JP2007254803A - Titanium-copper - Google Patents

Titanium-copper Download PDF

Info

Publication number
JP2007254803A
JP2007254803A JP2006079375A JP2006079375A JP2007254803A JP 2007254803 A JP2007254803 A JP 2007254803A JP 2006079375 A JP2006079375 A JP 2006079375A JP 2006079375 A JP2006079375 A JP 2006079375A JP 2007254803 A JP2007254803 A JP 2007254803A
Authority
JP
Japan
Prior art keywords
plating
mass
copper
concentration
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006079375A
Other languages
Japanese (ja)
Other versions
JP4699252B2 (en
Inventor
Kunihiro Matsuoka
邦浩 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2006079375A priority Critical patent/JP4699252B2/en
Publication of JP2007254803A publication Critical patent/JP2007254803A/en
Application granted granted Critical
Publication of JP4699252B2 publication Critical patent/JP4699252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide titanium-copper having excellent plating adhesion. <P>SOLUTION: The titanium-copper having excellent plating adhesion can be obtained by adding, by mass, 25 to 500 ppm Al to a copper alloy having a composition comprising 1.0 to 4.5% Ti, and the balance Cu with inevitable impurities. By regulating the Al concentration in the surface of the titanium-copper to 0.05 to 1.0%, its plating adhesion further improves. The titanium-copper may comprise one or more kinds selected from Fe, Sn, Ni, Ag, Mn, Zn and Cr by ≤0.3% in total. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

めっき密着性に優れるチタン銅に関するものである。   The present invention relates to titanium copper having excellent plating adhesion.

電子機器の各種端子、コネクタ、リレー、スイッチ等の素材には、電気伝導性とばね性が要求される。従来、コスト面を重視する用途では安価な「黄銅」が適用され、ばね特性が重視される用途では「りん青銅」が適用され、ばね特性と耐食性が重視される用途では「洋白」が適用されていた。ところが、近年の電子機器類およびその部品の小型化、薄肉化傾向に伴い、これらの素材では強度を満足できなくなり、ベリリウム銅やチタン銅などの高強度を有する高級ばね材の需要が増えている。
JIS−C1990に代表される「チタン銅」の製造プロセスでは、溶体化処理によりTiをCu中に固溶させた後、冷間圧延を行い、その後、時効処理を行う。この時効処理においてCuTiあるいはCuTiの微細粒子が析出し、耐力やばね限界値等の強度特性が向上する。
その後、チタン銅条はプレス加工され、コネクタ、リレー、スイッチ等の電子部品に組み込まれる。通常、チタン銅条の電気接点部には、電気接点としての信頼性を高めるために、プレス加工の前または後の工程でめっきが施される。めっきの種類としてはNi下地Auめっき等がある。
Materials such as various terminals, connectors, relays, and switches of electronic devices are required to have electrical conductivity and springiness. Conventionally, inexpensive brass is used for cost-sensitive applications, phosphor bronze is applied for applications where spring characteristics are important, and white is applied for applications where spring characteristics and corrosion resistance are important. It had been. However, with recent trend toward downsizing and thinning of electronic devices and their components, these materials cannot satisfy the strength, and demand for high-grade spring materials having high strength such as beryllium copper and titanium copper is increasing. .
In the manufacturing process of “titanium copper” typified by JIS-C1990, Ti is solid-dissolved in Cu by solution treatment, cold rolling is performed, and then aging treatment is performed. In this aging treatment, fine particles of Cu 3 Ti or Cu 4 Ti are precipitated, and strength characteristics such as proof stress and spring limit value are improved.
Thereafter, the titanium copper strip is pressed and incorporated into electronic components such as connectors, relays, and switches. Usually, the electrical contact portion of the titanium copper strip is plated in a step before or after press working in order to increase the reliability as an electrical contact. Examples of plating include Ni base Au plating and the like.

