JP4020881B2 - Cu-Ni-Si-Mg copper alloy strip - Google Patents

Cu-Ni-Si-Mg copper alloy strip Download PDF

Info

Publication number
JP4020881B2
JP4020881B2 JP2004118177A JP2004118177A JP4020881B2 JP 4020881 B2 JP4020881 B2 JP 4020881B2 JP 2004118177 A JP2004118177 A JP 2004118177A JP 2004118177 A JP2004118177 A JP 2004118177A JP 4020881 B2 JP4020881 B2 JP 4020881B2
Authority
JP
Japan
Prior art keywords
particles
less
copper alloy
mass
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004118177A
Other languages
Japanese (ja)
Other versions
JP2005298920A (en
Inventor
直文 前田
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2004118177A priority Critical patent/JP4020881B2/en
Priority to TW94109548A priority patent/TWI274786B/en
Priority to KR20050030164A priority patent/KR100689687B1/en
Priority to CNB2005100697613A priority patent/CN100350064C/en
Publication of JP2005298920A publication Critical patent/JP2005298920A/en
Application granted granted Critical
Publication of JP4020881B2 publication Critical patent/JP4020881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Description

本発明は銅合金条に関し、より詳細には集積回路(IC)といった半導体機器のリードフレーム材やコネクタ、端子、リレー、スイッチ等の導電性ばね材に用いられる銅合金条に関する。   The present invention relates to a copper alloy strip, and more particularly to a copper alloy strip used for a conductive spring material such as a lead frame material of a semiconductor device such as an integrated circuit (IC), a connector, a terminal, a relay, or a switch.

リードフレーム、端子、コネクタ等に使用される電子材料用銅合金条には、合金の基本特性として高い強度と高い電気伝導性(熱伝導性)を両立させることが要求される。また、これらの特性以外にも、曲げ加工性、耐応力緩和特性、耐熱性、めっきとの密着性、半田濡れ性、エッチング加工性、プレス打ち抜き性、耐食性等が求められる。   Copper alloy strips for electronic materials used for lead frames, terminals, connectors, and the like are required to have both high strength and high electrical conductivity (thermal conductivity) as basic characteristics of the alloy. In addition to these characteristics, bending workability, stress relaxation resistance, heat resistance, adhesion to plating, solder wettability, etching workability, press punchability, corrosion resistance, and the like are required.

一方、近年の電子部品の小型化、高集積化に対応して、リードフレーム、端子、コネクタにおいては、リード数の増加及び狭ピッチ化が進み、部品形状も複雑化している。同時に、組立て時及び実装後における信頼性向上の要求が高まっている。このような背景から、上述した銅合金素材の特性に対する要求レベルは、ますます高度化している。   On the other hand, in response to the recent miniaturization and high integration of electronic components, lead frames, terminals, and connectors have been increased in the number of leads and narrow pitch, and the shape of the components has become complicated. At the same time, there is an increasing demand for improved reliability during assembly and after mounting. Against this background, the required level for the properties of the copper alloy material described above is becoming increasingly sophisticated.

高強度及び高導電性の観点から、近年、電子材料用銅合金としては従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、時効硬化型の銅合金の使用量が増加している。時効硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, in recent years, the amount of age-hardening type copper alloys has increased as a copper alloy for electronic materials, replacing conventional solid solution-strengthened copper alloys such as phosphor bronze and brass. is doing. In an age-hardening type copper alloy, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed, the strength of the alloy is increased, and at the same time, the amount of solid solution elements in copper is reduced. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

時効硬化型銅合金のうち、Cu−Ni−Si系銅合金は高強度と高導電率とを併せ持つ代表的な銅合金であり、電子機器用材料として実用化されている。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子が析出することにより強度と導電率が上昇する。   Of the age-hardening type copper alloys, Cu—Ni—Si based copper alloys are representative copper alloys having both high strength and high electrical conductivity, and have been put into practical use as materials for electronic devices. In this copper alloy, the strength and electrical conductivity are increased by the precipitation of fine Ni—Si intermetallic particles in the copper matrix.

Cu−Ni−Si系銅合金には、機械的特性等を改善するために、NiとSi以外の元素が追加で添加される場合が多い。特にMgは、Cu−Ni−Si系銅合金に添加される代表的な元素である。Mg添加の効果として、
(1)強度及び耐応力緩和特性が向上する(特開昭61−250134号公報)、
(2)熱間加工性が向上する(特開平05−345941号公報)、
(3)Mgが酸化物となって酸素をトラップすることにより、熱処理の際のSi酸化物の生成又は粗大化を阻止できる(特開平09−209062号公報)、
等が報告されている。
In order to improve mechanical characteristics and the like, elements other than Ni and Si are often added to the Cu—Ni—Si based copper alloy in many cases. In particular, Mg is a typical element added to a Cu—Ni—Si based copper alloy. As an effect of Mg addition,
(1) Strength and stress relaxation resistance are improved (Japanese Patent Laid-Open No. 61-250134).
(2) Hot workability is improved (Japanese Patent Laid-Open No. 05-345941).
(3) By forming Mg as an oxide and trapping oxygen, generation or coarsening of Si oxide during heat treatment can be prevented (Japanese Patent Laid-Open No. 09-209062).
Etc. have been reported.

しかしながら、Cu−Ni−Si系合金に対してMgを添加すると強度や耐応力緩和特性は向上するが、合金中に粗大な介在物が生成しやすくなり曲げ加工性、エッチング性、めっき性等が低下するという問題があった。合金中に介在物が存在すると、曲げ加工性、エッチング性、めっき性等に悪影響を及ぼすことが知られている。   However, when Mg is added to the Cu-Ni-Si alloy, the strength and stress relaxation resistance are improved, but coarse inclusions are easily generated in the alloy, and bending workability, etching property, plating property, etc. are improved. There was a problem of lowering. It is known that the presence of inclusions in the alloy adversely affects bending workability, etching properties, plating properties, and the like.

Cu−Ni−Si系銅合金の介在物には、酸化物や硫化物などの非金属介在物と粗大なNi−Si系化合物の2種類がある。Cu−Ni−Si−Mg系銅合金の場合MgがSiより酸化されやすいため酸化物の組成はMgOとなり、また硫化物はMgSとなる。しかしながら、O及びS濃度を15ppm以下に下げれば、MgO及びMgSの生成が抑制できることが、特開平05−059468号公報で明らかにされている。   There are two types of inclusions of Cu—Ni—Si based copper alloys: nonmetallic inclusions such as oxides and sulfides and coarse Ni—Si based compounds. In the case of a Cu—Ni—Si—Mg based copper alloy, Mg is more easily oxidized than Si, so that the oxide composition is MgO, and the sulfide is MgS. However, it has been clarified in JP-A-05-059468 that the generation of MgO and MgS can be suppressed if the O and S concentrations are reduced to 15 ppm or less.

