JP2007291459A - TINNED STRIP OF Cu-Sn-P-BASED ALLOY - Google Patents

TINNED STRIP OF Cu-Sn-P-BASED ALLOY Download PDF

Info

Publication number
JP2007291459A
JP2007291459A JP2006121850A JP2006121850A JP2007291459A JP 2007291459 A JP2007291459 A JP 2007291459A JP 2006121850 A JP2006121850 A JP 2006121850A JP 2006121850 A JP2006121850 A JP 2006121850A JP 2007291459 A JP2007291459 A JP 2007291459A
Authority
JP
Japan
Prior art keywords
plating
mass
phase
thickness
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006121850A
Other languages
Japanese (ja)
Inventor
Takatsugu Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2006121850A priority Critical patent/JP2007291459A/en
Publication of JP2007291459A publication Critical patent/JP2007291459A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tinned strip of Cu-Sn-P-based alloy, in which the thermal peeling resistance of a tin plating is improved. <P>SOLUTION: In the tinned strip of Cu-Sn-P-based alloy comprising, as a base material, a Cu-based alloy containing Sn in an amount of 1-12 mass% and P in an amount of 0.01-0.35 mass%, the C-concentration in the boundary face between a plated layer and the base material is adjusted to be ≤0.10 mass%. The base material may further contain 0.005-3.0 mass% in total of at least one kind selected from the group comprising Zn, Fe, Ni, Si, Mn, Co, Ti, Cr, Zr, Al and Ag. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コネクタ、端子、リレー、スイッチ等の導電性材料として好適で、良好な耐熱剥離性を有するCu−Sn−P系合金Snめっき条に関する。   The present invention relates to a Cu—Sn—P alloy Sn plating strip that is suitable as a conductive material for connectors, terminals, relays, switches, and the like and has good heat-resistant peelability.

Cu−Sn−P系合金は、その優れたばね性により、コネクタ、端子、リレー、スイッチ等の電気接点材料として広く使用されている。Cu−Sn−P系合金として代表的なものはりん青銅であり、C5111、C5102、C5191、C5121、C5210等の合金がJIS H3110とH3130に規定されている。Cu−Sn−P系合金を電気接点材料に用いる場合、低い接触抵抗を安定して得るためにSnめっきを施すことが多い。Cu−Sn−P系合金のSnめっき条は、Snの優れた半田濡れ性、耐食性、電気接続性を生かし、自動車電装用ワイヤーハーネスの端子、印刷回路基板(PCB)の端子、民生用のコネクタ接点等の電気・電子部品に大量に使われている。   Cu—Sn—P-based alloys are widely used as electrical contact materials for connectors, terminals, relays, switches, etc. due to their excellent spring properties. A typical Cu-Sn-P alloy is phosphor bronze, and alloys such as C5111, C5102, C5191, C5121, and C5210 are defined in JIS H3110 and H3130. When using a Cu—Sn—P alloy as an electrical contact material, Sn plating is often applied in order to stably obtain a low contact resistance. The Sn plating strip of Cu-Sn-P alloy takes advantage of Sn's excellent solder wettability, corrosion resistance, and electrical connectivity, and is used for automobile electrical wiring harness terminals, printed circuit board (PCB) terminals, and consumer connectors. It is used in large quantities for electrical and electronic parts such as contacts.

Cu−Sn−P系合金のSnめっき条は、脱脂及び酸洗の後、必要に応じ電気めっき法により下地めっき層を形成し、次に電気めっき法によりSnめっき層を形成し、最後にリフロー処理を施しSnめっき層を溶融させる工程で製造される。
伸銅品のSnめっき条にはCu下地めっきが施されることが多いが、Cu−Sn−P系合金のCu下地Snめっきには、高温で長時間保持した際にめっき層が母材より剥離する現象(以下、熱剥離という)が生じやすいという問題がある。したがって、Cu−Sn−P系合金のSnめっきでは、下地めっきを行わないか、熱剥離が比較的生じにくいNi下地めっきを施すことが多い。特に耐熱性が求められる用途に対しては、Ni下地めっき上に更にCu下地めっきを施す(以下、Cu/Ni二層下地)こともある。Cu/Ni二層下地めっき上にSnめっきを施し、リフロー処理を行うと、リフロー後のめっき皮膜層の構成は表面からSn相、Cu−Sn相、Ni相、母材となる。この技術の詳細は特許文献1〜3等に開示されている。
For Sn plating strips of Cu-Sn-P alloys, after degreasing and pickling, if necessary, a base plating layer is formed by electroplating, then an Sn plating layer is formed by electroplating, and finally reflow is performed. Manufactured in a step of applying a treatment to melt the Sn plating layer.
Although the Cu base plating is often applied to the Sn plating strip of the copper-plated product, in the Cu base Sn plating of the Cu—Sn—P based alloy, the plating layer is more than the base material when kept at a high temperature for a long time. There is a problem that a phenomenon of peeling (hereinafter referred to as thermal peeling) is likely to occur. Therefore, in Sn plating of a Cu—Sn—P based alloy, it is often the case that base plating is not performed or Ni base plating is relatively difficult to cause thermal peeling. In particular, for applications requiring heat resistance, a Cu base plating may be further applied on the Ni base plating (hereinafter referred to as a Cu / Ni two-layer base). When Sn plating is performed on the Cu / Ni two-layer base plating and reflow treatment is performed, the structure of the plated film layer after reflow becomes Sn phase, Cu-Sn phase, Ni phase, and base material from the surface. Details of this technique are disclosed in Patent Documents 1 to 3 and the like.

特開平6−196349号公報JP-A-6-196349 特開2003−293187号公報JP 2003-293187 A 特開2004−68026号公報JP 2004-68026 A

しかしながら、近年、耐熱剥離性に対し、より高温で長期間の信頼性が求められるようになり、比較的良好な耐熱剥離性を有している下地めっきなしやCu/Ni二層下地めっきのCu−Sn−P系合金Snめっき条に対しても、更に良好な耐熱剥離性が求められるようになった。
本発明の目的は、すずめっきの耐熱剥離性を改善したCu−Sn−P系合金すずめっき条を提供することであり、特に、下地めっき無し又はCu/Ni二層下地めっきに関して改善された耐熱剥離性を有するCu−Sn−P系合金すずめっき条を提供することである。
However, in recent years, long-term reliability at higher temperatures has been demanded for heat-resistant peelability, and there is no undercoating or Cu / Ni two-layer undercoating Cu having relatively good heat-resistant peelability. Even better resistance to heat peeling has been demanded for Sn-P alloy Sn plating strips.
An object of the present invention is to provide a Cu-Sn-P alloy tin plating strip with improved heat-resistant peelability of tin plating, and particularly improved heat resistance with no base plating or Cu / Ni two-layer base plating It is to provide a Cu—Sn—P alloy tin plating strip having peelability.

