JP5986822B2 - Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same - Google Patents

Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same Download PDF

Info

Publication number
JP5986822B2
JP5986822B2 JP2012139604A JP2012139604A JP5986822B2 JP 5986822 B2 JP5986822 B2 JP 5986822B2 JP 2012139604 A JP2012139604 A JP 2012139604A JP 2012139604 A JP2012139604 A JP 2012139604A JP 5986822 B2 JP5986822 B2 JP 5986822B2
Authority
JP
Japan
Prior art keywords
plating
mass
base material
copper alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012139604A
Other languages
Japanese (ja)
Other versions
JP2014005481A (en
Inventor
熊谷 淳一
淳一 熊谷
正之 相田
正之 相田
俊緑 すくも田
俊緑 すくも田
和章 坂井
和章 坂井
佳栄 樽谷
佳栄 樽谷
隆士 玉川
隆士 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2012139604A priority Critical patent/JP5986822B2/en
Publication of JP2014005481A publication Critical patent/JP2014005481A/en
Application granted granted Critical
Publication of JP5986822B2 publication Critical patent/JP5986822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Cu−Ni−Si系銅合金Snめっき板及びその製造方法に関し、特に詳しくは、耐熱剥離性と接触電気抵抗性とが良好な値でバランスしたリフロー処理後のCu−Ni−Si系銅合金Snめっき板及びその製造方法に関する。 The present invention relates to a Cu—Ni—Si based copper alloy Sn-plated plate and a method for producing the same, and more particularly to a Cu—Ni—Si after reflow treatment in which heat-resistant peelability and contact electrical resistance are balanced with good values. The present invention relates to a copper alloy Sn plated plate and a method for producing the same.

コネクタ、端子、リレー、スイッチ等の導電性材料に使用される電子材料用銅合金板には、合金の基本特性として高強度、高電気伝導性又は熱伝導性を両立させることが要求される。また、これらの特性以外にも、曲げ加工性、耐応力緩和特性、耐熱性、めっきとの密着性、半田濡れ性、エッチング加工性、プレス打ち抜き性、耐食性等も求められている。
最近では、この電子材料用銅合金板として、時効硬化型の銅合金板の使用量が増加している。時効硬化型銅合金板では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。時効硬化型銅合金板のうち、Cu−Ni−Si系銅合金板は高強度と高導電率とを併せ持つ代表的な銅合金板であり、銅マトリックス中に微細なNi−Si系金属間化合物粒子が析出することにより強度と導電率が上昇する。
これらのCu−Ni−Si系銅合金板を導電性材料、特に、電気接点材料に用いる場合、耐久性、挿抜性、接触抵抗性等を安定して得るために、その表面に下地層を含めたSnめっき層を施すことが多いが、これらのSnめっき板には、高温で長時間保持した際に、めっき層が銅合金板母材より剥離する現象が生じやすいという弱点があり、従来から種々の改善がなされている。
Copper alloy plates for electronic materials used for conductive materials such as connectors, terminals, relays, and switches are required to have both high strength, high electrical conductivity, and thermal conductivity as basic characteristics of the alloy. In addition to these characteristics, bending workability, stress relaxation resistance, heat resistance, adhesion to plating, solder wettability, etching workability, press punching, corrosion resistance, and the like are also required.
Recently, the use amount of an age-hardening type copper alloy plate is increasing as the copper alloy plate for electronic materials. With age-hardening type copper alloy sheets, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in copper. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained. Among the age-hardening type copper alloy plates, the Cu-Ni-Si based copper alloy plate is a representative copper alloy plate having both high strength and high conductivity, and a fine Ni-Si based intermetallic compound in the copper matrix. The strength and conductivity increase due to the precipitation of particles.
When these Cu-Ni-Si-based copper alloy plates are used for conductive materials, particularly electrical contact materials, an underlayer is included on the surface in order to stably obtain durability, insertion / removability, contact resistance, etc. The Sn plating layer is often applied, but these Sn plating plates have a weak point that the plating layer tends to peel from the copper alloy plate base material when kept at a high temperature for a long time. Various improvements have been made.

特許文献1では、硬さを指標として銅合金の時効条件を限定することにより、めっき熱剥離の改善を図ることが開示されている。
特許文献2では、Ni:0.5〜4.0%、Si:0.1〜1.0%、Mg:0.01〜0.1%、S:0.0015%以下、O:0.0015%以下、あるいはさらに副成分としてP、B、As、Fe、Co、Cr、Al、Sn、Ti、Zr、In、Mnの1種又は2種以上を0.005〜1.0%を含有し、高強度、高導電で、応力緩和特性、めっき耐熱剥離性、銀めっき性、対応力腐食割れ性が良好な端子、コネクタ、リレー、スイッチ等に用いられる導電性ばね用銅合金が開示されている。
特許文献3では、1.0 〜 4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部がCu及び不可避的不純物より構成される銅基合金を母材とするSnめっき条において、めっき層と母材との境界面におけるS濃度及びC濃度を0.050質量%以下に調整して、Snめっきの耐熱剥離性を改善することが開示されている。
また、接触抵抗性の改良として、特許文献4では、表面にSnめっき皮膜を有し、リフロー処理後の前記Snめっき皮膜の最表面にZnが0.1〜10質量%の濃度で存在し、かつ最表面から0.1μm(SiO2換算)以上の深さでZn濃度が0.01質量%以下である銅又は銅合金のSnめっき条であり、銅合金をSnめっきした後、めっき表面に亜鉛イオンの存在する溶液を接触させる表面処理を行い、次にリフロー処理を行うことにより製造される、各種コネクタ、特に嵌合型コネクタ端子として好適な、高温条件下又は長期使用下でも低い接触電気抵抗性を維持する銅又は銅合金のSnめっき条が開示されている。
Patent Document 1 discloses that the thermal detachment of the plating is improved by limiting the aging condition of the copper alloy using the hardness as an index.
In Patent Document 2, Ni: 0.5 to 4.0%, Si: 0.1 to 1.0%, Mg: 0.01 to 0.1%, S: 0.0015% or less, O: 0.0. 0015% or less, or further 0.005 to 1.0% of one or more of P, B, As, Fe, Co, Cr, Al, Sn, Ti, Zr, In, and Mn as subcomponents In addition, copper alloys for conductive springs are disclosed that are used in terminals, connectors, relays, switches, etc. that have high strength, high conductivity, good stress relaxation properties, plating heat release properties, silver plating properties, and good corrosion cracking resistance. ing.
In Patent Document 3, a base material is a copper-based alloy containing 1.0 to 4.5% by mass of Ni and 0.2 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities. In the Sn plating strip, the S concentration and the C concentration at the interface between the plating layer and the base material are adjusted to 0.050% by mass or less to improve the heat-resistant peelability of Sn plating.
Further, as an improvement in contact resistance, Patent Document 4 has a Sn plating film on the surface, and Zn is present at a concentration of 0.1 to 10% by mass on the outermost surface of the Sn plating film after reflow treatment, And it is the Sn plating strip of copper or a copper alloy having a Zn concentration of 0.01% by mass or less at a depth of 0.1 μm (in terms of SiO 2 ) or more from the outermost surface, and after plating the copper alloy with Sn, Low contact electricity even under high-temperature conditions or long-term use, suitable for various connectors, especially mating connector terminals, manufactured by surface treatment that contacts a solution containing zinc ions and then reflow treatment Copper or copper alloy Sn plating strips that maintain resistance are disclosed.

特開昭63−262448号公報JP 63-262448 A 特開平5−059468号公報JP-A-5-059468 特開2007−291458号公報JP 2007-291458 A 特開2008−248332号公報JP 2008-248332 A

従来のCu−Ni−Si系銅合金のリフローSnめっき板は、耐熱剥離性、接触電気抵抗性、耐食性、プレス加工性などの何れかの特性に優れたものが多く、最近要求されている過酷な使用条件下において、めっき耐熱剥離性と接触電気抵抗性とが高いレベルでバランスが取れたリフロー処理後のSnめっき板は皆無であった。   Conventional Cu-Ni-Si-based copper alloy reflow Sn-plated plates have many excellent properties such as heat-resistant peelability, contact electrical resistance, corrosion resistance, and press workability, and have been demanded recently. Under various conditions of use, there was no Sn-plated plate after the reflow treatment in which plating heat resistance peelability and contact electrical resistance were balanced at a high level.

本発明では、めっき耐熱剥離性と接触電気抵抗性とが高いレベルでバランスしたCu−Ni−Si系銅合金のリフローSnめっき板とその製造方法を提供する。   The present invention provides a reflow Sn-plated plate of a Cu—Ni—Si based copper alloy in which plating heat resistance peelability and contact electrical resistance are balanced at a high level and a method for producing the same.

これらの事情に鑑み、発明者らは鋭意検討の結果、リフロー処理後のCu−Ni−Si系銅合金Snめっき板のめっき耐熱剥離性と接触電気抵抗性を良好な値でバランスさせるには、めっき皮膜層の表面Sn相中に存在するP濃度と銅合金母材中に存在するP濃度との比がめっき耐熱剥離性の向上に大きく影響し、めっき皮膜層と銅合金母材との間の境界面層に存在するZn濃度と銅合金母材中に存在するZn濃度との比が、接触電気抵抗性の向上に大きく影響し、これらのP濃度比、Zn濃度比を最適な範囲に調整することにより、その目的が達成されることを見出した。
また、このリフロー処理後のCu−Ni−Si系銅合金Snめっき板を製造するには、最適な組成及び性状のSnめっき液を使用し、最適なリフロー条件にて熱処理することにより、上述の最適なP濃度比、Zn濃度比が具現化され、めっき耐熱剥離性と接触電気抵抗性とが良好な値でバランスすることも見出した。
In view of these circumstances, as a result of intensive studies, the inventors balance the plating heat resistance peelability and the contact electrical resistance of the Cu-Ni-Si based copper alloy Sn plated plate after the reflow treatment with a good value. The ratio between the P concentration present in the surface Sn phase of the plating film layer and the P concentration present in the copper alloy base material has a great influence on the improvement of the plating heat release property. The ratio between the Zn concentration present in the interface layer of Zn and the Zn concentration present in the copper alloy base material greatly affects the improvement of the contact electrical resistance, and these P concentration ratio and Zn concentration ratio are within the optimum ranges. It was found that the purpose is achieved by adjusting.
In addition, in order to produce a Cu-Ni-Si-based copper alloy Sn plated plate after this reflow treatment, an Sn plating solution having an optimum composition and properties is used, and heat treatment is carried out under optimum reflow conditions, thereby It has also been found that the optimum P concentration ratio and Zn concentration ratio are realized, and the plating heat release resistance and the contact electrical resistance are balanced with good values.