従来のチタン銅に関する研究については高強度化を目的としたものが中心であり、例えば、NiおよびAlを添加する技術(特許文献1)、AlおよびMgを添加する技術(特許文献2)、Cr、Zr、NiおよびFeを添加する技術(特許文献3)等が提案されている。一方、チタン銅条のめっき特性に関する研究はほとんど報告されていない。
特開昭50−53228号公報 特開昭50−110927号公報 特開2002−356726号公報
The research related to conventional titanium copper is mainly aimed at increasing the strength. For example, a technique of adding Ni and Al (Patent Document 1), a technique of adding Al and Mg (Patent Document 2), Cr , Zr, Ni and Fe are added (Patent Document 3). On the other hand, few studies on the plating characteristics of titanium copper strips have been reported.
JP-A-50-53228 JP-A-50-110927 JP 2002-356726 A

チタン銅のめっき材には、りん青銅等のめっき材と比較し、めっき層と母材(銅合金条)との密着強度が弱いという欠点がある。この密着強度の差は比較的小さなものであり、従来は実用上問題になるものではなかった。しかし近年の電子部品の小型化に伴い、電気接点部における金属材料間の接触面積が小さくなっている。その結果、接点の電気特性により高い信頼性(より安定した接触抵抗等)が求められるようになり、チタン銅のめっき密着性改善が必要になった。本発明の課題は、めっき密着性に優れるチタン銅を提供することである。 The plating material of titanium copper has a drawback that the adhesion strength between the plating layer and the base material (copper alloy strip) is weak compared to a plating material such as phosphor bronze. This difference in adhesion strength is relatively small and has not been a practical problem in the past. However, with the recent miniaturization of electronic components, the contact area between the metal materials in the electrical contact portion has become smaller. As a result, higher electrical reliability (such as more stable contact resistance) has been required due to the electrical characteristics of the contacts, and it has become necessary to improve the titanium copper plating adhesion. The subject of this invention is providing the titanium copper which is excellent in plating adhesiveness.

発明者らは、チタン銅に微量のAlを添加し、時効およびその後の酸洗研磨を適当な条件で行うと、チタン銅表面にAlが適度な濃度で偏析し、めっき密着性が向上することを見出した。 When the inventors add a small amount of Al to titanium copper and perform aging and subsequent pickling polishing under appropriate conditions, Al segregates at an appropriate concentration on the titanium copper surface, and the plating adhesion is improved. I found.

すなわち、本発明は、
(1) 1.0〜4.5 質量%のTiおよび25〜500質量ppmのAlを含有し、残部がCuおよび不可避的不純物からなり、めっき密着性に優れることを特徴するチタン銅,
(2) 表面のAl濃度が0.05〜1.0質量%であることを特徴とする上記(1)のチタン銅,
(3)Fe、Sn、Ni、Ag、Mn、ZnおよびCrのなかの一種以上を、合計で0.3質量%以下含有することを特徴とする上記(1)又は(2)のチタン銅,
を提供する。
That is, the present invention
(1) Titanium copper containing 1.0 to 4.5 mass% Ti and 25 to 500 mass ppm Al, the balance being Cu and inevitable impurities, and having excellent plating adhesion,
(2) The titanium copper of (1) above, wherein the Al concentration on the surface is 0.05 to 1.0% by mass,
(3) Titanium copper according to (1) or (2) above, which contains one or more of Fe, Sn, Ni, Ag, Mn, Zn and Cr in a total amount of 0.3% by mass or less,
I will provide a.

電子機器の各種端子、コネクタ、リレーまたはスイッチ等の素材として好適な、めっき密着性に優れるチタン銅を提供できる。   Titanium copper excellent in plating adhesion, which is suitable as a material for various terminals, connectors, relays, switches, etc. of electronic equipment, can be provided.