本発明者は、Cu−Sn−P系合金のすずめっき条の耐熱剥離性を改善する方策を鋭意研究した。その結果、めっき層と母材との境界面におけるC濃度を低く抑えると、耐熱剥離性を大幅に改善できることを見出した。   The present inventor has intensively studied measures for improving the heat-resistant peelability of the tin-plated strip of the Cu—Sn—P alloy. As a result, it has been found that when the C concentration at the interface between the plating layer and the base material is kept low, the heat-resistant peelability can be greatly improved.

本発明は、この発見に基づき成されたものであり、以下の通りである。
(1)1〜12質量%のSn及び0.01〜0.35質量%のPを含有する銅基合金を母材とし、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Sn−P系合金すずめっき条。
(2)1〜12質量%のSn及び0.01〜0.35質量%のPを含有する銅基合金を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μmであり、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Sn−P系合金すずめっき条。
(3)1〜12質量%のSn及び0.01〜0.35質量%のPを含有する銅基合金を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相、Ni相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μm、Ni相の厚みが0.1〜0.8μmであり、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Sn−P系合金すずめっき条。
(4)母材がZn、Fe、Ni、Si、Mn、Co、Ti、Cr、Zr、Al及びAgの群から選ばれた少なくとも一種を合計で0.005〜1.0質量%の範囲で含有する(1)〜(3)いずれかのCu−Sn−P系合金すずめっき条。
(5)最終圧延における母材表面への圧延油の封入を抑制することにより、リフロー後のめっき層と母材との境界面におけるC濃度を0.10質量%以下に調整することを特徴とする、(1)〜(4)いずれかのCu−Sn−P系合金すずめっき条の製造方法。
なお、Cu−Sn−P系合金のすずめっきは、部品へのプレス加工の前に行う場合(前めっき)とプレス加工後に行う場合(後めっき)があるが、両場合とも、本発明の効果は得られる。
The present invention has been made based on this discovery and is as follows.
(1) A copper-based alloy containing 1 to 12% by mass of Sn and 0.01 to 0.35% by mass of P is used as a base material, and the C concentration at the interface between the plating layer and the base material is 0.10%. % Cu-Sn-P alloy tin-plated strip.
(2) A copper-based alloy containing 1 to 12% by mass of Sn and 0.01 to 0.35% by mass of P is used as a base material, and from the surface to the base material, each layer of Sn phase and Sn—Cu alloy phase A plating film is formed, the Sn phase thickness is 0.1 to 1.5 μm, the Sn—Cu alloy phase thickness is 0.1 to 1.5 μm, and the C concentration at the interface between the plating layer and the base material is A Cu—Sn—P alloy tin plating strip characterized by being 0.10% by mass or less.
(3) A copper base alloy containing 1 to 12% by mass of Sn and 0.01 to 0.35% by mass of P is used as a base material, and from the surface to the base material, Sn phase, Sn-Cu alloy phase, Ni phase A plating film is composed of each layer of Sn, the thickness of Sn phase is 0.1 to 1.5 μm, the thickness of Sn—Cu alloy phase is 0.1 to 1.5 μm, and the thickness of Ni phase is 0.1 to 0.8 μm. A Cu—Sn—P alloy tin-plated strip, wherein the C concentration at the interface between the plating layer and the base material is 0.10% by mass or less.
(4) The base material is at least one selected from the group consisting of Zn, Fe, Ni, Si, Mn, Co, Ti, Cr, Zr, Al, and Ag in a range of 0.005 to 1.0 mass% in total. The Cu-Sn-P alloy tin plating strip according to any one of (1) to (3).
(5) It is characterized by adjusting the C concentration at the boundary surface between the plating layer and the base material after reflowing to 0.10% by mass or less by suppressing the inclusion of rolling oil on the base material surface in the final rolling. The manufacturing method of the Cu-Sn-P system alloy tin plating strip in any one of (1)-(4).
Note that tin plating of a Cu—Sn—P alloy may be performed before pressing the part (pre-plating) or after pressing (post-plating). In both cases, the effect of the present invention is achieved. Is obtained.

(1)母材の成分
本発明は1〜12質量%のSn及び0.01〜0.35質量%のPを含有する銅合金を対象とする。Snが1質量%未満になると強度が不足し、12質量%を超えると導電率の低下が著しくなる。Snは好ましくは3〜11質量%である。Pが0.01質量%未満になると製造性(特に溶解鋳造性)が低下し、0.35質量%を超えると導電率の低下が著しくなる。Pは好ましくは0.03〜0.20質量%である。
本発明の銅合金母材には、合金の強度、耐熱性、耐応力緩和性等を改善する目的で、Zn、Fe、Ni、Si、Mn、Co、Ti、Cr、Zr、Al及びAgの群から選ばれた少なくとも一種を合計で0.005〜1.0質量%、好ましくは0.05〜0.5質量%添加することができる。これら元素の合計量が0.005質量%未満になると特性向上の効果が発現しない。一方、合計量が1.0質量%を超えると、導電率低下、製造性の低下、原料コストの増加等の問題が生じる。
(1) Base Material Components The present invention is directed to a copper alloy containing 1 to 12% by mass of Sn and 0.01 to 0.35% by mass of P. When the Sn content is less than 1% by mass, the strength is insufficient, and when the Sn content exceeds 12% by mass, the decrease in the conductivity becomes significant. Sn is preferably 3 to 11% by mass. When P is less than 0.01% by mass, manufacturability (particularly melt castability) is lowered, and when it exceeds 0.35% by mass, the conductivity is remarkably lowered. P is preferably 0.03 to 0.20% by mass.
The copper alloy base material of the present invention is made of Zn, Fe, Ni, Si, Mn, Co, Ti, Cr, Zr, Al and Ag for the purpose of improving the strength, heat resistance, stress relaxation resistance, etc. of the alloy. At least one selected from the group can be added in a total amount of 0.005 to 1.0 mass%, preferably 0.05 to 0.5 mass%. When the total amount of these elements is less than 0.005% by mass, the effect of improving the characteristics is not exhibited. On the other hand, when the total amount exceeds 1.0% by mass, problems such as a decrease in conductivity, a decrease in manufacturability, and an increase in raw material costs occur.

(2)めっき層と母材との境界面におけるC濃度
めっき層と母材との境界面におけるC濃度が0.10質量%を超えると、耐熱剥離性が低下する。そこで、上記C濃度を0.10質量%以下に規定する。ここで、めっき層と母材との境界面におけるC濃度とは、例えばGDS(グロー放電発光分光分析装置)により求められる脱脂後のサンプルのCの深さ方向の濃度プロファイルにおいて、めっき層と母材との境界面に該当する位置に現れるピーク頂点のC濃度をいう。
(2) C concentration at the interface between the plating layer and the base material When the C concentration at the interface between the plating layer and the base material exceeds 0.10% by mass, the heat-resistant peelability decreases. Therefore, the C concentration is specified to be 0.10% by mass or less. Here, the C concentration at the boundary surface between the plating layer and the base material is, for example, a concentration profile in the depth direction of C of the sample after degreasing obtained by GDS (glow discharge emission spectroscopy analyzer). The C concentration at the peak apex that appears at the position corresponding to the boundary surface with the material.