即ち、本発明は、1.0〜4.0質量%のNi、0.2〜0.9質量%のSi、0.3〜1.5質量%のZn、0.001〜0.2質量%のPを含有し、残りがCu及び不可避的不純物より構成される銅合金板を母材とし、表面から前記母材にかけて、厚み:0.2μm以下の表面Sn相、厚み:0.2〜0.8μmのSn相、厚み:0.5〜1.4μmのSn−Cu合金相、厚み:0〜0.8μmのCu相の順で構成されためっき皮膜層を有し、前記表面Sn相のP濃度(C)と前記母材のP濃度(D)との比(C/D)が1.1〜2.0であり、前記めっき皮膜層と前記母材との間の厚み:0.8〜1.4μmの境界面層におけるZn濃度(A)と前記母材のZn濃度(B)との比(A/B)が0.5〜0.8であることを特徴とする。 That is, the present invention relates to 1.0 to 4.0 mass% Ni, 0.2 to 0.9 mass% Si, 0.3 to 1.5 mass% Zn, 0.001 to 0.2 mass. A copper alloy plate containing% P and the remainder composed of Cu and inevitable impurities is used as a base material, and from the surface to the base material, a surface Sn phase having a thickness of 0.2 μm or less, thickness: 0.2 to 0.8μm of Sn phase, thickness: Sn-Cu alloy phase 0.5~1.4Myuemu, thickness: order consists of the order of 0~0.8μm the Cu phase having a Kki coating layer, the surface Sn The ratio (C / D) of the P concentration (C) of the phase to the P concentration (D) of the base material is 1.1 to 2.0, and the thickness between the plating film layer and the base material: A ratio (A / B) of Zn concentration (A) in the interface layer of 0.8 to 1.4 μm and Zn concentration (B) of the base material is 0.5 to 0.8. .

本発明のCu−Ni−Si系銅合金Snめっき板は、母材の成分が1.0〜4.0質量%のNi、0.2〜0.9質量%のSi、0.3〜1.5質量%のZn、0.001〜0.2質量%のPを含有し、残りがCu及び不可避的不純物より構成され、その母材表面に形成された境界面層を介してリフロー処理後のめっき皮膜層が形成されている。
Cu−Ni−Si系銅合金は高強度と高導電率とを併せ持つ代表的な銅合金であり、銅マトリックス中に微細なNi−Si系金属間化合物粒子が析出することにより、強度と導電率が上昇する。Cu−Ni−Si系銅合金中のNi及びSiは、時効処理を行うことにより、Ni2Siを主とする金属間化合物の微細な粒子が形成され、銅合金の強度が著しく増加し、電気伝導度も上昇する。
Niが1.0質量%未満、或いは、Siが0.2質量%未満であると、他方の成分を添加しても所望とする強度が得られない。また、Niが4.5質量%を超える、或いは、Siが1.0質量%を超えると、十分な強度は得られるものの、導電性は低くなり、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成され、曲げ加工性、エッチング性等の低下をきたす。
Znは、強度及び耐熱性を改善し、特にはんだ接合の耐熱性を改良する効果がある。
0.3〜1.5質量%の範囲で添加し、この範囲を下回ると所望の効果が得られず、上回ると導電性が低下する。
また、Znは、めっき後のリフロー処理時や高温での使用時に、母材から境界面層、Sn−Cu合金相、Sn相、表面Sn相にマイグレーションするが、境界面層にマイグレーションするZn濃度と母材に残留しているZn濃度との比を0.5〜0.8とすることにより、接触電気抵抗性を良好に維持する。
Pは、曲げ加工によって起るばね性の低下を抑制する効果がある。0.001〜0.2質量%の範囲で添加し、0.001%未満では、所望の効果が得られず、0.2%を超えると、はんだ耐熱剥離性を著しく損なう。
また、Pは、Znに比較して母材からのマイグレーションの度合いは小さく、Snめっき液よりのPに主に起因する表面Sn相のP濃度と母材に残留しているP濃度との比を1.1〜2.0とすることにより、耐熱剥離性を良好に維持する。
In the Cu-Ni-Si-based copper alloy Sn-plated plate of the present invention, the base material component is 1.0 to 4.0 mass% Ni, 0.2 to 0.9 mass% Si, 0.3 to 1 .5% by mass of Zn, 0.001 to 0.2% by mass of P, the remainder being composed of Cu and inevitable impurities, after reflow treatment through the interface layer formed on the base material surface The plating film layer is formed.
Cu-Ni-Si based copper alloy is a representative copper alloy having both high strength and high electrical conductivity. Precipitation of fine Ni-Si based intermetallic compound particles in the copper matrix results in strength and electrical conductivity. Rises. Ni and Si in the Cu-Ni-Si-based copper alloy are subjected to an aging treatment, whereby fine particles of an intermetallic compound mainly containing Ni2Si are formed, the strength of the copper alloy is remarkably increased, and the electric conductivity is increased. Also rises.
If Ni is less than 1.0% by mass or Si is less than 0.2% by mass, the desired strength cannot be obtained even if the other component is added. Further, when Ni exceeds 4.5% by mass or Si exceeds 1.0% by mass, sufficient strength can be obtained, but the conductivity becomes low, and coarse Ni that does not contribute to the improvement of strength. -Si-based particles (crystallized substances and precipitates) are generated in the matrix phase, and bending workability, etching properties and the like are lowered.
Zn has the effect of improving strength and heat resistance, and particularly improving the heat resistance of solder joints.
If it is added in the range of 0.3 to 1.5% by mass and below this range, the desired effect cannot be obtained.
In addition, Zn migrates from the base material to the interface layer, Sn—Cu alloy phase, Sn phase, and surface Sn phase during reflow treatment after plating or when used at high temperatures, but Zn concentration migrates to the interface layer. By making the ratio of the Zn concentration remaining in the base metal 0.5 to 0.8, the contact electrical resistance is maintained well.
P has an effect of suppressing a decrease in springiness caused by bending. If it is added in the range of 0.001 to 0.2% by mass and less than 0.001%, the desired effect cannot be obtained, and if it exceeds 0.2%, the heat resistance peelability of the solder is remarkably impaired.
Further, P is less migrated from the base material than Zn, and the ratio between the P concentration of the surface Sn phase mainly resulting from P from the Sn plating solution and the P concentration remaining in the base material. By setting the value to 1.1 to 2.0, the heat-resistant peelability is maintained well.

本発明では、めっき皮膜層は、その表面から母材にかけて、厚み:0.2μm以下の表面Sn相、厚み:0.2〜0.8μmのSn相、厚み:0.5〜1.4μmのSn−Cu合金相、厚み:0〜0.8μmのCu相の順で構成されている。
表面Sn相とは、直下に存在するSn相と明確に区別することは難しいが、Sn相と比較してP濃度が著しく高く、その厚みが0.2μm以下の相である。厚みが0.2μmを超えると、めっき耐熱剥離性を向上させる効果が飽和して無駄となる。
Sn相の厚みが0.2μm未満では、半田濡れ性が低下し、厚みが0.8μmを超えると、加熱した際にめっき層内部に発生する熱応力が高くなる。
Sn−Cu合金相は、硬質であり、その厚みが0.5μm未満では、コネクタとしての使用時の挿入力の低減効果が薄れて強度が低下し、厚みが1.4μmを超えると、加熱時に、めっき皮膜層に発生する熱応力が高くなり、めっき剥離が促進されて好ましくない。
Cu相の厚みが0.8μmを超えると、加熱時に、めっき皮膜層内部に発生する熱応力が高くなり、めっき剥離が促進されて好ましくない。
境界面層の厚みが0.8μm未満では、加熱時に、めっき皮膜層と母材との間で剥離が生じる恐れがあり、厚みが1.4μmを超えると、接触電気抵抗性を低減する効果が減少する。
In the present invention, the plating film layer has a thickness of 0.2 μm or less, a surface Sn phase, a thickness of 0.2 to 0.8 μm, a thickness of 0.5 to 1.4 μm from the surface to the base material. It is comprised in order of Sn-Cu alloy phase and Cu phase of thickness: 0-0.8 micrometer.
Although it is difficult to clearly distinguish the surface Sn phase from the Sn phase existing immediately below, it is a phase having a significantly higher P concentration and a thickness of 0.2 μm or less than the Sn phase. If the thickness exceeds 0.2 μm, the effect of improving plating heat-resistant peelability is saturated and wasted.
When the thickness of the Sn phase is less than 0.2 μm, the solder wettability decreases, and when the thickness exceeds 0.8 μm, the thermal stress generated inside the plating layer when heated is increased.
The Sn—Cu alloy phase is hard, and if the thickness is less than 0.5 μm, the effect of reducing the insertion force during use as a connector is weakened and the strength is reduced. If the thickness exceeds 1.4 μm, The thermal stress generated in the plating film layer is increased, and the plating peeling is promoted, which is not preferable.
When the thickness of the Cu phase exceeds 0.8 μm, the thermal stress generated inside the plating film layer at the time of heating becomes high, and the plating peeling is promoted, which is not preferable.
If the thickness of the interface layer is less than 0.8 μm, peeling may occur between the plating film layer and the base material at the time of heating, and if the thickness exceeds 1.4 μm, the effect of reducing the contact electrical resistance is obtained. Decrease.