一方、水野らによれば、Cu−Ni−Si系銅合金にMgを添加すると、結晶粒界に15at%程度Mgを含む粗大なNi−Si系析出物が粗大成長する(水野正隆、逸見義男、小倉哲造、浜本孝:伸銅技術研究会誌、vol.38 (1999)、p291−297.)。すなわち、Cu−Ni−Si系銅合金にMgを添加すると、粗大Ni−Si系化合物が著しく増加する。   On the other hand, according to Mizuno et al., When Mg is added to a Cu—Ni—Si based copper alloy, coarse Ni—Si based precipitates containing about 15 at% Mg at the grain boundaries grow coarsely (Masataka Mizuno, Yoshio Izumi) , Tetsuzo Ogura, Takashi Hamamoto: Journal of Copper Technology Research, vol.38 (1999), p291-297.). That is, when Mg is added to a Cu—Ni—Si based copper alloy, coarse Ni—Si based compounds are remarkably increased.

粗大Ni−Si系化合物が増加すると、エッチング時のスマットの発生量が増えるとともに、めっき性、曲げ加工性が低下する要因となるため、特開2001−49369号公報では、Cu−Ni−Si系銅合金に対し、Ni−Si系化合物等の介在物を10μm以下とし、さらに5〜10μmの介在物個数を圧延方向に平行な断面において50個/mm2 未満に調整することでNi−Si系介在物の影響を抑えることができるとしている。
When the coarse Ni-Si compound increases, the amount of smut generated during etching increases, and the plating property and bending workability decrease. Therefore, Japanese Patent Laid-Open No. 2001-49369 discloses a Cu-Ni-Si compound. Inclusion of Ni-Si compound or the like is 10 μm or less with respect to the copper alloy, and further, the number of inclusions of 5 to 10 μm is adjusted to less than 50 / mm 2 in the cross section parallel to the rolling direction. The influence of inclusions can be suppressed.

特開昭61−250134号公報JP-A-61-250134 特開平05−345941号公報JP 05-345941 A 特開平09−209062号公報Japanese Patent Application Laid-Open No. 09-209062 特開平05−059468号公報JP 05-059468 A 特開2001−49369号公報JP 2001-49369 A 水野正隆、逸見義男、小倉哲造、浜本孝:伸銅技術研究会誌、vol.38 (1999)、p291−297.Masataka Mizuno, Yoshio Iemi, Tetsuzo Ogura, Takashi Hamamoto: Journal of Copper and Copper Technology, vol. 38 (1999), p291-297.

ここで、特開2001−49369号公報はCu−Ni−Si−Mg系銅合金をも包含するものであるが、Zn、Sn、Fe等他の金属成分を含有するCu−Ni−Si系合金に対しても適用できる包括的な場合について記載しているのみであり、Cu−Ni−Si−Mg系合金個別の具体的なケースの条件は開示していない。また、Ni−Si系粗大粒子に対する着眼点は、個々の粒子の大きさと平均個数のみであった。さらに、介在物の大きさや個数を当該発明が要求する範囲とする合金を製造するためには高温・長時間の熱間圧延及び溶体化処理を行う必要があり、Cu−Ni−Si−Mg系銅合金条の製造コストを押し上げるという問題があった。その上、高温・長時間の熱間圧延及び溶体化処理はCu−Ni−Si−Mg系銅合金条の結晶粒の粗大化を招くこともあり、安定して所望の特性(強度、曲げ加工性)を有する製品が得られないという問題も抱えていた。   Here, Japanese Patent Laid-Open No. 2001-49369 includes a Cu—Ni—Si—Mg based copper alloy, but includes a Cu—Ni—Si based alloy containing other metal components such as Zn, Sn, and Fe. This is only a comprehensive case that can be applied to Cu-Ni-Si-Mg alloys, and does not disclose specific case conditions for each Cu-Ni-Si-Mg alloy. Further, the focus on Ni-Si coarse particles was only the size and average number of individual particles. Furthermore, in order to produce an alloy having the size and number of inclusions within the range required by the present invention, it is necessary to perform hot rolling and solution treatment for a long time at a high temperature, and a Cu—Ni—Si—Mg system. There was a problem of raising the manufacturing cost of the copper alloy strip. In addition, high temperature and long time hot rolling and solution treatment may lead to coarsening of the crystal grains of the Cu-Ni-Si-Mg-based copper alloy strips, and the desired properties (strength, bending processing) In other words, there was a problem that a product having the property could not be obtained.

したがって本発明は、上記の課題を解決することを目的とする。より具体的には製造コストを押し上げる原因となる高温・長時間の熱間圧延及び溶体化処理を必要としないで製造でき、優れた強度、導電性、耐応力緩和特性、曲げ加工性、エッチング性、濡れ性、めっき性を備え、かつ安定して製造可能なCu−Ni−Si−Mg系銅合金条を提供することを課題とする。   Therefore, an object of the present invention is to solve the above problems. More specifically, it can be manufactured without the need for high-temperature and long-time hot rolling and solution treatment, which will increase the manufacturing cost, and has excellent strength, conductivity, stress relaxation resistance, bending workability, and etching properties. It is an object of the present invention to provide a Cu—Ni—Si—Mg based copper alloy strip that has wettability and plating properties and can be stably manufactured.

本発明者らは上記課題を達成するために、まず、従来とは異なる観点からNi−Si系粗大粒子をとらえるべく鋭意研究を重ねた結果、従来のNi−Si系粗大粒子に対する着眼点は、個々の粒子の大きさと平均個数でしかないことに注目し、以下に説明する「粒子群」という概念を新たに打ち出すことによりNi−Si系粗大粒子の分布状態にも着目することを考え、Ni−Si系粗大粒子群が特性に及ぼす影響を調査した。   In order to achieve the above-mentioned problems, the present inventors first conducted extensive research to capture Ni-Si coarse particles from a different viewpoint, and as a result, the focus on conventional Ni-Si coarse particles is: Focusing on the fact that it is only the size and average number of individual particles, and considering the distribution state of Ni-Si coarse particles by newly devising the concept of “particle group” described below, Ni The influence of the Si-based coarse particles on the characteristics was investigated.