めっき層と母材との境界面におけるC濃度に影響を及ぼす製造条件因子として、最終冷間圧延の条件及びその後の脱脂条件がある。すなわち、冷間圧延では圧延油が用いられるため、ロールと被圧延材との間に圧延油が介在する。この圧延油が被圧延材表面に封入され、次工程の脱脂で除去されずに残留すると、めっき工程(電着とリフロー)を経てめっき/母材界面にC偏析層を形成する。
冷間圧延工程では、材料の圧延機への通板(パス)を繰り返し、材料を所定の厚みに仕上げる。図1は圧延中に圧延油が被圧延材表面に封入される過程を模式的に示したものである。(a)は圧延前の被圧延材断面である。(b)は通常使用される表面粗さが大きいロールを用いて圧延を行った後の被圧延材断面であり、被圧延材表面に凹凸が生じ、その凹部に圧延油が溜まっている。(c)は(b)の後に最終パスとして表面粗さの小さいロールを用いて圧延を行った後の被圧延材断面であり、(b)で凹部に溜まった圧延油が被圧延材表面に封入されている。
Manufacturing condition factors affecting the C concentration at the interface between the plating layer and the base material include final cold rolling conditions and subsequent degreasing conditions. That is, since rolling oil is used in cold rolling, the rolling oil is interposed between the roll and the material to be rolled. When this rolling oil is sealed on the surface of the material to be rolled and remains without being removed by degreasing in the next step, a C segregation layer is formed at the plating / base material interface through a plating step (electrodeposition and reflow).
In the cold rolling process, the material is repeatedly passed through a rolling mill to finish the material to a predetermined thickness. FIG. 1 schematically shows a process in which rolling oil is sealed on the surface of a material to be rolled during rolling. (A) is a to-be-rolled material cross section before rolling. (B) is a cross-section of the material to be rolled after rolling using a roll having a large surface roughness that is usually used, where the surface of the material to be rolled is uneven, and rolling oil is accumulated in the recess. (C) is a cross section of the rolled material after rolling using a roll having a small surface roughness as the final pass after (b), and the rolling oil accumulated in the recesses in (b) is applied to the surface of the rolled material. It is enclosed.

図1は、圧延油の封入を抑えるためには、表面粗さの小さいロールを使用する最終パスより前のパスにおいて、表面粗さが小さいロールを用いることが重要であることを示している。即ち、最終パス前の全パスにおいて1回でも表面粗さの大きいロールを使用することは被圧延材表面に凹凸が生じる原因となるため好ましくない。また、ロール粗さ以外の重要な因子として圧延油の粘度があり、粘度が低く流動性が良い圧延油ほど、被圧延材表面に封入されにくい。
ロールの表面粗さを小さくする方法として、粒度が細かい砥石を用いてロール表面を研磨する方法、ロール表面にめっきを施す方法等があるが、これらはかなりの手間とコストを要する。また、ロールの表面粗さを小さくすると、ロール表面と被圧延材との間でスリップが発生しやすくなり圧延速度を上げられなくなる(効率が低下する)等の問題も生じる。このため、最終パスでは製品の表面粗さを作り込むために表面粗さが小さいロールが用いられていたものの、最終パス以外のパスにおいて表面粗さが小さいロールを用いることは、当業者に避けられていた。また、動粘度が低い圧延油を用いることについても、圧延ロール表面の磨耗が大きくなる等の理由から、避けられていた。
本発明によりすずめっきの耐熱剥離性の改善のためにめっき層と母材との境界面におけるC濃度を低下させることが重要であることが初めて見いだされた。そして、そのためには最終パスより前のパスにおいて表面粗さが小さいロールを用い、動粘度が低く流動性が良い圧延油を使用することにより、圧延油の封入を抑えることが効果的であることが示された。
FIG. 1 shows that it is important to use a roll having a low surface roughness in the pass before the final pass using a roll having a low surface roughness in order to suppress the inclusion of rolling oil. That is, it is not preferable to use a roll having a large surface roughness even once in all passes before the final pass because it causes unevenness on the surface of the material to be rolled. An important factor other than the roll roughness is the viscosity of the rolling oil. The rolling oil having a lower viscosity and better fluidity is less likely to be sealed on the surface of the material to be rolled.
As a method for reducing the surface roughness of the roll, there are a method of polishing the roll surface using a grindstone having a fine particle size, a method of plating the roll surface, etc., but these require considerable labor and cost. Moreover, if the surface roughness of the roll is made small, slips are likely to occur between the roll surface and the material to be rolled, and problems such as the inability to increase the rolling speed (decrease in efficiency) occur. For this reason, although rolls with a small surface roughness were used in the final pass to create the surface roughness of the product, those skilled in the art should avoid using rolls with a low surface roughness in passes other than the final pass. It was done. Also, the use of rolling oil having a low kinematic viscosity has been avoided for reasons such as increased wear on the surface of the rolling roll.
For the first time, it has been found that it is important to reduce the C concentration at the interface between the plating layer and the base material in order to improve the thermal peelability of tin plating according to the present invention. For that purpose, it is effective to suppress the inclusion of the rolling oil by using a roll having a small surface roughness in the pass before the final pass and using a rolling oil having a low kinematic viscosity and good fluidity. It has been shown.

最終パスより前に使用される表面粗さの小さいロールの表面の最大高さ粗さRzは、好ましくは3.0μm以下、更に好ましくは2.0μm以下、最も好ましくは1.0μm以下である。Rzが3.0μmを超えると圧延油が封入されやすくなり、境界面におけるC濃度が低下しにくい。又、使用される圧延油の動粘度(40℃で測定)は、好ましくは15mm2/s以下、更に好ましくは10mm2/s以下、最も好ましくは5mm2/s以下である。粘度が15mm2/sを超えると圧延油が封入されやすくなり、境界面におけるC濃度が低下しにくい。
なお、特許文献3でもC濃度に着目しているが、このC濃度はSnめっき層中の平均C濃度であり、本発明の構成要素であるめっき層と母材との境界面におけるC濃度とは異なる。特許文献3では、Snめっき層中の平均C濃度はめっき液中の光沢剤、添加剤の量及びめっき電流密度により変化し、0.001質量%未満ではSnめっきの厚さにムラが生じ、0.1質量%を超えると接触抵抗が増加するとされている。従って、特許文献3の技術が本発明の技術と異なることは明らかである。
The maximum height roughness Rz of the roll having a small surface roughness used before the final pass is preferably 3.0 μm or less, more preferably 2.0 μm or less, and most preferably 1.0 μm or less. When Rz exceeds 3.0 μm, rolling oil is likely to be enclosed, and the C concentration at the boundary surface is unlikely to decrease. The kinematic viscosity (measured at 40 ° C.) of the rolling oil used is preferably 15 mm 2 / s or less, more preferably 10 mm 2 / s or less, and most preferably 5 mm 2 / s or less. When the viscosity exceeds 15 mm 2 / s, the rolling oil is easily enclosed, and the C concentration at the boundary surface is difficult to decrease.
Patent Document 3 also focuses on the C concentration. This C concentration is the average C concentration in the Sn plating layer, and the C concentration at the interface between the plating layer and the base material, which is a component of the present invention. Is different. In Patent Document 3, the average C concentration in the Sn plating layer varies depending on the amount of brightener, additive, and plating current density in the plating solution. If the amount is less than 0.001% by mass, unevenness of the Sn plating thickness occurs. If it exceeds 0.1% by mass, the contact resistance is supposed to increase. Therefore, it is clear that the technique of Patent Document 3 is different from the technique of the present invention.