表面Sn相のP濃度(C)と母材のP濃度(D)との比(C/D)が1.1未満であると、耐熱剥離性が低下し、比(C/D)が2.0を超えると、効果が飽和して無駄である。
表面Sn相に存在するPは、主にSnめっき液に中に含有されたPに起因するものである。
境界面層におけるZn濃度(A)と母材のZn濃度(B)との比(A/B)が0.5未満であると、接触電気抵抗性が低下し、比(A/B)が0.8を超えると、効果が飽和し、高温使用時の耐久性も低下する傾向が見られる。
表面Sn相に存在するPは、Snめっき液よりのPに主に起因するものである。
境界面層に存在するZnは、母材から境界層にマイグレーションされたZnに起因するものである。
本発明での表面Sn相のP濃度とは、銅合金Snめっき板の深さ方向のGDS(グロー放電発光分光分析装置)により求めたP濃度プロファイルにおいて、表面Sn相に該当する位置に現れるピーク頂点の濃度である。
本発明での境界面層のZn濃度とは、銅合金Snめっき板の深さ方向のGDS(グロー放電発光分光分析装置)により求めたZn濃度プロファイルにおいて、境界面層に該当する位置に現れるピーク頂点の濃度である。
When the ratio (C / D) between the P concentration (C) of the surface Sn phase and the P concentration (D) of the base material is less than 1.1, the heat-resistant peelability is lowered, and the ratio (C / D) is 2 If it exceeds 0.0, the effect is saturated and useless.
P present in the surface Sn phase is mainly caused by P contained in the Sn plating solution.
When the ratio (A / B) between the Zn concentration (A) in the interface layer and the Zn concentration (B) in the base material is less than 0.5, the contact electrical resistance decreases, and the ratio (A / B) is reduced. When it exceeds 0.8, the effect is saturated, and the durability during high temperature use tends to be lowered.
P existing in the surface Sn phase is mainly caused by P from the Sn plating solution.
Zn existing in the boundary layer is caused by Zn migrated from the base material to the boundary layer.
The P concentration of the surface Sn phase in the present invention is a peak appearing at a position corresponding to the surface Sn phase in the P concentration profile obtained by GDS (glow discharge emission spectroscopic analyzer) in the depth direction of the copper alloy Sn plated plate. It is the density of the vertex.
In the present invention, the Zn concentration in the interface layer is a peak appearing at a position corresponding to the interface layer in the Zn concentration profile obtained by GDS (glow discharge emission spectroscopic analyzer) in the depth direction of the copper alloy Sn-plated plate. It is the density of the vertex.

更に、本発明のCu−Ni−Si系銅合金Snめっき板において、前記母材は、Snを0.2〜0.8質量%含有することを特徴とする。
Snには、強度及び耐熱性を改善する効果があり、耐応力緩和性を改善する効果もある。Snは0.2〜0.8質量%の範囲で添加する。この範囲を下回ると所望の効果が得られず、上回ると導電性が低下する。
Furthermore, in the Cu—Ni—Si based copper alloy Sn plated plate of the present invention, the base material contains 0.2 to 0.8 mass% of Sn.
Sn has an effect of improving strength and heat resistance, and also has an effect of improving stress relaxation resistance. Sn is added in the range of 0.2 to 0.8% by mass. Below this range, the desired effect cannot be obtained, and when it exceeds, the conductivity decreases.

更に、本発明のCu−Ni−Si系銅合金Snめっき板において、前記母材は、Mgを0.001〜0.2質量%含有することを特徴とする。
Mgには応力緩和特性及び熱間加工性を改善する効果があるが、0.001質量%未満では効果がなく、0.2質量%を超えると、鋳造性(鋳肌品質の低下)、熱間加工性、めっき耐熱剥離性が低下する。
Furthermore, in the Cu—Ni—Si based copper alloy Sn plated plate of the present invention, the base material contains 0.001 to 0.2 mass% of Mg.
Mg has the effect of improving stress relaxation properties and hot workability, but less than 0.001% by mass has no effect, and if it exceeds 0.2% by mass, castability (decrease in casting surface quality), heat The inter-workability and plating heat-resistant peelability are reduced.

更に、本発明のCu−Ni−Si系銅合金Snめっき板において、前記母材は、Fe:0.007〜0.25質量%、Cr:0.001〜0.3質量%、Zr:0.001〜0.3質量%を1種又は2種以上を含有することを特徴とする。
Feには、熱間圧延性を向上させ(表面割れや耳割れの発生を抑制する)、NiとSiの析出化合物を微細化し、メッキ加熱密着性を向上させる効果があるが、その含有量が0.007%未満では、所望の効果が得られず、一方、その含有量が0.25%を超えると、熱間圧延性の向上効果が飽和し、導電性にも悪影響を及ぼすようになることから、その含有量を0.007〜0.25%と定めた。
Pには、曲げ加工によって起るばね性の低下を抑制する効果があるが、その含有量が0.001%未満では所望の効果が得られず、一方、その含有量が0.2%を超えると、はんだ耐熱剥離性を著しく損なうようになることから、その含有量を0.001〜0.2%と定めた
Cr及びZrには、NiおよびSiの析出化合物を一層微細化して合金の強度を向上させ、それ自身の析出によって強度を一層向上させる効果を有するが、含有量が0.001%未満では、合金の強度向上効果が得られず、0.3%を超えると、Cr及び/またはZrの大きな析出物が生成し、めっき性が悪くなり、プレス打抜き加工性も悪くなり、更に熱間加工性が損なわれるので好ましくなく、これらの含有量はそれぞれ0.001〜0.3%に定めた。
Furthermore, in the Cu—Ni—Si based copper alloy Sn plated plate of the present invention, the base material is Fe: 0.007 to 0.25 mass% , Cr: 0.001 to 0.3 mass%, Zr: 0.001-0.3 mass% contains 1 type (s) or 2 or more types, It is characterized by the above-mentioned.
Fe has the effect of improving hot rollability (suppressing the occurrence of surface cracks and ear cracks), refining Ni and Si precipitation compounds, and improving plating heating adhesion, but its content is If the content is less than 0.007%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.25%, the effect of improving the hot rolling property is saturated and the conductivity is adversely affected. Therefore, the content was determined to be 0.007 to 0.25%.
P has an effect of suppressing a decrease in spring property caused by bending, but if its content is less than 0.001%, a desired effect cannot be obtained, while its content is 0.2%. If exceeding, the solder heat resistance peelability will be significantly impaired, so the content was determined to be 0.001 to 0.2% .
The Cr and Zr, N i and Si the precipitation compound further is miniaturized to improve the strength of the alloy, but has the effect of further strength by precipitation of itself improve, in less than 0.001% content, If the effect of improving the strength of the alloy is not obtained, and if it exceeds 0.3%, a large precipitate of Cr and / or Zr is formed, the plating property is deteriorated, the press punching property is also deteriorated, and the hot workability is further reduced. Is not preferable, and these contents are set to 0.001 to 0.3%, respectively.

更に、本発明のCu−Ni−Si系銅合金Snめっき板の製造方法は、前記母材の表面に、Cu又はCu合金、Sn又はSn合金をこの順にめっきしてそれぞれのめっき層を形成した後、加熱してリフロー処理するに当たり、前記Sn又はSn合金のめっき層を形成時に、0.01質量%以下のPを含有し、表面張力が40〜60mN/mであり、粘度が1.2〜1.8mPa・sであるSnめっき液を使用し、前記リフロー処理は、前記それぞれのめっき層を230℃以上に加熱後、温度のばらつきが±2℃以下に制御された媒体中にて20〜60℃まで冷却することを特徴とする。 Furthermore, the manufacturing method of Cu-Ni-Si-based copper alloy Sn-plated plate of the present invention, the surface of the base material, to form a respective plated layer by plating Cu or a Cu alloy, a Sn or Sn alloy in this order after heating to hit the reflow process, before the SL when forming the plating layer of Sn or a Sn alloy, containing P of 0.01 wt% or less, the surface tension is 40~60mN / m, viscosity of 1. Using an Sn plating solution of 2 to 1.8 mPa · s, the reflow treatment is performed in a medium in which the temperature variation is controlled to ± 2 ° C. or less after each plating layer is heated to 230 ° C. or more. It cools to 20-60 degreeC, It is characterized by the above-mentioned.

