で行う。好ましくは10以内であり、特に好ましくは3分以内である。なお、均質化処理の第1段階と第2段階、そしてその後に続く熱間加工は連続で実施する。均質化熱処理の第1段階において1000℃以上1055℃以下の温度で材料を保持することにより、偏析がより緩和され、後のNi、Siを含む化合物の制御を有効に実施することができる。第1段階の温度が1055℃を超えると、粒界から溶融が開始するため、偏析が助長されてしまう。1000℃未満だと温度が低いため適切な均質化ができない。また、均質化熱処理の第2段階で800℃以上1000℃以下に冷却するのは、後に続く熱間加工を安定して行うためである。均質化熱処理の第2段階の温度が800℃を下回ると、粗大な析出粒子が残存し、溶体化処理時も該析出粒子を消去しきれずに残存してしまい、強度低下を引き起こす要因となる。   The homogenization process is performed in two steps. First, in the first stage, holding is performed at a temperature of 1000 ° C. to 1055 ° C. for 30 minutes to 1 hour. Thereafter, in the second stage, cooling is performed once to a temperature of 800 ° C. or higher and lower than 1000 ° C. The holding is not particularly necessary because it may be cooled to less than 1000 ° C. However, the holding is performed in less than 30 minutes. It is preferably within 10 minutes, particularly preferably within 3 minutes. In addition, the 1st stage and 2nd stage of a homogenization process, and the subsequent hot processing are implemented continuously. By holding the material at a temperature of 1000 ° C. or more and 1055 ° C. or less in the first stage of the homogenization heat treatment, segregation is further relaxed and the subsequent control of the compound containing Ni and Si can be performed effectively. When the temperature of the first stage exceeds 1055 ° C., melting starts from the grain boundary, and segregation is promoted. If the temperature is lower than 1000 ° C., the temperature is low and proper homogenization cannot be performed. In addition, the reason for cooling to 800 ° C. or higher and 1000 ° C. or lower in the second stage of the homogenizing heat treatment is to stably perform the subsequent hot working. When the temperature in the second stage of the homogenization heat treatment is below 800 ° C., coarse precipitated particles remain, and the precipitated particles remain without being erased even during the solution treatment, which causes a decrease in strength.

熱間加工は、均質化熱処理の第2段階の後、直ちに開始する。熱間加工は、800℃以上1000℃以下の間にて熱間加工を開始し、600℃以上の温度で終了する。熱間加工は、板・条製品を製造する場合、熱間圧延が好ましいが、熱間押出、熱間鍛造等の方式であってもよい。熱間加工は、600℃未満になると、析出粒子が残存してしまい、溶体化処理時、時効熱処理時に影響を及ぼし、その結果、Ni、Siを含有する析出物の形状を、上述のアスペクト比の範囲内に制御することが困難となる。この熱間加工では、加工率70〜99%の加工率で行う。   Hot working begins immediately after the second stage of the homogenization heat treatment. The hot working starts hot working between 800 ° C. and 1000 ° C. and ends at a temperature of 600 ° C. or higher. In the case of producing a plate / strip product, the hot working is preferably hot rolling, but may be a method such as hot extrusion or hot forging. When the hot working is performed at a temperature lower than 600 ° C., the precipitated particles remain and affect the solution treatment and the aging heat treatment. As a result, the shape of the precipitate containing Ni and Si is changed to the aspect ratio described above. It becomes difficult to control within the range. This hot working is performed at a working rate of 70 to 99%.

引き続き、圧延等による冷間加工を行い、厚さを調整する。この冷間加工では、通常加工率50〜99%の冷間加工を行う。   Subsequently, the thickness is adjusted by cold working such as rolling. In this cold working, cold working is usually performed at a working rate of 50 to 99%.

冷間加工後の溶体化処理では、Ni、Siをできるだけ固溶させた方が良い。溶体化処理後にNi、Si系化合物の残存があると、NiおよびSi析出物の形状を上述のアスペクト比の範囲内に制御することができなくなるからである。また、溶体化工程では、母相の再結晶および母相結晶粒の粗大化が進行するものの、多少の母相の結晶粒粗大化をさせても固溶を優先させたほうが、スマット洗浄性の観点では良好である。このような点から、溶体化処理は、800℃以上1000℃以下の温度範囲で、処理時間は5秒以上300秒以下で行う。母相の平均結晶粒径が10〜30μmになる範囲で選択をするのが好ましい。溶体化処理後は、強制空冷や水冷等によって、50℃/秒以上の冷却速度で室温まで冷却させ、Ni、Siの固溶を維持させる。   In solution treatment after cold working, it is better to dissolve Ni and Si as much as possible. This is because if Ni or Si-based compounds remain after the solution treatment, the shape of Ni and Si precipitates cannot be controlled within the above-mentioned aspect ratio range. Also, in the solution treatment process, recrystallization of the parent phase and coarsening of the parent phase crystal grains proceed, but even if some of the parent phase crystal grains are coarsened, it is better to prioritize solid solution to improve smut cleaning properties. It is good from the viewpoint. From such a point, the solution treatment is performed in the temperature range of 800 ° C. or higher and 1000 ° C. or lower and the processing time is 5 seconds or longer and 300 seconds or shorter. It is preferable to select in the range where the average crystal grain size of the matrix is 10 to 30 μm. After the solution treatment, the solution is cooled to room temperature at a cooling rate of 50 ° C./second or more by forced air cooling, water cooling, or the like to maintain solid solution of Ni and Si.

