JP5910790B1 - Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars - Google Patents

Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars Download PDF

Info

Publication number
JP5910790B1
JP5910790B1 JP2015235096A JP2015235096A JP5910790B1 JP 5910790 B1 JP5910790 B1 JP 5910790B1 JP 2015235096 A JP2015235096 A JP 2015235096A JP 2015235096 A JP2015235096 A JP 2015235096A JP 5910790 B1 JP5910790 B1 JP 5910790B1
Authority
JP
Japan
Prior art keywords
electronic
copper alloy
electric equipment
mass
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015235096A
Other languages
Japanese (ja)
Other versions
JP2017101283A (en
Inventor
裕隆 松永
裕隆 松永
牧 一誠
一誠 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015235096A priority Critical patent/JP5910790B1/en
Application granted granted Critical
Publication of JP5910790B1 publication Critical patent/JP5910790B1/en
Priority to EP16844417.2A priority patent/EP3348656B1/en
Priority to MYPI2017702648A priority patent/MY170901A/en
Priority to TW105129151A priority patent/TWI665318B/en
Priority to PCT/JP2016/076456 priority patent/WO2017043577A1/en
Priority to MX2018001139A priority patent/MX2018001139A/en
Priority to EP16844438.8A priority patent/EP3348659B1/en
Priority to KR1020177030943A priority patent/KR102474714B1/en
Priority to MX2017009888A priority patent/MX2017009888A/en
Priority to US15/543,664 priority patent/US10453582B2/en
Priority to KR1020177019315A priority patent/KR101994015B1/en
Priority to MYPI2017705078A priority patent/MY196265A/en
Priority to PCT/JP2016/076376 priority patent/WO2017043556A1/en
Priority to MX2018000330A priority patent/MX2018000330A/en
Priority to MYPI2017705081A priority patent/MY184755A/en
Priority to EP16844412.3A priority patent/EP3243918B1/en
Priority to SG11201710511UA priority patent/SG11201710511UA/en
Priority to TW105129156A priority patent/TWI740842B/en
Priority to SG11201705831UA priority patent/SG11201705831UA/en
Priority to SG11201710361SA priority patent/SG11201710361SA/en
Priority to CN201680032070.2A priority patent/CN107614714B/en
Priority to KR1020177030942A priority patent/KR102474009B1/en
Priority to PCT/JP2016/076362 priority patent/WO2017043551A1/en
Priority to US15/737,642 priority patent/US20180171437A1/en
Priority to TW105129154A priority patent/TWI701351B/en
Priority to CN201680008019.8A priority patent/CN107208189B/en
Priority to US15/741,148 priority patent/US10676803B2/en
Priority to CN201680032194.0A priority patent/CN107636179B/en
Publication of JP2017101283A publication Critical patent/JP2017101283A/en
Priority to PH12017501348A priority patent/PH12017501348A1/en
Priority to PH12017502293A priority patent/PH12017502293A1/en
Priority to PH12017502294A priority patent/PH12017502294A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】導電性、強度、曲げ加工性、耐応力緩和特性、鋳造性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーを提供する。【解決手段】Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、〔Mg〕+20×〔P〕<0.5の関係を満たすとともに、導電率が75%IACS超えであることを特徴とする。【選択図】なし[PROBLEMS] To provide a copper alloy for electronic / electric equipment, copper alloy plastic processing material for electronic / electric equipment, electronic / electric equipment parts, terminals, excellent electrical conductivity, strength, bending workability, stress relaxation resistance, and castability. And provide a bus bar. Mg is contained in a range of 0.15 mass% or more and less than 0.35 mass%, P is contained in a range of 0.0005 mass% or more and less than 0.01 mass%, and the balance is composed of Cu and inevitable impurities. The content [Mg] and the content [P] of P satisfy the relationship of [Mg] + 20 × [P] <0.5 by mass ratio, and the electrical conductivity is more than 75% IACS. . [Selection figure] None

Description

本発明は、リードフレーム、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品に適した電子・電気機器用銅合金、及び、この電子・電気機器用銅合金からなる電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーに関するものである。   The present invention relates to a copper alloy for electronic / electrical devices suitable for electronic frames such as lead frames, terminals such as connectors and press-fit, bus bars, etc., and electronic / electrical products made of this copper alloy for electronic / electrical devices. The present invention relates to a plastic alloy material for equipment, parts for electronic and electrical equipment, terminals, and bus bars.

従来、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品には、導電性の高い銅又は銅合金が用いられている。
ここで、電子機器や電気機器等の小型化にともない、これら電子機器や電気機器等に使用される電子・電気機器用部品の小型化および薄肉化が図られている。このため、電子・電気機器用部品を構成する材料には、高い強度や良好な曲げ加工性が求められている。また、自動車のエンジンルーム等の高温環境下で使用されるコネクタの端子等においては、耐応力緩和特性も求められている。
Conventionally, copper or copper alloy having high conductivity is used for electronic / electric equipment parts such as terminals such as connectors and press fits, relays, lead frames, bus bars and the like.
Here, along with the downsizing of electronic devices and electrical devices, parts for electronic and electrical devices used in these electronic devices and electrical devices are being made smaller and thinner. For this reason, the material which comprises the components for electronic / electrical devices is calculated | required by high intensity | strength and favorable bending workability. In addition, stress relaxation resistance is also required for connector terminals used in high-temperature environments such as automobile engine rooms.

ここで、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品に使用される材料として、例えば特許文献1、2には、Cu−Mg系合金が提案されている。   Here, as materials used for electronic and electrical equipment parts such as terminals such as connectors and press-fit, relays, lead frames and bus bars, for example, Patent Documents 1 and 2 propose Cu-Mg alloys. Yes.

特開2007−056297号公報JP 2007-056297 A 特開2014−114464号公報JP 2014-114464 A

しかしながら、特許文献1に記載されたCu−Mg系合金においては、Pの含有量が0.08〜0.35質量%と多いため、冷間加工性及び曲げ加工性が不十分であり、所定の形状の電子・電気機器用部品を成型することが困難であった。
また、特許文献2に記載されたCu−Mg系合金においては、Mgの含有量が0.01〜0.5mass%、及びPの含有量が0.01〜0.5mass%とされていることから、粗大な晶出物が生じ、冷間加工性及び曲げ加工性が不十分であった。
さらに、上述のCu−Mg系合金においては、Mgによって銅合金溶湯の粘性が上昇することから、Pを添加しないと鋳造性が低下してしまうといった問題があった。
However, in the Cu-Mg alloy described in Patent Document 1, since the P content is as large as 0.08 to 0.35 mass%, cold workability and bending workability are insufficient, It was difficult to mold a part for electronic / electrical equipment of the shape.
Moreover, in the Cu-Mg alloy described in Patent Document 2, the Mg content is 0.01 to 0.5 mass%, and the P content is 0.01 to 0.5 mass%. From this, coarse crystallized products were formed, and cold workability and bending workability were insufficient.
Furthermore, in the above-mentioned Cu—Mg-based alloy, the viscosity of the copper alloy melt is increased by Mg, so that there is a problem that castability is lowered unless P is added.