製造方法としては、先ず、母材の表面に、Cu又はCu合金めっきをリフロー処理後のめっき厚み、及び、境界面層厚み考慮して所定の厚みにめっき層を形成し、更に、その表面に、Sn又はSn合金をリフロー処理後のめっき厚みを考慮して所定の厚みにめっき層を形成する。
この場合、Sn又はSn合金のめっきの際に、Pを0.01質量%以下含有し、表面張力が40〜60mN/mであり、粘度が1.2〜1.8mPa・sであるSnめっき液を使用する。
また、Snめっき液は、めっきの性状や均質性を保つために、消泡試験において2分後に泡が半減する消泡剤を使用し、適量の光沢剤、界面活性剤を含むことが好ましい。この光沢剤、消泡剤、界面活性剤は、表面張力や粘度を調整する役割もはたす。
光沢剤としては、親水性ポリオキシエチレン、ポリオキシプロピレンブロックポリマー、エチレンジアミンEO−PO付加物、クミルフェノールEO付加物、界面活性剤としては、ピロガロール或いはハイドロキノン、消泡剤としては、疎水性ポリオキシエチレン、ポリオキシプロピレンブロックポリマーなどがあげられる。
このSnめっき液を使用してSn又はSn合金めっきを施すことにより、リフロー処理後に、表面Sn相のP濃度(C)と母材のP濃度(D)との比(C/D)が1.1〜2.0となる素地が作られる。Snめっき液の条件が上記の範囲外であると、比(C/D)は、所定範囲値内に収まらない。
次に、これらのめっき層に対し、230℃以上に加熱後、温度ばらつきが±2℃以下で制御された媒体中にて20〜60℃まで冷却するリフロー処理を施すことにより、表面から母材にかけて、厚み:0.2μm以下の表面Sn相、厚み:0.2〜0.8μmのSn相、厚み:0.5〜1.4μmのSn−Cu合金相、厚み:0〜0.8μmのCu相の順で構成されたリフロー処理後のめっき皮膜層、及び、めっき皮膜層と母材との間に厚さ:0.8〜1.4μmの境界面層が形成される。
このリフロー処理にて、0.2μm以下の表面Sn相が形成され、Snめっき液中に含まれていたPは、表面Sn相に集中的に分散して、耐熱剥離性を向上させる役割を果たし、更に、めっき皮膜層と前記銅基合金板との間に厚み:0.8〜1.4μmの境界面層が形成されて、母材中のZnの一部が境界層中にマイグレーションして、母材に残留しているZn量との比が0.5〜0.8となり、良好な接触電気抵抗性が発揮される。
リフロー処理条件が上記の範囲外であると、上述のCu−Ni−Si系銅合金Snめっき板を形成することはできない。
As a manufacturing method, first , on the surface of the base material, a plating layer is formed in a predetermined thickness in consideration of the plating thickness after reflow treatment of Cu or Cu alloy plating and the boundary layer thickness, and further on the surface. In consideration of the plating thickness after reflow treatment of Sn or Sn alloy, a plating layer is formed to a predetermined thickness.
In this case, when plating Sn or Sn alloy, Sn plating containing 0.01% by mass or less of P, having a surface tension of 40 to 60 mN / m and a viscosity of 1.2 to 1.8 mPa · s. Use liquid.
In addition, the Sn plating solution preferably contains an appropriate amount of brightener and surfactant, using an antifoaming agent that reduces the foam by half after 2 minutes in the defoaming test in order to maintain the properties and homogeneity of plating. The brightener, antifoaming agent and surfactant also play a role of adjusting the surface tension and viscosity.
Brighteners include hydrophilic polyoxyethylene, polyoxypropylene block polymer, ethylenediamine EO-PO adduct, cumylphenol EO adduct, surfactants include pyrogallol or hydroquinone, and antifoaming agents include hydrophobic polyoxyethylene. Examples thereof include oxyethylene and polyoxypropylene block polymers.
By performing Sn or Sn alloy plating using this Sn plating solution, the ratio (C / D) between the P concentration (C) of the surface Sn phase and the P concentration (D) of the base material is 1 after the reflow treatment. A substrate that is 1 to 2.0 is created. When the condition of the Sn plating solution is out of the above range, the ratio (C / D) does not fall within the predetermined range value.
Next, the plating layer is heated to 230 ° C. or higher, and then subjected to a reflow treatment in which the temperature variation is controlled to be within a range of ± 2 ° C. or lower to 20 to 60 ° C. Thickness: surface Sn phase of 0.2 μm or less, thickness: Sn phase of 0.2 to 0.8 μm, thickness: Sn—Cu alloy phase of 0.5 to 1.4 μm, thickness: 0 to 0.8 μm A plated film layer after reflow treatment constituted in the order of the Cu phase, and an interface layer having a thickness of 0.8 to 1.4 μm are formed between the plated film layer and the base material.
In this reflow process, a surface Sn phase of 0.2 μm or less is formed, and P contained in the Sn plating solution is concentrated in the surface Sn phase and plays a role in improving the heat-resistant peelability. Furthermore, a boundary layer having a thickness of 0.8 to 1.4 μm is formed between the plating film layer and the copper-based alloy plate, and a part of Zn in the base material migrates into the boundary layer. The ratio with respect to the amount of Zn remaining in the base material becomes 0.5 to 0.8, and good contact electric resistance is exhibited.
If the reflow treatment condition is out of the above range, the above-described Cu—Ni—Si based copper alloy Sn plated plate cannot be formed.

本発明により、耐熱剥離性と接触電気抵抗性とが良好な値でバランスしたリフロー処理後のCu−Ni−Si系銅合金Snめっき板が提供される。 The present invention provides a Cu-Ni-Si-based copper alloy Sn-plated plate after reflow treatment in which heat-resistant peelability and contact electrical resistance are balanced with good values.

本発明の一実施形態であるCu−Ni−Si系銅合金Snめっき板の横断面を模式的に示した断面図である。It is sectional drawing which showed typically the cross section of the Cu-Ni-Si type copper alloy Sn plating board which is one Embodiment of this invention.

以下、本発明の実施形態について図1を参照に説明する。
図1に示す様に、Cu−Ni−Si系銅合金Snめっき板1は、1.0〜4.0質量%のNi、0.2〜0.9質量%のSi、0.3〜1.5質量%のZn、0.001〜0.2質量%のPを含有し、残りがCu及び不可避的不純物より構成される銅合金板を母材2とし、厚み:0.2μm以下の表面Sn相5、厚み:0.2〜0.8μmのSn相6、厚み:0.5〜1.4μmのSn−Cu合金相7、厚み:0〜0.8μmのCu相8の順で構成されたリフロー処理後のめっき皮膜層4を有し、表面Sn相5のP濃度(C)と母材2のP濃度(D)との比(C/D)が1.1〜2.0であり、めっき皮膜層4と母材2との間の厚み:0.8〜1.4μmの境界面層3におけるZn濃度(A)と母材2のZn濃度(B)との比(A/B)が0.5〜0.8である。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the Cu—Ni—Si based copper alloy Sn plated plate 1 is composed of 1.0 to 4.0 mass% Ni, 0.2 to 0.9 mass% Si, 0.3 to 1 A surface of a copper alloy plate containing 5% by mass of Zn and 0.001 to 0.2% by mass of P, with the remainder consisting of Cu and inevitable impurities as the base material 2 and having a thickness of 0.2 μm or less Sn phase 5, thickness: 0.2-0.8 μm Sn phase 6, thickness: 0.5-1.4 μm Sn—Cu alloy phase 7, thickness: 0-0.8 μm Cu phase 8 And the ratio (C / D) of the P concentration (C) of the surface Sn phase 5 and the P concentration (D) of the base material 2 is 1.1 to 2.0. The ratio between the Zn concentration (A) in the interface layer 3 having a thickness between the plating film layer 4 and the base material 2 of 0.8 to 1.4 μm and the Zn concentration (B) of the base material 2 (A / B) is 0.5 ~ 0.8.

[銅合金板母材の成分組成]
Cu−Ni−Si系銅合金は高強度と高導電率とを併せ持つ代表的な銅合金であり、銅マトリックス中に微細なNi−Si系金属間化合物粒子が析出することにより、強度と導電率が上昇する。Cu−Ni−Si系銅合金中のNi及びSiは、時効処理を行うことにより、Ni2Siを主とする金属間化合物の微細な粒子が形成され、銅合金の強度が著しく増加し、電気伝導度も上昇する。
Niが1.0質量%未満、或いは、Siが0.2質量%未満であると、他方の成分を添加しても所望とする強度が得られない。また、Niが4.5質量%を超える、或いは、Siが1.0質量%を超えると、十分な強度は得られるものの、導電性は低くなり、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成され、曲げ加工性、エッチング性等の低下をきたす。
Znは、強度及び耐熱性を改善し、特にはんだ接合の耐熱性を改良する効果がある。
0.3〜1.5質量%の範囲で添加し、この範囲を下回ると所望の効果が得られず、上回ると導電性が低下する。
また、Znは、めっき後のリフロー処理時や高温での使用時に、母材から境界層、Sn−Cu合金相、Sn相、表面Sn相にマイグレーションするが、境界層にマイグレーションするZn濃度と母材に残留しているZn濃度との比を0.5〜0.8とすることにより、接触電気抵抗性を良好に維持する。
Pは、曲げ加工によって起るばね性の低下を抑制する効果がある。0.001〜0.2質量%の範囲で添加し、0.001%未満では、所望の効果が得られず、0.2%を超えると、はんだ耐熱剥離性を著しく損なう。
また、Pは、Znに比較して母材からのマイグレーションの度合いは小さく、Snめっき液よりのPに主に起因する表面Sn相のP濃度と母材に残留しているP濃度との比を1.1〜2.0とすることにより、耐熱剥離性を良好に維持する。
[Component composition of copper alloy sheet base material]
Cu-Ni-Si based copper alloy is a representative copper alloy having both high strength and high electrical conductivity. Precipitation of fine Ni-Si based intermetallic compound particles in the copper matrix results in strength and electrical conductivity. Rises. Ni and Si in the Cu-Ni-Si-based copper alloy are subjected to an aging treatment, whereby fine particles of an intermetallic compound mainly containing Ni2Si are formed, the strength of the copper alloy is remarkably increased, and the electric conductivity is increased. Also rises.
If Ni is less than 1.0% by mass or Si is less than 0.2% by mass, the desired strength cannot be obtained even if the other component is added. Further, when Ni exceeds 4.5% by mass or Si exceeds 1.0% by mass, sufficient strength can be obtained, but the conductivity becomes low, and coarse Ni that does not contribute to the improvement of strength. -Si-based particles (crystallized substances and precipitates) are generated in the matrix phase, and bending workability, etching properties and the like are lowered.
Zn has the effect of improving strength and heat resistance, and particularly improving the heat resistance of solder joints.
If it is added in the range of 0.3 to 1.5% by mass and below this range, the desired effect cannot be obtained.
In addition, Zn migrates from the base material to the boundary layer, Sn—Cu alloy phase, Sn phase, and surface Sn phase during reflow treatment after plating or when used at a high temperature. By setting the ratio of the Zn concentration remaining in the material to 0.5 to 0.8, the contact electrical resistance is favorably maintained.
P has an effect of suppressing a decrease in springiness caused by bending. If it is added in the range of 0.001 to 0.2% by mass and less than 0.001%, the desired effect cannot be obtained, and if it exceeds 0.2%, the heat resistance peelability of the solder is remarkably impaired.
Further, P is less migrated from the base material than Zn, and the ratio between the P concentration of the surface Sn phase mainly resulting from P from the Sn plating solution and the P concentration remaining in the base material. By setting the value to 1.1 to 2.0, the heat-resistant peelability is maintained well.