以下に本発明の限定理由を説明する。
Ti濃度
Ti濃度は合金に求める強度および導電率に応じて調整する。Tiが1.0質量%未満になると充分な強度が得られず、Tiが4.5質量%を超えると導電率が著しく低下する。従って、Ti濃度は1.0〜4.5質量%、好ましくは1.5〜3.5質量%とする。
Al濃度
チタン銅にAlを添加すると、めっき密着性が向上する。Alが25質量ppm以上になると、めっき密着性改善効果が発現する。一方、Alが500質量ppmを超えるとかえってめっき密着性が低下し、また導電率等の他の特性に対するAlの悪影響も生じる。そこで、Al濃度を25〜500質量ppmに規定する。
より好ましいAl濃度は50〜250質量ppmである。Alを50ppm以上に調整することでめっき密着性改善効果がさらに安定し、250ppm以下とすることで他の特性に対するAlの影響がさらに小さくなる。さらに好ましいAl濃度は50〜100質量ppmである。
なお、チタン銅へのAlを添加する試みは、特許文献1、2等にも見られるが、その目的は高強度化であり、これら文献の実施例で開示されている合金のAl濃度は、本発明が提唱するAl濃度より高い。すなわち、従来の研究は本発明の動機付けとなるものではない。
The reason for limitation of the present invention will be described below.
Ti concentration Ti concentration is adjusted according to the strength and conductivity required of the alloy. When Ti is less than 1.0% by mass, sufficient strength cannot be obtained, and when Ti exceeds 4.5% by mass, the conductivity is remarkably lowered. Therefore, the Ti concentration is 1.0 to 4.5 mass%, preferably 1.5 to 3.5 mass%.
Al concentration Addition of Al to titanium copper improves plating adhesion. When Al is 25 mass ppm or more, the plating adhesion improving effect is exhibited. On the other hand, if the Al content exceeds 500 ppm by mass, the adhesion of the plating is lowered, and the adverse effect of Al on other properties such as conductivity is also caused. Therefore, the Al concentration is specified to be 25 to 500 mass ppm.
A more preferable Al concentration is 50 to 250 ppm by mass. By adjusting Al to 50 ppm or more, the plating adhesion improving effect is further stabilized, and by setting it to 250 ppm or less, the influence of Al on other characteristics is further reduced. A more preferable Al concentration is 50 to 100 ppm by mass.
Although attempts to add Al to titanium copper can also be seen in Patent Documents 1 and 2, etc., the purpose is to increase the strength, and the Al concentration of the alloys disclosed in the examples of these documents is It is higher than the Al concentration proposed by the present invention. That is, conventional research is not a motivation for the present invention.

表面のAl濃度
チタン銅中のAlはチタン銅表面に偏析する。めっき密着性向上は、この偏析したAlによるものである。したがって、Al添加チタン銅においてAlの表面偏析状態を制御することにより、良好なめっき密着性がさらに安定して得られる。本発明では、GDS(グロー放電発光分光分析装置)により測定した表面のAl濃度に基づき、Alの偏析状態を評価する。好ましい表面Al濃度は0.05〜1.0質量%である。
その他の添加元素
高強度のために、TiとAl以外の元素を添加できる。ただし、酸化皮膜の生成挙動に影響を及ぼすような活性元素を添加すると、本発明の効果が減少するため、Ca、Mg、Zr、P、B、Siといった活性元素の添加は避けるべきである。Alによるめっき密着性改善効果を阻害せず高強度化に有効な元素として、Fe、Sn、Ni、Ag、Mn、Zn、Crがある。とくにFeはチタン銅の強度改善に有効な元素である。これらの合計添加量は0.3質量%以下とする。0.3質量%を越える添加は、Alによるめっき密着性改善効果を阻害する。より好ましい添加量は0.15〜0.25質量%である。合計添加量を0.15%以上にすることで強度改善効果が明瞭になり、0.25質量%以下にすることで良好なめっき密着性がより安定的に得られる。
Surface Al concentration Al in the titanium copper is segregated on the titanium copper surface. The improvement in plating adhesion is due to this segregated Al. Therefore, by controlling the surface segregation state of Al in Al-added titanium copper, good plating adhesion can be obtained more stably. In the present invention, the segregation state of Al is evaluated based on the Al concentration of the surface measured by GDS (Glow Discharge Optical Emission Spectrometer). A preferable surface Al concentration is 0.05 to 1.0 mass%.
Other additive elements Elements other than Ti and Al can be added for high strength. However, if an active element that affects the generation behavior of the oxide film is added, the effect of the present invention is reduced, so the addition of active elements such as Ca, Mg, Zr, P, B, and Si should be avoided. Fe, Sn, Ni, Ag, Mn, Zn, and Cr are effective elements for increasing the strength without inhibiting the effect of improving the plating adhesion by Al. In particular, Fe is an element effective for improving the strength of titanium copper. The total addition amount of these is 0.3% by mass or less. Addition exceeding 0.3% by mass inhibits the effect of improving plating adhesion by Al. A more preferable addition amount is 0.15 to 0.25% by mass. When the total addition amount is 0.15% or more, the strength improvement effect becomes clear, and when the total addition amount is 0.25% by mass or less, good plating adhesion can be obtained more stably.

