JP5054160B2 - Cu-Mg-P-based copper alloy strip and method for producing the same - Google Patents

Cu-Mg-P-based copper alloy strip and method for producing the same Download PDF

Info

Publication number
JP5054160B2
JP5054160B2 JP2010146895A JP2010146895A JP5054160B2 JP 5054160 B2 JP5054160 B2 JP 5054160B2 JP 2010146895 A JP2010146895 A JP 2010146895A JP 2010146895 A JP2010146895 A JP 2010146895A JP 5054160 B2 JP5054160 B2 JP 5054160B2
Authority
JP
Japan
Prior art keywords
copper alloy
crystal grains
alloy strip
area
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010146895A
Other languages
Japanese (ja)
Other versions
JP2012007231A (en
Inventor
健 櫻井
嘉裕 亀山
良雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010146895A priority Critical patent/JP5054160B2/en
Publication of JP2012007231A publication Critical patent/JP2012007231A/en
Application granted granted Critical
Publication of JP5054160B2 publication Critical patent/JP5054160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、コネクタ、リードフレーム、リレー、スイッチなどの電気・電子部品に適したCu−Mg−P系銅合金条材であって、特に、引張り強度とばね限界値と両振り平面曲げ疲労特性とが高レベルでバランスの取れたCu−Mg−P系銅合金条材及びその製造方法に関する。   The present invention is a Cu-Mg-P copper alloy strip suitable for electrical and electronic parts such as connectors, lead frames, relays, switches, etc., and in particular, tensile strength, spring limit value, and double swing plane bending fatigue characteristics. The present invention relates to a Cu-Mg-P-based copper alloy strip that is balanced at a high level and a method for producing the same.

近年、携帯電話やノートPCなどの電子機器において小型、薄型化、軽量化が進行し、使用される端子・コネクタ等の部品もより小型で電極間ピッチの狭いものが使用されており、また、それらの部品に繰り返し付加される応力も増加する傾向にある。
この様な状況の中で、これらの部品に使用される銅合金材料は、更なる薄肉化が要求され、部品としての各種の信頼性を保つ必要性から、より高強度でばね限界値とバランスが取れ、更に疲労特性の優れた材料が要求されている。
一方、機器の高機能化に伴う電極数の増加や通電電流の増加によって、発生するジュール熱も過大なものになっており、従来以上に導電率が高い材料への要求が強まっている。こうした高導電率材は、通電電流の増加が急速に進んでいる自動車向けの端子・コネクタ材料で強く求められている。
従来、こうした端子・コネクタ用の材料としては、一般的に黄銅やりん青銅が使用されていたが、上述した要求には十分応えられていない。黄銅は強度、ばね性および導電性が不足し、そのためコネクタの小型化および通電電流の増加に対応できず、また、りん青銅はより高い強度とより高いばね性を有するが、導電率が20%IACS程度と低いため、通電電流の増加に対応できず、耐マイグレーション性に劣るという欠点もある。マイグレーションとは電極間に結露などが生じた際、陽極側のCuがイオン化して陰極側に析出し、最終的に電極間の短絡に至る現象であり、自動車のように高湿環境で使用されるコネクタで問題となるとともに、小型化により電極間ピッチが狭くなっているコネクタでも注意を要する問題である。
In recent years, electronic devices such as mobile phones and notebook PCs have become smaller, thinner, and lighter, and parts such as terminals and connectors used are smaller and have a smaller pitch between electrodes. The stress repeatedly applied to these parts also tends to increase.
Under these circumstances, the copper alloy materials used for these parts are required to be thinner, and because of the need to maintain various reliability as parts, they have higher strength and balance with spring limit values. There is a demand for a material that can be removed and has excellent fatigue properties.
On the other hand, due to the increase in the number of electrodes and the increase in energization current due to the higher functionality of equipment, the generated Joule heat has become excessive, and there is an increasing demand for materials having higher conductivity than before. Such a high conductivity material is strongly demanded for a terminal / connector material for automobiles in which an increase in energization current is rapidly progressing.
Conventionally, brass or phosphor bronze has been generally used as a material for such terminals and connectors, but it does not sufficiently meet the above requirements. Brass lacks strength, springiness and electrical conductivity, so it cannot cope with downsizing of connectors and increase in energization current, and phosphor bronze has higher strength and higher springiness, but its conductivity is 20% Since it is as low as about IACS, there is a disadvantage that it cannot cope with an increase in energization current and is inferior in migration resistance. Migration is a phenomenon in which Cu on the anode side is ionized and deposited on the cathode side when condensation occurs between the electrodes, eventually leading to a short circuit between the electrodes. It is used in a high humidity environment like an automobile. This is a problem with a connector that requires attention, and even with a connector whose pitch between electrodes has become narrow due to miniaturization.

この様な黄銅やりん青銅の持つ問題を改善する銅合金として、出願人は特許文献1に、重量%で、Mg:0.1〜1.0%、P:0.001〜0.02%を含有し、残りがCuおよび不可避不純物からなる条材であって、表面結晶粒が長円形状をなし、この長円形状結晶粒の平均短径は5〜20μm、平均長径/平均短径の値が1.5〜6.0なる寸法を有し、かかる長円形状結晶粒を形成するには、最終冷間圧延直前の最終焼鈍において平均結晶粒径が5〜20μmの範囲内になるように調整し、ついで最終冷間圧延工程において圧延率を30〜85%の範囲内とし、これによりスタンピング時にスタンピング金型の摩耗を少なくした銅合金条材を開示している。   As a copper alloy for improving the problems of brass and phosphor bronze, the applicant described in Patent Document 1 in terms of weight%, Mg: 0.1 to 1.0%, P: 0.001 to 0.02%. In which the rest is made of Cu and inevitable impurities, the surface crystal grains have an oval shape, the average minor axis of the oval crystal grains is 5 to 20 μm, and the average major axis / average minor axis In order to form such an oval crystal grain having a value of 1.5 to 6.0, the average crystal grain size is in the range of 5 to 20 μm in the final annealing immediately before the final cold rolling. Then, a copper alloy strip is disclosed in which the rolling rate is set in the range of 30 to 85% in the final cold rolling step, thereby reducing the wear of the stamping die during stamping.