更に、本発明のCu−Ni−Si系銅合金Snめっき板の銅合金板母材は、Snを0.2〜0.8質量%含有することが好ましい。
Snには、強度及び耐熱性を改善する効果があり、耐応力緩和性を改善する効果もある。Snは0.2〜0.8質量%の範囲で添加する。この範囲を下回ると所望の効果が得られず、上回ると導電性が低下する。
更に、本発明のCu−Ni−Si系銅合金Snめっき板の銅合金板母材は、Mgを0.001〜0.2質量%含有することが好ましい。
Mgには応力緩和特性及び熱間加工性を改善する効果があるが、0.001質量%未満では効果がなく、0.2質量%を超えると、鋳造性(鋳肌品質の低下)、熱間加工性、めっき耐熱剥離性が低下する。
更に、本発明のCu−Ni−Si系銅合金Snめっき板の銅合金板母材は、Fe:0.007〜0.25質量%、C:0.0001〜0.001質量%、Cr:0.001〜0.3質量%、Zr:0.001〜0.3質量%を1種又は2種以上を含有することが好ましい。
Feには、熱間圧延性を向上させ(表面割れや耳割れの発生を抑制する)、NiとSiの析出化合物を微細化し、メッキ加熱密着性を向上させる効果があるが、その含有量が0.007%未満では、所望の効果が得られず、一方、その含有量が0.25%を超えると、熱間圧延性の向上効果が飽和し、導電性にも悪影響を及ぼすようになることから、その含有量を0.007〜0.25%と定めた。
Pには、曲げ加工によって起るばね性の低下を抑制する効果があるが、その含有量が0.001%未満では所望の効果が得られず、一方、その含有量が0.2%を超えると、はんだ耐熱剥離性を著しく損なうようになることから、その含有量を0.001〜0.2%と定めた。
Cには、プレス打抜き加工性を向上させ、更にNiとSiの析出化合物を微細化させることにより合金の強度を向上させる効果があるが、その含有量が0.0001%未満では所望の効果が得られず、一方、0.001%を越えると、熱間加工性に悪影響を与えるので好ましくなく、その含有量は0.0001〜0.001%と定めた。
Cr及びZrには、Cとの親和力が強くCu合金中にCを含有させ易くするほか、NiおよびSiの析出化合物を一層微細化して合金の強度を向上させ、それ自身の析出によって強度を一層向上させる効果を有するが、含有量が0.001%未満では、合金の強度向上効果が得られず、0.3%を超えると、Cr及び/またはZrの大きな析出物が生成し、めっき性が悪くなり、プレス打抜き加工性も悪くなり、更に熱間加工性が損なわれるので好ましくなく、これらの含有量はそれぞれ0.001〜0.3%に定めた。
Furthermore, it is preferable that the copper alloy plate base material of the Cu—Ni—Si based copper alloy Sn plated plate of the present invention contains 0.2 to 0.8 mass% of Sn.
Sn has an effect of improving strength and heat resistance, and also has an effect of improving stress relaxation resistance. Sn is added in the range of 0.2 to 0.8% by mass. Below this range, the desired effect cannot be obtained, and when it exceeds, the conductivity decreases.
Furthermore, it is preferable that the copper alloy board | substrate base material of the Cu-Ni-Si type copper alloy Sn plating board of this invention contains 0.001-0.2 mass% of Mg.
Mg has the effect of improving stress relaxation properties and hot workability, but less than 0.001% by mass has no effect, and if it exceeds 0.2% by mass, castability (decrease in casting surface quality), heat The inter-workability and plating heat-resistant peelability are reduced.
Furthermore, the copper alloy plate base material of the Cu—Ni—Si based copper alloy Sn plated plate of the present invention is Fe: 0.007 to 0.25 mass%, C: 0.0001 to 0.001 mass%, Cr: It is preferable that 0.001-0.3 mass% and Zr: 0.001-0.3 mass% contain 1 type (s) or 2 or more types.
Fe has the effect of improving hot rollability (suppressing the occurrence of surface cracks and ear cracks), refining Ni and Si precipitation compounds, and improving plating heating adhesion, but its content is If the content is less than 0.007%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.25%, the effect of improving the hot rolling property is saturated and the conductivity is adversely affected. Therefore, the content was determined to be 0.007 to 0.25%.
P has an effect of suppressing a decrease in spring property caused by bending, but if its content is less than 0.001%, a desired effect cannot be obtained, while its content is 0.2%. If exceeding, the solder heat resistance peelability will be significantly impaired, so the content was determined to be 0.001 to 0.2%.
C has the effect of improving the press punching workability and further improving the strength of the alloy by refining the precipitated compound of Ni and Si, but if the content is less than 0.0001%, the desired effect is obtained. On the other hand, if it exceeds 0.001%, the hot workability is adversely affected, which is not preferable. The content is determined to be 0.0001 to 0.001%.
Cr and Zr have a strong affinity for C and make it easy to contain C in the Cu alloy, and further refine the Ni and Si precipitation compounds to improve the strength of the alloy. If the content is less than 0.001%, the effect of improving the strength of the alloy cannot be obtained. If the content exceeds 0.3%, large precipitates of Cr and / or Zr are formed, and the plating property is increased. However, the press punching processability is also deteriorated, and the hot workability is further deteriorated, which is not preferable. The contents thereof are set to 0.001 to 0.3%, respectively.

[めっき皮膜層、境界面層、P濃度、Zn濃度]
本発明では、めっき皮膜層4は、その表面から母材2にかけて、厚み:0.2μm以下の表面Sn相5、厚み:0.2〜0.8μmのSn相6、厚み:0.5〜1.4μmのSn−Cu合金相7、厚み:0〜0.8μmのCu相8の順で構成されている。
表面Sn相5とは、直下に存在するSn相6と明確に区別することは難しいが、Sn相6と比較してP濃度が著しく高く、その厚みが0.2μm以下の相である。厚みが0.2μmを超えると、めっき耐熱剥離性を向上させる効果が飽和して無駄となる。
Sn相6の厚みが0.2μm未満では、半田濡れ性が低下し、厚みが0.8μmを超えると、加熱した際にめっき層内部に発生する熱応力が高くなる。
Sn−Cu合金相7は、硬質であり、その厚みが0.5μm未満では、コネクタとして使用時の挿入力の低減効果が薄れて強度が低下し、厚みが1.4μmを超えると、加熱時に、めっき皮膜層4に発生する熱応力が高くなり、めっき剥離が促進されて好ましくない。
Cu相8の厚みが0.8μmを超えると、加熱時に、めっき皮膜層4内部に発生する熱応力が高くなり、めっき剥離が促進されて好ましくない。
境界面層3の厚みが0.8μm未満では、加熱時に、めっき皮膜層4と母材2との間で剥離が生じる恐れがあり、厚みが1.4μmを超えると、接触電気抵抗性を低減する効果が減少する。
表面Sn相5のP濃度(C)と母材2のP濃度(D)との比(C/D)が1.1未満であると、耐熱剥離性が低下し、比(C/D)が2.0を超えると、効果が飽和して無駄である。
表面Sn相5に存在するPは、主としてSnめっき液に中に含有されたPに起因するものである。
境界面層3におけるZn濃度(A)と母材2のZn濃度(B)との比(A/B)が0.5未満であると、接触電気抵抗性が低下し、比(A/B)が0.8を超えると、効果が飽和し、高温使用時の耐久性も低下する傾向が見られる。
表面Sn相5に存在するPは、Snめっき液よりのPに主に起因するものである。
境界面層3に存在するZnは、母材2から境界層3にマイグレーションされたZnに起因するものである。
本発明での表面Sn相5のP濃度とは、銅合金Snめっき板1の深さ方向のGDS(グロー放電発光分光分析装置)により求めたP濃度プロファイルにおいて、表面Sn相5に該当する位置に現れるピーク頂点の濃度である。
本発明での境界面層3のZn濃度とは、銅合金Snめっき板1の深さ方向のGDS(グロー放電発光分光分析装置)により求めたZn濃度プロファイルにおいて、境界面層3に該当する位置に現れるピーク頂点の濃度である。
[Plating film layer, interface layer, P concentration, Zn concentration]
In the present invention, the plating film layer 4 has a thickness: 0.2 μm or less of the surface Sn phase 5, a thickness: 0.2 to 0.8 μm of the Sn phase 6, and a thickness of 0.5 to 0.5 from the surface to the base material 2. The structure is composed of an Sn—Cu alloy phase 7 of 1.4 μm and a Cu phase 8 of thickness 0 to 0.8 μm.
Although it is difficult to clearly distinguish from the surface Sn phase 5 from the Sn phase 6 existing immediately below, the P concentration is significantly higher than that of the Sn phase 6 and the thickness thereof is 0.2 μm or less. If the thickness exceeds 0.2 μm, the effect of improving plating heat-resistant peelability is saturated and wasted.
When the thickness of the Sn phase 6 is less than 0.2 μm, the solder wettability is lowered. When the thickness exceeds 0.8 μm, the thermal stress generated inside the plating layer when heated is increased.
The Sn—Cu alloy phase 7 is hard, and if the thickness is less than 0.5 μm, the effect of reducing the insertion force when used as a connector is weakened and the strength is reduced. If the thickness exceeds 1.4 μm, The thermal stress generated in the plating film layer 4 is increased, and the plating peeling is promoted, which is not preferable.
When the thickness of the Cu phase 8 exceeds 0.8 μm, the thermal stress generated inside the plating film layer 4 during heating is increased, and plating peeling is promoted, which is not preferable.
If the thickness of the interface layer 3 is less than 0.8 μm, peeling may occur between the plating film layer 4 and the base material 2 during heating. If the thickness exceeds 1.4 μm, the contact electrical resistance is reduced. The effect of doing is reduced.
When the ratio (C / D) of the P concentration (C) of the surface Sn phase 5 and the P concentration (D) of the base material 2 is less than 1.1, the heat-resistant peelability is lowered, and the ratio (C / D) If it exceeds 2.0, the effect is saturated and is useless.
P present in the surface Sn phase 5 is mainly caused by P contained in the Sn plating solution.
When the ratio (A / B) between the Zn concentration (A) in the interface layer 3 and the Zn concentration (B) in the base material 2 is less than 0.5, the contact electrical resistance decreases, and the ratio (A / B) ) Exceeds 0.8, the effect is saturated, and the durability during high temperature use tends to decrease.
The P present in the surface Sn phase 5 is mainly attributable to P from the Sn plating solution.
Zn present in the boundary layer 3 is caused by Zn migrated from the base material 2 to the boundary layer 3.
The P concentration of the surface Sn phase 5 in the present invention is a position corresponding to the surface Sn phase 5 in the P concentration profile obtained by GDS (glow discharge emission spectroscopic analyzer) in the depth direction of the copper alloy Sn plated plate 1. It is the density of the peak vertex that appears in.
In the present invention, the Zn concentration of the interface layer 3 is a position corresponding to the interface layer 3 in the Zn concentration profile obtained by GDS (glow discharge emission spectroscopic analyzer) in the depth direction of the copper alloy Sn plated plate 1. It is the density of the peak vertex that appears in.