以下、実施例により、発明の実施様態を説明する。
高周波真空溶解炉にて、電気銅を溶解して所定量のTi、Alさらにその他の元素を添加した後、この溶湯を金型に鋳込み厚さ30mm、幅60mm、長さ120mmのインゴットを作製した。インゴットの成分組成を表1に示す。これらインゴットを以下の工程で加工した。
Hereinafter, embodiments of the invention will be described by way of examples.
In a high-frequency vacuum melting furnace, electrolytic copper was melted and a predetermined amount of Ti, Al and other elements were added, and then the molten metal was cast into a mold to produce an ingot having a thickness of 30 mm, a width of 60 mm, and a length of 120 mm. . Table 1 shows the composition of the ingot. These ingots were processed in the following steps.

(工程1)950℃で3時間加熱した後、厚さ8mmまで熱間圧延した。
(工程2)熱間圧延板表面の酸化スケールをグラインダーで研削、除去した。
(工程3)板厚0.3mmまで冷間圧延した。
(工程4)溶体化処理として、800℃で10秒間、大気中で加熱し、水中で急冷した。
(工程5)酸洗処理として30質量%硫酸−1質量%過酸化水素水溶液に60秒間浸漬した後、#600エメリー紙を用い表面を機械研磨した。この機械研磨は酸洗時の腐食で生じた微細な表面凹凸が消え、均一な表面光沢が得られるまで行った。
(工程6)板厚0.2mmまで冷間圧延した。
(工程7)時効処理として電気炉を用い420℃で3時間加熱した。炉内の雰囲気はArガスとし、Arガスの露点を−25℃と−10℃の2水準で変化させた。
(工程8)酸洗処理として30質量%硫酸−1質量%過酸化水素水溶液に30秒間浸漬した後、#1200エメリー紙を用い表面を機械研磨した。この機械研磨は、酸洗時の腐食で生じた微細な表面凹凸が消え、均一な表面光沢が得られるまで行った。
(工程9)めっき前処理として、アルカリ水溶液中で試料をカソードとして電解脱脂を行なった後、10質量%硫酸水溶液に10秒間浸漬した。
(工程10)次の条件で厚み1μmのNi下地めっきを施した。
めっき浴組成: 硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸g/L。
めっき浴温度:50℃。電流密度:5A/dm。攪拌:5m/分。Niめっき厚みは、電着時間により調整。
(工程11)次の条件で厚み0.2μmのAuめっきを施した。
めっき浴組成:シアン化カリウム7g/L、シアン化金カリウム12g/L、界面活性剤5g/L。
めっき浴温度:60℃。電流密度:1A/dm。攪拌:5m/分。Auめっき厚みは、電着時間により調整。
このように作製した試料について、表面のAl濃度およびめっき密着性を評価した。
(Step 1) After heating at 950 ° C. for 3 hours, it was hot-rolled to a thickness of 8 mm.
(Step 2) The oxidized scale on the surface of the hot rolled plate was ground and removed with a grinder.
(Process 3) Cold-rolled to a sheet thickness of 0.3 mm.
(Step 4) As a solution treatment, the solution was heated in the air at 800 ° C. for 10 seconds and rapidly cooled in water.
(Step 5) As a pickling treatment, the surface was mechanically polished using # 600 emery paper after being immersed in a 30% by mass sulfuric acid-1% by mass aqueous hydrogen peroxide solution for 60 seconds. This mechanical polishing was performed until the fine surface irregularities caused by the corrosion during pickling disappeared and a uniform surface gloss was obtained.
(Step 6) Cold rolling to a plate thickness of 0.2 mm.
(Step 7) As an aging treatment, heating was performed at 420 ° C. for 3 hours using an electric furnace. The atmosphere in the furnace was Ar gas, and the dew point of Ar gas was changed at two levels of −25 ° C. and −10 ° C.
(Step 8) After dipping in a 30% by mass sulfuric acid-1% by mass hydrogen peroxide aqueous solution for 30 seconds as a pickling treatment, the surface was mechanically polished using # 1200 emery paper. This mechanical polishing was performed until the fine surface irregularities caused by corrosion during pickling disappeared and a uniform surface gloss was obtained.
(Step 9) As a pretreatment for plating, electrolytic degreasing was performed using a sample as a cathode in an aqueous alkaline solution, and then immersed in a 10% by mass sulfuric acid aqueous solution for 10 seconds.
(Step 10) Ni base plating with a thickness of 1 μm was applied under the following conditions.
Plating bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid g / L.
Plating bath temperature: 50 ° C. Current density: 5 A / dm 2 . Stirring: 5 m / min. Ni plating thickness is adjusted by electrodeposition time.
(Step 11) Au plating with a thickness of 0.2 μm was performed under the following conditions.
Plating bath composition: potassium cyanide 7 g / L, potassium gold cyanide 12 g / L, surfactant 5 g / L.
Plating bath temperature: 60 ° C. Current density: 1 A / dm 2 . Stirring: 5 m / min. Au plating thickness is adjusted by electrodeposition time.
About the sample produced in this way, the Al concentration on the surface and the plating adhesion were evaluated.