また、出願人は特許文献2に、Mg:0.3〜2重量%、P:0.001〜0.1重量%を含有し、残りがCuおよび不可避不純物からなる組成を有する従来の銅合金薄板において、P含有量を0.001〜0.02重量%に規制し、さらに酸素含有量を0.0002〜0.001重量%に、C含有量を0.0002〜0.0013重量%に調整することによって素地中に分散しているMgを含む酸化物粒子の粒径を3μm以下に調整し、これにより、従来の銅合金薄板よりも曲げ加工後のばね限界値の低下が少なく、この銅合金薄板からコネクタを製造すると、得られたコネクタは従来よりも一層優れた接続強度を示し、自動車のエンジン廻りのような高温で振動のある環境下で使用しても離脱することはないという知見を開示している。   In addition, the applicant has disclosed in Patent Document 2 a conventional copper alloy containing Mg: 0.3-2% by weight, P: 0.001-0.1% by weight, with the remainder consisting of Cu and inevitable impurities. In the thin plate, the P content is regulated to 0.001 to 0.02 wt%, the oxygen content is 0.0002 to 0.001 wt%, and the C content is 0.0002 to 0.0013 wt% By adjusting, the particle size of the oxide particles containing Mg dispersed in the substrate is adjusted to 3 μm or less, and thereby, the decrease in the spring limit value after bending is less than that of the conventional copper alloy thin plate. When a connector is manufactured from a copper alloy thin plate, the obtained connector shows much better connection strength than before, and it will not be detached even if used in a high-vibration environment such as around an automobile engine. The knowledge is disclosed.

特開平6−340938JP-A-6-340938 特開平9−157774JP-A-9-157774

上記の特許文献1、特許文献2に開示の発明により、強度、導電性等に優れる銅合金が得られるようになった。
しかし、電気・電子機器の高機能化がますます顕著になるに伴い、これら銅合金の性能向上が一層強く求められてきている。特に、コネクタ等に用いられる銅合金においては、使用状態においてヘタリを生じないで、いかに高い応力で使用できるか、更に、高温で振動のある環境下で良好な疲労特性を有することが重要になっており、引張強さとばね限界値と両振り平面曲げ疲労特性とが高レベルでバランスの取れたCu−Mg−P系銅合金条材に対する要求が強まっている。
また、上記の各特許文献では、銅合金組成及び表面結晶粒の形状を規定はしているものの、結晶粒の微細組織の解析に踏み込んでの引張強さとばね限界値特性と両振り平面曲げ疲労特性との関係については触れられていない。
According to the invention disclosed in Patent Document 1 and Patent Document 2 described above, a copper alloy having excellent strength, conductivity, and the like has been obtained.
However, as the functionality of electric / electronic devices becomes more and more remarkable, the performance improvement of these copper alloys has been strongly demanded. In particular, it is important for copper alloys used in connectors and the like to be able to be used at high stress without causing settling in the use state, and to have good fatigue characteristics in a high-vibration environment at high temperatures. Therefore, there is an increasing demand for a Cu—Mg—P-based copper alloy strip having a high balance between the tensile strength, the spring limit value, and the double swing plane bending fatigue characteristics.
In each of the above patent documents, the copper alloy composition and the shape of the surface crystal grains are defined, but the tensile strength, spring limit value characteristics, and double-bending plane bending fatigue are taken into account when analyzing the fine structure of the crystal grains. The relationship with characteristics is not mentioned.

本発明はこの様な状況に鑑みて、引張強さとばね限界値と両振り平面曲げ疲労特性とが高レベルでバランスの取れたCu−Mg−P系銅合金条材及びその製造方法を提供するものである。   In view of such a situation, the present invention provides a Cu-Mg-P-based copper alloy strip having a high balance between tensile strength, spring limit value, and double swing plane bending fatigue characteristics, and a method for manufacturing the same. Is.

従来から、結晶粒の塑性変形は表面の組織観察によって行われ、結晶粒のひずみ評価に応用できる最近の技術として後方散乱電子回折(EBSD)法がある。このEBSD法は、走査型電子顕微鏡(SEM)内に試験片を設置し、試料表面から得られる電子線の回折像(菊池線)から、その結晶方位を求める手段であり、一般の金属材料であれば方位を簡便に測定できる。最近のコンピュータの処理能力の向上に伴い、多結晶金属材料においても、数mm程度の対象領域中に存在する100個程度の結晶粒であれば、それらの方位を実用的な時間内で評価することができるようになっており、計算機を用いた画像処理技術より、評価した結晶方位データから結晶粒界を抽出できる。
このようにして抽出された画像から所望の条件の結晶粒子を検索してモデル化する部位を選択すれば自動処理が可能になる。また、結晶方位のデータは画像の各部位(実際にはピクセル)に対応付けされているので、選択した部位の画像に対応する結晶方位データをファイルから抽出することが出来る。
Conventionally, plastic deformation of crystal grains has been performed by observing the structure of the surface, and a recent technique that can be applied to strain evaluation of crystal grains is a backscattered electron diffraction (EBSD) method. This EBSD method is a means for obtaining a crystal orientation from an electron beam diffraction image (Kikuchi line) obtained from a sample surface by placing a test piece in a scanning electron microscope (SEM). If there is, the direction can be easily measured. With recent improvements in computer processing power, even in polycrystalline metal materials, if about 100 crystal grains exist in a target area of about several millimeters, their orientations are evaluated within a practical time. The crystal grain boundary can be extracted from the evaluated crystal orientation data by an image processing technique using a computer.
If a part to be modeled by searching for crystal particles of a desired condition from the image extracted in this way is selected, automatic processing becomes possible. Further, since the crystal orientation data is associated with each part (actually a pixel) of the image, the crystal orientation data corresponding to the image of the selected part can be extracted from the file.

これらを利用して、本発明者らは、鋭意研究の結果、Cu−Mg−P系銅合金の表面を後方散乱電子回折像システム付の走査型電子顕微鏡にてEBSD法を使用して観察したところ、測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積の全測定面積に対する割合と、測定面積内に存在する結晶粒の面積平均GAMとが、Cu−Mg−P系銅合金の引張り強度とばね限界値特性と両振り平面曲げ疲労特性とに密接な関係があることを見出した。   As a result of intensive studies, the present inventors have observed the surface of a Cu—Mg—P-based copper alloy using an EBSD method with a scanning electron microscope with a backscattered electron diffraction image system. However, when the orientation of all the pixels in the measurement area is measured and a boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as a grain boundary, the average orientation difference between all the pixels in the crystal grain is 4 The ratio of the area of crystal grains that is less than ° to the total measured area and the area average GAM of crystal grains existing in the measured area are both the tensile strength and the spring limit value characteristics of the Cu-Mg-P-based copper alloy. It was found that there is a close relationship with plane bending fatigue properties.