この発明は、前述した事情に鑑みてなされたものであって、導電性、強度、曲げ加工性、耐応力緩和特性、及び、鋳造性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and is a copper alloy for electronic / electric equipment, which is excellent in conductivity, strength, bending workability, stress relaxation resistance, and castability, and electronic / electric equipment. An object of the present invention is to provide a copper alloy plastic working material, a part for electronic / electric equipment, a terminal, and a bus bar.

この課題を解決するために、本発明者らが鋭意検討した結果、合金中に含有されるMg及びPの含有量を所定の関係式の範囲内に設定することで、MgとPを含む晶出物が粗大化することが抑制され、加工性を低下させることなく、強度、耐応力緩和特性、鋳造性を向上させることが可能であるとの知見を得た。   In order to solve this problem, as a result of intensive studies by the present inventors, by setting the contents of Mg and P contained in the alloy within the range of a predetermined relational expression, crystals containing Mg and P It was found that coarsening of the extract was suppressed, and it was possible to improve strength, stress relaxation resistance, and castability without reducing workability.

本発明は、上述の知見に基づいてなされたものであって、本発明の電子・電気機器用銅合金はMgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕+20×〔P〕<0.5
の関係を満たすとともに、導電率が75%IACS超えであることを特徴としている。
The present invention has been made on the basis of the above-mentioned knowledge, and the copper alloy for electronic / electric equipment of the present invention has Mg in the range of 0.15 mass% to less than 0.35 mass%, and P in the range of 0.0005 mass%. In the range of less than 0.01 mass%, the balance is made of Cu and inevitable impurities, and the Mg content [Mg] and the P content [P] are in a mass ratio.
[Mg] + 20 × [P] <0.5
And the electrical conductivity exceeds 75% IACS.

上述の構成の電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することにより、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
また、Pを0.0005mass%以上0.01mass%未満の範囲内で含んでいるので、鋳造性を向上させることができる。
そして、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕+20×〔P〕<0.5
の関係を満足しているので、MgとPを含む粗大な晶出物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
また、導電率が75%IACS超えであるので、従来、純銅を用いていた用途にも適用することが可能となる。
According to the copper alloy for electronic and electrical equipment having the above-described configuration, the Mg content is in the range of 0.15 mass% or more and less than 0.35 mass%, so that Mg is dissolved in the copper matrix. As a result, the strength and stress relaxation resistance can be improved without greatly reducing the electrical conductivity.
Moreover, since P is contained in the range of 0.0005 mass% or more and less than 0.01 mass%, castability can be improved.
And Mg content [Mg] and P content [P] are mass ratios,
[Mg] + 20 × [P] <0.5
Therefore, the production of coarse crystals including Mg and P can be suppressed, and the cold workability and bending workability can be prevented from being lowered.
In addition, since the electrical conductivity exceeds 75% IACS, it can be applied to applications that conventionally use pure copper.

ここで、本発明の電子・電気機器用銅合金においては、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕/〔P〕≦400
の関係を満たすことが好ましい。
この場合、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率を、上述のように規定することにより、鋳造性を確実に向上させることができる。
Here, in the copper alloy for electronic and electrical equipment of the present invention, the Mg content [Mg] and the P content [P] are in mass ratio,
[Mg] / [P] ≦ 400
It is preferable to satisfy the relationship.
In this case, the castability can be reliably improved by defining the ratio of the Mg content that lowers the castability and the P content that improves the castability as described above.

また、本発明の電子・電気機器用銅合金においては、0.2%耐力が300MPa以上であることが好ましい。
この場合、0.2%耐力が300MPa以上とされているので、容易に変形することがなく、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の銅合金として特に適している。
In the copper alloy for electronic / electric equipment of the present invention, it is preferable that the 0.2% proof stress is 300 MPa or more.
In this case, since the 0.2% proof stress is 300 MPa or more, it is not easily deformed, and is a copper alloy for electronic and electrical equipment parts such as connectors, press-fit terminals, relays, lead frames, bus bars, etc. Particularly suitable as.

また、本発明の電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で50%以上であることが好ましい。
この場合、残留応力率が上述のように規定されていることから、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、例えばコネクタ端子等の接圧の低下を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することが可能となる。
Moreover, in the copper alloy for electronic / electric equipment of this invention, it is preferable that a residual stress rate is 50% or more at 150 degreeC and 1000 hours.
In this case, since the residual stress rate is defined as described above, permanent deformation can be suppressed to a small level even when used in a high temperature environment, and for example, a decrease in contact pressure of a connector terminal or the like is suppressed. be able to. Therefore, it can be applied as a material for electronic device parts used in a high temperature environment such as an engine room.

本発明の電子・電気機器用銅合金塑性加工材は、上述の電子・電気機器用銅合金からなることを特徴としている。
この構成の電子・電気機器用銅合金塑性加工材によれば、上述の電子・電気機器用銅合金で構成されていることから、導電性、強度、曲げ加工性、耐応力緩和特性に優れており、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
The copper alloy plastic working material for electronic / electric equipment of the present invention is characterized by comprising the above-described copper alloy for electronic / electric equipment.
According to the copper alloy plastic working material for electronic / electric equipment of this configuration, since it is composed of the above-mentioned copper alloy for electronic / electric equipment, it has excellent conductivity, strength, bending workability, and stress relaxation resistance. It is particularly suitable as a material for electronic and electrical equipment parts such as connectors, press-fit terminals, relays, lead frames, bus bars and the like.