(3)めっきの厚み
(3−1)下地めっき無し
下地めっき無しの場合、Cu−Sn−P系合金母材上に直接、電気めっきによりSnめっき層を形成し、その後リフロー処理を行う。このリフロー処理により、合金母材中のCuとSnめっき層が反応してSn−Cu合金相が形成され、めっき層構造は、表面側よりSn相、Sn−Cu合金相となる。
リフロー後のこれら各相の厚みは、
・Sn相:0.1〜1.5μm
・Sn−Cu合金相:0.1〜1.5μm
の範囲に調整する。
Sn相が0.1μm未満になると半田濡れ性が低下し、1.5μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい範囲は0.2〜1.0μmである。
Sn−Cu合金相は硬質なため、0.1μm以上の厚さで存在すると挿入力の低減に寄与する。一方、Sn−Cu合金相の厚さが1.5μmを超えると、加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい厚みは0.5〜1.2μmである。
(3) Thickness of plating (3-1) No base plating In the case of no base plating, an Sn plating layer is formed directly on the Cu—Sn—P alloy base material by electroplating, and then a reflow treatment is performed. By this reflow process, Cu in the alloy base material reacts with the Sn plating layer to form an Sn—Cu alloy phase, and the plating layer structure becomes an Sn phase and an Sn—Cu alloy phase from the surface side.
The thickness of each phase after reflow is
-Sn phase: 0.1-1.5 μm
Sn-Cu alloy phase: 0.1 to 1.5 μm
Adjust to the range.
When the Sn phase is less than 0.1 μm, the solder wettability decreases, and when it exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable range is 0.2 to 1.0 μm.
Since the Sn—Cu alloy phase is hard, if it exists in a thickness of 0.1 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Sn—Cu alloy phase exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness is 0.5 to 1.2 μm.

上記めっき構造を得るためには、電気めっき時のSnめっきの厚みを0.5〜1.8μmの範囲に適宜調整し、230〜600℃、3〜30秒間の範囲の中の適当な条件でリフロー処理を行う。   In order to obtain the above-mentioned plating structure, the thickness of Sn plating at the time of electroplating is appropriately adjusted in the range of 0.5 to 1.8 μm, and under appropriate conditions in the range of 230 to 600 ° C. and 3 to 30 seconds. Perform reflow processing.

(3−2)Cu/Ni下地めっき
Cu/Ni下地めっきの場合、Cu−Sn−P系合金母材上に、電気めっきによりNiめっき層、Cuめっき層及びSnめっき層を順次形成し、その後リフロー処理を行う。このリフロー処理により、CuめっきはSnと反応してSn−Cu合金相となり、Cu相は消失する。一方Ni層は、ほぼ電気めっき上がりの状態で残留する。その結果、めっき層の構造は、表面側よりSn相、Sn−Cu合金相、Ni相となる。
リフロー後のこれら各相の厚みは、
・Sn相:0.1〜1.5μm
・Sn−Cu合金相:0.1〜1.5μm
・Ni相:0.1〜0.8μm
の範囲に調整する。
Sn相が0.1μm未満になると半田濡れ性が低下し、1.5μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい範囲は0.2〜1.0μmである。
Sn−Cu合金相は硬質なため、0.1μm以上の厚さで存在すると挿入力の低減に寄与する。一方、Sn−Cu合金相の厚さが1.5μmを超えると、加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい厚みは0.5〜1.2μmである。
(3-2) Cu / Ni foundation plating In the case of Cu / Ni foundation plating, a Ni plating layer, a Cu plating layer, and a Sn plating layer are sequentially formed on a Cu-Sn-P alloy base material by electroplating, and thereafter Perform reflow processing. By this reflow treatment, the Cu plating reacts with Sn to become a Sn—Cu alloy phase, and the Cu phase disappears. On the other hand, the Ni layer remains almost in the state after electroplating. As a result, the structure of the plating layer becomes Sn phase, Sn—Cu alloy phase, and Ni phase from the surface side.
The thickness of each phase after reflow is
-Sn phase: 0.1-1.5 μm
Sn-Cu alloy phase: 0.1 to 1.5 μm
・ Ni phase: 0.1-0.8μm
Adjust to the range.
When the Sn phase is less than 0.1 μm, the solder wettability decreases, and when it exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable range is 0.2 to 1.0 μm.
Since the Sn—Cu alloy phase is hard, if it exists in a thickness of 0.1 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Sn—Cu alloy phase exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness is 0.5 to 1.2 μm.

Ni相の厚みは0.1〜0.8μmとする。Niの厚みが0.1μm未満ではめっきの耐食性や耐熱性が低下する。Niの厚みが0.8μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましいNi相の厚みは0.1〜0.3μmである。
上記めっき構造を得るためには、電気めっき時の各めっきの厚みを、Snめっきは0.5〜1.8μmの範囲、Cuめっきは0.1〜0.4μm、Niめっきは0.1〜0.8μmの範囲で適宜調整し、230〜600℃、3〜30秒間の範囲の中の適当な条件でリフロー処理を行う。
The thickness of the Ni phase is 0.1 to 0.8 μm. If the thickness of Ni is less than 0.1 μm, the corrosion resistance and heat resistance of the plating deteriorate. When the thickness of Ni exceeds 0.8 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness of the Ni phase is 0.1 to 0.3 μm.
In order to obtain the plating structure, the thickness of each plating during electroplating is in the range of 0.5 to 1.8 μm for Sn plating, 0.1 to 0.4 μm for Cu plating, and 0.1 to 0.4 μm for Ni plating. It adjusts suitably in the range of 0.8 micrometer, and performs a reflow process on suitable conditions in the range of 230-600 degreeC and 3 to 30 second.