時効熱処理は、溶体化処理後に、冷間加工を施さずに実施する事が望ましい。時効前に材料内部にひずみによる転位が残存していると、Ni、Siを含有する化合物が転位上に析出する事で、粗大になりやすく、また、NiおよびSiを含有する析出物の形状を制御できないからである。本発明において、時効熱処理の条件を管理することにより、Ni、Siを含有する析出物の形状、すなわちアスペクト比を、α/β<5の範囲内に制御することが可能となる。具体的には、銅合金材の製造工程中、時効熱処理における昇温速度、保持温度と保持時間、および冷却速度を厳密に管理することで達成される。   It is desirable that the aging heat treatment is performed after the solution treatment without performing cold working. If dislocations due to strain remain in the material before aging, compounds containing Ni and Si are likely to be coarsened by precipitation on the dislocations, and the shape of precipitates containing Ni and Si This is because it cannot be controlled. In the present invention, the shape of the precipitate containing Ni and Si, that is, the aspect ratio can be controlled within the range of α / β <5 by managing the conditions of the aging heat treatment. Specifically, it is achieved by strictly controlling the temperature rising rate, holding temperature and holding time, and cooling rate in the aging heat treatment during the manufacturing process of the copper alloy material.

昇温速度は、2段の昇温段階によって調整する必要があり、第1段階の昇温段階として、室温〜200℃までの昇温速度を調整する。第1段階の昇温工程において、昇温速度が0.3℃/分未満では、工業的な観点から時間がかかりすぎてしまい、一方、昇温速度が4℃/分以上であると、均一な核生成が促されないことから、室温〜200℃までの昇温速度は、0.3℃/分以上4℃/分未満であり、好ましくは0.5℃/分以上2℃/分以下である。従来は、室温〜200℃までの温度域は、析出現象に特段影響を及ぼすものではないと考えられていたため、この温度域を制御する事で均一な核生成が促されることは予想外であった。引き続き、第2段階の昇温工程として、200℃〜保持温度までの昇温速度を調整する。第2段階の昇温工程においても、昇温速度が2℃/分未満では、工業的な観点から時間がかかりすぎてしまい、一方、昇温速度が4℃/分を超えてしまうと、均一な核生成が促されないことから、200℃〜保持温度までの昇温速度は、2℃/分以上4℃/分以下であり、好ましくは2.3℃/分以上4℃/分以下である。その際、第2段階の昇温工程における昇温速度が、第1段階の昇温工程における昇温速度よりも速いことが重要であり、本発明において、第2段階の昇温工程における昇温速度を、第1段階の昇温工程における昇温速度に対して速い速度とし、それにより、均一な核生成を促すことが可能となる。   The temperature increase rate needs to be adjusted by two temperature increase steps, and the temperature increase rate from room temperature to 200 ° C. is adjusted as the first temperature increase step. In the first temperature raising step, if the temperature raising rate is less than 0.3 ° C./min, it takes too much time from an industrial point of view. On the other hand, if the temperature raising rate is 4 ° C./min or more, it is uniform. Temperature accelerating rate from room temperature to 200 ° C. is 0.3 ° C./min or more and less than 4 ° C./min, preferably 0.5 ° C./min or more and 2 ° C./min or less. is there. Conventionally, it was thought that the temperature range from room temperature to 200 ° C. did not particularly affect the precipitation phenomenon, so it was unexpected that controlling this temperature range would promote uniform nucleation. It was. Subsequently, as the second temperature raising step, the temperature raising rate from 200 ° C. to the holding temperature is adjusted. Even in the second temperature raising step, if the temperature rising rate is less than 2 ° C./min, it takes too much time from an industrial point of view. On the other hand, if the temperature rising rate exceeds 4 ° C./min, it is uniform. Since no nucleation is promoted, the rate of temperature increase from 200 ° C. to the holding temperature is 2 ° C./min to 4 ° C./min, preferably 2.3 ° C./min to 4 ° C./min. . At that time, it is important that the temperature increase rate in the second stage temperature increase process is faster than the temperature increase rate in the first stage temperature increase process. The speed is set to a speed that is faster than the temperature increase rate in the first stage temperature increase process, thereby promoting uniform nucleation.