ここで、本発明の電子・電気機器用銅合金塑性加工材においては、表面にSnめっき層又はAgめっき層を有することが好ましい。
この場合、表面にSnめっき層又はAgめっき層を有しているので、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。なお、本発明において、「Snめっき」は、純Snめっき又はSn合金めっきを含み、「Agめっき」は、純Agめっき又はAg合金めっきを含む。
Here, in the copper alloy plastic working material for electronic / electric equipment of this invention, it is preferable to have a Sn plating layer or an Ag plating layer on the surface.
In this case, since it has a Sn plating layer or an Ag plating layer on the surface, it is particularly suitable as a material for components for electronic and electrical equipment such as terminals such as connectors and press fits, relays, lead frames, bus bars and the like. In the present invention, “Sn plating” includes pure Sn plating or Sn alloy plating, and “Ag plating” includes pure Ag plating or Ag alloy plating.

本発明の電子・電気機器用部品は、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。なお、本発明における電子・電気機器用部品とは、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等を含むものである。
この構成の電子・電気機器用部品は、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
The component for electronic / electrical equipment of the present invention is characterized by comprising the above-described copper alloy plastic working material for electronic / electrical equipment. The electronic / electric device parts in the present invention include terminals such as connectors and press-fit, relays, lead frames, bus bars, and the like.
The electronic / electrical device parts with this structure are manufactured using the above-mentioned copper alloy plastic working material for electronic / electrical devices, so that they exhibit excellent characteristics even when downsized and thinned. Can do.

本発明の端子は、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。
この構成の端子は、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
The terminal of the present invention is characterized by comprising the above-described copper alloy plastic working material for electronic and electrical equipment.
Since the terminal of this structure is manufactured using the above-mentioned copper alloy plastic working material for electronic and electrical equipment, it can exhibit excellent characteristics even when it is downsized and thinned.

本発明のバスバーは、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。
この構成のバスバーは、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
The bus bar of the present invention is characterized by comprising the above-described copper alloy plastic working material for electronic and electrical equipment.
Since the bus bar having this configuration is manufactured using the above-described copper alloy plastic working material for electronic and electrical equipment, it can exhibit excellent characteristics even when it is downsized and thinned.

本発明によれば、導電性、強度、曲げ加工性、耐応力緩和特性、及び、鋳造性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーを提供することができる。   According to the present invention, copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment excellent in electrical conductivity, strength, bending workability, stress relaxation resistance, and castability Parts, terminals, and bus bars can be provided.

本実施形態である電子・電気機器用銅合金の製造方法のフロー図である。It is a flowchart of the manufacturing method of the copper alloy for electronic and electric apparatuses which is this embodiment.

以下に、本発明の一実施形態である電子・電気機器用銅合金について説明する。
本実施形態である電子・電気機器用銅合金は、Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなる組成を有する。
Below, the copper alloy for electronic and electric apparatuses which is one Embodiment of this invention is demonstrated.
The copper alloy for electronic / electrical equipment according to this embodiment includes Mg in a range of 0.15 mass% to less than 0.35 mass%, P in a range of 0.0005 mass% to less than 0.01 mass%, and the balance being It has a composition consisting of Cu and inevitable impurities.

そして、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕+20×〔P〕<0.5
の関係を有している。
さらに、本実施形態では、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕/〔P〕≦400
の関係を有している。
And Mg content [Mg] and P content [P] are mass ratios,
[Mg] + 20 × [P] <0.5
Have the relationship.
Furthermore, in the present embodiment, the Mg content [Mg] and the P content [P] are in a mass ratio,
[Mg] / [P] ≦ 400
Have the relationship.

また、本実施形態である電子・電気機器用銅合金においては、導電率が75%IACS超えとされている。
さらに、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上とされている。すなわち、本実施形態では、電子・電気機器用銅合金の圧延材とされており、圧延の最終工程における圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が上述のように規定されているのである。
また、本実施形態である電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で50%以上とされている。
Moreover, in the copper alloy for electronic / electrical equipment which is this embodiment, the electrical conductivity exceeds 75% IACS.
Furthermore, in the copper alloy for electronic / electric equipment according to the present embodiment, the 0.2% yield strength when the tensile test is performed in the direction orthogonal to the rolling direction is set to 300 MPa or more. That is, in this embodiment, it is a rolled material of a copper alloy for electronic / electrical equipment, and the 0.2% yield strength when a tensile test is performed in a direction orthogonal to the rolling direction in the final rolling process is as described above. It is defined as follows.
Moreover, in the copper alloy for electronic / electrical equipment which is this embodiment, the residual stress rate is set to 50% or more at 150 ° C. for 1000 hours.

ここで、上述のように成分組成を規定した理由について以下に説明する。   Here, the reason for defining the component composition as described above will be described below.

(Mg:0.15mass%以上、0.35mass%未満)
Mgは、銅合金の母相中に固溶することで、高い導電率を保持したまま、強度および耐応力緩和特性を向上させる作用を有する元素である。
ここで、Mgの含有量が0.15mass%未満の場合には、その作用効果を十分に奏功せしめることができなくなるおそれがある。一方、Mgの含有量が0.35mass%以上の場合には、導電率が大きく低下するとともに、銅合金溶湯の粘性が上昇し、鋳造性が低下するおそれがある。
以上のことから、本実施形態では、Mgの含有量を0.15mass%以上0.35mass%未満の範囲内に設定している。
なお、強度および耐応力緩和特性をさらに向上させるためには、Mgの含有量の下限を0.18mass%以上とすることが好ましく、0.2mass%以上とすることがさらに好ましい。また、導電率の低下及び鋳造性の低下を確実に抑制するためには、Mgの含有量の上限を0.32mass%以下とすることが好ましく、0.3mass%以下とすることがさらに好ましい。
(Mg: 0.15 mass% or more and less than 0.35 mass%)
Mg is an element having an action of improving strength and stress relaxation resistance while maintaining high electrical conductivity by being dissolved in a parent phase of a copper alloy.
Here, when the content of Mg is less than 0.15 mass%, there is a possibility that the effect cannot be sufficiently achieved. On the other hand, when the Mg content is 0.35 mass% or more, the electrical conductivity is greatly lowered, the viscosity of the molten copper alloy is increased, and castability may be lowered.
From the above, in the present embodiment, the Mg content is set within a range of 0.15 mass% or more and less than 0.35 mass%.
In order to further improve the strength and the stress relaxation resistance, the lower limit of the Mg content is preferably set to 0.18 mass% or more, and more preferably set to 0.2 mass% or more. Moreover, in order to suppress reliably the fall of electroconductivity and a castability, it is preferable to make the upper limit of content of Mg into 0.32 mass% or less, and it is further more preferable to set it as 0.3 mass% or less.