本発明の実施例で採用した製造、めっき、測定方法を以下に示す。
高周波誘導炉を用い、内径60mm、深さ200mmの黒鉛るつぼ中で2kgの電気銅を溶解した。溶湯表面を木炭片で覆った後、所定量のSn、P及びその他の合金元素を添加した。その後、溶湯を金型に鋳込み、幅60mm、厚み30mmのインゴットを製造し、以下の工程で、下地無しリフローSnめっき材及びCu/Ni下地リフローSnめっき材に加工した。めっき/母材界面のC濃度が異なるサンプルを得るために、工程12の条件を変化させた。
The manufacturing, plating, and measuring methods employed in the examples of the present invention are shown below.
Using a high frequency induction furnace, 2 kg of electrolytic copper was dissolved in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the molten metal surface with charcoal pieces, a predetermined amount of Sn, P and other alloy elements were added. Thereafter, the molten metal was cast into a mold to produce an ingot having a width of 60 mm and a thickness of 30 mm, and processed into a baseless reflow Sn plating material and a Cu / Ni base reflow Sn plating material in the following steps. In order to obtain samples with different C concentrations at the plating / matrix interface, the conditions of step 12 were varied.

(工程1)均質化焼鈍として700℃で3時間加熱した。
(工程2)表面の酸化スケールをグラインダーで研削、除去した。
(工程3)板厚10mmまで冷間圧延した。
(工程4)均質化焼鈍として500℃で3時間加熱した。
(工程5)表面の酸化スケールをグラインダーで研削、除去した。
(工程6)板厚1.5mmまで冷間圧延した。
(工程7)再結晶焼鈍として400℃で30分間加熱した。
(工程8)10質量%硫酸−1質量%過酸化水素溶液による酸洗及び#1200エメリー紙による機械研磨を順次行い、表面酸化膜を除去した。
(工程9)板厚0.5mmまで冷間圧延した。
(工程10)再結晶焼鈍として400℃で30分間加熱した。
(工程11)10質量%硫酸−1質量%過酸化水素溶液による酸洗を行い、表面酸化膜を除去した。
(Step 1) Heating was performed at 700 ° C. for 3 hours as homogenization annealing.
(Step 2) The oxidized scale on the surface was ground and removed with a grinder.
(Process 3) Cold rolled to a plate thickness of 10 mm.
(Step 4) Heating was performed at 500 ° C. for 3 hours as homogenization annealing.
(Step 5) The oxidized scale on the surface was ground and removed with a grinder.
(Step 6) Cold rolling to a plate thickness of 1.5 mm.
(Step 7) Heating was performed at 400 ° C. for 30 minutes as recrystallization annealing.
(Step 8) Pickling with a 10% by mass sulfuric acid-1% by mass hydrogen peroxide solution and mechanical polishing with # 1200 emery paper were sequentially performed to remove the surface oxide film.
(Step 9) Cold rolling to a plate thickness of 0.5 mm.
(Step 10) Heating was performed at 400 ° C. for 30 minutes as recrystallization annealing.
(Step 11) Pickling with a 10% by mass sulfuric acid-1% by mass hydrogen peroxide solution was performed to remove the surface oxide film.

(工程12)板厚0.3mmまで冷間圧延した。パス数は2回とし、1パス目で0.38mmまで加工し、2パス目で0.3mmまで加工した。2パス目では表面のRz(最大高さ粗さ)を1.0μmに調整したロールを用いた。1パス目ではロール表面のRzを1、2、3及び4μmの4水準で変化させた。また、圧延油(1パス目、2パス目共通)の動粘度を5、10及び15mm2/sの3水準で変化させた。
(工程13)アルカリ水溶液中で試料をカソードとして次の条件で電解脱脂を行った。
電流密度:3A/dm2。脱脂剤:ユケン工業(株)製商標「パクナP105」。脱脂剤濃度:40g/L。温度:50℃。時間30秒。電流密度:3A/dm2
(工程14)10質量%硫酸水溶液を用いて酸洗した。
(Step 12) Cold rolling to a plate thickness of 0.3 mm. The number of passes was two, and the first pass was processed to 0.38 mm, and the second pass was processed to 0.3 mm. In the second pass, a roll whose surface Rz (maximum height roughness) was adjusted to 1.0 μm was used. In the first pass, Rz on the roll surface was changed at four levels of 1, 2, 3, and 4 μm. Further, the kinematic viscosity of the rolling oil (common to the first pass and the second pass) was changed at three levels of 5, 10 and 15 mm 2 / s.
(Step 13) Electrolytic degreasing was performed under the following conditions in an alkaline aqueous solution using the sample as a cathode.
Current density: 3 A / dm 2 . Degreasing agent: Trademark “Pakuna P105” manufactured by Yuken Industry Co., Ltd. Degreasing agent concentration: 40 g / L. Temperature: 50 ° C. Time 30 seconds. Current density: 3 A / dm 2 .
(Step 14) Pickling was performed using a 10% by mass sulfuric acid aqueous solution.

(工程15)次の条件でNi下地めっきを施した(Cu/Ni下地の場合のみ)。
・めっき浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸30g/L。
・めっき浴温度:50℃。
・電流密度:5A/dm2
・Niめっき厚みは、電着時間により調整。
(工程16)次の条件でCu下地めっきを施した(Cu/Ni下地の場合のみ)。
・めっき浴組成:硫酸銅200g/L、硫酸60g/L。
・めっき浴温度:25℃。
・電流密度:5A/dm2
・Cuめっき厚みは、電着時間により調整。
(工程17)次の条件でSnめっきを施した。
・めっき浴組成:酸化第1錫41g/L、フェノールスルホン酸268g/L、界面活性剤5g/L。
・めっき浴温度:50℃。
・電流密度:9A/dm2
・Snめっき厚みは、電着時間により調整。
(工程18)リフロー処理として、温度を400℃、雰囲気ガスを窒素(酸素1vol%以下)に調整した加熱炉中に、試料を10秒間挿入し水冷した。
(Step 15) Ni base plating was performed under the following conditions (only in the case of Cu / Ni base).
-Plating bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 30 g / L.
-Plating bath temperature: 50 ° C.
Current density: 5A / dm 2.
・ Ni plating thickness is adjusted by electrodeposition time.
(Step 16) Cu base plating was performed under the following conditions (only in the case of Cu / Ni base).
-Plating bath composition: copper sulfate 200 g / L, sulfuric acid 60 g / L.
-Plating bath temperature: 25 ° C.
Current density: 5A / dm 2.
・ Cu plating thickness is adjusted by electrodeposition time.
(Step 17) Sn plating was performed under the following conditions.
Plating bath composition: stannous oxide 41 g / L, phenol sulfonic acid 268 g / L, surfactant 5 g / L.
-Plating bath temperature: 50 ° C.
Current density: 9A / dm 2.
・ Sn plating thickness is adjusted by electrodeposition time.
(Step 18) As a reflow treatment, the sample was inserted into a heating furnace adjusted to 400 ° C. and the atmosphere gas to nitrogen (oxygen 1 vol% or less) for 10 seconds and cooled with water.