保持温度および保持時間は銅合金材の強度に影響を及ぼす。保持温度が低すぎると、Ni、Siを含有する化合物が十分成長せず、十分な強度が得られない。一方、保持温度が高すぎると、該化合物が成長しすぎて強度が低下すると共に、スマット量が増加するため、保持温度は、400℃以上500℃以下の範囲であることが好ましい。また。保持時間も同様、保持時間が0.5時間未満では、強度が不十分であり、6時間を越えるとスマット量が増加するため、保持時間は、0.5時間以上6時間以下であることが好ましい。   Holding temperature and holding time affect the strength of the copper alloy material. If the holding temperature is too low, the compound containing Ni and Si does not grow sufficiently and sufficient strength cannot be obtained. On the other hand, if the holding temperature is too high, the compound grows too much to decrease the strength and increase the smut amount. Therefore, the holding temperature is preferably in the range of 400 ° C. or more and 500 ° C. or less. Also. Similarly, when the holding time is less than 0.5 hours, the strength is insufficient. When the holding time exceeds 6 hours, the amount of smut increases. Therefore, the holding time may be 0.5 hours or more and 6 hours or less. preferable.

到達、保持後の冷却速度もまた銅合金材の強度に影響を及ぼす。冷却速度が遅すぎると、十分な強度を得ることができず、一方、冷却速度が速すぎると、銅合金材中に温度差のついた高温部分と低温部分ができやすく、熱応力が発生しやすい。そのため、保持温度〜200℃までの冷却速度は3℃/分以上、30℃/分以下とすることが好ましい。   The cooling rate after reaching and holding also affects the strength of the copper alloy material. If the cooling rate is too slow, sufficient strength cannot be obtained. On the other hand, if the cooling rate is too fast, a high temperature portion and a low temperature portion with a temperature difference are easily formed in the copper alloy material, and thermal stress is generated. Cheap. Therefore, the cooling rate from the holding temperature to 200 ° C. is preferably 3 ° C./min or more and 30 ° C./min or less.

時効熱処理の後、仕上げ冷間加工を施し、強度を調整することもできる。仕上げ冷間加工の加工率は、通常5〜50%で実施することができ、曲げ加工性を考慮すると、30%以下の加工率で実施することが好ましい。   After aging heat treatment, finish cold working can be applied to adjust the strength. The processing rate of the finish cold working can be usually performed at 5 to 50%, and considering the bending workability, the processing rate is preferably 30% or less.

仕上げ冷間加工の後は、低温焼鈍にて強度の調整と延性の回復を行う。300℃以上550℃以下の温度で、5秒〜10分程度の比較的短時間で実施するのが好ましい。   After finish cold working, strength adjustment and ductility recovery are performed by low-temperature annealing. It is preferable to carry out at a temperature of 300 ° C. or higher and 550 ° C. or lower in a relatively short time of about 5 seconds to 10 minutes.

なお、上述したところは本発明の実施形態の例を示したに過ぎず、特許請求の範囲において変更することは可能である。   In addition, the place mentioned above only showed the example of embodiment of this invention, and can be changed in a claim.

以下に、実施例に基づき、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1/比較例1
下記の表1に示したような、本発明に規定した組成を有する銅合金(実施例1−1〜1−15)および本発明に規定した組成外の銅合金(比較例1−1〜1−8)になるように、所定の原料を溶解炉にて溶解後、1300℃にて5分間保持し、鋳型に鋳造して鋳塊を得た。各々の鋳塊を均質化処理として、第1段階の処理で1025℃の温度で1時間保持した後、第2段階の処理で960℃の温度に一度冷却し、保持時間なしでそのまま連続で熱間圧延に供し、板厚12mmの熱間圧延板を作製した。これらの熱間圧延は、600℃以上で終了して、速やかに水冷を行った。また、熱間圧延が可能であった各サンプルの両面を各1mm面削して板厚を10mmとし、次いで冷間圧延により板厚を0.235mmにした。
Example 1 / Comparative Example 1
As shown in Table 1 below, copper alloys having the composition defined in the present invention (Examples 1-1 to 1-15) and copper alloys outside the composition defined in the present invention (Comparative Examples 1-1 to 1) As shown in −8), a predetermined raw material was melted in a melting furnace, held at 1300 ° C. for 5 minutes, and cast into a mold to obtain an ingot. Each ingot is homogenized and kept at a temperature of 1025 ° C. for 1 hour in the first stage treatment, then once cooled to a temperature of 960 ° C. in the second stage treatment, and continuously heated without any holding time. It used for hot rolling and produced the hot-rolled board with a plate thickness of 12 mm. These hot rollings were finished at 600 ° C. or higher, and were quickly cooled with water. Further, both sides of each sample that could be hot-rolled were chamfered 1 mm each to obtain a plate thickness of 10 mm, and then cold-rolled to a plate thickness of 0.235 mm.