ここで図1を参照すると、図1にはFE−SEM〔電解放射型走査電子顕微鏡:PHILIPS社製〕を用い倍率1000倍で観察できるNi−Si系粗大粒子の集合体の代表的形態を示している。圧延方向に平行な断面又は直角な断面を観察すると、厚み方向と直交する方向に並んだNi−Si系粗大粒子の集合体として観察される。以下、この集合体が後に定義するNi−Si系粒子群を形成し得る。   Referring now to FIG. 1, FIG. 1 shows a representative form of an aggregate of Ni—Si coarse particles that can be observed at a magnification of 1000 times using an FE-SEM (electrolytic emission scanning electron microscope: manufactured by PHILIPS). ing. When a cross section parallel to the rolling direction or a cross section perpendicular to the rolling direction is observed, it is observed as an aggregate of Ni—Si based coarse particles arranged in a direction orthogonal to the thickness direction. Hereinafter, this aggregate can form a Ni-Si-based particle group defined later.

Ni−Si系粒子群は、特性に次のような悪影響を引き起こした。
(1)半田付けを行った際に、粒子群上で半田がはじいた。
(2)エッチング加工の際に、粒子が溶け残り、エッチング面の平滑性が失われた。
(3)Ag、Ni等のめっきを行った際に、粒子群上でめっきのピンホールが生じた。また、粒子群上では充分なめっき密着強度が得られず、この部分でめっきの剥がれやめっきフクレが生じた。
(4)曲げ加工の際に、粒子群が割れの起点となり、曲げ加工性が劣化した。
(5)冷間圧延の際にキズ発生の原因となり、表面外観が損なわれた。
The Ni—Si-based particle group caused the following adverse effects on the characteristics.
(1) When soldering, the solder repelled on the particle group.
(2) During etching, particles remained undissolved and the smoothness of the etched surface was lost.
(3) When plating with Ag, Ni or the like, plating pinholes were formed on the particles. Further, sufficient plating adhesion strength was not obtained on the particle group, and peeling of plating and plating swelling occurred at this portion.
(4) During bending, the particle group became the starting point of cracking, and bending workability deteriorated.
(5) The surface appearance was damaged due to the generation of scratches during cold rolling.

一方で、本発明者らは以下のような知見をも得た。
(1)粒径が10μm以上20μm以下の粒子については分散して分布していても、特性に悪影響を及ぼすが、2個/mm2以下であれば悪影響を無視できること、
(2)粒径が2μm以上10μm未満の粒子については、分散して分布していれば特性への影響は小さいが、集合して粒子群として存在すると特性に悪影響を及ぼすこと、
(3)粒径が2μm未満の粒子については、集合して粒子群として存在しても特性への影響は小さいこと、
を見出した。
On the other hand, the present inventors also obtained the following knowledge.
(1) Even if the particles having a particle size of 10 μm or more and 20 μm or less are dispersed and distributed, the properties are adversely affected, but if they are 2 particles / mm 2 or less, the adverse effects can be ignored.
(2) For particles having a particle size of 2 μm or more and less than 10 μm, the effect on the properties is small if they are dispersed and distributed, but if they are aggregated and present as a particle group, the properties are adversely affected.
(3) For particles having a particle size of less than 2 μm, the influence on the characteristics is small even if they aggregate and exist as a particle group,
I found.

本発明は上記知見を基にして完成されたもので、1.0〜4.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、0.05%〜0.3質量%のMgを含有し、残部がCu及び不可避的不純物からなる銅基合金であって、圧延方向に平行な断面において、Ni−Si系化合物粒子が以下の(1)及び(2)の分布状態を有することを特徴とするCu−Ni−Si−Mg系銅合金条である。
(1)粒径が10μm以上20μm以下のNi−Si系化合物粒子が、2個/mm2以下である。
(2)粒径が2μm以上20μm以下のNi−Si系化合物粒子より構成されるNi−Si系粒子群のうち、長さが0.05mm以上1.0mm以下のNi−Si系粒子群の個数が、2個/mm2以下である。
The present invention has been completed on the basis of the above knowledge, contains 1.0 to 4.0% by mass of Ni, and contains Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni. And a copper-based alloy containing 0.05% to 0.3% by mass of Mg, the balance being Cu and inevitable impurities, and in a cross section parallel to the rolling direction, The Cu—Ni—Si—Mg based copper alloy strips having the distribution states of (1) and (2).
(1) The number of Ni—Si compound particles having a particle size of 10 μm or more and 20 μm or less is 2 / mm 2 or less.
(2) The number of Ni—Si based particles having a length of 0.05 mm or more and 1.0 mm or less among the Ni—Si based particles composed of Ni—Si based particles having a particle size of 2 μm to 20 μm Is 2 pieces / mm 2 or less.

本発明は、更にSn、Zn、Agのうち1種類以上を総量で0.01〜2.0質量%含有することを特徴とするCu−Ni−Si−Mg系銅合金条である。   The present invention further provides a Cu-Ni-Si-Mg based copper alloy strip characterized by containing one or more of Sn, Zn, and Ag in a total amount of 0.01 to 2.0 mass%.

本発明は別の実施形態において、上記合金条を加工して得られる半導体機器のリードフレーム、又はコネクタ、端子、リレー、スイッチ等の導電性ばねのような電子機器用部品である。   In another embodiment, the present invention is an electronic device component such as a lead frame of a semiconductor device obtained by processing the alloy strip or a conductive spring such as a connector, a terminal, a relay, or a switch.

本発明のCu−Ni−Si−Mg系銅合金条は、製造コストを押し上げる原因となる高温・長時間の熱間圧延を必要とせず、良好な強度、導電性、耐応力緩和特性、曲げ加工性、エッチング性、濡れ性、めっき性を有するために技術的価値及び実用性が従来技術よりも高く、リードフレーム、端子、コネクタ等に使用される銅合金として好適である。   The Cu-Ni-Si-Mg-based copper alloy strip of the present invention does not require high-temperature / long-time hot rolling, which increases the manufacturing cost, and has good strength, conductivity, stress relaxation resistance, bending work Therefore, it has higher technical value and practicality than conventional techniques, and is suitable as a copper alloy used for lead frames, terminals, connectors and the like.