(P:0.0005mass%以上、0.01mass%未満)
Pは、鋳造性を向上させる作用効果を有する元素である。
ここで、Pの含有量が0.0005mass%未満の場合には、その作用効果を十分に奏功せしめることができないおそれがある。一方、Pの含有量が0.01mass%以上の場合には、MgとPを含有する粗大な晶出物が生成することから、この晶出物が破壊の起点となり、冷間加工時や曲げ加工時に割れが生じるおそれがある。
以上のことから、本実施形態においては、Pの含有量を0.0005mass%以上、0.01mass%未満の範囲内に設定している。なお、確実に鋳造性を向上させるためには、Pの含有量の下限を0.001mass%以上とすることが好ましく、0.002mass%以上とすることがさらに好ましい。また、粗大な晶出物の生成を確実に抑制するためには、Pの含有量の上限を0.009mass%未満とすることが好ましく、0.008mass%未満とすることがさらに好ましく、0.0075mass%以下とすることが最も好ましい。
(P: 0.0005 mass% or more and less than 0.01 mass%)
P is an element having an effect of improving castability.
Here, when content of P is less than 0.0005 mass%, there exists a possibility that the effect cannot be fully achieved. On the other hand, when the content of P is 0.01 mass% or more, a coarse crystallized product containing Mg and P is generated. This crystallized product becomes a starting point of fracture, and during cold working or bending. There is a risk of cracking during processing.
From the above, in the present embodiment, the P content is set in the range of 0.0005 mass% or more and less than 0.01 mass%. In order to surely improve the castability, the lower limit of the P content is preferably 0.001 mass% or more, and more preferably 0.002 mass% or more. Moreover, in order to suppress the production | generation of a coarse crystallized substance reliably, it is preferable to make the upper limit of P content into less than 0.009 mass%, and it is further more preferable to set it as less than 0.008 mass%. It is most preferable to set it to 0075 mass% or less.

(〔Mg〕+20×〔P〕<0.5)
上述のように、MgとPが共存することにより、MgとPを含む晶出物が生成することになる。
ここで、質量比で、Mgの含有量〔Mg〕とPの含有量〔P〕とした場合に、〔Mg〕+20×〔P〕が0.5以上となる場合には、MgおよびPの総量が多く、MgとPを含む晶出物が粗大化するとともに高密度に分布し、冷間加工時や曲げ加工時に割れが生じやすくなるおそれがある。
以上のことから、本実施形態においては、〔Mg〕+20×〔P〕を0.5未満に設定している。なお、晶出物の粗大化および高密度化を確実に抑制して、冷間加工時や曲げ加工時における割れの発生を抑制するためには、〔Mg〕+20×〔P〕を0.48未満とすることが好ましく、0.46未満とすることがさらに好ましい。
([Mg] + 20 × [P] <0.5)
As described above, coexistence of Mg and P produces a crystallized product containing Mg and P.
Here, when the Mg content [Mg] and the P content [P] are [Mg] + 20 × [P] is 0.5 or more in terms of mass ratio, The total amount is large, and crystallized substances containing Mg and P are coarsened and distributed in high density, and there is a risk that cracks are likely to occur during cold working or bending.
From the above, in this embodiment, [Mg] + 20 × [P] is set to less than 0.5. Note that [Mg] + 20 × [P] is set to 0.48 in order to reliably suppress the coarsening and densification of the crystallized product and to suppress the occurrence of cracks during cold working or bending. It is preferably less than 0.46, more preferably less than 0.46.

(〔Mg〕/〔P〕≦400)
Mgは、銅合金溶湯の粘度を上昇させ、鋳造性を低下させる作用を有する元素であることから、鋳造性を確実に向上させるためには、MgとPの含有量の比率を適正化する必要がある。
ここで、質量比で、Mgの含有量〔Mg〕とPの含有量〔P〕とした場合に、〔Mg〕/〔P〕が400を超える場合には、Pに対してMgの含有量が多くなり、Pの添加による鋳造性向上効果が小さくなるおそれがある。
以上のことから、本実施形態においては、〔Mg〕/〔P〕を400以下に設定している。鋳造性をより向上させるためには、〔Mg〕/〔P〕を350以下とすることが好ましく、300以下とすることがさらに好ましい。
なお、〔Mg〕/〔P〕が過剰に低い場合には、Mgが晶出物として消費され、Mgの固溶による効果を得ることができなくなるおそれがある。MgとPを含有する晶出物の生成を抑制し、Mgの固溶による耐力、耐応力緩和特性の向上を確実に図るためには、〔Mg〕/〔P〕の下限を20超えとすることが好ましく、25超えであることがさらに好ましい。
([Mg] / [P] ≦ 400)
Mg is an element that has the effect of increasing the viscosity of the molten copper alloy and lowering the castability. Therefore, in order to reliably improve the castability, it is necessary to optimize the ratio of the contents of Mg and P. There is.
Here, when the Mg content [Mg] and the P content [P] are [M], and the [Mg] / [P] exceeds 400, the Mg content relative to the P There is a possibility that the castability improvement effect by the addition of P becomes small.
From the above, in this embodiment, [Mg] / [P] is set to 400 or less. In order to further improve the castability, [Mg] / [P] is preferably 350 or less, and more preferably 300 or less.
In addition, when [Mg] / [P] is excessively low, Mg is consumed as a crystallized product, and there is a possibility that the effect due to solid solution of Mg cannot be obtained. In order to suppress generation of crystallized substances containing Mg and P, and to surely improve the yield strength and stress relaxation resistance due to solid solution of Mg, the lower limit of [Mg] / [P] is set to more than 20 Is more preferable, and it is more preferable that it is more than 25.