このように作製した試料について、次の評価を行った。
(a)母材の成分分析
機械研磨と化学エッチングによりめっき層を完全に除去した後、Sn、P及びその他合金元素の濃度を、ICP−発光分光法で測定した。
(b)電解式膜厚計によるめっき厚測定
リフロー後の試料に対しSn相及びSn−Cu合金相の厚みを測定した。なお、この方法ではNi相の厚みを測ることはできない。
The following evaluation was performed about the sample produced in this way.
(A) Component analysis of base material After the plating layer was completely removed by mechanical polishing and chemical etching, the concentrations of Sn, P and other alloy elements were measured by ICP-emission spectroscopy.
(B) Plating thickness measurement by electrolytic film thickness meter The thickness of the Sn phase and the Sn—Cu alloy phase was measured on the sample after reflow. In this method, the thickness of the Ni phase cannot be measured.

(c)GDSによる表面分析
リフロー後の試料をアセトン中で超音波脱脂した後、GDS(グロー放電発光分光分析装置)により、Sn、Cu、Ni、Cの深さ方向の濃度プロファイルを求めた。測定条件は次の通りである。
・装置:JOBIN YBON社製 JY5000RF-PSS型
・Current Method Program:CNBinteel-12aa-0。
・Mode:Constant Electric Power=40W。
・Ar-Presser:775Pa。
・Current Value:40mA(700V)。
・Flush Time:20sec。
・Preburn Time:2sec。
・Determination Time:Analysis Time=30sec、Sampling Time=0.020sec/point。
(C) Surface analysis by GDS After the reflowed sample was ultrasonically degreased in acetone, the concentration profiles of Sn, Cu, Ni, and C in the depth direction were determined by GDS (glow discharge emission spectroscopic analyzer). The measurement conditions are as follows.
・ Equipment: JY5000RF-PSS type manufactured by JOBIN YBON ・ Current Method Program: CNBinteel-12aa-0.
・ Mode: Constant Electric Power = 40W.
・ Ar-Presser: 775Pa.
・ Current Value: 40mA (700V).
・ Flush Time: 20sec.
・ Preburn Time: 2sec.
-Determination Time: Analysis Time = 30sec, Sampling Time = 0.020sec / point.

GDSで得られるC濃度プロファイルデータより、めっき/母材境界面のC濃度を求めた。Cの代表的な濃度プロファイルとして、後述する発明例2(表1、下地めっき無し)のデータを図2に示す。深さ1.6μm(めっき層と母材との境界面)のところにCのピークが認められる。このピークの高さを読み取り、めっき/母材境界面のC濃度とした。また、GDSで得られるNi濃度プロファイルデータより、Ni下地めっき(Ni相)の厚みを求めた。   From the C concentration profile data obtained by GDS, the C concentration at the plating / base metal interface was determined. As a typical concentration profile of C, FIG. 2 shows data of Invention Example 2 (Table 1, no base plating) described later. A peak of C is observed at a depth of 1.6 μm (a boundary surface between the plating layer and the base material). The peak height was read and used as the C concentration at the plating / base metal interface. Further, the thickness of the Ni base plating (Ni phase) was obtained from the Ni concentration profile data obtained by GDS.

(d)耐熱剥離性
幅10mmの短冊試験片を採取し、160℃の温度で大気中3000時間まで加熱した。その間、100時間毎に試料を加熱炉から取り出し、曲げ半径0.5mmの90°曲げと曲げ戻し(90°曲げを往復一回)を行った。次に、曲げ内周部表面に粘着テープ(スリーエム社製#851)を貼り付け引き剥がした。その後、試料の曲げ内周部表面を光学顕微鏡(倍率50倍)で観察し、めっき剥離の有無を調べた。そして、めっき剥離が発生するまでの加熱時間を求めた。
(D) Heat-resistant peelability A strip test piece having a width of 10 mm was collected and heated at a temperature of 160 ° C. for up to 3000 hours in the atmosphere. In the meantime, the sample was taken out from the heating furnace every 100 hours, and 90 ° bending and bending back with a bending radius of 0.5 mm were performed (90 ° bending was reciprocated once). Next, an adhesive tape (# 851 manufactured by 3M) was attached to the surface of the inner periphery of the bend and peeled off. Thereafter, the surface of the inner periphery of the sample was observed with an optical microscope (magnification 50 times), and the presence or absence of plating peeling was examined. And the heating time until plating peeling generate | occur | produced was calculated | required.

めっき層/母材界面のC濃度と耐熱剥離性との関係(発明例1〜24及び比較例1〜9)
めっき層/母材界面のC濃度が耐熱剥離性に及ぼす影響を調査した実施例を表1に示す。工程12においてロール表面粗さRz及び圧延油動粘度をそれぞれ1〜4μm及び5〜15mm2/sに調整することにより、めっき層/母材界面のC濃度を変化させている。
下地めっき無し材については、Snの厚みを1.2μmとして電気めっきを行い、400℃で10秒間リフローしたところ、全ての発明例、比較例でいずれもSn相の厚みは約0.8μm、Cu−Sn合金相の厚みは約0.8μmとなった。
Cu/Ni下地めっき材については、Niの厚みを0.3μm、Cuの厚みを0.3μm、Snの厚みを0.8μmとして電気めっきを行い、400℃で10秒間リフローしたところ、全ての発明例、比較例でいずれもSn相の厚みは約0.4μm、Cu−Sn合金相の厚みは約1μmとなり、Cu相は消失し、Ni相は電着時の厚み(0.3μm)のまま残留していた。
本発明合金である発明例1〜24ではめっき層/母材界面のC濃度が0.10質量%以下であり、160℃で3000時間加熱してもめっき剥離が生じていない。一方、比較例1〜9ではC濃度が0.10質量%を超え、剥離時間が3000時間を下回っている。また、圧延ロールの表面粗さを小さくすること、及び圧延油の粘度を低くすることにより、めっき層/母材界面のC濃度を低くできることもわかる。
Relationship between C concentration of plating layer / base material interface and heat-resistant peelability (Invention Examples 1 to 24 and Comparative Examples 1 to 9)
Table 1 shows an example in which the influence of the C concentration at the plating layer / base metal interface on the heat-resistant peelability was investigated. In step 12, the roll surface roughness Rz and the rolling oil kinematic viscosity are adjusted to 1 to 4 μm and 5 to 15 mm 2 / s, respectively, thereby changing the C concentration at the plating layer / base material interface.
For the material without base plating, electroplating was performed with a Sn thickness of 1.2 μm and reflowed at 400 ° C. for 10 seconds. In all the inventive examples and comparative examples, the Sn phase thickness was about 0.8 μm, Cu The thickness of the —Sn alloy phase was about 0.8 μm.
For the Cu / Ni base plating material, electroplating was performed with a Ni thickness of 0.3 μm, a Cu thickness of 0.3 μm, and a Sn thickness of 0.8 μm, and reflowed at 400 ° C. for 10 seconds. In both examples and comparative examples, the thickness of the Sn phase is about 0.4 μm, the thickness of the Cu—Sn alloy phase is about 1 μm, the Cu phase disappears, and the Ni phase remains at the thickness during electrodeposition (0.3 μm). It remained.
In Invention Examples 1 to 24, which are the alloys of the present invention, the C concentration at the plating layer / base metal interface is 0.10% by mass or less, and plating peeling does not occur even when heated at 160 ° C. for 3000 hours. On the other hand, in Comparative Examples 1-9, C density | concentration exceeds 0.10 mass% and peeling time is less than 3000 hours. It can also be seen that the C concentration at the plating layer / base metal interface can be lowered by reducing the surface roughness of the rolling roll and lowering the viscosity of the rolling oil.