(1)表面のAl濃度
工程8上がりの試料(めっき前試料)をアセトン中で超音波脱脂した後、GDS(グロー放電発光分光分析装置)により、Al濃度プロファイルを求めた。図1にAl濃度プロファイルの一例として、後述する発明例3および比較例1のデータを示す。測定条件は次の通りである。
・装置:JOBIN YBON社製 JY5000RF−PSS型
・Current Method Program:CNBinteel−12aa−0。
・Mode:Constant Electric Power=40W。
・Ar−Presser:775Pa。
・Current Value:40mA(700V)。
・Flush Time:20 sec。
・Preburne Time:2 sec。
・Determination Time:Analysis Time=30se、Sampling Time=0.020sec/point。
(1) Surface Al Concentration A sample after the step 8 (pre-plating sample) was ultrasonically degreased in acetone, and then an Al concentration profile was obtained by GDS (glow discharge optical emission spectrometer). FIG. 1 shows data of Invention Example 3 and Comparative Example 1 described later as an example of the Al concentration profile. The measurement conditions are as follows.
-Apparatus: JY5000RF-PSS type made by JOBIN YBON-Current Method Program: CNBintel-12aa-0.
-Mode: Constant Electric Power = 40W.
Ar-Presser: 775 Pa.
-Current Value: 40 mA (700 V).
-Flush Time: 20 sec.
Preburn Time: 2 sec.
Determination Time: Analysis Time = 30se, Sampling Time = 0.020 sec / point.