本発明で意味する測定面積内に存在する結晶粒の面積平均GAMとは、次の手法により算出したものである。
GAMは同一結晶粒内における隣接する測定点(ピクセル)間のミスオリエンテーションの平均値であり、隣接測定点の境界iにおける方位差を(1)式とすると、結晶粒内にピクセル間の境界がm個存在する場合、この結晶粒のGAM値は(2)式で表される。
The area average GAM of crystal grains existing within the measurement area as used in the present invention is calculated by the following method.
GAM is the average value of misorientation between adjacent measurement points (pixels) in the same crystal grain. When the difference in orientation at the boundary i between adjacent measurement points is expressed by equation (1), the boundary between pixels in the crystal grain is When m exist, the GAM value of this crystal grain is expressed by the equation (2).

Figure 0005054160
Figure 0005054160

Figure 0005054160
Figure 0005054160

個々の結晶粒におけるGAMの値を(GAM)、各結晶粒の面積をSとすると、測定範囲内にM個の結晶粒が存在する場合、面積平均GAMは(3)式で表される。 When the value of the GAM in individual grains (GAM) k, the area of each crystal grain and S k, if there are M grain within the measurement range, area average GAM is expressed by equation (3) The

Figure 0005054160
Figure 0005054160

本発明の銅合金条材は、質量%で、Mg:0.3〜2%、P:0.001〜0.1%、残部がCuおよび不可避的不純物である組成を有する銅合金条材であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて前記銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、前記測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°であり、引張強さが641〜708N/mmであり、ばね限界値が472〜503N/mmであり、1×10回の繰り返し回数における両振り平面曲げ疲れ限度が300〜350N/mmであることを特徴とする。 The copper alloy strip of the present invention is a copper alloy strip having a composition of Mg: 0.3-2%, P: 0.001-0.1%, the balance being Cu and inevitable impurities. Yes, with the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system, the orientation of all pixels within the measurement area of the surface of the copper alloy strip is measured at a step size of 0.5 μm, and adjacent pixels When the boundary where the difference in orientation between them is 5 ° or more is regarded as a crystal grain boundary, the area ratio of crystal grains in which the average orientation difference between all pixels in the crystal grains is less than 4 ° is 45% of the measured area. The area average GAM of the crystal grains existing in the measurement area is 2.2 to 3.0 °, the tensile strength is 641 to 708 N / mm 2 , and the spring limit value is 472 to 55%. It was 503N / mm 2, both in the number of repetitions of 1 × 10 6 times Ri plane bending fatigue limit is characterized in that it is a 300~350N / mm 2.

結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、測定面積の45%未満、或いは、55%を超えると、引張強さもばね限界値も低下をきたし、測定面積内に存在する結晶粒の面積平均GAMが2.2°未満、或いは、3.0°を超えると両振り平面曲げ疲労特性の低下をきたす傾向がある。
即ち、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が45〜55%であり、測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°であることにより、引張強さが641〜708N/mmで、ばね限界値が472〜503N/mmで、1×10回の繰り返し回数における両振り平面曲げ疲れ限度が300〜350N/mmとなり、引張強さとばね限界値と両振り平面曲げ疲労特性がハイレベルでバランスすることになる。
When the area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° is less than 45% or more than 55% of the measurement area, both the tensile strength and the spring limit value are lowered. When the area average GAM of the crystal grains present in the measurement area is less than 2.2 ° or exceeds 3.0 °, the double-bending plane bending fatigue characteristics tend to be deteriorated.
That is, the area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° is 45 to 55%, and the area average GAM of the crystal grains existing in the measurement area is 2.2 to 3%. By being 0.0 °, the tensile strength is 641 to 708 N / mm 2 , the spring limit value is 472 to 503 N / mm 2 , and the double-bending plane bending fatigue limit at 300 times of 1 × 10 6 is 300 to 350 N / mm 2 , and the tensile strength, spring limit value, and double swing plane bending fatigue characteristics are balanced at a high level.

更に、本発明の銅合金条材において、質量%でZrを0.001〜0.03%含有すると良い。
Zrの0.001〜0.03%添加は、引張強さ及びばね限界値の向上に寄与する。
Furthermore, the copper alloy strip of the present invention may contain 0.001 to 0.03% of Zr by mass%.
Addition of 0.001 to 0.03% of Zr contributes to improvement of tensile strength and spring limit value.

本発明の銅合金条材の製造方法は、熱間圧延、溶体化処理、仕上げ冷間圧延、低温焼鈍をこの順序で含む工程で銅合金を製造するに際して、熱間圧延開始温度が700℃〜800℃で、総熱間圧延率が90%以上であり、1パス当りの平均圧延率が10%〜35%として前記熱間圧延を行い、前記溶体化処理後の銅合金板のビッカース硬さを80〜100Hvに調整し、前記仕上げ冷間圧延における総圧延率を50〜80%にて行い、前記低温焼鈍を250〜450℃にて30〜180秒にて実施することを特徴とする。   The manufacturing method of the copper alloy strip according to the present invention has a hot rolling start temperature of 700 ° C to 700 ° C when manufacturing a copper alloy in a process including hot rolling, solution treatment, finish cold rolling, and low temperature annealing in this order. At 800 ° C., the total hot rolling rate is 90% or more, the average rolling rate per pass is 10% to 35%, the hot rolling is performed, and the Vickers hardness of the copper alloy plate after the solution treatment is performed. Is adjusted to 80 to 100 Hv, the total rolling rate in the finish cold rolling is performed at 50 to 80%, and the low temperature annealing is performed at 250 to 450 ° C. for 30 to 180 seconds.

銅合金組織を安定化させ、引張強さとばね限界値をハイレベルでバランスを取るためには、溶体化処理後の銅合金板のビッカース硬さが80〜100Hvとなるように、熱間圧延、冷間圧延、溶体化処理の諸条件を適宜調整する必要があり、更に、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、前記銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、前記測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°であり、引張強さが641〜708N/mm2であり、ばね限界値が472〜503N/mm2であり、1×10回における両振り平面曲げ疲れ限度が300〜350N/mmとするには、仕上げ冷間圧延における総圧延率を50〜80%にて行い、低温焼鈍を250〜450℃にて30〜180秒にて実施する必要がある。 In order to stabilize the copper alloy structure and balance the tensile strength and the spring limit value at a high level, hot rolling is performed so that the Vickers hardness of the copper alloy plate after the solution treatment is 80 to 100 Hv, It is necessary to appropriately adjust various conditions of cold rolling and solution treatment, and further, within the measurement area of the surface of the copper alloy strip by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. A crystal whose average orientation difference between all pixels in a crystal grain is less than 4 ° when the orientation of all pixels is measured and a boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as a grain boundary. The area ratio of the grains is 45 to 55% of the measurement area, the area average GAM of the crystal grains existing in the measurement area is 2.2 to 3.0 °, and the tensile strength is 641 to 708 N / mm2 and the spring limit is 472 to 503 A / mm @ 2, the Reversed Plane Bending fatigue limit in 1 × 10 6 times is to 300~350N / mm 2 performs the total rolling reduction in the finish cold rolling at 50-80%, the low-temperature annealing 250 It is necessary to carry out at ~ 450 ° C for 30 to 180 seconds.