(不可避不純物:0.1mass%以下)
その他の不可避的不純物としては、Ag、B、Ca、Sr、Ba、Sc、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Se、Te、Rh、Ir、Ni、Pd、Pt、Au、Zn、Cd,Hg、Al、Ga、In、Ge、Sn、As、Sb、Tl、Pb、Bi、Be、N、C、Si、Li、H、O、S等が挙げられる。これらの不可避不純物は、導電率を低下させる作用があることから、総量で0.1mass%以下とする。
また、Ag、Zn、Snは銅中に容易に混入して導電率を低下させるため、総量で500massppm未満とすることが好ましい。
さらにSi、Cr、Ti、Zr、Fe、Coは、特に導電率を大きく減少させるとともに、介在物の形成により曲げ加工性を劣化させるため、これらの元素は総量で500massppm未満とすることが好ましい。
(Inevitable impurities: 0.1 mass% or less)
Other inevitable impurities include Ag, B, Ca, Sr, Ba, Sc, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru , Os, Co, Se, Te, Rh, Ir, Ni, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn, As, Sb, Tl, Pb, Bi, Be, N , C, Si, Li, H, O, S and the like. Since these inevitable impurities have the effect of lowering the conductivity, the total amount is set to 0.1 mass% or less.
In addition, Ag, Zn, and Sn are easily mixed in copper to lower the electrical conductivity, so that the total amount is preferably less than 500 massppm.
Furthermore, since Si, Cr, Ti, Zr, Fe, and Co particularly reduce the electrical conductivity greatly and deteriorate the bending workability due to the formation of inclusions, the total amount of these elements is preferably less than 500 massppm.

(導電率:75%IACS超え)
本実施形態である電子・電気機器用銅合金において、導電率を75%IACS超えに設定することにより、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品として良好に使用することができる。
なお、導電率は76%IACS超えであることが好ましく、77%IACS超えであることがさらに好ましく、78%IACS超えであることがより好ましい。
(Conductivity: over 75% IACS)
In the copper alloy for electronic and electrical equipment according to this embodiment, by setting the conductivity to exceed 75% IACS, as a part for electronic and electrical equipment such as a connector, a terminal such as a press fit, a relay, a lead frame, a bus bar, etc. Can be used well.
The electrical conductivity is preferably more than 76% IACS, more preferably more than 77% IACS, and more preferably more than 78% IACS.

(0.2%耐力:300MPa以上)
本実施形態である電子・電気機器用銅合金においては、0.2%耐力が300MPa以上とすることにより、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適するものとなる。なお、本実施形態では、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上とされている。
ここで、上述の0.2%耐力は325MPa以上であることが好ましく、350MPa以上であることがさらに好ましい。
(0.2% proof stress: 300 MPa or more)
In the copper alloy for electronic / electric equipment according to the present embodiment, when the 0.2% proof stress is 300 MPa or more, terminals for connectors, press-fit, etc., components for electronic / electric equipment such as relays, lead frames, bus bars, etc. Especially suitable as a material for In the present embodiment, the 0.2% yield strength when the tensile test is performed in the direction orthogonal to the rolling direction is set to 300 MPa or more.
Here, the 0.2% yield strength described above is preferably 325 MPa or more, and more preferably 350 MPa or more.

(残留応力率:50%以上)
本実施形態である電子機器用銅合金においては、上述のように、残留応力率が150℃、1000時間で50%以上とされている。
この条件における残留応力率が高い場合には、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、接圧の低下を抑制することができる。よって、本実施形態である電子機器用銅合金は、自動車のエンジンルーム周りのような高温環境下で使用される端子として適用することが可能となる。本実施形態では、圧延方向に対して直交方向に応力緩和試験を行った残留応力率が150℃、1000時間で50%以上とされている。
なお、残留応力率は150℃、1000時間で60%以上とすることが好ましく、150℃、1000時間で70%以上とすることがさらに好ましい。
(Residual stress ratio: 50% or more)
In the copper alloy for electronic devices according to the present embodiment, as described above, the residual stress rate is set to 50% or more at 150 ° C. for 1000 hours.
When the residual stress rate under these conditions is high, permanent deformation can be suppressed even when used in a high temperature environment, and a decrease in contact pressure can be suppressed. Therefore, the copper alloy for electronic devices according to the present embodiment can be applied as a terminal used in a high temperature environment such as around the engine room of an automobile. In the present embodiment, the residual stress ratio obtained by performing the stress relaxation test in the direction orthogonal to the rolling direction is set to 50% or more at 150 ° C. for 1000 hours.
The residual stress rate is preferably 60% or more at 150 ° C. and 1000 hours, and more preferably 70% or more at 150 ° C. and 1000 hours.

次に、このような構成とされた本実施形態である電子・電気機器用銅合金の製造方法について、図1に示すフロー図を参照して説明する。   Next, a manufacturing method of the copper alloy for electronic / electric equipment according to the present embodiment having such a configuration will be described with reference to the flowchart shown in FIG.

(溶解・鋳造工程S01)
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。なお、各種元素の添加には、元素単体や母合金等を用いることができる。また、上述の元素を含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材およびスクラップ材を用いてもよい。ここで、銅溶湯は、純度が99.99mass%以上とされたいわゆる4NCu、あるいは99.999mass%以上とされたいわゆる5NCuとすることが好ましい。溶解工程では、Mgの酸化を抑制するため、また水素濃度低減のため、HOの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることが好ましい。
(Melting / Casting Process S01)
First, the above-described elements are added to a molten copper obtained by melting a copper raw material to adjust the components, thereby producing a molten copper alloy. In addition, an element simple substance, a mother alloy, etc. can be used for the addition of various elements. Moreover, you may melt | dissolve the raw material containing the above-mentioned element with a copper raw material. Moreover, you may use the recycling material and scrap material of this alloy. Here, the molten copper is preferably so-called 4NCu having a purity of 99.99 mass% or more, or so-called 5NCu having a purity of 99.999 mass% or more. In the melting process, in order to suppress the oxidation of Mg and to reduce the hydrogen concentration, the atmosphere is dissolved in an inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O, and the holding time at the time of melting is minimized. It is preferable that the

そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
この際、溶湯の凝固時に、MgとPを含む晶出物が形成されるため、凝固速度を速くすることで晶出物サイズをより微細にすることが可能となる。そのため、溶湯の冷却速度は0.1℃/sec以上とすることが好ましく、さらに好ましくは0.5℃/sec以上であり、最も好ましくは1℃/sec以上である。
Then, the copper alloy molten metal whose components are adjusted is poured into a mold to produce an ingot. In consideration of mass production, it is preferable to use a continuous casting method or a semi-continuous casting method.
At this time, since a crystallized product containing Mg and P is formed during solidification of the molten metal, it is possible to make the crystallized product size finer by increasing the solidification rate. Therefore, the cooling rate of the molten metal is preferably 0.1 ° C./sec or more, more preferably 0.5 ° C./sec or more, and most preferably 1 ° C./sec or more.