(1)Ni及びSi
Ni及びSiは、時効処理を行うことにより、Ni2Siを主とする金属間化合物の微細な粒子を形成する。その結果、合金の強度が著しく増加し、同時に電気伝導性も上昇する。Siの添加濃度(質量%)は、Niの添加濃度(質量%)の1/6〜1/4の範囲とする。Si添加量がこの範囲から外れると、導電率が低下する。Niは1.0〜4.0質量%の範囲で添加する。Niが1.0質量%を下回ると充分な強度が得られない。Niが4.0質量%を超えると、熱間圧延で割れが発生する。
(1) Ni and Si
Ni and Si form fine particles of an intermetallic compound mainly composed of Ni 2 Si by performing an aging treatment. As a result, the strength of the alloy is significantly increased and at the same time the electrical conductivity is increased. The addition concentration (mass%) of Si is in the range of 1/6 to 1/4 of the addition concentration (mass%) of Ni. If the Si addition amount is out of this range, the electrical conductivity is lowered. Ni is added in the range of 1.0 to 4.0% by mass. If Ni is less than 1.0% by mass, sufficient strength cannot be obtained. When Ni exceeds 4.0 mass%, a crack generate | occur | produces by hot rolling.

(2)Mg
Cu−Ni−Si合金に0.05質量%以上のMgを添加すると、引張り強さ及び耐力が上昇し、耐熱性及び応力緩和特性も向上する。一方Mg添加量が0.3質量%を超えると、製造性が劣化するとともに導電率の低下が大きくなる。
(2) Mg
When 0.05 mass% or more of Mg is added to the Cu—Ni—Si alloy, the tensile strength and the proof stress are increased, and the heat resistance and the stress relaxation characteristics are also improved. On the other hand, if the amount of Mg added exceeds 0.3% by mass, the manufacturability deteriorates and the conductivity decreases greatly.

(3)粒径が10μm以上20μm以下のNi−Si系粒子
粒径が10μm以上の粒子は、分散して分布していても、半田濡れ性、めっき性、曲げ加工性等に悪影響を及ぼすが、粒径が10μm以上の粒子の個数が、圧延方向に平行な断面において2個/mm2以下であれば特性への悪影響が無視できることを見出した。ここで、Ni−Si系粒子とは、Niを50at%以上含有し、かつSiを20at%以上含有する粒子と定義する。また、Ni−Si系粒子の粒径は、粒子を囲む最小円の直径と定義する(以下同様)。なお粒径が20μmを超える粒子は、その個数にかかわらず、特性に悪影響を及ぼすが、通常のCu―Ni−Si合金には20μmを超える粒子は存在しない。
(3) Ni-Si-based particles having a particle size of 10 μm or more and 20 μm or less Particles having a particle size of 10 μm or more may adversely affect solder wettability, plating properties, bending workability, etc. even if dispersed and distributed. It has been found that if the number of particles having a particle size of 10 μm or more is 2 particles / mm 2 or less in a cross section parallel to the rolling direction, adverse effects on characteristics can be ignored. Here, the Ni—Si-based particles are defined as particles containing Ni at 50 at% or more and containing Si at 20 at% or more. Further, the particle diameter of the Ni—Si-based particles is defined as the diameter of the smallest circle surrounding the particles (the same applies hereinafter). Note that particles having a particle size exceeding 20 μm adversely affect the characteristics regardless of the number of particles, but there are no particles exceeding 20 μm in a normal Cu—Ni—Si alloy.

(4)Ni−Si系粒子群
粒径が2μm以上のNi−Si系粒子が集合して粒子群を形成すると、半田濡れ性、めっき性、曲げ加工性等に悪影響を及ぼす。図2に圧延平行断面において観察されるNi−Si系粒子群の代表的形態を示す(FE−SEM〔電解放射型走査電子顕微鏡:PHILIPS社製〕を用い倍率1000倍で観察できる)。ここで、隣接する粒径2μm以上20μm以下のNi−Si系粒子との距離(d)が10μm以内である粒径2μm以上20μm以下のNi−Si系粒子の集合体を、Ni−Si系粒子群と定義する。Ni−Si系粒子が10μmを超える間隔で分散していると、その粒径が10μm以下であれば、特性への悪影響は無視できるが、10μm以下の距離で集合していると粒径が10μm以下であっても粒径が2μm未満でない限り粒子群として特性に悪影響を及ぼす。ここでは「粒子群の長さ(L)」を1個の粒子群を囲む最小円の直径と定義するが、長さが大きい粒子群ほど、また粒子群の個数が多いほど特性への悪影響は大きい。しかしながら本発明者による実験結果によれば、2μm以上のNi−Si系粒子が集合して粒子群を形成しても、圧延方向に平行な断面において、粒子群の長さ(L)が0.05mmよりも短い場合にはその個数に関係なく半田濡れ性、めっき性、曲げ加工性等の特性に悪影響を与えず、粒子群の長さ(L)が0.05mm以上1.0mm以下の場合には粒子群の個数が2個/mm2以下であれば、特性に悪影響を与えないことがわかった。なお長さ(L)が1.0mmを超える粒子群はその個数にかかわらず、特性に悪影響を及ぼすが、通常のCu―Ni−Si合金には1.0mmを超える粒子群は存在しない。
(4) Ni—Si-based particle group When Ni—Si-based particles having a particle diameter of 2 μm or more are aggregated to form a particle group, it adversely affects solder wettability, plating property, bending workability and the like. FIG. 2 shows a typical form of the Ni—Si-based particle group observed in the rolling parallel section (FE-SEM [electrolytic emission scanning electron microscope: manufactured by PHILIPS) can be observed at a magnification of 1000 times]. Here, an aggregate of Ni—Si particles having a particle diameter of 2 μm or more and 20 μm or less having a distance (d) of 10 μm or less between adjacent Ni—Si particles having a particle diameter of 2 μm or more and 20 μm or less is obtained as Ni-Si particles. Define as a group. If Ni—Si-based particles are dispersed at intervals exceeding 10 μm, the adverse effect on the characteristics can be ignored if the particle size is 10 μm or less, but if they are aggregated at a distance of 10 μm or less, the particle size is 10 μm. Even if the particle size is less than 2 μm, it adversely affects the properties as a particle group unless the particle size is less than 2 μm. Here, the “particle group length (L)” is defined as the diameter of the smallest circle surrounding one particle group. However, the larger the particle group and the larger the number of particle groups, the more adverse the influence on the characteristics. large. However, according to the experimental results by the present inventor, even when Ni—Si-based particles having a size of 2 μm or more gather to form a particle group, the length (L) of the particle group in the cross section parallel to the rolling direction is 0. When the length is shorter than 05 mm, regardless of the number, the solder wettability, plating property, bending workability, etc. are not adversely affected, and the particle group length (L) is 0.05 mm or more and 1.0 mm or less. It was found that when the number of particle groups was 2 / mm 2 or less, the properties were not adversely affected. Note that a particle group having a length (L) exceeding 1.0 mm adversely affects the characteristics regardless of the number of particles, but a normal Cu—Ni—Si alloy does not have a particle group exceeding 1.0 mm.