本発明によれば、引張強さとばね限界値と両振り平面曲げ疲労特性とが高レベルでバランスの取れたCu−Mg−P系銅合金条材が得られる。   According to the present invention, it is possible to obtain a Cu-Mg-P-based copper alloy strip having a high balance between tensile strength, spring limit value, and double swing plane bending fatigue characteristics.

以下に、本発明の実施形態について説明する。
本発明の銅合金条材は、質量%で、Mg:0.3〜2%、P:0.001〜0.1%、残部がCuおよび不可避的不純物である組成を有する。
Mgは、Cuの素地に固溶して導電性を損なうことなく、強度を向上させる。また、Pは、溶解鋳造時に脱酸作用があり、Mg成分と共存した状態で強度を向上させる。これらMg、Pは上記範囲で含有することにより、その特性を有効に発揮することができる。
また、質量%でZrを0.001〜0.03%含有するものとしてもよく、この範囲のZrの添加は引張強さ及びばね限界値の向上に有効である。
Hereinafter, embodiments of the present invention will be described.
The copper alloy strip of the present invention has a composition in which Mg is 0.3 to 2%, P is 0.001 to 0.1%, and the balance is Cu and inevitable impurities.
Mg improves the strength without being dissolved in the Cu substrate and impairing conductivity. Further, P has a deoxidizing action at the time of melt casting, and improves the strength in the state of coexisting with the Mg component. By containing these Mg and P in the above range, the characteristics can be effectively exhibited.
Moreover, it is good also as what contains 0.001-0.03% of Zr by mass%, and addition of Zr of this range is effective for improvement of tensile strength and a spring limit value.

この銅合金条は、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて前記銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、前記測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°であり、引張強さが641〜708N/mmであり、ばね限界値が472〜503N/mmであり、1×10回の繰り返し回数における両振り平面曲げ疲れ限度が300〜350N/mmである。 This copper alloy strip is measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system, with the step size of 0.5 μm and the orientation of all pixels within the measurement area of the surface of the copper alloy strip. When the boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as a grain boundary, the area ratio of the crystal grains where the average orientation difference between all the pixels in the crystal grain is less than 4 ° is It is 45 to 55% of the measurement area, the area average GAM of the crystal grains existing in the measurement area is 2.2 to 3.0 °, the tensile strength is 641 to 708 N / mm 2 , and the spring limit The value is 472 to 503 N / mm 2 , and the double swing plane bending fatigue limit is 300 to 350 N / mm 2 at the number of repetitions of 1 × 10 6 times.

結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合は、次のようにして求めた。
前処理として、圧延材から採取した10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、TSL社製EBSDシステム付きの日立ハイテクノロジーズ社製走査型電子顕微鏡S−3400Nでその試料表面を観察した。観察条件は、加速電圧25kV、測定面積150μm×150μm(結晶粒を5000個以上含む)とした。
観察結果より、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の全測定面積に対する面積割合は次の条件にて求めた。
ステップサイズ0.5μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした。次に、結晶粒界で囲まれた個々の結晶粒について、結晶粒内の全ピクセル間の方位差の平均値(GOS:Grain Orientation Spread)を(4)式にて計算し、平均値が4°未満の結晶粒の面積を算出し、それを全測定面積で除して、全結晶粒に占める結晶粒内の平均方位差が4°未満の結晶粒の面積の割合を求めた。なお、2ピクセル以上が連結しているものを結晶粒とした。
The area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° was determined as follows.
As a pretreatment, a 10 mm × 10 mm sample taken from a rolled material is immersed in 10% sulfuric acid for 10 minutes, then washed with water and sprinkled by air blow, and then the water sprayed sample is a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation. The surface treatment was performed at an acceleration voltage of 5 kV, an incident angle of 5 °, and an irradiation time of 1 hour.
Next, the sample surface was observed with a scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation equipped with an EBSD system manufactured by TSL. The observation conditions were an acceleration voltage of 25 kV and a measurement area of 150 μm × 150 μm (including 5000 or more crystal grains).
From the observation results, the area ratio with respect to the total measurement area of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° was obtained under the following conditions.
At a step size of 0.5 μm, the orientation of all pixels within the measurement area range was measured, and a boundary where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary. Next, for each crystal grain surrounded by the crystal grain boundary, an average value (GOS: Grain Orientation Spread) of the orientation difference between all the pixels in the crystal grain is calculated by the equation (4), and the average value is 4 The area of the crystal grains of less than 0 ° was calculated and divided by the total measured area, and the ratio of the area of the crystal grains having an average orientation difference within the crystal grains of less than 4 ° to the total crystal grains was determined. In addition, what connected 2 pixels or more was made into the crystal grain.

Figure 0005054160
Figure 0005054160

上式において、i、jは結晶粒内のピクセルの番号を示す。
nは結晶粒内のピクセル数を示す。
αijはピクセルiとjの方位差を示す。
In the above formula, i and j indicate the numbers of pixels in the crystal grains.
n indicates the number of pixels in the crystal grains.
α ij represents the difference in orientation between pixels i and j.

また、測定面積内に存在する結晶粒の面積平均GAMは、次のようにして求めた。
前処理として、圧延材から採取した10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、TSL社製EBSDシステム付きの日立ハイテクノロジーズ社製走査型電子顕微鏡S−3400Nでその試料表面を観察した。観察条件は、加速電圧25kV、測定面積150μm×150μm(結晶粒を5000個以上含む)とした。
観察結果より、前記測定面積内に存在する結晶粒の面積平均GAMは、次の条件にて求めた。
ステップサイズ0.5μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした。
GAMは同一結晶粒内における隣接する測定点(ピクセル)間のミスオリエンテーションの平均値であり、隣接測定点の境界iにおける方位差を(1)式とすると、結晶粒内にピクセル間の境界がm個存在する場合、この結晶粒のGAM値は(2)式で表される。
Moreover, the area average GAM of the crystal grain which exists in a measurement area was calculated | required as follows.
As a pretreatment, a 10 mm × 10 mm sample taken from a rolled material is immersed in 10% sulfuric acid for 10 minutes, then washed with water and sprinkled by air blow, and then the water sprayed sample is a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation. The surface treatment was performed at an acceleration voltage of 5 kV, an incident angle of 5 °, and an irradiation time of 1 hour.
Next, the sample surface was observed with a scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation equipped with an EBSD system manufactured by TSL. The observation conditions were an acceleration voltage of 25 kV and a measurement area of 150 μm × 150 μm (including 5000 or more crystal grains).
From the observation results, the area average GAM of the crystal grains existing in the measurement area was determined under the following conditions.
At a step size of 0.5 μm, the orientation of all pixels within the measurement area range was measured, and a boundary where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary.
GAM is the average value of misorientation between adjacent measurement points (pixels) in the same crystal grain. When the difference in orientation at the boundary i between adjacent measurement points is expressed by equation (1), the boundary between pixels in the crystal grain is When m exist, the GAM value of this crystal grain is expressed by the equation (2).