(均質化/溶体化工程S02)
次に、得られた鋳塊の均質化および溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析して濃縮することにより発生したCuとMgを主成分とする金属間化合物等が存在することがある。そこで、これらの偏析および金属間化合物等を消失または低減させるために、鋳塊を300℃以上900℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりする。なお、この加熱工程S02は、非酸化性または還元性雰囲気中で実施することが好ましい。
(Homogenization / Solution Step S02)
Next, heat treatment is performed for homogenization and solution of the obtained ingot. In the ingot, there may be an intermetallic compound or the like mainly composed of Cu and Mg generated by Mg segregating and concentrating in the solidification process. Therefore, in order to eliminate or reduce these segregation and intermetallic compounds, etc., by performing a heat treatment to heat the ingot to 300 ° C. or more and 900 ° C. or less, Mg can be uniformly diffused in the ingot. Mg is dissolved in the matrix. The heating step S02 is preferably performed in a non-oxidizing or reducing atmosphere.

ここで、加熱温度が300℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を300℃以上900℃以下の範囲に設定している。
なお、後述する粗圧延の効率化と組織の均一化のために、前述の均質化/溶体化工程S02の後に熱間加工を実施してもよい。この場合、加工方法に特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。また、熱間加工温度は、300℃以上900℃以下の範囲内とすることが好ましい。
Here, when the heating temperature is less than 300 ° C., solutionization is incomplete, and a large amount of intermetallic compounds mainly containing Cu and Mg may remain in the matrix phase. On the other hand, when the heating temperature exceeds 900 ° C., a part of the copper material becomes a liquid phase, and the structure and the surface state may become non-uniform. Therefore, the heating temperature is set in the range of 300 ° C. or higher and 900 ° C. or lower.
In addition, in order to improve the efficiency of rough rolling described later and to make the structure uniform, hot working may be performed after the above-described homogenization / solution forming step S02. In this case, the processing method is not particularly limited, and for example, rolling, wire drawing, extrusion, groove rolling, forging, pressing, and the like can be employed. The hot working temperature is preferably in the range of 300 ° C. or higher and 900 ° C. or lower.

(粗加工工程S03)
所定の形状に加工するために、粗加工を行う。なお、この粗加工工程S03における温度条件は特に限定はないが、再結晶を抑制するために、あるいは寸法精度の向上のため、冷間または温間圧延となる−200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。加工率については、20%以上が好ましく、30%以上がさらに好ましい。また、加工方法については、特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。
(Roughing process S03)
In order to process into a predetermined shape, rough processing is performed. The temperature condition in this roughing step S03 is not particularly limited, but is in the range of −200 ° C. to 200 ° C., which is cold or warm rolled to suppress recrystallization or improve dimensional accuracy. It is preferable to use normal temperature. The processing rate is preferably 20% or more, and more preferably 30% or more. Moreover, there is no limitation in particular about a processing method, For example, rolling, wire drawing, extrusion, groove rolling, forging, a press, etc. are employable.

(中間熱処理工程S04)
粗加工工程S03後に、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的として熱処理を実施する。熱処理の方法は特に限定はないが、好ましくは400℃以上900℃以下の保持温度、10秒以上10時間以下の保持時間で、非酸化雰囲気または還元性雰囲気中で熱処理を行う。また、加熱後の冷却方法は、特に限定しないが、水焼入など冷却速度が200℃/min以上となる方法を採用することが好ましい。
なお、粗加工工程S03及び中間熱処理工程S04は、繰り返し実施してもよい。
(Intermediate heat treatment step S04)
After the rough machining step S03, heat treatment is performed for the purpose of thorough solution treatment, recrystallization structure, or softening for improving workability. The heat treatment method is not particularly limited, but the heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere at a holding temperature of 400 ° C. to 900 ° C. and a holding time of 10 seconds to 10 hours. Moreover, the cooling method after heating is not particularly limited, but it is preferable to adopt a method such as water quenching in which the cooling rate is 200 ° C./min or more.
Note that the roughing step S03 and the intermediate heat treatment step S04 may be repeatedly performed.

(仕上加工工程S05)
中間熱処理工程S04後の銅素材を所定の形状に加工するため、仕上加工を行う。なお、この仕上加工工程S05における温度条件は特に限定はないが、再結晶を抑制するため、または軟化を抑制するために冷間、または温間加工となる−200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、仕上加工工程S05において加工硬化によって強度を向上させるためには、加工率を20%以上とすることが好ましい。また。さらなる強度の向上を図る場合には、加工率を30%以上とすることがより好ましく、加工率を40%以上とすることがさらに好ましい。
(Finishing process S05)
Finishing is performed to process the copper material after the intermediate heat treatment step S04 into a predetermined shape. Note that the temperature condition in the finishing step S05 is not particularly limited, but is in the range of −200 ° C. to 200 ° C., which is cold or warm processing to suppress recrystallization or softening. In particular, room temperature is preferable. Further, the processing rate is appropriately selected so as to approximate the final shape, but in order to improve the strength by work hardening in the finishing processing step S05, the processing rate is preferably set to 20% or more. Also. When further improving the strength, the processing rate is more preferably 30% or more, and the processing rate is more preferably 40% or more.

(仕上熱処理工程S06)
次に、仕上加工工程S05によって得られた塑性加工材に対して、耐応力緩和特性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、仕上熱処理を実施する。
熱処理温度は、100℃以上800℃以下の範囲内とすることが好ましい。なお、この仕上熱処理工程S06においては、再結晶による強度の大幅な低下を避けるように、熱処理条件(温度、時間、冷却速度)を設定する必要がある。例えば300℃では1秒から120秒程度保持とすることが好ましい。この熱処理は、非酸化雰囲気または還元性雰囲気中で行うことが好ましい。
熱処理の方法は特に限定はないが、製造コスト低減の効果から、連続焼鈍炉による短時間の熱処理が好ましい。
さらに、上述の仕上加工工程S05と仕上熱処理工程S06とを、繰り返し実施してもよい。
(Finish heat treatment step S06)
Next, a finishing heat treatment is performed on the plastic workpiece obtained in the finishing step S05 in order to improve stress relaxation resistance and low-temperature annealing hardening, or to remove residual strain.
The heat treatment temperature is preferably in the range of 100 ° C. or higher and 800 ° C. or lower. In this finishing heat treatment step S06, it is necessary to set heat treatment conditions (temperature, time, cooling rate) so as to avoid a significant decrease in strength due to recrystallization. For example, it is preferable to hold at 300 ° C. for about 1 to 120 seconds. This heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere.
The method of heat treatment is not particularly limited, but short-time heat treatment using a continuous annealing furnace is preferable from the viewpoint of reducing the manufacturing cost.
Furthermore, the above-described finishing processing step S05 and finishing heat treatment step S06 may be repeated.