めっきの厚みと耐熱剥離性との関係(発明例25〜36及び比較例10〜14)
めっきの厚みが耐熱剥離性に及ぼす影響を調査した実施例を表2及び3に示す。母材組成はCu−6.0質量%−0.12質量%Pとした。また工程12では、1パス目でRzが2μmの圧延ロールを用い、1パス目、2パス目とも動粘度が10mm2/sの圧延油を用いた。その結果、各試料におけるめっき層/母材界面のC濃度は、0.07〜0.09質量%の範囲に収まった。
Relationship between plating thickness and heat-resistant peelability (Invention Examples 25 to 36 and Comparative Examples 10 to 14)
Tables 2 and 3 show examples in which the influence of the plating thickness on the heat-resistant peelability was investigated. The base material composition was Cu-6.0 mass% -0.12 mass% P. In step 12, a rolling roll having an Rz of 2 μm in the first pass was used, and a rolling oil having a kinematic viscosity of 10 mm 2 / s was used in the first pass and the second pass. As a result, the C concentration at the plating layer / base material interface in each sample was within the range of 0.07 to 0.09 mass%.

表2(発明例25〜29及び比較例10及び11)は下地めっき無しの場合について、Snの厚みを変化させている。本発明合金である発明例25〜29については、160℃で3000時間加熱してもめっき剥離が生じていない。
Snの電着厚みを2.0μmとし他と同じ条件でリフローを行った比較例10では、リフロー後のSn相の厚みが1.5μmを超えている。またSnの電着厚みを2.0μmとしリフロー温度を高くした比較例11ではリフロー後のSn−Cu合金相厚みが1.5μmを超えている。Sn相またはSn−Cu合金相の厚みが規定範囲を超えたこれら合金では、剥離時間が3000時間を下回っている。
Table 2 (Invention Examples 25 to 29 and Comparative Examples 10 and 11) changes the thickness of Sn in the case of no base plating. In Invention Examples 25 to 29, which are the alloys of the present invention, plating peeling does not occur even when heated at 160 ° C. for 3000 hours.
In Comparative Example 10 in which the Sn electrodeposition thickness was 2.0 μm and reflow was performed under the same conditions as the others, the thickness of the Sn phase after reflow exceeded 1.5 μm. In Comparative Example 11 in which the Sn electrodeposition thickness was 2.0 μm and the reflow temperature was high, the Sn—Cu alloy phase thickness after reflow exceeded 1.5 μm. In these alloys in which the thickness of the Sn phase or the Sn—Cu alloy phase exceeds the specified range, the peeling time is less than 3000 hours.

表3(発明例30〜36及び比較例12〜14)はCu/Ni下地めっきでのデータである。本発明合金である発明例30〜36については、3000時間加熱してもめっき剥離が生じていない。
発明例30〜32及び比較例14では、Snの電着厚みを0.9μm、Cuの電着厚みを0.2μmとし、Ni下地の厚みを変化させている。リフロー後のNi相の厚みが0.8μmを超えた比較例14では、剥離時間が3000時間を下回っている。
Table 3 (Invention Examples 30 to 36 and Comparative Examples 12 to 14) shows data in the Cu / Ni base plating. With respect to Invention Examples 30 to 36, which are the alloys of the present invention, plating peeling does not occur even when heated for 3000 hours.
In Invention Examples 30 to 32 and Comparative Example 14, the electrodeposition thickness of Sn is 0.9 μm, the electrodeposition thickness of Cu is 0.2 μm, and the thickness of the Ni base is changed. In Comparative Example 14 in which the thickness of the Ni phase after reflow exceeded 0.8 μm, the peeling time was less than 3000 hours.

発明例33〜36及び比較例12ではCu下地の電着厚みを0.15μm、Ni下地の電着厚みを0.2μmとし、Snの厚みを変化させている。リフロー後のSn相の厚みが1.5μmを超えた比較例12では剥離時間が3000時間を下回っている。
Snの電着厚みを2.0μm、Cuの電着厚みを0.6μmとし、リフロー温度を他の実施例より高くした比較例13では、Sn−Cu合金相厚みが1.5μmを超え、剥離時間が3000時間を下回っている。
In Invention Examples 33 to 36 and Comparative Example 12, the electrodeposition thickness of the Cu base was 0.15 μm, the electrodeposition thickness of the Ni base was 0.2 μm, and the Sn thickness was changed. In Comparative Example 12 in which the thickness of the Sn phase after reflow exceeds 1.5 μm, the peeling time is less than 3000 hours.
In Comparative Example 13 in which the Sn electrodeposition thickness was 2.0 μm, the Cu electrodeposition thickness was 0.6 μm, and the reflow temperature was higher than that of the other examples, the Sn—Cu alloy phase thickness exceeded 1.5 μm, and peeling The time is less than 3000 hours.

冷間圧延中に圧延油が被圧延材表面に封入される過程を示す模式図である。It is a schematic diagram which shows the process in which rolling oil is enclosed by the to-be-rolled material surface during cold rolling. 発明例2(表1、下地めっき無し)における、C濃度の深さ方向のプロファイルである。It is the profile of the depth direction of C density | concentration in invention example 2 (Table 1, no base plating).