Figure 0005054160
Figure 0005054160

Figure 0005054160
Figure 0005054160

個々の結晶粒におけるGAMの値を(GAM)、各結晶粒の面積をSとすると、測定範囲内にM個の結晶粒が存在する場合、面積平均GAMは(3)式で表される。 When the value of the GAM in individual grains (GAM) k, the area of each crystal grain and S k, if there are M grain within the measurement range, area average GAM is expressed by equation (3) The

Figure 0005054160
Figure 0005054160

このようにして求めた、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が測定面積の45〜55%であり、測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°である本発明の銅合金条材は、結晶粒に歪みが蓄積されにくいものとなっており、クラックも発生し難く、引張強さとばね限界値と両振り平面曲げ疲労特性とが高レベルでバランスする。 The area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° thus obtained is 45 to 55% of the measurement area, and the area of the crystal grains existing in the measurement area The copper alloy strip of the present invention having an average GAM of 2.2 to 3.0 ° is less prone to accumulate strain in crystal grains, is less prone to cracking, and has both tensile strength and spring limit value. Balances the swing plane bending fatigue characteristics at a high level.

このような構成の銅合金条材は、例えば、次のような製造工程により製造することができる。
「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→仕上げ冷間圧延→低温焼鈍」
なお、上記工程中には記載していないが、熱間圧延後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいはさらに脱脂が行われても良い。
以下、主要な工程について詳述する。
The copper alloy strip having such a configuration can be manufactured, for example, by the following manufacturing process.
“Melting / Casting → Hot Rolling → Cold Rolling → Solution Treatment → Finish Cold Rolling → Low Temperature Annealing”
Although not described in the above process, chamfering may be performed as necessary after hot rolling, and pickling, polishing, or further degreasing may be performed as necessary after each heat treatment. .
Hereinafter, main steps will be described in detail.

〔熱間圧延・冷間圧延・溶体化処理〕
銅合金組織を安定化させ、引張強さとばね限界値と両振り平面曲げ疲労特性をハイレベルでバランスを取るためには、溶体化処理後の銅合金板のビッカース硬さが80〜100Hvとなるように、熱間圧延、冷間圧延、溶体化処理の諸条件を適宜調整する必要がある。
なかでも、熱間圧延にて、圧延開始温度を700℃〜800℃とし、総圧延率を90%以上とし、1パス当りの平均圧延率が10%〜35%である熱間圧延を行うことが重要である。1パス当りの平均圧延率が10%未満では、後工程での加工性が悪くなり、35%を超えると、材料割れが発生し易くなる。総圧延率が90%未満では、添加元素が均一に分散せず、また、材料割れが発生し易くなる。圧延開始温度が700℃未満では、添加元素が均一に分散せず、また、材料割れが発生し易くなり、800℃を超えると、熱コストが増加して経済的に無駄となる。
[Hot rolling / cold rolling / solution treatment]
In order to stabilize the copper alloy structure and to balance the tensile strength, the spring limit value and the double swing plane bending fatigue characteristics at a high level, the Vickers hardness of the copper alloy plate after the solution treatment is 80 to 100 Hv. Thus, it is necessary to appropriately adjust various conditions for hot rolling, cold rolling, and solution treatment.
In particular, in hot rolling, the rolling start temperature is set to 700 ° C. to 800 ° C., the total rolling rate is set to 90% or more, and the hot rolling is performed so that the average rolling rate per pass is 10% to 35%. is important. If the average rolling rate per pass is less than 10%, the workability in the subsequent process is deteriorated, and if it exceeds 35%, material cracking is likely to occur. If the total rolling ratio is less than 90%, the additive elements are not uniformly dispersed and material cracking is likely to occur. When the rolling start temperature is less than 700 ° C., the additive elements are not uniformly dispersed, and material cracking is likely to occur. When the rolling start temperature exceeds 800 ° C., the heat cost increases, resulting in economical waste.

〔仕上げ冷間圧延〕
仕上げ冷間圧延は、総圧延率50〜80%にて実施する。総圧延率が50%未満では、測定面積内に存在する結晶粒の面積平均GAMが2.2°未満となり、80%を超えると、測定面積内に存在する結晶粒の面積平均GAMが3.0°を超え、いずれも両振り平面曲げ疲労特性の低下をきたす。
(Finish cold rolling)
Finish cold rolling is carried out at a total rolling rate of 50 to 80%. When the total rolling reduction is less than 50%, the area average GAM of the crystal grains existing in the measurement area is less than 2.2 °, and when it exceeds 80%, the area average GAM of the crystal grains existing in the measurement area is 3. Exceeding 0 °, both cause a decrease in the double-bending plane bending fatigue characteristics.

〔低温焼鈍〕
仕上げ冷間圧延後に、250〜450℃、30〜180秒の低温焼鈍を実施することにより、更に、銅合金組織を安定化させ、引張り強さとばね限界値と両振り平面曲げ疲労特性とが高レベルでバランスし、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、前記銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、前記測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°となる。
低温焼鈍温度が250℃未満では、ばね限界値特性の向上が見られず、450℃を超えると、脆い粗大なMg化合物が形成されて引張強さの低下を来たす。同様に、低温焼鈍時間が30秒未満では、ばね限界値特性の向上が見られず、180秒を超えると、脆い粗大なMg化合物が形成されて引張強さの低下を来たす傾向が強くなる。
[Low temperature annealing]
After the finish cold rolling, low temperature annealing at 250 to 450 ° C. for 30 to 180 seconds is performed to further stabilize the copper alloy structure, resulting in high tensile strength, spring limit value, and double swing plane bending fatigue characteristics. Measure the azimuth of all pixels within the measurement area of the surface of the copper alloy strip by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system, and balance the azimuth difference between adjacent pixels. When the boundary where the angle is 5 ° or more is regarded as a crystal grain boundary, the area ratio of crystal grains having an average orientation difference between all the pixels in the crystal grains of less than 4 ° is 45 to 55% of the measurement area. Yes, the area average GAM of the crystal grains existing in the measurement area is 2.2 to 3.0 °.
When the low-temperature annealing temperature is less than 250 ° C., the spring limit value characteristics are not improved, and when it exceeds 450 ° C., a brittle and coarse Mg compound is formed and the tensile strength is lowered. Similarly, if the low-temperature annealing time is less than 30 seconds, the spring limit value characteristics are not improved, and if it exceeds 180 seconds, a brittle and coarse Mg compound is formed, and the tendency to decrease the tensile strength becomes strong.