このようにして、本実施形態である電子・電気機器用銅合金塑性加工材として圧延板(薄板)が製出されることになる。なお、この電子・電気機器用銅合金塑性加工材(薄板)の板厚は、0.05mm超え3.0mm以下の範囲内とされており、好ましくは0.1mm超え3.0mm未満の範囲内とされている。電子・電気機器用銅合金塑性加工材(薄板)の板厚が0.05mm以下の場合、大電流用途での導体としての使用には不向きであり、板厚が3.0mmを超える場合には、プレス打ち抜き加工が困難となる。   In this manner, a rolled plate (thin plate) is produced as the copper alloy plastic working material for electronic / electric equipment according to the present embodiment. The thickness of the copper alloy plastic working material (thin plate) for electronic / electric equipment is within a range of 0.05 mm to 3.0 mm, preferably within a range of 0.1 mm to less than 3.0 mm. It is said that. If the thickness of the copper alloy plastic working material (thin plate) for electronic / electric equipment is 0.05mm or less, it is not suitable for use as a conductor in high current applications, and if the thickness exceeds 3.0mm , Press punching becomes difficult.

ここで、本実施形態である電子・電気機器用銅合金塑性加工材は、そのまま電子・電気機器用部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1〜100μm程度のSnめっき層またはAgめっき層を形成してもよい。この際、電子・電気機器用銅合金塑性加工材の板厚がめっき層厚さの10〜1000倍となることが好ましい。
さらに、本実施形態である電子・電気機器用銅合金(電子・電気機器用銅合金塑性加工材)を素材として、打ち抜き加工や曲げ加工等を施すことにより、例えばコネクタやプレスフィット等の端子、リレー、リードフレーム、バスバーといった電子・電気機器用部品が成形される。
Here, the copper alloy plastic working material for electronic and electrical equipment according to the present embodiment may be used as it is for a part for electronic and electrical equipment, but the film thickness is 0.1 to An Sn plating layer or an Ag plating layer of about 100 μm may be formed. At this time, it is preferable that the plate thickness of the copper alloy plastic working material for electronic / electric equipment is 10 to 1000 times the plating layer thickness.
Furthermore, by using a copper alloy for electronic / electric equipment (copper alloy plastic working material for electronic / electric equipment) according to the present embodiment as a raw material, for example, a terminal such as a connector or a press fit, Components for electronic and electrical equipment such as relays, lead frames and bus bars are molded.

以上のような構成とされた本実施形態である電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することで、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
また、Pを0.0005mass%以上0.01mass%未満の範囲内で含んでいるので、鋳造性を向上させることができる。
According to the copper alloy for electronic and electrical equipment according to the present embodiment configured as described above, the Mg content is in the range of 0.15 mass% or more and less than 0.35 mass%. When Mg is dissolved in the matrix, the strength and stress relaxation resistance can be improved without greatly reducing the electrical conductivity.
Moreover, since P is contained in the range of 0.0005 mass% or more and less than 0.01 mass%, castability can be improved.

そして、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、〔Mg〕+20×〔P〕<0.5の関係を満足しているので、MgとPの粗大な晶出物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
さらに、本実施形態では、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、〔Mg〕/〔P〕≦400の関係を満たしているので、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率が適正化され、P添加の効果により、鋳造性を確実に向上させることができる。
Since the Mg content [Mg] and the P content [P] satisfy the relationship of [Mg] + 20 × [P] <0.5 by mass ratio, the coarse crystals of Mg and P Generation | occurrence | production of a product can be suppressed and it can suppress that cold work property and bending workability fall.
Furthermore, in this embodiment, the Mg content [Mg] and the P content [P] are in a mass ratio and satisfy the relationship [Mg] / [P] ≦ 400. The ratio between the content of P and the content of P that improves castability is optimized, and the castability can be reliably improved by the effect of addition of P.

さらに、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上、導電率が75%IACS超えとされているので、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
また、本実施形態である電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で50%以上とされているので、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、例えばコネクタ端子等の接圧の低下を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することが可能となる。
Furthermore, in the copper alloy for electronic and electrical equipment according to the present embodiment, the 0.2% proof stress when the tensile test is performed in the direction orthogonal to the rolling direction is 300 MPa or more, and the conductivity exceeds 75% IACS. Therefore, it is particularly suitable as a material for electronic / electric equipment parts such as connectors, press-fit terminals, relays, lead frames, bus bars and the like.
In addition, in the copper alloy for electronic and electrical equipment according to the present embodiment, the residual stress ratio is 50% or more at 150 ° C. for 1000 hours, so that permanent deformation occurs even when used in a high temperature environment. For example, a decrease in contact pressure of a connector terminal or the like can be suppressed. Therefore, it can be applied as a material for electronic device parts used in a high temperature environment such as an engine room.

また、本実施形態である電子・電気機器用銅合金塑性加工材は、上述の電子・電気機器用銅合金で構成されていることから、この電子・電気機器用銅合金塑性加工材に曲げ加工等を行うことで、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品を製造することができる。
なお、表面にSnめっき層又はAgめっき層を形成した場合には、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
In addition, since the copper alloy plastic working material for electronic / electric equipment according to the present embodiment is composed of the above-described copper alloy for electronic / electric equipment, the copper alloy plastic working material for electronic / electric equipment is bent. By performing the above, it is possible to manufacture parts for electronic and electrical equipment such as terminals such as connectors and press-fit, relays, lead frames, and bus bars.
In addition, when an Sn plating layer or an Ag plating layer is formed on the surface, it is particularly suitable as a material for electronic / electric equipment parts such as terminals such as connectors and press-fit, relays, lead frames, bus bars, and the like.

さらに、本実施形態である電子・電気機器用部品(コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等)は、上述の電子・電気機器用銅合金で構成されているので、小型化および薄肉化しても優れた特性を発揮することができる。   Furthermore, the electronic / electrical device parts (terminals such as connectors and press-fit, relays, lead frames, bus bars, etc.) according to the present embodiment are made of the above-described copper alloy for electronic / electrical devices. Even when the thickness is reduced, excellent characteristics can be exhibited.