(2)めっき密着性
工程11上がりの試料につき、そのめっき密着性をJIS H8504(2005年)に規定された次の2種類の方法で実施した。”曲げ試験方法”は端子・コネクタ用銅合金条のめっき密着性評価方法として一般的に用いられている方法であり、”半田付け試験方法”は、昨今のめっき密着性改善ニーズに対応すべく今回新たに採用したより厳しい試験方法である。
(2−1)曲げ試験方法
幅10mmの試料を90°に曲げて元に戻した後(曲げ半径0.4mm、Good Way方向)、光学顕微鏡(倍率10倍)を用いて曲げ部を観察し、めっき剥離の有無を判定した。めっき剥離が認められない場合を○、めっき剥離が生じた場合を×と評価した。
(2) Plating adhesion step 11 The plating adhesion was carried out by the following two types of methods specified in JIS H8504 (2005) for the samples that had gone up. The “bending test method” is a method generally used as a plating adhesion evaluation method for copper alloy strips for terminals and connectors, and the “soldering test method” is to meet the recent needs for improving plating adhesion. This is a stricter test method that was newly adopted this time.
(2-1) Bending test method After bending a sample with a width of 10 mm to 90 ° and returning it to the original position (bending radius 0.4 mm, Good Way direction), the bending portion was observed using an optical microscope (magnification 10 times). The presence or absence of plating peeling was determined. The case where plating peeling was not recognized was evaluated as ◯, and the case where plating peeling occurred was evaluated as x.

(2−2)半田付け試験方法
黄銅のSnめっき板を試料表面(Auめっき面)に半田付けし、この黄銅Snめっき板を試料表面から引き剥がした。この場合、試料のめっき密着性が良好であれば、半田層中で剥離(破壊)が生じ、試料側の剥離面は灰色を呈する。一方、試料のめっき密着性が不十分な場合は、めっきと母材(チタン銅)との境界で剥離が生じ、試料側の剥離面は銅色を呈する。
試料側の剥離面を光学顕微鏡(倍率10倍)を用いて観察し、全体の面積に占める銅色の部分の面積を求めた。この面積率が5%以下の場合を○、5〜30%の場合を△、30%を超える場合を×と評価した。なお、本試験ではJIS H8504に記載されている”めっき面の表面研磨”は行わず、めっき面をアセトンで洗浄するだけに止めた。
(2-2) Soldering Test Method A brass Sn plated plate was soldered to the sample surface (Au plated surface), and the brass Sn plated plate was peeled off from the sample surface. In this case, if the plating adhesion of the sample is good, peeling (breakage) occurs in the solder layer, and the peeling surface on the sample side is gray. On the other hand, when the plating adhesion of the sample is insufficient, peeling occurs at the boundary between the plating and the base material (titanium copper), and the peeling surface on the sample side exhibits a copper color.
The peeled surface on the sample side was observed using an optical microscope (magnification 10 times), and the area of the copper-colored portion in the entire area was determined. The case where the area ratio was 5% or less was evaluated as ◯, the case where it was 5 to 30% was evaluated as Δ, and the case where it exceeded 30% was evaluated as ×. In this test, the “surface polishing of the plating surface” described in JIS H8504 was not performed, and the plating surface was only washed with acetone.

Figure 2007254803
Figure 2007254803

各試料の評価結果を表1に示す。発明例No.1〜32では、25〜500ppmのAlを添加し、露点−25℃のArガス中で時効を行い、その後上記条件で酸洗・研磨を行ったところ、表面のAl濃度が0.05〜1.0質量%の範囲に収まり、良好なめっき密着性が得られた。 The evaluation results of each sample are shown in Table 1. Invention Example No. 1 to 32, 25 to 500 ppm of Al was added, aging was performed in Ar gas having a dew point of −25 ° C., and then pickling and polishing were performed under the above conditions. It was within the range of 0.0 mass%, and good plating adhesion was obtained.

比較例1〜3は、従来の一般的なチタン銅に相当するものである。Alは25ppm未満であり、酸洗・研磨後の表面Al濃度も0.01質量%以下と低い。これらでは曲げ試験法(従来の試験法)ではめっき剥離が生じなかったが、半田付け試験法(厳しい試験法)においてめっき剥離が生じた。 Comparative Examples 1 to 3 correspond to conventional general titanium copper. Al is less than 25 ppm, and the surface Al concentration after pickling and polishing is also as low as 0.01% by mass or less. In these cases, plating peeling did not occur in the bending test method (conventional test method), but plating peeling occurred in the soldering test method (strict test method).