以下、本発明の実施例について比較例と比較してその特性を説明する。
表1に示す組成の銅合金を、電気炉により還元性雰囲気下で溶解し、厚さが150mm、幅が500mm 、長さが3000mm の鋳塊を溶製した。この溶製した鋳塊を、表1に示す圧延開始温度、総圧延率、1パス当たりの平均圧延率にて熱間圧延を行い、厚さが7.5mm〜18mmの銅合金板とした。この銅合金板の両表面の酸化スケールをフライスで0.5mm除去した後、圧延率が85%〜95%の冷間圧延を施し、750℃にて溶体化処理を行い、
表1に示す仕上げ冷間圧延を行って0.2mmの冷間圧延条材を作製し、その後、表1に示す低温焼鈍を実施して、表1の実施例1〜10及び比較例1〜9に示すCu−Mg−P系銅合金条材を作製した。
また、表1に示す溶体化処理後の銅合金板のビッカース硬さは、JIS−Z2244に基づいて測定した。
Hereinafter, the characteristics of the examples of the present invention will be described in comparison with comparative examples.
A copper alloy having the composition shown in Table 1 was melted in a reducing atmosphere using an electric furnace to produce an ingot having a thickness of 150 mm, a width of 500 mm, and a length of 3000 mm. This molten ingot was hot-rolled at the rolling start temperature shown in Table 1, the total rolling rate, and the average rolling rate per pass to obtain a copper alloy plate having a thickness of 7.5 mm to 18 mm. After removing 0.5 mm of oxide scale on both surfaces of this copper alloy plate with a mill, cold rolling with a rolling rate of 85% to 95% is performed, and a solution treatment is performed at 750 ° C.,
Finish cold rolling shown in Table 1 is performed to produce a 0.2 mm cold rolled strip, and then low temperature annealing shown in Table 1 is performed, and Examples 1 to 10 and Comparative Examples 1 to 1 in Table 1 are performed. A Cu—Mg—P-based copper alloy strip shown in FIG.
Moreover, the Vickers hardness of the copper alloy plate after the solution treatment shown in Table 1 was measured based on JIS-Z2244.

Figure 0005054160
Figure 0005054160

表1の各試料つき、次の各種試験を行い、その結果を表2にまとめた。
(面積割合率)
前処理として、圧延材から採取した10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、TSL社製EBSDシステム付の日立ハイテクノロジーズ社製走査型電子顕微鏡S−3400Nで試料表面を観察した。観察条件は、加速電圧25kV、測定面積150μm×150μm(結晶粒を5000個以上含む)とした。
観察結果より、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の全測定面積に対する面積割合は次の条件にて求めた。
ステップサイズ0.5μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした。次に、結晶粒界で囲まれた個々の結晶粒について、結晶粒内の全ピクセル間の方位差の平均値を前述の数1にて計算し、平均値が4°未満の結晶粒の面積を算出し、それを全測定面積で割って、全結晶粒に占める結晶粒内の平均方位差が4°未満の結晶粒の面積の割合を求めた。なお、2ピクセル以上が連結しているものを結晶粒とした。
この方法にて測定箇所を変更して5回測定を行い、それぞれの面積割合の平均値を面積割合とした。
The following various tests were performed with each sample in Table 1, and the results are summarized in Table 2.
(Area ratio)
As a pretreatment, a 10 mm × 10 mm sample taken from a rolled material is immersed in 10% sulfuric acid for 10 minutes, then washed with water and sprinkled by air blow, and then the water sprayed sample is a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation. The surface treatment was performed at an acceleration voltage of 5 kV, an incident angle of 5 °, and an irradiation time of 1 hour.
Next, the sample surface was observed with a scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation equipped with an EBSD system manufactured by TSL. The observation conditions were an acceleration voltage of 25 kV and a measurement area of 150 μm × 150 μm (including 5000 or more crystal grains).
From the observation results, the area ratio with respect to the total measurement area of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° was obtained under the following conditions.
At a step size of 0.5 μm, the orientation of all pixels within the measurement area range was measured, and a boundary where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary. Next, for each crystal grain surrounded by the crystal grain boundary, the average value of the orientation difference between all the pixels in the crystal grain is calculated by the above-mentioned formula 1, and the area of the crystal grain whose average value is less than 4 ° Was calculated and divided by the total measurement area to determine the ratio of the area of the crystal grains having an average orientation difference within the crystal grains of less than 4 ° to the total crystal grains. In addition, what connected 2 pixels or more was made into the crystal grain.
The measurement location was changed by this method and measurement was performed 5 times, and the average value of the respective area ratios was defined as the area ratio.

(面積平均GAM)
前処理として、圧延材から採取した10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、TSL社製EBSDシステム付きの日立ハイテクノロジーズ社製走査型電子顕微鏡S−3400Nでその試料表面を観察した。観察条件は、加速電圧25kV、測定面積150μm×150μm(結晶粒を5000個以上含む)とした。
観察結果より、同一結晶粒内の隣接するピクセル間の方位差の平均値は次のようにして求めた。
ステップサイズ0.5μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした。次に、結晶粒界で囲まれた個々の結晶粒について、結晶粒の面積平均GAMを前述の数3の式にて計算して求めた。なお、2ピクセル以上が連結しているものを結晶粒とした。
(Area average GAM)
As a pretreatment, a 10 mm × 10 mm sample taken from a rolled material is immersed in 10% sulfuric acid for 10 minutes, then washed with water and sprinkled by air blow, and then the water sprayed sample is a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation. The surface treatment was performed at an acceleration voltage of 5 kV, an incident angle of 5 °, and an irradiation time of 1 hour.
Next, the sample surface was observed with a scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation equipped with an EBSD system manufactured by TSL. The observation conditions were an acceleration voltage of 25 kV and a measurement area of 150 μm × 150 μm (including 5000 or more crystal grains).
From the observation results, the average value of the orientation difference between adjacent pixels in the same crystal grain was determined as follows.
At a step size of 0.5 μm, the orientation of all pixels within the measurement area range was measured, and a boundary where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary. Next, for each crystal grain surrounded by the crystal grain boundary, the area average GAM of the crystal grain was calculated by the above equation (3). In addition, what connected 2 pixels or more was made into the crystal grain.