その後の溶体化処理において、実施例1−1および1−2は、830℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。実施例1−3〜1−5は、850℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。実施例1−6、1−7および1−11〜1−15は、880℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。実施例1−8は、930℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。発明例1−9は、940℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。発明例1−10は、950℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。   In the subsequent solution treatment, Examples 1-1 and 1-2 were held at 830 ° C. for 15 seconds, and then cooled at a cooling rate of 100 ° C./second or more. In Examples 1-3 to 1-5, after holding at 850 ° C. for 15 seconds, cooling was performed at a cooling rate of 100 ° C./second or more. Examples 1-6, 1-7, and 1-11 to 1-15 were held at 880 ° C. for 15 seconds, and then cooled at a cooling rate of 100 ° C./second or more. In Example 1-8, after holding at 930 ° C. for 15 seconds, cooling was performed at a cooling rate of 100 ° C./second or more. Inventive Example 1-9 was held at 940 ° C. for 15 seconds and then cooled at a cooling rate of 100 ° C./second or more. Inventive Example 1-10 was held at 950 ° C. for 15 seconds and then cooled at a cooling rate of 100 ° C./second or more.

比較例1−1は、800℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。比較例1−3は、820℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。比較例1−4および1−7は、880℃にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。   In Comparative Example 1-1, after holding at 800 ° C. for 15 seconds, cooling was performed at a cooling rate of 100 ° C./second or more. In Comparative Example 1-3, after holding at 820 ° C. for 15 seconds, cooling was performed at a cooling rate of 100 ° C./second or more. In Comparative Examples 1-4 and 1-7, after holding at 880 ° C. for 15 seconds, cooling was performed at a cooling rate of 100 ° C./second or more.

溶体化処理後の各サンプルについて、室温〜200℃までの昇温速度を1.2℃/分、200℃〜保持温度までの昇温速度を2.3℃/分、保持温度を475℃、保持時間を2時間、保持後〜200℃までの冷却速度を8℃/分の条件に管理し、時効熱処理を実施した。時効熱処理後、冷間加工にて15%の圧延率に相当する厚さ0.2mmに仕上げ、450℃にて30秒の低温焼鈍を施した。   About each sample after solution treatment, the temperature rising rate from room temperature to 200 ° C is 1.2 ° C / min, the temperature rising rate from 200 ° C to holding temperature is 2.3 ° C / min, the holding temperature is 475 ° C, The holding time was 2 hours, and the cooling rate from after holding to 200 ° C. was controlled under the condition of 8 ° C./min, and aging heat treatment was performed. After the aging heat treatment, it was finished to a thickness of 0.2 mm corresponding to a rolling rate of 15% by cold working and subjected to low temperature annealing at 450 ° C. for 30 seconds.

上述の工程で得られた各サンプルについて、次のような評価を実施した。   The following evaluation was performed on each sample obtained in the above process.

a.強度特性:
圧延平行方向から切り出したJIS Z2201−13B号の試験片を、JIS Z2241に準じた3本について、0.2%耐力を測定しその平均値を示した。測定した値は、整数1の位を四捨五入した。なお、高強度特性の基準として、0.2%耐力は、600MPa以上であることが望ましい。
a. Strength characteristics:
The test piece of JIS Z2201-13B cut out from the rolling parallel direction was measured for 0.2% proof stress on three pieces according to JIS Z2241, and the average value was shown. The measured value was rounded off to the nearest whole number. As a standard for high strength characteristics, the 0.2% proof stress is desirably 600 MPa or more.

b.導電率:
20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測し、導電率(%IACS)を算出した。端子間距離は100mmとした。なお、本実施例では、高導電率特性の基準として、導電率(%IACS)は、ベリリウム銅よりも高い29以上とした
b. conductivity:
The specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.), and the conductivity (% IACS) was calculated. The distance between terminals was 100 mm. In this example , the conductivity (% IACS) was set to 29 or higher, higher than that of beryllium copper , as a standard for high conductivity characteristics.

c. 析出粒子の評価:
析出粒子の評価はTEM観察にて評価した。NiSi化合物の回折点、具体的には母相から見て1/2(022)にある析出物の回折点を利用した暗視野観察により、NiSi化合物を観察し、画像解析により、析出粒子の長径αnm、短径βnmを各々の粒子について算出して、α/βを算出し、その平均値を計算した。また、短径βnmの平均値も算出した。観察視野は、150万倍にて10視野を観察した。
c. Evaluation of precipitated particles:
The evaluation of the precipitated particles was performed by TEM observation. The Ni 2 Si compound is observed by dark field observation using the diffraction point of the Ni 2 Si compound, specifically, the diffraction point of the precipitate at 1/2 (022) when viewed from the parent phase, and by image analysis, The major axis αnm and minor axis βnm of the precipitated particles were calculated for each particle, α / β was calculated, and the average value was calculated. The average value of the minor axis β nm was also calculated. Ten observation fields were observed at 1.5 million magnification.