Claims (5)

1〜12質量%のSn及び0.01〜0.35質量%のPを含有する銅基合金を母材とし、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Sn−P系合金すずめっき条。   A copper base alloy containing 1 to 12% by mass of Sn and 0.01 to 0.35% by mass of P is used as a base material, and the C concentration at the boundary surface between the plating layer and the base material is 0.10% by weight or less. A Cu—Sn—P alloy tin-plated strip characterized by being. 1〜12質量%のSn及び0.01〜0.35質量%のPを含有する銅基合金を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μmであり、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Sn−P系合金すずめっき条。   A copper-based alloy containing 1 to 12% by mass of Sn and 0.01 to 0.35% by mass of P is used as a base material, and a plating film is formed on each layer of the Sn phase and the Sn—Cu alloy phase from the surface to the base material. The Sn phase has a thickness of 0.1 to 1.5 μm, the Sn—Cu alloy phase has a thickness of 0.1 to 1.5 μm, and the C concentration at the interface between the plating layer and the base material is 0.10. A Cu—Sn—P alloy tin-plated strip characterized by being less than or equal to mass%. 1〜12質量%のSn及び0.01〜0.35質量%のPを含有する銅基合金を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相、Ni相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μm、Ni相の厚みが0.1〜0.8μmであり、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Sn−P系合金すずめっき条。   A copper-based alloy containing 1 to 12% by mass of Sn and 0.01 to 0.35% by mass of P is used as a base material. From the surface to the base material, each layer of Sn phase, Sn—Cu alloy phase and Ni phase A plating film is formed, the thickness of the Sn phase is 0.1 to 1.5 μm, the thickness of the Sn—Cu alloy phase is 0.1 to 1.5 μm, the thickness of the Ni phase is 0.1 to 0.8 μm, A Cu-Sn-P alloy tin-plated strip, wherein the C concentration at the interface between the plating layer and the base material is 0.10 mass% or less. 母材がZn、Fe、Ni、Si、Mn、Co、Ti、Cr、Zr、Al及びAgの群から選ばれた少なくとも一種を合計で0.005〜1.0質量%の範囲で含有する請求項1〜3いずれか1項記載のCu−Sn−P系合金すずめっき条。   Claim that the base material contains at least one selected from the group of Zn, Fe, Ni, Si, Mn, Co, Ti, Cr, Zr, Al, and Ag in a range of 0.005 to 1.0 mass% in total. Item 4. A Cu—Sn—P alloy tin-plated strip according to any one of Items 1 to 3. 最終圧延における母材表面への圧延油の封入を抑制することにより、リフロー後のめっき層と母材との境界面におけるC濃度を0.10質量%以下に調整することを特徴とする、請求項1〜4いずれか1項記載のCu−Sn−P系合金すずめっき条の製造方法。   The C concentration at the boundary surface between the reflowed plating layer and the base material is adjusted to 0.10% by mass or less by suppressing the sealing of rolling oil on the base material surface in the final rolling. Item 5. A method for producing a Cu-Sn-P alloy tin-plated strip according to any one of Items 1 to 4.
JP2006121850A 2006-04-26 2006-04-26 TINNED STRIP OF Cu-Sn-P-BASED ALLOY Pending JP2007291459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121850A JP2007291459A (en) 2006-04-26 2006-04-26 TINNED STRIP OF Cu-Sn-P-BASED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121850A JP2007291459A (en) 2006-04-26 2006-04-26 TINNED STRIP OF Cu-Sn-P-BASED ALLOY

Publications (1)

Publication Number Publication Date
JP2007291459A true JP2007291459A (en) 2007-11-08

Family

ID=38762354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121850A Pending JP2007291459A (en) 2006-04-26 2006-04-26 TINNED STRIP OF Cu-Sn-P-BASED ALLOY

Country Status (1)

Country Link
JP (1) JP2007291459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242822A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Copper alloy plate with sn plating for pcb male terminals excellent in pb-free solderability
JP2010168643A (en) * 2008-12-24 2010-08-05 Mitsubishi Shindoh Co Ltd Method and apparatus for producing plated copper strip material
CN104313389A (en) * 2014-10-29 2015-01-28 陈唯锋 Copper alloy for leads
CN104328308A (en) * 2014-10-29 2015-02-04 陈唯锋 Copper alloy used for wire and preparation method of copper alloy
CN104328309A (en) * 2014-10-29 2015-02-04 陈唯锋 Copper alloy for valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180589A (en) * 1990-11-13 1992-06-26 Mitsubishi Electric Corp Manufacture of copper alloy material for contactor
JPH04354894A (en) * 1991-05-29 1992-12-09 Furukawa Electric Co Ltd:The Production of stock for reflow tin or tin alloy plating
JPH09320668A (en) * 1996-05-14 1997-12-12 Mitsubishi Shindoh Co Ltd Copper-alloy-plated thin plate and connector manufactured therefrom
JP2005226097A (en) * 2004-02-10 2005-08-25 Kobe Steel Ltd Tinned copper alloy material for electrical/electronic component, and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180589A (en) * 1990-11-13 1992-06-26 Mitsubishi Electric Corp Manufacture of copper alloy material for contactor
JPH04354894A (en) * 1991-05-29 1992-12-09 Furukawa Electric Co Ltd:The Production of stock for reflow tin or tin alloy plating
JPH09320668A (en) * 1996-05-14 1997-12-12 Mitsubishi Shindoh Co Ltd Copper-alloy-plated thin plate and connector manufactured therefrom
JP2005226097A (en) * 2004-02-10 2005-08-25 Kobe Steel Ltd Tinned copper alloy material for electrical/electronic component, and its production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242822A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Copper alloy plate with sn plating for pcb male terminals excellent in pb-free solderability
JP2010168643A (en) * 2008-12-24 2010-08-05 Mitsubishi Shindoh Co Ltd Method and apparatus for producing plated copper strip material
CN104313389A (en) * 2014-10-29 2015-01-28 陈唯锋 Copper alloy for leads
CN104328308A (en) * 2014-10-29 2015-02-04 陈唯锋 Copper alloy used for wire and preparation method of copper alloy
CN104328309A (en) * 2014-10-29 2015-02-04 陈唯锋 Copper alloy for valve

Similar Documents

Publication Publication Date Title
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
KR101081779B1 (en) Cu-Zn ALLOY STRIP EXCELLENT IN THERMAL SEPARATION RESISTANCE FOR Sn PLATING AND Sn-PLATED STRIP THEREOF
JP5002407B2 (en) Tin-plated copper or copper alloy strip with excellent tin plating wear resistance
KR100774226B1 (en) Cu-Ni-Si-Zn-Sn BASED PLATING BATH EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING AND TIN PLATING BATH THEREOF
JP2014047378A (en) Cu-Mg-P BASED COPPER ALLOY Sn PLATED SHEET
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
KR101356258B1 (en) Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating
JP2007291459A (en) TINNED STRIP OF Cu-Sn-P-BASED ALLOY
JP2007039789A (en) Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP4987028B2 (en) Copper alloy tin plating material for printed circuit board terminals
JP4699252B2 (en) Titanium copper
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
JP4538424B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
KR20060105477A (en) Cu-ni-si-zn based alloy tin plating bath
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JP2014198889A (en) Copper strip or copper alloy strip and radiation part provided with the same
JP4804191B2 (en) Cu-Zn alloy tin plating strip
JP2014005481A (en) Cu-Ni-Si-BASED COPPER ALLOY Sn PLATED SHEET AND MANUFACTURING METHOD THEREFOR
WO2009123139A1 (en) Tin-plated cu-ni-si alloy strip with excellent unsusceptibility to thermal tin deposit peeling
KR20120029647A (en) MANUFACTURING METHOD OF Cu SHEET AND Cu ALLOYS SHEET WITH HIGH ELECTRICAL CONDUCTIVITY AND HIGH TENSILE STRENGTH

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517