比較例4〜7は25ppm以上のAlを添加したが、時効の雰囲気ガスとして用いたArの露点が−10℃と悪かったため、酸洗・研磨後の表面のAl濃度が0.05質量%に達しなかったものである。これらでは半田付け試験法において若干のめっき剥離(△)が生じた。この結果より、(1)合金にAlを添加するだけでもめっき密着性改善効果は得られるが(比較例1〜3との比較)、より良好なめっき密着性を安定的に得るためには表面のAl濃度の制御も必要なこと、(2)合金が含有するAlを効果的に表面に濃化させるためには、時効での表面酸化を抑える必要があること、がわかる。なお、表面Al濃化が抑制された理由は、時効時の酸化損耗により表面近傍におけるAl濃度が低下したためと考えられた。 In Comparative Examples 4 to 7, 25 ppm or more of Al was added, but since the dew point of Ar used as an aging atmosphere gas was bad at −10 ° C., the Al concentration on the surface after pickling and polishing was 0.05 mass%. It was not reached. In these cases, slight plating peeling (Δ) occurred in the soldering test method. From this result, although (1) the effect of improving plating adhesion can be obtained only by adding Al to the alloy (comparison with Comparative Examples 1 to 3), in order to stably obtain better plating adhesion, the surface It is understood that control of the Al concentration is also necessary, and (2) it is necessary to suppress surface oxidation during aging in order to effectively concentrate the Al contained in the alloy on the surface. The reason why the surface Al concentration was suppressed was thought to be that the Al concentration in the vicinity of the surface decreased due to oxidation wear during aging.

比較例8はAlが25ppm未満と低いことに加え、露点−10℃のArガス中で時効を行ったものであり、曲げ試験法、半田付け試験法ともめっき剥離が生じた。
比較例9〜12は、Alが500ppmを超え、酸洗・研磨後の表面のAl濃度が0.1質量%を超えたものであり、曲げ試験法、半田付け試験法ともめっき剥離が生じた。高強度化のために多量のAlを添加したチタン銅(特許文献1、2等)のめっき密着性は、比較例9〜12のめっき剥離性のレベルに相当する。
比較例13は、TiとAl以外の元素の合計添加量が0.3質量%を超えたものであり、25ppm以上のAlを添加したもの関わらず、半田付け試験法でめっき剥離が生じた。
In Comparative Example 8, in addition to low Al content of less than 25 ppm, aging was performed in Ar gas having a dew point of −10 ° C., and plating peeling occurred in both the bending test method and the soldering test method.
In Comparative Examples 9 to 12, Al exceeded 500 ppm, and the Al concentration on the surface after pickling and polishing exceeded 0.1 mass%, and plating peeling occurred in both the bending test method and the soldering test method. . The plating adhesion of titanium copper added with a large amount of Al for increasing the strength (Patent Documents 1, 2, etc.) corresponds to the level of plating peelability of Comparative Examples 9-12.
In Comparative Example 13, the total addition amount of elements other than Ti and Al exceeded 0.3% by mass, and plating peeling occurred in the soldering test method regardless of the addition of 25 ppm or more of Al.

比較例14は、りん青銅(JIS H3130で規定されたC5210)のめっき密着性を評価した結果である。りん青銅ではAl濃度が低くても良好なめっき密着性が得られており、めっき密着性改善がチタン銅の課題であることが示されている。 Comparative Example 14 is the result of evaluating the plating adhesion of phosphor bronze (C5210 defined by JIS H3130). Phosphor bronze shows good plating adhesion even when the Al concentration is low, and it has been shown that improvement of plating adhesion is a problem of titanium copper.