d.スマット洗浄性の評価:
サンプル表面に#2400のバフを施し粗さを整えたサンプルを、クリーナー160S(メルテックス社製)を60g/L含む脱脂液中において、液温60℃で電流密度2.5A/dmの条件で30秒間カソード電解して行った。その後、HSO 60ml/L+H 35ml/L + 1−プロパノール 10ml/Lの溶解液にて、5分間の酸溶解を行い、速やかに水中にて超音波洗浄を1分間実施した。その後、実体顕微鏡にて観察を行い、スマットが残存している面積を観察面積の百分率で表したものを残存率と定義して算出し、残存率が3%未満のものを良として「○」と判断し、3%以上のものを不良として「×」と判断した。
d. Evaluation of smut cleanability:
A sample whose surface was adjusted by applying # 2400 buff to the surface of the sample in a degreasing solution containing 60 g / L of a cleaner 160S (manufactured by Meltex Co.) at a liquid temperature of 60 ° C. and a current density of 2.5 A / dm 2 . And cathodic electrolysis for 30 seconds. Thereafter, acid dissolution was performed for 5 minutes with a solution of H 2 SO 4 60 ml / L + H 2 O 2 35 ml / L + 1-propanol 10 ml / L, and ultrasonic cleaning was immediately performed in water for 1 minute. Thereafter, observation is carried out with a stereomicroscope, and the area where the smut remains is expressed as a percentage of the observed area, defined as the residual ratio. 3% or more were judged as “x” as defective.

e.Auめっき後の耐食性の評価:
サンプル表面に#2400のバフを施し粗さを整えたサンプルを、クリーナー160S(メルテックス社製)を60g/L含む脱脂液中において、液温60℃で電流密度2.5A/dmの条件で30秒間カソード電解して行った。引き続き酸洗処理として、硫酸を100g/L含む酸洗液中に室温で30秒間浸漬して行った。1分間の超音波洗浄後、Niめっきを1.0μm下地めっきとして付与し、Auめっきを0.2μm施した。その後、5%NaCl、35℃の条件で塩水噴霧試験を24時間実施して、試験後の外観で孔食が観察されるものを不良として「×」、観察されないものを良として「○」と判断した。
e. Evaluation of corrosion resistance after Au plating:
A sample whose surface was adjusted by applying # 2400 buff to the surface of the sample in a degreasing solution containing 60 g / L of a cleaner 160S (manufactured by Meltex Co.) at a liquid temperature of 60 ° C. and a current density of 2.5 A / dm 2 . And cathodic electrolysis for 30 seconds. Subsequently, the pickling treatment was performed by immersing in a pickling solution containing 100 g / L of sulfuric acid at room temperature for 30 seconds. After ultrasonic cleaning for 1 minute, Ni plating was applied as an undercoat of 1.0 μm, and Au plating was applied by 0.2 μm. Thereafter, a salt spray test was carried out for 24 hours under the conditions of 5% NaCl and 35 ° C., and “×” indicates that pitting corrosion was observed in the appearance after the test, and “◯” indicates that the pitting corrosion was not observed. It was judged.

Figure 0006301618
Figure 0006301618

表1の実施例1−1〜1−15では、規定された合金組成を有し、かつα/βの値が、α/β<5を満たしていたため、0.2%耐力、スマット洗浄性に優れ、さらには、Auめっき後の耐食性が良好な銅合金材を得ることができた。一方、比較例1−1では、Niの量が規定量よりも下回っていたため、0.2%耐力が小さくなり、比較例1−3では、Siの量が規定量よりも下回っていたため、0.2%耐力が小さくなり、その結果、高強度特性を有する銅合金材は得られなかった。また、比較例1−4ではSiの量が規定量を上回り、α/βの値も規定の範囲から外れていたため、得られた銅合金材は、スマット洗浄性、Auめっき後の耐食性が劣っていた。また、比較例1−7では、Znの量が規定値を上回っていたため、導電率が小さくなり、高導電率特性を有する銅合金材は得られなかった。なお、比較例1−2、1−5、1−6、1−8は、本発明に規定されている範囲の含有量を超えてNi、Mg、Sn又はCrの元素が含有されたため、熱間圧延にて割れが発生し、それ以降の評価は不可能であった。   In Examples 1-1 to 1-15 in Table 1, since the alloy composition was specified and the value of α / β satisfied α / β <5, 0.2% proof stress and smut cleaning properties were obtained. In addition, a copper alloy material having excellent corrosion resistance after Au plating could be obtained. On the other hand, in Comparative Example 1-1, the amount of Ni was lower than the specified amount, so the 0.2% proof stress was small. In Comparative Example 1-3, the amount of Si was lower than the specified amount, so 0 As a result, a copper alloy material having high strength characteristics could not be obtained. Further, in Comparative Example 1-4, the amount of Si exceeded the specified amount, and the value of α / β was also out of the specified range. Therefore, the obtained copper alloy material was inferior in smut cleaning properties and corrosion resistance after Au plating. It was. Moreover, in Comparative Example 1-7, since the amount of Zn exceeded the specified value, the conductivity was small, and a copper alloy material having high conductivity characteristics could not be obtained. In addition, since Comparative Examples 1-2, 1-5, 1-6, and 1-8 contained Ni, Mg, Sn, or Cr elements in excess of the content specified in the present invention, Cracking occurred during hot rolling, and subsequent evaluation was impossible.