(5)Mg以外の添加元素
Ni又はSiと化学的に反応する元素を、Cu−Ni−Si−Mg系銅合金条に添加すると、Ni−Si系粒子の形態や分布が変化するので、本発明の効果が得られない。一方、強度上昇等を目的としてSn、Zn、Agといった、Ni及びSiと化学的に反応しない元素を添加する場合については、これら元素を添加しない場合と同様に、本発明の効果が得られる。ただし、導電率が低下するため、その添加量は合計で2.0質量%以下にすることが望ましいが、所望の効果を得るためには0.01質量%以上とするのが好ましい。
(5) Additive elements other than Mg When an element that chemically reacts with Ni or Si is added to the Cu—Ni—Si—Mg based copper alloy strip, the form and distribution of the Ni—Si based particles change. The effect of the invention cannot be obtained. On the other hand, when adding an element that does not chemically react with Ni and Si, such as Sn, Zn, and Ag, for the purpose of increasing the strength or the like, the effect of the present invention can be obtained in the same manner as when these elements are not added. However, since the conductivity decreases, the total amount of addition is desirably 2.0% by mass or less, but in order to obtain a desired effect, it is preferably 0.01% by mass or more.

Cu−Ni−Si−Mg系銅合金条の一般的な製造プロセスでは、まず大気溶解炉を用い、木炭被覆下で、電気銅、Ni、Si、Mg等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、700〜1000℃の高温で加熱して、Ni−Si系化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、350〜550℃の温度範囲で1h以上加熱し、溶体化処理で固溶させたNiとSiを、Ni2Siを主体とする微細粒子として析出させる。この時効処理で強度と導電率が上昇する。より高い強度を得るために、時効前及び/又は時効後に冷間圧延を行うことがある。また、時効後に冷間圧延を行う場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行うことがある。 In a general manufacturing process of a Cu-Ni-Si-Mg-based copper alloy strip, first, an atmospheric melting furnace is used to melt raw materials such as electrolytic copper, Ni, Si, Mg under a charcoal coating, and a desired composition. Get molten metal. Then, this molten metal is cast into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of 700 to 1000 ° C., so that the Ni—Si-based compound is dissolved in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, Ni and Si heated in a temperature range of 350 to 550 ° C. for 1 h or more and solid-dissolved by the solution treatment are precipitated as fine particles mainly composed of Ni 2 Si. This aging treatment increases strength and conductivity. In order to obtain higher strength, cold rolling may be performed before aging and / or after aging. In addition, when cold rolling is performed after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.

上記工程において、Ni−Si系粗大粒子の生成にとって最も重要な工程は鋳造である。鋳造の際のNi−Si系粗大粒子の生成サイトは、凝固組織の粒界であり、粒界でSi及びMgが濃化(偏析)することがその原因である。溶湯の凝固過程においてNi−Si系粗大粒子が粒界に生成(晶出)する。凝固後の冷却過程において、粗大Ni−Si粒は成長してさらに大きくなり、また新たなNi−Si系粗大粒子の生成(析出)も起こる。Mgの存在によって、粒界でのNi−Si系粗大粒子の生成及び成長は著しく促進される。Ni−Si系粗大粒子は粒界に生成するため、鋳造組織を微細化して粒界面積を大きくすると、Ni−Si系粗大粒子の分布が疎になる。逆に、鋳造組織を粗大化させると、粒界面積が小さくなってNi−Si系粗大粒子の分布が密になり、図1に示したようなNi−Si系粒子群の発生頻度が増加する。   In the above process, the most important process for the production of Ni—Si coarse particles is casting. The generation site of Ni—Si coarse particles during casting is a grain boundary of a solidified structure, and Si and Mg are concentrated (segregated) at the grain boundary. During the solidification process of the molten metal, Ni—Si coarse particles are generated (crystallized) at the grain boundaries. In the cooling process after solidification, coarse Ni—Si grains grow and become larger, and generation (precipitation) of new Ni—Si coarse particles occurs. Due to the presence of Mg, the generation and growth of Ni—Si coarse particles at the grain boundaries are significantly promoted. Since Ni—Si coarse particles are generated at the grain boundaries, the distribution of Ni—Si coarse particles becomes sparse when the cast structure is refined to increase the grain interface area. Conversely, when the cast structure is coarsened, the grain boundary area is reduced, the distribution of Ni—Si based coarse particles becomes dense, and the occurrence frequency of Ni—Si based particles as shown in FIG. 1 increases. .

本発明のCu−Ni−Si−Mg系銅合金条は、熱間圧延及び/又は溶体化処理の温度を上げて粗大Ni−Si系粒子を固溶させなくても、鋳造時の冷却速度を上げる等の鋳造組織をコントロールするだけで、所望の特性を得ることが出来る銅合金条である。   The Cu—Ni—Si—Mg based copper alloy strip of the present invention has a cooling rate at the time of casting without increasing the temperature of hot rolling and / or solution treatment and dissolving the coarse Ni—Si based particles. It is a copper alloy strip that can obtain desired properties by simply controlling the cast structure such as raising.

以下、本発明の特徴及び本発明を実施するための最良の形態をより明らかにするために、実施例を用いて具体的に説明する。   Hereinafter, in order to clarify the features of the present invention and the best mode for carrying out the present invention, the present invention will be specifically described with reference to examples.