発明例No.3および比較例No.1における表面のAl濃度プロファイルである。Invention Example No. 3 and Comparative Example No. 1 is the Al concentration profile of the surface in FIG.

Claims (3)

1.0〜4.5 質量%のTiおよび25〜500質量ppmのAlを含有し、残部がCuおよび不可避的不純物からなり、めっき密着性に優れることを特徴するチタン銅。 Titanium copper containing 1.0 to 4.5 mass% Ti and 25 to 500 mass ppm Al, the balance being Cu and inevitable impurities, and excellent plating adhesion. 表面のAl濃度が0.05〜1.0質量%であることを特徴とする請求項1のチタン銅。 The titanium copper according to claim 1, wherein the Al concentration on the surface is 0.05 to 1.0 mass%. Fe、Sn、Ni、Ag、Mn、ZnおよびCrのなかの一種以上を、合計で0.30質量%以下含有することを特徴とする請求項1または2のチタン銅。
The titanium-copper according to claim 1 or 2, wherein the total amount of one or more of Fe, Sn, Ni, Ag, Mn, Zn, and Cr is 0.30 mass% or less.
JP2006079375A 2006-03-22 2006-03-22 Titanium copper Active JP4699252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079375A JP4699252B2 (en) 2006-03-22 2006-03-22 Titanium copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079375A JP4699252B2 (en) 2006-03-22 2006-03-22 Titanium copper

Publications (2)

Publication Number Publication Date
JP2007254803A true JP2007254803A (en) 2007-10-04
JP4699252B2 JP4699252B2 (en) 2011-06-08

Family

ID=38629328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079375A Active JP4699252B2 (en) 2006-03-22 2006-03-22 Titanium copper

Country Status (1)

Country Link
JP (1) JP4699252B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128600A (en) * 2015-01-09 2016-07-14 Jx金属株式会社 Titanium copper having plating layer
JP2016211078A (en) * 2016-07-26 2016-12-15 Jx金属株式会社 Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2017179571A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
JP2017179573A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
JP2019196548A (en) * 2019-07-10 2019-11-14 Jx金属株式会社 Titanium copper foil with plating layer
JP2019199650A (en) * 2019-07-10 2019-11-21 Jx金属株式会社 Titanium copper foil having plating layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176163A (en) * 2002-11-29 2004-06-24 Nikko Metal Manufacturing Co Ltd Copper alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176163A (en) * 2002-11-29 2004-06-24 Nikko Metal Manufacturing Co Ltd Copper alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128600A (en) * 2015-01-09 2016-07-14 Jx金属株式会社 Titanium copper having plating layer
JP2017179571A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
JP2017179573A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
JP2016211078A (en) * 2016-07-26 2016-12-15 Jx金属株式会社 Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2019196548A (en) * 2019-07-10 2019-11-14 Jx金属株式会社 Titanium copper foil with plating layer
JP2019199650A (en) * 2019-07-10 2019-11-21 Jx金属株式会社 Titanium copper foil having plating layer

Also Published As

Publication number Publication date
JP4699252B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP6055242B2 (en) Cu-Mg-P-based copper alloy Sn plated plate and method for producing the same
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
JPWO2009044822A1 (en) Copper alloy sheet for electrical and electronic parts
JP5700834B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP4699252B2 (en) Titanium copper
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2007314859A (en) Cu-Zn ALLOY STRIP WITH EXCELLENT RESISTANCE TO THERMAL PEELING OF Sn PLATING, AND Sn-PLATED STRIP THEREOF
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP2006307336A (en) Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP4756195B2 (en) Cu-Ni-Sn-P copper alloy
JP4987028B2 (en) Copper alloy tin plating material for printed circuit board terminals
JP2007039789A (en) Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
WO2011039875A1 (en) Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
KR100774225B1 (en) Cu-Ni-Si-Zn BASED ALLOY TIN PLATING BATH
JP4020881B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP4538424B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JP2007291459A (en) TINNED STRIP OF Cu-Sn-P-BASED ALLOY
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP3837140B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP5986822B2 (en) Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4699252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250