[製造方法]
製造方法としては、先ず、成分組成が1.0〜4.0質量%のNi、0.2〜0.9質量%のSi、0.3〜1.5質量%のZn、0.001〜0.2質量%のPを含有し、残りがCu及び不可避的不純物より構成されるCu−Ni−Si系銅合金母材1の表面に、Cu又はCu合金めっきをリフロー処理後のめっき厚み、及び、境界面層厚みを考慮して所定の厚みにめっき層を形成し、更に、その表面に、Sn又はSn合金をリフロー処理後のめっき厚みを考慮して所定の厚みにめっき層を形成する。
Cu又はCu合金めっき条件の一例を表1に、Sn又はSn合金めっき条件の一例を表2に示す。
[Production method]
As a manufacturing method, first, the component composition is 1.0 to 4.0% by mass of Ni, 0.2 to 0.9% by mass of Si, 0.3 to 1.5% by mass of Zn, 0.001 to Plating thickness after reflow treatment of Cu or Cu alloy plating on the surface of Cu-Ni-Si-based copper alloy base material 1 containing 0.2% by mass of P and the remainder composed of Cu and inevitable impurities, In addition, a plating layer is formed in a predetermined thickness in consideration of the boundary layer thickness, and further, a plating layer is formed in a predetermined thickness on the surface in consideration of the plating thickness after the reflow treatment of Sn or Sn alloy. .
An example of Cu or Cu alloy plating conditions is shown in Table 1, and an example of Sn or Sn alloy plating conditions is shown in Table 2.

この場合、Cu−Ni−Si系銅合金は、基本的に、本発明の成分範囲に調合した材料を溶解鋳造により銅合金鋳塊を作製、この銅合金鋳塊を熱間圧延、冷間圧延、溶体化処理、時効処理、最終冷間圧延をこの順序で含む工程で製造されたものであれば種類は問わない。
例えば、熱間圧延最終パス終了後の冷却開始温度を350〜450℃で実施し、溶体化処理前の冷間圧延を1パス当たりの平均圧延率を15〜30%にて総圧延率を70%以上で実施し、溶体化処理を800〜900℃で60〜120秒間で実施し、時効処理を400〜500℃で7〜14時間で実施して製造される。
そして、上述のSn又はSn合金のめっきの際に、Pを0.01質量%以下含有し、表面張力が40〜60mN/mであり、粘度が1.2〜1.8mPa・sであるSnめっき液を使用する。この表面張力及び粘度は、リフロー処理後の表面Sn相5のP濃度を決定する重要な因子となる。
また、Snめっき液は、めっきの性状や均質性を保つために、消泡試験において2分後に泡が半減する消泡剤を使用し、適量の光沢剤、界面活性剤を含むことが好ましい。この光沢剤、消泡剤、界面活性剤は、表面張力や粘度を調整する役割もはたす。
光沢剤としては、親水性ポリオキシエチレン、ポリオキシプロピレンブロックポリマー、エチレンジアミンEO−PO付加物、クミルフェノールEO付加物、界面活性剤としては、ピロガロール或いはハイドロキノン、消泡剤としては、疎水性ポリオキシエチレン、ポリオキシプロピレンブロックポリマーなどがあげられる。
このSnめっき液を使用してSn又はSn合金めっきを施すことにより、リフロー処理後に、表面Sn相のP濃度(C)と母材のP濃度(D)との比(C/D)が1.1〜2.0となる素地が作られる。Snめっき液の条件が上記の範囲外であると、比(C/D)は、所定範囲値内に収まらない。
次に、これらのめっき層に対し、230℃以上に加熱後、温度のばらつきが±2℃以下に制御された媒体中にて20〜60℃まで冷却するリフロー処理を施すことにより、表面から母材2にかけて、厚み:0.2μm以下の表面Sn相5、厚み:0.2〜0.8μmのSn相6、厚み:0.5〜1.4μmのSn−Cu合金相7、厚み:0〜0.8μmのCu相8の順で構成されたリフロー処理後のめっき皮膜層4、及び、めっき皮膜層4と母材2との間に厚さ:0.8〜1.4μmの境界面層3が形成される。
このリフロー処理は、例えば、めっき層を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、ピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で20〜60℃まで冷却する二次冷却工程で実施する。
この場合、特に、加熱後の冷却工程を通して、冷却媒体の温度が±2℃以下に制御されていないと、加熱後の急冷が安定せず、本発明の効果を得ることが難しくなる。冷却媒体は水であることが好ましい。
このリフロー処理にて、0.2μm以下の表面Sn相5が形成され、Snめっき液中に含まれていたPは、表面Sn相5に集中的に分散して、耐熱剥離性を向上させる役割を果たし、更に、めっき皮膜層4と母材2との間に厚み:0.8〜1.4μmの境界面層3が形成されて、母材2中のZnの一部が境界層3中にマイグレーションして、母材2に残留しているZn量との比が0.5〜0.8となり、良好な接触電気抵抗性が発揮される。
リフロー処理条件が上記の範囲外であると、上述のCu−Ni−Si系銅合金Snめっき板を形成することはできない。
In this case, the Cu—Ni—Si based copper alloy is basically produced by melting and casting the material prepared in the component range of the present invention, and the copper alloy ingot is hot-rolled and cold-rolled. Any type can be used as long as it is manufactured in a process including solution treatment, aging treatment, and final cold rolling in this order.
For example, the cooling start temperature after the end of the final hot rolling pass is performed at 350 to 450 ° C., and the cold rolling before the solution treatment is performed at an average rolling rate per pass of 15 to 30% and a total rolling rate of 70. The solution treatment is performed at 800 to 900 ° C. for 60 to 120 seconds, and the aging treatment is performed at 400 to 500 ° C. for 7 to 14 hours.
And in the above-mentioned plating of Sn or Sn alloy, Sn containing 0.01% by mass or less, surface tension of 40 to 60 mN / m, and viscosity of 1.2 to 1.8 mPa · s. Use plating solution. This surface tension and viscosity are important factors that determine the P concentration of the surface Sn phase 5 after the reflow treatment.
In addition, the Sn plating solution preferably contains an appropriate amount of brightener and surfactant, using an antifoaming agent that reduces the foam by half after 2 minutes in the defoaming test in order to maintain the properties and homogeneity of plating. The brightener, antifoaming agent and surfactant also play a role of adjusting the surface tension and viscosity.
Brighteners include hydrophilic polyoxyethylene, polyoxypropylene block polymer, ethylenediamine EO-PO adduct, cumylphenol EO adduct, surfactants include pyrogallol or hydroquinone, and antifoaming agents include hydrophobic polyoxyethylene. Examples thereof include oxyethylene and polyoxypropylene block polymers.
By performing Sn or Sn alloy plating using this Sn plating solution, the ratio (C / D) between the P concentration (C) of the surface Sn phase and the P concentration (D) of the base material is 1 after the reflow treatment. A substrate that is 1 to 2.0 is created. When the condition of the Sn plating solution is out of the above range, the ratio (C / D) does not fall within the predetermined range value.
Next, these plating layers are heated to 230 ° C. or higher, and then subjected to a reflow treatment in which the temperature variation is controlled to ± 2 ° C. or lower to cool to 20 to 60 ° C. Over material 2, thickness: surface Sn phase 5 of 0.2 μm or less, thickness: Sn phase 6 of 0.2 to 0.8 μm, thickness: Sn—Cu alloy phase 7 of 0.5 to 1.4 μm, thickness: 0 The plating film layer 4 after the reflow process constituted in the order of ~ 0.8 μm Cu phase 8, and the boundary surface between the plating film layer 4 and the base material 2: thickness of 0.8 to 1.4 μm Layer 3 is formed.
This reflow treatment includes, for example, a heating step of heating the plating layer to a peak temperature of 240 to 300 ° C. at a heating rate of 20 to 75 ° C./second, and a cooling rate of 30 ° C./second or less after reaching the peak temperature. In the primary cooling step of cooling for 2 to 10 seconds and the secondary cooling step of cooling to 20 to 60 ° C. at a cooling rate of 100 to 250 ° C./second after the primary cooling.
In this case, particularly, if the temperature of the cooling medium is not controlled to be ± 2 ° C. or lower throughout the cooling step after heating, rapid cooling after heating is not stable, and it becomes difficult to obtain the effects of the present invention. The cooling medium is preferably water.
In this reflow process, a surface Sn phase 5 of 0.2 μm or less is formed, and P contained in the Sn plating solution is intensively dispersed in the surface Sn phase 5 to improve the heat-resistant peelability. Furthermore, a boundary layer 3 having a thickness of 0.8 to 1.4 μm is formed between the plating film layer 4 and the base material 2, and a part of Zn in the base material 2 is in the boundary layer 3. The ratio with respect to the amount of Zn remaining in the base material 2 becomes 0.5 to 0.8, and good contact electric resistance is exhibited.
If the reflow treatment condition is out of the above range, the above-described Cu—Ni—Si based copper alloy Sn plated plate cannot be formed.