実施例2/比較例2
表2において、本発明における組織、すなわちNiおよびSiを含有する析出物のアスペクト比の影響について、合金中に含有されるNi、Siおよび他の添加元素を固定して行い比較した。
Example 2 / Comparative Example 2
In Table 2, the influence of the structure in the present invention, that is, the aspect ratio of the precipitate containing Ni and Si was compared by fixing Ni, Si and other additive elements contained in the alloy.

下記の表2に示したような、本発明に規定した組成の銅合金(実施例2−1〜2−13)、ならびに本発明に規定した組成であって、NiおよびSiを含有する析出物のアスペクトが本発明の範囲外である銅合金(比較例2−1〜2−12)になるように、所定の原料を溶解炉にて溶解後、1300℃にて5分間保持し、鋳型に鋳造して鋳塊を得た。各々の鋳塊を均質化処理として、第1段階の処理で1025℃の温度で1時間保持した後、第2段階の処理で960℃の温度に一度冷却し、保持時間なしでそのまま連続で熱間圧延に供し、板厚12mmの熱間圧延板を作製した。この際、比較例2−4に関しては、1025℃にて1時間の保持後、冷却せずにそのまま熱間圧延に供した為、熱間圧延中に割れが発生して次工程以降の評価が不可能であった。これらの熱間圧延は、600℃以上で終了して、速やかに水冷を行った。この際、比較例2−5に関しては、熱間圧延は500℃で完了し、その後速やかに水冷を行った。熱間圧延が可能であったサンプルの両面を各1mm面削して板厚を10mmとし、次いで冷間圧延により板厚を0.235mmにした。   As shown in Table 2 below, the copper alloy (Examples 2-1 to 2-13) having the composition defined in the present invention, and the composition defined in the present invention, which contains Ni and Si. The predetermined raw material was melted in a melting furnace so as to be a copper alloy (Comparative Examples 2-1 to 2-12) whose aspect ratio is outside the scope of the present invention, and then held at 1300 ° C. for 5 minutes to form a mold. An ingot was obtained by casting. Each ingot is homogenized and kept at a temperature of 1025 ° C. for 1 hour in the first stage treatment, then once cooled to a temperature of 960 ° C. in the second stage treatment, and continuously heated without any holding time. It used for hot rolling and produced the hot-rolled board with a plate thickness of 12 mm. At this time, regarding Comparative Example 2-4, after holding at 1025 ° C. for 1 hour, it was subjected to hot rolling as it was without cooling. Therefore, cracks occurred during hot rolling, and evaluation after the next step was performed. It was impossible. These hot rollings were finished at 600 ° C. or higher, and were quickly cooled with water. At this time, for Comparative Example 2-5, the hot rolling was completed at 500 ° C., and then water cooling was performed promptly. Both sides of the sample that could be hot-rolled were each 1 mm chamfered to a plate thickness of 10 mm, and then cold-rolled to a plate thickness of 0.235 mm.

実施例2−1〜2−13、比較例2−1〜2−3、比較例2−5〜2−12の各サンプルを、それぞれ下記の表3に記載した溶体化温度にて15秒間保持した後、冷却速度100℃/秒以上で冷却を実施した。また、溶体化処理後の各サンプルについて、表3に記載の時効条件にて時効熱処理を実施した。この際、比較例2−3に関しては、冷間加工として、時効熱処理前に5%に相当する圧延を加え、板厚を0.223mmとしてから時効熱処理を実施した。時効熱処理後、冷間加工にて15%の圧延率に相当する厚さ0.2mmに仕上げ、450℃にて30秒の低温焼鈍を施した。   Each sample of Examples 2-1 to 2-13, Comparative Examples 2-1 to 2-3, and Comparative Examples 2-5 to 2-12 was held for 15 seconds at the solution temperature described in Table 3 below. Then, cooling was performed at a cooling rate of 100 ° C./second or more. Further, aging heat treatment was carried out under the aging conditions shown in Table 3 for each sample after the solution treatment. At this time, with respect to Comparative Example 2-3, as cold working, rolling corresponding to 5% was added before the aging heat treatment, and the aging heat treatment was performed after setting the plate thickness to 0.223 mm. After the aging heat treatment, it was finished to a thickness of 0.2 mm corresponding to a rolling rate of 15% by cold working and subjected to low temperature annealing at 450 ° C. for 30 seconds.