高周波誘導炉を用い、内径60mmの黒鉛るつぼ中で、3kgの電気銅を溶解し、Ni、Si及びMgを添加して、溶湯成分を2.5質量%Ni−0.5質量%Si(Niの質量%に対して1/5の濃度)−0.15質量%Mgに調整した。溶湯を所定の温度に調整した後、図3の形状の鋳型に鋳込んだ。鋳造組織の大きさを変化させるために、鋳込み温度及び鋳型の材質を以下のように変化させた。
(1)鋳込み温度:1150℃と1250℃の二種類の条件で行った。鋳込み温度を下げることにより、鋳造組織が微細になり、Ni−Si系粒子が分散することを期待した。
(2)鋳型材質:耐火煉瓦、黒鉛、鋳鉄、純銅の四種類の条件で行った。耐火煉瓦、黒鉛、鋳鉄、純銅の順に、冷却速度が大きくなる。冷却速度を大きくすることにより鋳造組織が微細になり、Ni−Si系粒子が分散することを期待した。
Using a high-frequency induction furnace, 3 kg of electrolytic copper is melted in a graphite crucible having an inner diameter of 60 mm, Ni, Si and Mg are added, and the molten metal component is 2.5 mass% Ni-0.5 mass% Si (Ni (Concentration of 1/5 with respect to mass%)-0.15 mass% Mg. After the molten metal was adjusted to a predetermined temperature, it was cast into a mold having the shape shown in FIG. In order to change the size of the cast structure, the casting temperature and the mold material were changed as follows.
(1) Casting temperature: It was performed under two conditions of 1150 ° C and 1250 ° C. By lowering the casting temperature, it was expected that the cast structure became fine and Ni—Si based particles were dispersed.
(2) Mold material: Performed under four types of conditions: refractory brick, graphite, cast iron, and pure copper. The cooling rate increases in the order of refractory brick, graphite, cast iron, and pure copper. By increasing the cooling rate, it was expected that the cast structure became fine and Ni—Si-based particles were dispersed.

なお、比較としてMgを添加しない合金も作製し、Ni−Si系介在物生成へのMgの影響等も調査した。   For comparison, an alloy not containing Mg was also produced, and the influence of Mg on the formation of Ni-Si inclusions was investigated.

次に、このインゴットを以下の順に加工・熱処理し、厚み0.15mmの試料を得た。
(1)インゴットを780℃で3時間加熱後、厚さ8mmまで熱間圧延した。熱間圧延終了温度は620℃であった。
(2)熱延材表面の酸化スケールをグラインダーで除去した。
(3)板厚2mmまで冷間圧延した。
(4)溶体化処理として780℃で20秒間加熱し水中で急冷した。
(5)化学研磨により表面酸化膜を除去した。
(6)板厚0.5mmまで冷間圧延した。
(7)時効処理として水素中で430℃で3時間加熱した。
(8)化学研磨により表面酸化膜を除去した。
(9)板厚0.15mmまで冷間圧延した。
(10)歪取り焼鈍(低温焼鈍)として、水素中、400℃で1分間加熱した。
Next, this ingot was processed and heat-treated in the following order to obtain a sample having a thickness of 0.15 mm.
(1) The ingot was heated at 780 ° C. for 3 hours and then hot rolled to a thickness of 8 mm. The hot rolling end temperature was 620 ° C.
(2) The oxidized scale on the surface of the hot rolled material was removed with a grinder.
(3) Cold rolled to a thickness of 2 mm.
(4) As a solution treatment, it was heated at 780 ° C. for 20 seconds and quenched in water.
(5) The surface oxide film was removed by chemical polishing.
(6) Cold rolled to a plate thickness of 0.5 mm.
(7) Heated at 430 ° C. for 3 hours in hydrogen as an aging treatment.
(8) The surface oxide film was removed by chemical polishing.
(9) Cold rolled to a plate thickness of 0.15 mm.
(10) As strain relief annealing (low temperature annealing), it heated at 400 degreeC in hydrogen for 1 minute.

このように作製した試料について、次の評価を行った。なお、いずれの試料とも、O濃度は5〜10質量ppmの範囲、S濃度は10〜15質量ppmの範囲であった。   The following evaluation was performed about the sample produced in this way. In any sample, the O concentration was in the range of 5 to 10 ppm by mass, and the S concentration was in the range of 10 to 15 ppm by mass.

(1)Ni−Si系粒子及び粒子群の個数
圧延方向に平行な断面を、直径1μmのダイヤモンド砥粒を用いた機械研磨により鏡面に仕上げた後、20℃、47°Be(ボーメ)の塩化第二鉄水溶液中に攪拌しながら2分間浸漬した。このエッチング処理によってCuの母地が溶解し、Ni−Si系粒子が溶け残って現出した。この断面をFE−SEM〔電解放射型走査電子顕微鏡:PHILIPS社製〕を用い倍率1000倍で観察し、10μm以上の粒子の個数と粒子群の個数を測定した。ここで、粒子及び粒子群の個数は試料の圧延方向に平行な断面から観察面積が2mm2となるように複数の観察視野を無作為に選んで観察し、測定した。なお、20μmを超える粒子は観察されなかった。また、長さが1.0mmを超える粒子群も観察されなかった。粒子及び粒子群の成分がNi−Si系粒子であることを、その代表的形態のものをFE−SEMのEDS〔エネルギー分散型X線分析〕を用いて分析することにより確認した。
(1) Number of Ni—Si-based particles and particle groups After a cross section parallel to the rolling direction is mirror-finished by mechanical polishing using diamond abrasive grains having a diameter of 1 μm, chlorination at 20 ° C. and 47 ° Be (Baume) is performed. It was immersed in the ferric aqueous solution for 2 minutes with stirring. By this etching process, the base of Cu was dissolved, and Ni—Si based particles remained undissolved and appeared. This cross section was observed at a magnification of 1000 times using an FE-SEM (electrolytic emission scanning electron microscope: manufactured by PHILIPS), and the number of particles of 10 μm or more and the number of particle groups were measured. Here, the number of particles and particle groups was measured by randomly selecting and observing a plurality of observation fields so that the observation area was 2 mm 2 from a cross section parallel to the rolling direction of the sample. In addition, the particle | grains exceeding 20 micrometers were not observed. Moreover, the particle group whose length exceeds 1.0 mm was not observed. It was confirmed by analyzing EDS [energy dispersive X-ray analysis] of FE-SEM that the typical form was that the component of particle | grains and particle group was a Ni-Si type particle.

(2)曲げ加工性
図4に示すように、曲げ軸が圧延方向と平行方向になるように方向(Bad Way)に、曲げ半径0.15mmの片側90度の繰り返し曲げを行ない、往復を1回と数える方法で破断するまでの回数を数えた。試験を5回行ない、5回の平均を求めた。
(2) Bending workability As shown in FIG. 4, repetitive bending is performed at 90 ° on one side with a bending radius of 0.15 mm in the direction (Bad Way) so that the bending axis is parallel to the rolling direction. The number of times until breakage was counted by the method of counting as times. The test was performed 5 times and the average of 5 times was calculated | required.