(機械的強度)
JIS5号試験片にて測定した。
(ばね限界値)
JIS−H3130に基づき、モーメント式試験により永久たわみ量を測定し、R.T.におけるKb0.1(永久たわみ量0.1mmに対応する固定端における表面最大応力値)を算出した。
(導電率)
JIS−H0505に基づいて測定した。
(疲労特性)
JISZ2273(1978)に準拠し、両振り平面曲げの疲労試験を行った。幅10mmの短冊形状の試料を、試料の長さ方向が圧延方向と一致するように採取し、試料表面に付加する最大応力(σ)を段階的に変え、その最大応力毎に試料が破断したときの繰り返し回数(Nf)を測定し、S−N線図を作成した。
このS−N線図より、1×10回の繰り返し回数で破断しない最大許容繰返し応力σ(A10)=疲れ限度を求めた。
(Mechanical strength)
It measured with the JIS5 test piece.
(Spring limit value)
Based on JIS-H3130, the amount of permanent deflection is measured by a moment type test. T.A. Kb0.1 (maximum surface stress value at the fixed end corresponding to a permanent deflection of 0.1 mm) was calculated.
(conductivity)
It measured based on JIS-H0505.
(Fatigue properties)
In accordance with JISZ2273 (1978), a fatigue test of double swing plane bending was performed. A strip-shaped sample with a width of 10 mm was taken so that the length direction of the sample coincided with the rolling direction, the maximum stress (σ) applied to the sample surface was changed stepwise, and the sample was broken at each maximum stress. The number of repetitions (Nf) was measured, and an SN diagram was created.
From this SN diagram, the maximum allowable cyclic stress σ (A10 6 ) = fatigue limit that does not break at a repetition number of 1 × 10 6 times was determined.

Figure 0005054160
Figure 0005054160

これらの結果から、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、測定面積の45〜55%であり、測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°である、質量%で、Mg:0.3〜2%、P:0.001〜0.1%、残部がCuおよび不可避的不純物である組成を有する本発明の銅合金条材は、引張強さが641〜708N/mmであり、ばね限界値が472〜503N/mmであり、1×10回の繰り返し回数における両振り平面曲げ疲れ限度が300〜350N/mmであり、引張強さと、ばね限界値と、両振り疲労特性とが高いレベルでバランスしていることがわかる。
その中でも、Zrを添加したものは、引張り強度とばね限界値が向上している。
From these results, the orientation of all the pixels within the measurement area of the surface of the copper alloy strip was measured with an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system at a step size of 0.5 μm. When the boundary where the orientation difference between pixels is 5 ° or more is regarded as a grain boundary, the area ratio of the crystal grains where the average orientation difference between all the pixels in the crystal grain is less than 4 ° is the measured area It is 45 to 55%, and the area average GAM of the crystal grains existing in the measurement area is 2.2 to 3.0 °. The mass% is Mg: 0.3 to 2%, P: 0.001. The copper alloy strip of the present invention having a composition of 0.1%, the balance being Cu and inevitable impurities, has a tensile strength of 641 to 708 N / mm 2 and a spring limit value of 472 to 503 N / mm 2 . There, bending Reversed plane in the number of repetitions of 1 × 10 6 times Re limit is 300~350N / mm 2, and the tensile strength, and spring limit value, it can be seen that the two swing fatigue properties are balanced at a high level.
Among them, the one added with Zr has improved tensile strength and spring limit value.

これらのことより、本発明のCu−Mg−P系銅合金は、特に、ばね限界値特性、両振り疲労特性が重要であるコネクタ、リードフレーム、リレー、スイッチなどの電気及び電子部品への使用に適していることがわかる。   From these facts, the Cu-Mg-P-based copper alloy of the present invention is used for electrical and electronic parts such as connectors, lead frames, relays, switches, etc., in which the spring limit value characteristics and the swing fatigue characteristics are particularly important. It turns out that it is suitable for.

以上、本発明の実施形態の製造方法について説明したが、本発明はこの記載に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→仕上げ冷間圧延→低温焼鈍」の順序での製造工程を示したが、熱間圧延、溶体化処理、仕上げ冷間圧延、低温焼鈍がこの順序でなされるものであればよく、その場合、熱間圧延の圧延開始温度、熱間圧延における総圧延率、1パス当りの平均圧延率、仕上げ冷間圧延における総圧延率、及び、低温焼鈍の温度、時間など以外の条件は、一般的な製造条件を適用すればよい。
As mentioned above, although the manufacturing method of embodiment of this invention was demonstrated, this invention is not limited to this description, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, although the manufacturing process in the order of “melting / casting → hot rolling → cold rolling → solution treatment → finishing cold rolling → low temperature annealing” was shown, hot rolling, solution treatment, finish cold rolling The low temperature annealing may be performed in this order. In that case, the rolling start temperature of hot rolling, the total rolling rate in hot rolling, the average rolling rate per pass, the total rolling rate in finish cold rolling As for conditions other than the temperature and time of low-temperature annealing, general production conditions may be applied.

Claims (3)