上述の工程で得られた各サンプルについて、実施例1と同様に評価した。   Each sample obtained in the above process was evaluated in the same manner as in Example 1.

Figure 0006301618
Figure 0006301618

Figure 0006301618
Figure 0006301618

表2、表3に示されているように、実施例2−1〜2−13では、本発明に規定の組織、すなわちNiおよびSiを含有する析出物のアスペクト比の値が、本発明の範囲内であったため、高強度および高導電率特性を維持しつつ、スマット洗浄性に優れ、かつAuめっき後の耐食性も良好な銅合金材を得ることができた。一方、比較例2−1〜2−12では、本発明に規定の組織、すなわちNiおよびSiを含有する析出物のアスペクト比が本発明の範囲外の値であったため、スマット洗浄性、およびAuめっき後の耐食性が劣り、それ故、高強度および高導電率特性を維持しつつ、スマット洗浄性に優れ、かつAuめっき後の耐食性も良好な銅合金材を得ることはできなかった。   As shown in Tables 2 and 3, in Examples 2-1 to 2-13, the aspect ratio of the precipitates containing the structure defined in the present invention, that is, Ni and Si, is Since it was within the range, it was possible to obtain a copper alloy material having excellent smut cleaning properties and good corrosion resistance after Au plating while maintaining high strength and high conductivity characteristics. On the other hand, in Comparative Examples 2-1 to 2-12, the aspect ratio of the precipitates containing the structure defined in the present invention, that is, Ni and Si was a value outside the range of the present invention. Corrosion resistance after plating was inferior. Therefore, it was not possible to obtain a copper alloy material having excellent smut cleaning properties and good corrosion resistance after Au plating while maintaining high strength and high conductivity characteristics.

本発明によれば、比較的高濃度のNiおよびSiを含有させた銅合金材において、NiおよびSiを含有する析出物(化合物)の長径をαnm、短径をβnmとするとき、短径βが2nm超10nm未満とし、析出物(化合物)の長径αと短径βの比、すなわちアスペクト比の適正化を図ることによって、高強度および高導電率特性を維持しつつ、スマット洗浄性も向上し、かつAuめっき後の耐食性にも優れた銅合金材の提供が可能になった。
また、本発明によれば、溶体化処理中、NiおよびSiを固溶させる温度、ならびに、時効熱処理中、室温〜200℃までの昇温温度および200℃〜保持温度までの昇温温度、引き続く保持温度および保持時間、その後の保持温度〜200℃までの冷却の際の冷却速度の適正化を図ることで、上述した、高強度および高導電率特性を維持しつつ、スマット洗浄性も向上し、かつAuめっき後の耐食性にも優れた銅合金材の製造方法の提供が可能になった。
According to the present invention, in a copper alloy material containing relatively high concentrations of Ni and Si, when the major axis of the precipitate (compound) containing Ni and Si is α nm and the minor axis is β nm, the minor axis β By making the ratio of the major axis α to the minor axis β of the precipitate (compound), that is, the aspect ratio appropriate, the smut cleaning property is improved while maintaining high strength and high conductivity characteristics. In addition, it has become possible to provide a copper alloy material having excellent corrosion resistance after Au plating.
Further, according to the present invention, the temperature at which Ni and Si are dissolved during the solution treatment, and the temperature rising temperature from room temperature to 200 ° C. and the temperature rising temperature from 200 ° C. to the holding temperature during the aging heat treatment, continue. By maintaining the holding temperature and holding time, and the cooling rate at the subsequent holding temperature to 200 ° C., the smut cleaning performance is improved while maintaining the above-described high strength and high conductivity characteristics. In addition, it has become possible to provide a method for producing a copper alloy material having excellent corrosion resistance after Au plating.