(3)半田濡れ性
幅10mmの短冊形状の試験片を採取し、表面をアセトン脱脂し、10vol%硫酸水溶液で酸洗した。その後、試料を25%ロジン−エタノールに5秒間浸漬した後、半田槽中に10秒間浸漬した。半田の組成は60質量%Sn−40質量%Pb、半田の温度は230℃とし、試料の浸漬深さは10mmとした。半田浸漬後の試料表面を実体顕微鏡で観察すると、試料によっては、半田をはじいた点状の部位が観察された。1000mm2の面積(試験片5個の表裏分)に対し、この半田はじき部の個数を求めた。
(3) Solder wettability A strip-shaped test piece having a width of 10 mm was collected, the surface was degreased with acetone, and pickled with a 10 vol% sulfuric acid aqueous solution. Thereafter, the sample was immersed in 25% rosin-ethanol for 5 seconds and then immersed in a solder bath for 10 seconds. The solder composition was 60 mass% Sn-40 mass% Pb, the solder temperature was 230 ° C., and the immersion depth of the sample was 10 mm. When the surface of the sample after the solder immersion was observed with a stereomicroscope, depending on the sample, a spot-like portion repelling the solder was observed. For the area of 1000 mm 2 (the front and back portions of 5 test pieces), the number of solder repelling portions was determined.

(4)応力緩和特性
図5の様に幅10mm×長さ100mmに加工した厚みt=0.15mmの試験片に標点距離l=50mmで高さy0=20mmの曲げ応力を負荷し、150℃にて1000時間加熱後の図6に示す永久変形量(高さ)yを測定し応力緩和率{[(y−y1)(mm)/(y0−y1)(mm)]×100(%)}を算出した。なお、y1は応力を負荷する前の初期のソリの高さである。
(4) Stress relaxation properties As shown in FIG. 5, a test piece having a thickness t = 0.15 mm processed to a width of 10 mm × a length of 100 mm was loaded with a bending stress of a target distance l = 50 mm and a height y 0 = 20 mm. The amount of permanent deformation (height) y shown in FIG. 6 after heating at 150 ° C. for 1000 hours was measured, and the stress relaxation rate {[(y−y 1 ) (mm) / (y 0 −y 1 ) (mm)] × 100 (%)} was calculated. Y 1 is the initial warp height before stress is applied.

表1から分かるように、本発明によればMgを添加しない場合である比較例のNo.9及び10と同等又はそれ以上の良好な曲げ加工性、半田濡れ性を有するCu−Ni−Si−Mg系銅合金条が得られた〔実施例No.1〜5〕。   As can be seen from Table 1, according to the present invention, the comparative example No. Cu-Ni-Si-Mg-based copper alloy strips having good bending workability and solder wettability equivalent to or higher than 9 and 10 were obtained [Example No. 1-5].

一方、比較例のNo.6〜8は本発明と同成分の合金であるが鋳型素材、鋳込温度の影響でインゴット組織が十分に小さくならず粒径10μm以上の粒子及びNi−Si系粒子群の個数が2個/mm2を超え、半田濡れ性、曲げ加工性が低下した。 On the other hand, no. 6 to 8 are alloys of the same composition as the present invention, but the ingot structure is not sufficiently reduced due to the influence of the casting material and casting temperature, and the number of particles having a particle size of 10 μm or more and Ni-Si-based particle groups is 2 / Exceeding mm 2 , solder wettability and bending workability deteriorated.

比較例のNo.9及びNo.10はMgを添加していないCu−Ni−Si合金であり、それぞれNo.5及びNo.7と同じ条件でインゴットを作製しているMgを添加することにより粒径10μm以上の粒子及びNi−Si系粒子群の個数が増加したことがわかる。比較例No.9及びNo.10の曲げ加工性及び半田濡れ性はMgを添加していないため粒径10μm以上の粒子及びNi−Si系粒子群の個数が2個/mm2以下に抑えられ、良好であったが、Mgを添加していないため、耐応力緩和特性の面で実施例よりも劣っていた。
なお、特開200−49369号公報では、全粒子の大きさを10μm以下とし、かつ5〜10μmの大きさの介在物個数を50個/mm2 未満に規定している。そして、この状態を得るために、熱間圧延加熱温度を800℃以上、終了温度を650℃以上に規定し、溶体化処理温度は800℃以上が好ましいとしている。ここで、本発明のNo.5についてみると、粒径10μm以上のNi−Si粒子個数は1.0個/mm2であり、また5〜10μmの粒子個数を別途測定したところ、60個/mm2であった。これは熱間圧延温度と溶体化処理温度が低いためである。しかしながら、鋳造条件を適正化しNi−Si粒子の分布を調整することによりNi−Si粒の個数は多いにも関わらず良好な半田濡れ性と繰り返し曲げ加工性が得られている。
Comparative Example No. 9 and no. 10 is a Cu—Ni—Si alloy to which no Mg is added. 5 and no. 7 that the number of particles having a particle size of 10 μm or more and the number of Ni—Si-based particle groups was increased by adding Mg that produced an ingot under the same conditions as in FIG. Comparative Example No. 9 and no. The bending workability and solder wettability of No. 10 were good because Mg was not added and the number of particles having a particle diameter of 10 μm or more and the number of Ni—Si based particles were suppressed to 2 / mm 2 or less. Therefore, it was inferior to the examples in terms of stress relaxation resistance.
In the JP 200 1 -49369 discloses and defines the size of all the particles and 10μm or less, and the size of inclusions number of 5~10μm below 50 / mm 2. In order to obtain this state, the hot rolling heating temperature is defined as 800 ° C. or higher, the end temperature is defined as 650 ° C. or higher, and the solution treatment temperature is preferably 800 ° C. or higher. Here, no. As for No. 5, the number of Ni—Si particles having a particle diameter of 10 μm or more was 1.0 / mm 2 , and when the number of particles of 5 to 10 μm was separately measured, it was 60 / mm 2 . This is because the hot rolling temperature and the solution treatment temperature are low. However, by optimizing the casting conditions and adjusting the distribution of Ni—Si particles, good solder wettability and repeated bending workability are obtained despite the large number of Ni—Si particles.

Figure 0004020881
Figure 0004020881

Ni−Si系粗大粒子の集合体の代表的形態を示した模式図である。It is the schematic diagram which showed the typical form of the aggregate | assembly of Ni-Si type coarse particle. 圧延平行断面において観察されるNi−Si系粒子群の代表的形態を示した模式図である。It is the schematic diagram which showed the typical form of the Ni-Si type particle group observed in a rolling parallel cross section. 鋳型形状を示した図である。It is the figure which showed the mold shape. 繰り返し曲げ試験法の説明図である。It is explanatory drawing of a repeated bending test method. 応力緩和試験法の説明図である。It is explanatory drawing of a stress relaxation test method. 応力緩和試験法の永久変形量に関する説明図である。It is explanatory drawing regarding the amount of permanent deformation of a stress relaxation test method.