質量%で、Mg:0.3〜2%、P:0.001〜0.1%、残部がCuおよび不可避的不純物である組成を有する銅合金条材であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて前記銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、前記測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°であり、引張強さが641〜708N/mmであり、ばね限界値が472〜503N/mmであり、1×10回の繰り返し回数における両振り平面曲げ疲れ限度が300〜350N/mmであることを特徴とする銅合金条材。 It is a copper alloy strip having a composition by mass%, Mg: 0.3-2%, P: 0.001-0.1%, the balance being Cu and inevitable impurities, with backscattered electron diffraction image system Measure the orientation of all the pixels within the measurement area of the surface of the copper alloy strip with a step size of 0.5 μm by the EBSD method using a scanning electron microscope, and the orientation difference between adjacent pixels is 5 ° or more. When the boundary is regarded as a crystal grain boundary, the area ratio of crystal grains in which the average orientation difference between all pixels in the crystal grains is less than 4 ° is 45 to 55% of the measurement area, and the measurement area The area average GAM of the crystal grains existing in the inside is 2.2 to 3.0 °, the tensile strength is 641 to 708 N / mm 2 , the spring limit value is 472 to 503 N / mm 2 , and 1 × 10 6 times both pretend plane bending fatigue limit in the number of repetitions of the Copper alloy strip material, which is a 00~350N / mm 2. 質量%でZrを0.001〜0.03%含有することを特徴とする請求項1に記載の銅合金条材。   The copper alloy strip according to claim 1, containing 0.001 to 0.03% of Zr by mass%. 請求項1又は2に記載の銅合金条材の製造方法であって、熱間圧延、溶体化処理、仕上げ冷間圧延、低温焼鈍をこの順序で含む工程で銅合金を製造するに際して、熱間圧延開始温度が700℃〜800℃で、総熱間圧延率が90%以上であり、1パス当りの平均圧延率が10%〜35%として前記熱間圧延を行い、前記溶体化処理後の銅合金板のビッカース硬さを80〜100Hvに調整し、前記仕上げ冷間圧延における総圧延率を50〜80%にて行い、前記低温焼鈍を250〜450℃にて30〜180秒にて実施することを特徴とする銅合金条材の製造方法。   It is a manufacturing method of the copper alloy strip of Claim 1 or 2, Comprising: When manufacturing a copper alloy in the process including hot rolling, solution treatment, finish cold rolling, and low temperature annealing in this order, The rolling start temperature is 700 ° C. to 800 ° C., the total hot rolling rate is 90% or more, the hot rolling is performed with the average rolling rate per pass being 10% to 35%, and after the solution treatment The Vickers hardness of the copper alloy plate is adjusted to 80 to 100 Hv, the total rolling rate in the finish cold rolling is performed at 50 to 80%, and the low temperature annealing is performed at 250 to 450 ° C. for 30 to 180 seconds. A method for producing a copper alloy strip characterized by comprising:
JP2010146895A 2010-06-28 2010-06-28 Cu-Mg-P-based copper alloy strip and method for producing the same Active JP5054160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146895A JP5054160B2 (en) 2010-06-28 2010-06-28 Cu-Mg-P-based copper alloy strip and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146895A JP5054160B2 (en) 2010-06-28 2010-06-28 Cu-Mg-P-based copper alloy strip and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012007231A JP2012007231A (en) 2012-01-12
JP5054160B2 true JP5054160B2 (en) 2012-10-24

Family

ID=45538090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146895A Active JP5054160B2 (en) 2010-06-28 2010-06-28 Cu-Mg-P-based copper alloy strip and method for producing the same

Country Status (1)

Country Link
JP (1) JP5054160B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150627A1 (en) 2012-04-04 2013-10-10 三菱伸銅株式会社 Cu-mg-p-based copper alloy plate having excellent fatigue resistance, and method for manufacturing same
JP5908796B2 (en) * 2012-06-05 2016-04-26 三菱伸銅株式会社 Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same
JP6370692B2 (en) * 2013-11-26 2018-08-08 三菱伸銅株式会社 Cu-Zr-based copper alloy plate and manufacturing method thereof
MX2017009888A (en) * 2015-09-09 2017-11-15 Mitsubishi Materials Corp Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar.
US10676803B2 (en) 2015-09-09 2020-06-09 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5910790B1 (en) * 2015-12-01 2016-04-27 三菱マテリアル株式会社 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
KR102473001B1 (en) * 2015-09-09 2022-11-30 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic/electrical device, member for plastically deforming copper alloy for electronic/electrical device, component for electronic/electrical device, terminal, and bus bar
WO2017170733A1 (en) 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
WO2017170699A1 (en) 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP6780187B2 (en) 2018-03-30 2020-11-04 三菱マテリアル株式会社 Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars
MX2020009869A (en) 2018-03-30 2020-10-12 Mitsubishi Materials Corp Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar.
MX2021007760A (en) 2018-12-26 2021-08-05 Mitsubishi Materials Corp Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products.
JP6863409B2 (en) * 2018-12-26 2021-04-21 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film and manufacturing method of these
JP7116870B2 (en) 2019-03-29 2022-08-12 三菱マテリアル株式会社 Copper alloy sheet, copper alloy sheet with plating film, and method for producing the same
JP7443737B2 (en) 2019-12-10 2024-03-06 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203738A (en) * 1987-02-18 1988-08-23 Mitsubishi Shindo Kk Cu alloy for relay and switch
JPH01180930A (en) * 1988-01-12 1989-07-18 Mitsubishi Shindo Kk Cu alloy for terminal and connector
JPH0690887B2 (en) * 1989-04-04 1994-11-14 三菱伸銅株式会社 Cu alloy terminal for electrical equipment
JPH0582203A (en) * 1991-09-20 1993-04-02 Mitsubishi Shindoh Co Ltd Copper-alloy electric socket structural component
JP3353324B2 (en) * 1992-02-10 2002-12-03 三菱伸銅株式会社 Copper alloy cold-rolled strip with low abrasion of stamping die and method of manufacturing the same
JP4516154B1 (en) * 2009-12-23 2010-08-04 三菱伸銅株式会社 Cu-Mg-P copper alloy strip and method for producing the same
JP4563508B1 (en) * 2010-02-24 2010-10-13 三菱伸銅株式会社 Cu-Mg-P-based copper alloy strip and method for producing the same

Also Published As

Publication number Publication date
JP2012007231A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5054160B2 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
JP4516154B1 (en) Cu-Mg-P copper alloy strip and method for producing the same
JP4563508B1 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP4655834B2 (en) Copper alloy material for electrical parts and manufacturing method thereof
JP4830048B1 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
KR101638272B1 (en) Cu-Ni-Si TYPE COPPER ALLOY
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP2006249516A (en) Copper alloy and its manufacturing method
WO2010134210A1 (en) Copper alloy material and manufacturing method therefor
JP6749121B2 (en) Copper alloy plate with excellent strength and conductivity
JPWO2009060873A1 (en) Copper alloy sheet
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP4020881B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP2013040389A (en) Copper alloy sheet material low in deflection coefficient and excellent in bendability
JP2016141878A (en) Copper alloy strip and high current electronic component and heat release electronic component containing same
JP4175920B2 (en) High strength copper alloy
JP3807387B2 (en) Copper alloy for terminal / connector and manufacturing method thereof
JP2012136726A (en) Cu-Ni-Si BASED COPPER ALLOY SHEET EXCELLENT IN FATIGUE RESISTANCE AND SPRING PROPERTY AFTER BENDING WORKING, AND METHOD OF MANUFACTURING THE SAME
TWI529255B (en) Cu-ni-si alloy and method of producing the alloy
JP2010255042A (en) Copper alloy and method for producing copper alloy
JP2010209379A (en) Copper alloy material for terminal-connector, and method for producing the same
JP2011012302A (en) Copper alloy material for terminal/connector and method for producing the same
JP2514234C (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5054160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250