Claims (4)

Ni:2.0〜6.0質量%、Si:0.3〜2.0質量%、Cr:0〜1.0質量%、Mg:0〜1.0質量%、Sn:0〜0.8質量%およびZn:0〜0.8質量%を含有し、残部がCuおよび不可避不純物からなる銅合金材であって、
NiおよびSiを含有する析出物の長径をαnm、短径をβnmとするとき、長径αの平均値が2nm超50nm未満であり、短径βの平均値が2nm超10nm未満であり、
前記析出物の長径の短径に対する比α/βの平均値が5未満であることを特徴とする銅合金材。
Ni: 2.0-6.0 mass%, Si: 0.3-2.0 mass%, Cr: 0-1.0 mass%, Mg: 0-1.0 mass%, Sn: 0-0. A copper alloy material containing 8% by mass and Zn: 0 to 0.8% by mass with the balance being Cu and inevitable impurities,
When the major axis of the precipitate containing Ni and Si is α nm and the minor axis is β nm, the average value of the major axis α is more than 2 nm and less than 50 nm, and the average value of the minor axis β is more than 2 nm and less than 10 nm,
The copper alloy material, wherein the average value of the ratio α / β of the major axis to the minor axis of the precipitate is less than 5.
Cr:0.05〜1.0質量%含有することを特徴とする、請求項1に記載の銅合金材。   The copper alloy material according to claim 1, wherein Cr: 0.05 to 1.0% by mass is contained. 前記合金材に、Mg:0.05〜1.0質量%、Sn:0.05〜0.8質量%およびZn:0.05〜0.8質量%の群から選ばれる少なくとも1種の成分を、総量で0.05〜2.6質量%含有することを特徴とする、請求項1または2に記載の銅合金材。   The alloy material includes at least one component selected from the group consisting of Mg: 0.05 to 1.0 mass%, Sn: 0.05 to 0.8 mass%, and Zn: 0.05 to 0.8 mass%. The copper alloy material according to claim 1 or 2, characterized by containing 0.05 to 2.6 mass% in total. 表面のスマットの残存面積率が3%未満となることを特徴とする、請求項1〜3のいずれか1項に記載の銅合金材。   The copper alloy material according to any one of claims 1 to 3, wherein the remaining area ratio of the surface smut is less than 3%.
JP2013191635A 2013-09-17 2013-09-17 Copper alloy material and method for producing the same Active JP6301618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013191635A JP6301618B2 (en) 2013-09-17 2013-09-17 Copper alloy material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191635A JP6301618B2 (en) 2013-09-17 2013-09-17 Copper alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015059225A JP2015059225A (en) 2015-03-30
JP6301618B2 true JP6301618B2 (en) 2018-03-28

Family

ID=52817010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191635A Active JP6301618B2 (en) 2013-09-17 2013-09-17 Copper alloy material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6301618B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811136B2 (en) * 2017-03-30 2021-01-13 Jx金属株式会社 Cu-Ni-Si based copper alloy strip and its manufacturing method
CN115927986B (en) * 2022-12-28 2024-06-14 北冶功能材料(江苏)有限公司 Thermal processing method of homogeneous high-strength copper-nickel-tin alloy section bar

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184680A (en) * 1992-12-21 1994-07-05 Kobe Steel Ltd Copper alloy excellent in bendability
JP3056394B2 (en) * 1995-05-25 2000-06-26 株式会社神戸製鋼所 Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JP4100629B2 (en) * 2004-04-16 2008-06-11 日鉱金属株式会社 High strength and high conductivity copper alloy
JP4006467B1 (en) * 2006-09-22 2007-11-14 株式会社神戸製鋼所 Copper alloy with high strength, high conductivity, and excellent bending workability
JP4143662B2 (en) * 2006-09-25 2008-09-03 日鉱金属株式会社 Cu-Ni-Si alloy
WO2010126046A1 (en) * 2009-04-30 2010-11-04 Jx日鉱日石金属株式会社 Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP2012162782A (en) * 2011-02-09 2012-08-30 Hitachi Cable Ltd High strength copper alloy material, and method of manufacturing the same
JP6205105B2 (en) * 2011-04-18 2017-09-27 Jx金属株式会社 Cu-Ni-Si based alloy for electronic material, Cu-Co-Si based alloy and method for producing the same

Also Published As

Publication number Publication date
JP2015059225A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
JP5619389B2 (en) Copper alloy material
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
CN107208191B (en) Copper alloy material and method for producing same
JP4887851B2 (en) Ni-Sn-P copper alloy
JP2018159104A (en) Copper alloy sheet having excellent strength and conductivity
TWI540213B (en) Copper alloy plate and method for manufacturing copper alloy plate
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6835636B2 (en) Copper alloy plate with excellent strength and conductivity
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP5207927B2 (en) Copper alloy with high strength and high conductivity
JP6301618B2 (en) Copper alloy material and method for producing the same
KR20150086444A (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY
JP6301734B2 (en) Copper alloy material and method for producing the same
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6154997B2 (en) Copper alloy material excellent in strength and plating property and method for producing the same
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2011190469A (en) Copper alloy material, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R151 Written notification of patent or utility model registration

Ref document number: 6301618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350