Claims (2)

1.0〜4.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、0.05%〜0.3質量%のMgを含有し、残部がCu及び不可避的不純物からなる銅基合金であって、圧延方向に平行な断面において、Ni−Si系化合物粒子が以下の(1)及び(2)の分布状態を有することを特徴とするCu−Ni−Si−Mg系銅合金条。
(1)粒径が10μm以上20μm以下のNi−Si系化合物粒子が、2個/mm2以下である(5〜10μmの大きさの介在物個数が圧延方向に平行な断面で50個/mm2未満である場合を除く)。
(2)粒径が2μm以上20μm以下のNi−Si系化合物粒子より構成されるNi−Si系粒子群のうち、長さが0.05mm以上1.0mm以下のNi−Si系粒子群の個数が、2個/mm2以下である。
1.0 to 4.0 mass% Ni is contained, Si is contained at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni, and 0.05% to 0.3 mass% of Mg is contained. A copper-based alloy containing Cu and unavoidable impurities in the balance, and in a cross section parallel to the rolling direction, the Ni-Si compound particles have the following distribution states (1) and (2): A Cu-Ni-Si-Mg-based copper alloy strip characterized.
(1) The number of Ni—Si compound particles having a particle size of 10 μm or more and 20 μm or less is 2 / mm 2 or less (the number of inclusions having a size of 5 to 10 μm is 50 / mm in a cross section parallel to the rolling direction) Except when less than 2 ).
(2) The number of Ni—Si based particles having a length of 0.05 mm or more and 1.0 mm or less among the Ni—Si based particles composed of Ni—Si based particles having a particle size of 2 μm to 20 μm Is 2 pieces / mm 2 or less.
請求項記載の合金条を加工して得られる電子機器用部品。 The component for electronic devices obtained by processing the alloy strip of Claim 1 .
JP2004118177A 2004-04-13 2004-04-13 Cu-Ni-Si-Mg copper alloy strip Expired - Lifetime JP4020881B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004118177A JP4020881B2 (en) 2004-04-13 2004-04-13 Cu-Ni-Si-Mg copper alloy strip
TW94109548A TWI274786B (en) 2004-04-13 2005-03-28 Cu-Ni-Si-Mg based copper alloy strip
KR20050030164A KR100689687B1 (en) 2004-04-13 2005-04-12 Cu-Ni-Si-Mg SYSTEM COPPER ALLOY STRIP
CNB2005100697613A CN100350064C (en) 2004-04-13 2005-04-13 Cu-Ni-Si-Mg series copper alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118177A JP4020881B2 (en) 2004-04-13 2004-04-13 Cu-Ni-Si-Mg copper alloy strip

Publications (2)

Publication Number Publication Date
JP2005298920A JP2005298920A (en) 2005-10-27
JP4020881B2 true JP4020881B2 (en) 2007-12-12

Family

ID=35263077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118177A Expired - Lifetime JP4020881B2 (en) 2004-04-13 2004-04-13 Cu-Ni-Si-Mg copper alloy strip

Country Status (4)

Country Link
JP (1) JP4020881B2 (en)
KR (1) KR100689687B1 (en)
CN (1) CN100350064C (en)
TW (1) TWI274786B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959141B2 (en) * 2005-02-28 2012-06-20 Dowaホールディングス株式会社 High strength copper alloy
JP4247922B2 (en) 2006-09-12 2009-04-02 古河電気工業株式会社 Copper alloy sheet for electrical and electronic equipment and method for producing the same
JP4950734B2 (en) * 2007-03-30 2012-06-13 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy with excellent hot workability
WO2009123140A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Cu-ni-si alloy to be used in electrically conductive spring material
JP4930527B2 (en) 2009-03-05 2012-05-16 日立電線株式会社 Copper alloy material and method for producing copper alloy material
DE112010001811B4 (en) 2009-04-30 2019-05-02 Jx Nippon Mining & Metals Corp. Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP5654571B2 (en) * 2010-04-02 2015-01-14 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy for electronic materials
CN105463236A (en) * 2015-12-02 2016-04-06 芜湖楚江合金铜材有限公司 Efficient composite copper alloy wire rod and machining process thereof
JPWO2019013163A1 (en) * 2017-07-10 2020-02-06 株式会社協成 Conductive member, contact pin and device using copper-silver alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154100B2 (en) * 1999-12-17 2008-09-24 日鉱金属株式会社 Copper alloy for electronic materials having excellent surface characteristics and method for producing the same

Also Published As

Publication number Publication date
KR20060045599A (en) 2006-05-17
KR100689687B1 (en) 2007-03-09
JP2005298920A (en) 2005-10-27
TW200533769A (en) 2005-10-16
TWI274786B (en) 2007-03-01
CN100350064C (en) 2007-11-21
CN1683580A (en) 2005-10-19

Similar Documents

Publication Publication Date Title
KR101056973B1 (en) Cu-Ni-Si alloy
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP4563508B1 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
JP5054160B2 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
JP4494258B2 (en) Copper alloy and manufacturing method thereof
KR100689687B1 (en) Cu-Ni-Si-Mg SYSTEM COPPER ALLOY STRIP
JP2011132564A (en) Cu-Mg-P-BASED COPPER-ALLOY MATERIAL AND METHOD OF PRODUCING THE SAME
JP2006283120A (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
KR100622320B1 (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
KR100774226B1 (en) Cu-Ni-Si-Zn-Sn BASED PLATING BATH EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING AND TIN PLATING BATH THEREOF
JP4887851B2 (en) Ni-Sn-P copper alloy
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
JP2012193408A (en) Cu-Ni-Si ALLOY HAVING EXCELLENT BENDABILITY
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
KR101356258B1 (en) Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating
JP2007254803A (en) Titanium-copper
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
KR100684095B1 (en) Cu-Ni-Si-Mg BASED COPPER ALLOY STRIP
JP2018076588A (en) Copper alloy sheet material and manufacturing method therefor
JP4287878B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JP3807387B2 (en) Copper alloy for terminal / connector and manufacturing method thereof
JP3837140B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP2011190469A (en) Copper alloy material, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4020881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term