表3に示す成分となるように材料を調合し、還元性雰囲気の低周波溶解炉を用いて溶解後に鋳造して、厚さ80mm、幅200mm、長さ800mmの寸法の銅合金鋳塊を製造した。この銅合金鋳塊を900〜980℃に加熱した後、表3に示すように、熱間圧延の最終パス終了後の冷却開始温度を変えて熱間圧延を施し、厚さ11mmの熱延板とし、この熱延板を水冷した後に両面を0.5mm面削した。次に、圧延率87%にて冷間圧延を施して、厚さ1.3mmの冷延薄板を作製した後、710〜750℃で7〜15秒間保持の連続焼鈍を施した後、酸洗い、表面研磨を行い、更に、表3に示すように、1パス当たりの平均圧延率、総圧延率を変えて冷間圧延を施し、厚さ0.3mmの冷延薄板を作製した。
この冷延板を表3に示すように、温度、時間を変えて溶体化処理を施し、引続き、表1に示すように、温度、時間を変えて時効処理を施し、酸洗処理後、最終冷間圧延を施し、実施例及び比較例の銅合金薄板を作製した。
Materials are prepared so as to have the components shown in Table 3, and cast after melting using a low-frequency melting furnace in a reducing atmosphere to produce a copper alloy ingot having dimensions of 80 mm in thickness, 200 mm in width, and 800 mm in length. did. After heating this copper alloy ingot to 900-980 ° C., as shown in Table 3, hot rolling was performed by changing the cooling start temperature after the end of the final pass of hot rolling, and a hot rolled sheet having a thickness of 11 mm Then, the hot-rolled sheet was water-cooled, and then both faces were cut by 0.5 mm. Next, cold rolling was performed at a rolling rate of 87% to produce a cold-rolled thin plate having a thickness of 1.3 mm, followed by continuous annealing at 710 to 750 ° C. for 7 to 15 seconds, and then pickling. Then, surface polishing was performed, and as shown in Table 3, cold rolling was performed by changing the average rolling rate per pass and the total rolling rate to produce a cold-rolled thin plate having a thickness of 0.3 mm.
As shown in Table 3, the cold-rolled sheet was subjected to a solution treatment by changing the temperature and time, and subsequently, as shown in Table 1, the aging treatment was performed by changing the temperature and time. Cold rolling was performed to prepare copper alloy thin plates of Examples and Comparative Examples.

これらの銅合金薄板からめっき用の試料を切出し、リフロー後のそれぞれのめっき厚みを考慮して、表1の条件でCuめっき、次に、P濃度、表面張力、粘度を表4に示すSnめっき液(P濃度、表面張力、粘度以外の条件については表2の条件とした)でSnめっきを施した。Snめっき液の界面活性剤としては、ピロガロール、光沢剤としては、エチレンジアミンEO−PO付加物、消泡剤としては、疎水性ポリオキシエチレンを使用した。
次に、これらのCuめっき、Snめっきが順に施された試料につき、表4に示す条件にて、リフロー炉及び水冷槽でリフロー処理を施して、銅合金薄板リフローめっき板を作製した。
これらのリフローめっき板から試料を切出し、表面Sn相、Sn相、Sn−Cu合金相、Cu相の順で構成されためっき皮膜層の各相の厚み、及び、めっき皮膜層と銅基合金板との間の境界面層の厚みを測定した。これらの結果を表4に示す。
Samples for plating are cut out from these copper alloy thin plates, and considering the respective plating thicknesses after reflow, Cu plating is performed under the conditions shown in Table 1, followed by Sn plating with P concentration, surface tension, and viscosity shown in Table 4. Sn plating was performed with a liquid (conditions other than P concentration, surface tension, and viscosity were the conditions shown in Table 2). As the surfactant of the Sn plating solution, pyrogallol, as the brightener, ethylenediamine EO-PO adduct, and as the antifoaming agent, hydrophobic polyoxyethylene were used.
Next, reflow treatment was performed in a reflow furnace and a water-cooled bath under the conditions shown in Table 4 for the samples subjected to these Cu plating and Sn plating in order to produce a copper alloy thin plate reflow plating plate.
Samples were cut out from these reflow plating plates, and the thickness of each of the plating film layers composed of the surface Sn phase, Sn phase, Sn-Cu alloy phase, and Cu phase in this order, and the plating film layer and the copper base alloy plate The thickness of the interface layer between the two was measured. These results are shown in Table 4.

各々の厚みの測定は、これらのリフローめっき板の断面をTEM−EDS分析にて観察して求めた。
次に、これらの試料につき、表面Sn相のP濃度、境界面層のZn濃度、銅合金母材のP濃度及びZn濃度を測定し、(表面Sn相のP濃度/銅合金母材のP濃度)の値、(境界面層のZn濃度/銅合金母材のZn濃度)の値を求めた。これらの結果を表5に示す。
P濃度、Zn濃度の測定は、GDSによる表面分析による深さ方向の濃度プロファイルから求めた。GDSの測定条件は次の通りである。
(測定条件)
前処理:アセトン溶剤中に浸漬し、超音波洗浄機を用いて38kHz 5分間 前処理を行う。
装置:堀場製作所製 マーカス型グロー放電発光表面分析装置 JY5000RF
測定条件:RFモード
出力35W、Arガス圧600Pa
Module/Phase=800/400
アノードサイズ2mm
Flush time20sec
Background acquis10sec
Pre-integration time30sec
Surface acquisition60sec
Average time0.080sec/pts
Bulk acquisition10sec
次に、これらの試料につき、耐熱剥離性及び接触電気抵抗性を測定した。これらの結果を表5に示す。
耐熱剥離性は、幅10mmの短冊試験片を採取し、170℃の温度で大気中3000時間まで加熱した。その間、100時間毎に試料を加熱炉から取り出し、曲げ半径0.5mmの90°曲げと曲げ戻し(90°曲げを往復一回)を行った。次に、曲げ内周部表面に粘着テープ(スリーエム社製#851)を貼り付け引き剥がした。その後、試料の曲げ内周部表面を光学顕微鏡(倍率50倍)で観察し、めっき剥離の有無を調べた。そして、めっき剥離が発生するまでの加熱時間を求めた。表5中、「>3000」は3000時間までの試験では剥離が生じなかったことを示す。
接触電気抵抗性は、大気中、155℃で400時間加熱した試料に対し、山崎精機製、接点シミュレータ(商品名CRS−1)を使用し、四端子法により接触電気抵抗を測定した。測定条件は次の通りである。
接触荷重:50g。
電流:200mA
摺動速度:1mm/分、摺動距離:1mm。
表5にて、◎は155℃、大気雰囲気で400時間加熱後も接触電気抵抗10mΩ以下、○は10〜20mΩ未満、△は20〜50mΩ、×は50mΩを超えたことを表す。
Each thickness was measured by observing the cross section of these reflow plated plates by TEM-EDS analysis.
Next, for these samples, the P concentration of the surface Sn phase, the Zn concentration of the interface layer, the P concentration of the copper alloy base material and the Zn concentration were measured, and (P concentration of the surface Sn phase / P of the copper alloy base material). The value of (concentration) and the value of (Zn concentration of interface layer / Zn concentration of copper alloy base material) were obtained. These results are shown in Table 5.
The P concentration and the Zn concentration were determined from a concentration profile in the depth direction by surface analysis using GDS. The measurement conditions for GDS are as follows.
(Measurement condition)
Pretreatment: Immerse in an acetone solvent and perform pretreatment at 38 kHz for 5 minutes using an ultrasonic cleaner.
Equipment: Maribas type glow discharge light emission surface analyzer JY5000RF manufactured by HORIBA, Ltd.
Measurement conditions: RF mode output 35W, Ar gas pressure 600Pa
Module / Phase = 800/400
Anode size 2mm
Flush time 20sec
Background acquis 10 sec
Pre-integration time 30 sec
Surface acquisition60sec
Average time 0.080 sec / pts
Bulk acquisition 10 sec
Next, the heat-resistant peelability and the contact electrical resistance were measured for these samples. These results are shown in Table 5.
For heat-resistant peelability, a strip test piece having a width of 10 mm was collected and heated in the atmosphere at a temperature of 170 ° C. for up to 3000 hours. In the meantime, the sample was taken out from the heating furnace every 100 hours, and 90 ° bending and bending back with a bending radius of 0.5 mm were performed (90 ° bending was reciprocated once). Next, an adhesive tape (# 851 manufactured by 3M) was attached to the surface of the inner periphery of the bend and peeled off. Thereafter, the surface of the inner periphery of the sample was observed with an optical microscope (magnification 50 times), and the presence or absence of plating peeling was examined. And the heating time until plating peeling generate | occur | produced was calculated | required. In Table 5, “> 3000” indicates that no peeling occurred in the test up to 3000 hours.
For contact electrical resistance, contact electrical resistance was measured by a four-terminal method using a contact simulator (trade name CRS-1) manufactured by Yamazaki Seiki Co., Ltd. for a sample heated at 155 ° C. for 400 hours in the air. The measurement conditions are as follows.
Contact load: 50 g.
Current: 200 mA
Sliding speed: 1 mm / min, sliding distance: 1 mm.
In Table 5, ◎ indicates that contact electrical resistance is 10 mΩ or less even after heating at 155 ° C. in an atmospheric atmosphere for 400 hours, ○ indicates less than 10 to 20 mΩ, Δ indicates 20 to 50 mΩ, and × indicates that it exceeds 50 mΩ.

これらの結果より、実施例は比較例1〜9と比べて、耐熱剥離性と接触電気抵抗性に優れており、耐熱剥離性と接触電気抵抗性とが良好な値でバランスしていることがわかる。
即ち、本発明の製造方法により製造されたリフロー処理後のCu−Ni−Si系銅合金Snめっき板は、耐熱剥離性と接触電気抵抗性とが良好な値でバランスしていることがわかる。
From these results, compared with Comparative Examples 1-9, an Example is excellent in heat-resistant peelability and contact electrical resistance, and heat-resistant peelability and contact electrical resistance are balancing with a favorable value. Recognize.
That is, it can be seen that the Cu-Ni-Si-based copper alloy Sn-plated plate after the reflow treatment produced by the production method of the present invention has a good balance between the heat-resistant peelability and the contact electrical resistance.

以上、本発明の実施形態の製造方法について説明したが、本発明はこの記載に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   As mentioned above, although the manufacturing method of embodiment of this invention was demonstrated, this invention is not limited to this description, A various change can be added in the range which does not deviate from the meaning of this invention.

1 Cu−Ni−Si系銅合金Snめっき板
2 銅合金板母材
3 境界面層
4 めっき皮膜層
5 表面Sn相
6 Sn相
7 Sn−Cu合金相
8 Cu相
DESCRIPTION OF SYMBOLS 1 Cu-Ni-Si type copper alloy Sn plating board 2 Copper alloy board base material 3 Interface layer 4 Plating film layer 5 Surface Sn phase 6 Sn phase 7 Sn-Cu alloy phase 8 Cu phase

Claims (5)

1.0〜4.0質量%のNi、0.2〜0.9質量%のSi、0.3〜1.5質量%のZn、0.001〜0.2質量%のPを含有し、残りがCu及び不可避的不純物より構成される銅合金板を母材とし、表面から前記母材にかけて、厚み:0.2μm以下の表面Sn相、厚み:0.2〜0.8μmのSn相、厚み:0.5〜1.4μmのSn−Cu合金相、厚み:0〜0.8μmのCu相の順で構成されためっき皮膜層を有し、前記表面Sn相のP濃度(C)と前記母材のP濃度(D)との比(C/D)が1.1〜2.0であり、前記めっき皮膜層と前記母材との間の厚み:0.8〜1.4μmの境界面層におけるZn濃度(A)と前記母材のZn濃度(B)との比(A/B)が0.5〜0.8であることを特徴とするCu−Ni−Si系銅合金Snめっき板。 1.0-4.0 mass% Ni, 0.2-0.9 mass% Si, 0.3-1.5 mass% Zn, 0.001-0.2 mass% P are contained. A copper alloy plate composed of Cu and unavoidable impurities as a base material, and from the surface to the base material, a surface Sn phase with a thickness of 0.2 μm or less, a Sn phase with a thickness of 0.2 to 0.8 μm , thickness: Sn-Cu alloy phase 0.5~1.4Myuemu, thickness: order consists of the order of 0~0.8μm the Cu phase having a Kki coating layer, P concentration of the surface Sn phase (C ) And the P concentration (D) of the base material (C / D) is 1.1 to 2.0, and the thickness between the plating film layer and the base material is 0.8 to 1. Cu—Ni—Si system, characterized in that the ratio (A / B) of Zn concentration (A) in the interface layer of 4 μm to Zn concentration (B) of the base material is 0.5 to 0.8 Copper alloy Gold Sn plated plate. 前記母材は、Snを0.2〜0.8質量%含有することを特徴とする請求項1に記載のCu−Ni−Si系銅合金Snめっき板。   The said base material contains 0.2-0.8 mass% of Sn, The Cu-Ni-Si type copper alloy Sn plating board of Claim 1 characterized by the above-mentioned. 前記母材は、Mgを0.001〜0.2質量%含有することを特徴とする請求項1又は請求項2に記載のCu−Ni−Si系銅合金Snめっき板。 The said base material contains 0.001-0.2 mass% of Mg, The Cu-Ni-Si type copper alloy Sn plating board of Claim 1 or Claim 2 characterized by the above-mentioned. 前記母材は、更にFe:0.007〜0.25質量%、Cr:0.001〜0.3質量%、Zr:0.001〜0.3質量%を1種又は2種以上を含有することを特徴とする請求項1から請求項3のいずれか1項に記載のCu−Ni−Si系銅合金Snめっき板。 The base material further includes Fe: 0.007 to 0.25% by mass , Cr: 0.001 to 0.3% by mass, Zr: 0.001 to 0.3% by mass , or one or more. It contains, The Cu-Ni-Si type copper alloy Sn plating board of any one of Claims 1-3 characterized by the above-mentioned. 請求項1から4のいずれか一項に記載のCu−Ni−Si系銅合金Snめっき板を製造する方法であって、前記母材の表面に、Cu又はCu合金、Sn又はSn合金をこの順にめっきしてそれぞれのめっき層を形成した後、加熱してリフロー処理するに当たり、前記Sn又はSn合金のめっき層を形成時に、0.01質量%以下のPを含有し、表面張力が40〜60mN/mであり、粘度が1.2〜1.8mPa・sであるSnめっき液を使用し、前記リフロー処理は、前記それぞれのめっき層を230℃以上に加熱後、温度のばらつきが±2℃以下に制御された媒体中にて20〜60℃まで冷却することを特徴とするCu−Ni−Si系銅合金Snめっき板の製造方法。 It is a method of manufacturing the Cu-Ni-Si type copper alloy Sn plating board as described in any one of Claim 1 to 4 , Comprising: Cu or Cu alloy, Sn or Sn alloy is this on the surface of the said base material. after forming the respective plated layers plated sequentially, per the reflow treatment by heating, prior SL when forming the plating layer of Sn or a Sn alloy, containing 0.01 mass% of P, the surface tension is 40 An Sn plating solution having a viscosity of ˜60 mN / m and a viscosity of 1.2 to 1.8 mPa · s is used, and the reflow treatment has a temperature variation of ±± after heating each of the plating layers to 230 ° C. or higher. C u-Ni-Si-based method for producing a copper alloy Sn-plated plate you characterized by cooling to 20 to 60 ° C. at 2 ℃ in controlled medium below.
JP2012139604A 2012-06-21 2012-06-21 Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same Active JP5986822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139604A JP5986822B2 (en) 2012-06-21 2012-06-21 Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012139604A JP5986822B2 (en) 2012-06-21 2012-06-21 Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014005481A JP2014005481A (en) 2014-01-16
JP5986822B2 true JP5986822B2 (en) 2016-09-06

Family

ID=50103468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139604A Active JP5986822B2 (en) 2012-06-21 2012-06-21 Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5986822B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089003A (en) * 2015-11-03 2017-05-25 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
JP2021147673A (en) 2020-03-19 2021-09-27 三菱マテリアル株式会社 Cu-Ni-Si BASED COPPER ALLOY PLATE, Cu-Ni-Si BASED COPPER ALLOY PLATE WITH PLATED FILM AND MANUFACTURING METHOD THEREOF

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039789A (en) * 2005-03-29 2007-02-15 Nikko Kinzoku Kk Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP2006307336A (en) * 2005-03-29 2006-11-09 Nikko Kinzoku Kk Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
TW200704789A (en) * 2005-06-30 2007-02-01 Nippon Mining Co Sn-plated copper alloy bar having excellent fatigue characteristics
JP5461124B2 (en) * 2009-09-16 2014-04-02 三菱伸銅株式会社 High current density Sn plating sulfuric acid bath
WO2011039875A1 (en) * 2009-09-30 2011-04-07 Jx日鉱日石金属株式会社 Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating

Also Published As

Publication number Publication date
JP2014005481A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP6055242B2 (en) Cu-Mg-P-based copper alloy Sn plated plate and method for producing the same
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
KR20110038143A (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP5690170B2 (en) Copper alloy
KR20190045418A (en) Conductive material for connection parts which has excellent minute slide wear resistance
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
TWI541367B (en) Cu-Ni-Si type copper alloy sheet having good mold resistance and shearing workability and manufacturing method thereof
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP3413864B2 (en) Connector for electrical and electronic equipment made of Cu alloy
JP4699252B2 (en) Titanium copper
JP5690169B2 (en) Copper alloy
TWI732964B (en) Copper alloy plate and method for producing same
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
JP5986822B2 (en) Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same
JP5314663B2 (en) Copper alloy
JP2007270214A (en) Cu-Zn-Sn-BASED ALLOY THREAD EXCELLENT IN BENDING WORKABILITY
JP4130593B2 (en) High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics
JP2007262523A (en) Cu-Zn-Sn BASED ALLOY TIN-PLATED STRIP
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP5988745B2 (en) Cu-Ni-Si based copper alloy plate with Sn plating and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5986822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250