以上、本発明の実施形態である電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品(端子、バスバー等)について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、電子・電気機器用銅合金の製造方法の一例について説明したが、電子・電気機器用銅合金の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
As described above, the copper alloy for electronic / electric equipment, the copper alloy plastic working material for electronic / electric equipment, and the electronic / electric equipment parts (terminal, bus bar, etc.) according to the embodiment of the present invention have been described. It is not limited and can be changed as appropriate without departing from the technical idea of the invention.
For example, in the above-described embodiment, an example of a method for producing a copper alloy for electronic / electric equipment has been described. However, the method for producing a copper alloy for electronic / electric equipment is not limited to that described in the embodiment. The existing manufacturing method may be selected as appropriate.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、鋳型に注湯して鋳塊を製出した。なお、本発明例1、比較例3は断熱材(イソウール)鋳型、本発明例11はカーボン鋳型、本発明例2〜10、12〜21は水冷機能を備えた銅合金鋳型を鋳造用の鋳型として用いた。鋳塊の大きさは、厚さ約20mm×幅約150mm×長さ約70mmとした。
この鋳塊の鋳肌近傍を面削し、最終製品の板厚が0.5mmとなるように、鋳塊を切り出してサイズを調整した。
このブロックを、Arガス雰囲気中において、表2に記載の温度条件で4時間の加熱を行い、均質化/溶体化処理を行った。
Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper raw material made of oxygen-free copper (ASTM B152 C10100) having a purity of 99.99 mass% or more was prepared, charged in a high-purity graphite crucible, and high-frequency melted in an atmosphere furnace having an Ar gas atmosphere. Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and poured into a mold to produce an ingot. Inventive Example 1 and Comparative Example 3 are heat insulating material (isowool) molds, Inventive Example 11 is a carbon mold, Inventive Examples 2 to 10 and 12 to 21 are copper alloy molds having a water-cooling function. Used as. The size of the ingot was about 20 mm thick x about 150 mm wide x about 70 mm long.
The vicinity of the cast surface of the ingot was chamfered, and the ingot was cut out and the size was adjusted so that the thickness of the final product was 0.5 mm.
The block was heated in an Ar gas atmosphere for 4 hours under the temperature conditions shown in Table 2 to perform homogenization / solution treatment.

その後、表2に記載の条件で粗圧延を実施した後、ソルトバスを用いて表2に記載された温度条件で熱処理を行った。
熱処理を行った銅素材を、適宜、最終形状に適した形にするために、切断するとともに、酸化被膜を除去するために表面研削を実施した。その後、常温で、表2に記載された圧延率で仕上圧延(仕上加工)を実施し、厚さ0.5mm、幅約150mm、長さ200mmの薄板を製出した。
そして、仕上圧延(仕上加工)後に、表2に示す条件で、Ar雰囲気中で仕上熱処理を実施し、その後、水焼入れを行い、特性評価用薄板を作成した。
Then, after carrying out rough rolling on the conditions described in Table 2, it heat-processed on the temperature conditions described in Table 2 using the salt bath.
The heat-treated copper material was appropriately cut into a shape suitable for the final shape, and surface grinding was performed to remove the oxide film. Thereafter, finish rolling (finishing) was performed at room temperature at a rolling rate described in Table 2 to produce a thin plate having a thickness of 0.5 mm, a width of about 150 mm, and a length of 200 mm.
Then, after finish rolling (finishing), finish heat treatment was performed in an Ar atmosphere under the conditions shown in Table 2, and then water quenching was performed to create a thin plate for property evaluation.

(鋳造性)
鋳造性の評価として、前述の鋳造時における肌荒れの有無を観察した。目視で肌荒れが全くあるいはほとんど認められなかったものを◎、深さ1mm未満の小さな肌荒れが発生したものを○、深さ1mm以上2mm未満の肌荒れが発生したものを△とした。また深さ2mm以上の大きな肌荒れが発生したものは×とし、途中で評価を中止した。評価結果を表3に示す。
なお、肌荒れの深さとは、鋳塊の端部から中央部に向かう肌荒れの深さのことである。
(Castability)
As an evaluation of castability, the presence or absence of rough skin at the time of casting was observed. The case where no or almost no skin roughness was visually observed was indicated by ◎, the case where a small skin roughness less than 1 mm in depth occurred was indicated by ◯, and the case where skin roughness was caused by a depth of 1 mm or more and less than 2 mm was indicated by Δ. Moreover, the thing where big skin roughness more than depth 2mm generate | occur | produced was made into x, and evaluation was stopped on the way. The evaluation results are shown in Table 3.
In addition, the depth of rough skin is the depth of rough skin which goes to the center part from the edge part of an ingot.

(機械的特性)
特性評価用条材からJIS Z 2241に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力を測定した。なお、試験片は、圧延方向に垂直な方向で採取した。評価結果を表3に示す。
(Mechanical properties)
A No. 13B test piece defined in JIS Z 2241 was collected from the strip for characteristic evaluation, and 0.2% proof stress was measured by the offset method of JIS Z 2241. The test piece was collected in a direction perpendicular to the rolling direction. The evaluation results are shown in Table 3.

(導電率)
特性評価用条材から幅10mm×長さ150mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して垂直になるように採取した。評価結果を表3に示す。
(conductivity)
A test piece having a width of 10 mm and a length of 150 mm was taken from the strip for characteristic evaluation, and the electric resistance was determined by a four-terminal method. Moreover, the dimension of the test piece was measured using the micrometer, and the volume of the test piece was calculated. And electrical conductivity was computed from the measured electrical resistance value and volume. In addition, the test piece was extract | collected so that the longitudinal direction might become perpendicular | vertical with respect to the rolling direction of the strip for characteristic evaluation. The evaluation results are shown in Table 3.

(曲げ加工性)
日本伸銅協会技術標準JCBA−T307:2007の4試験方法に準拠して曲げ加工を行った。圧延方向に対して曲げの軸が直交方向になるように、特性評価用薄板から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0.5mm(R/t=1)のW型の治具を用い、W曲げ試験を行った。
曲げ部の外周部を目視で観察して割れが観察された場合は「×」、大きなしわが観察された場合は○、破断や微細な割れ、大きなしわを確認できない場合を◎として判定を行った。なお、◎、○は許容できる曲げ加工性と判断した。評価結果を表3に示す。
(Bending workability)
Bending was performed in accordance with four test methods of Japan Copper and Brass Association Technical Standard JCBA-T307: 2007. A plurality of test pieces having a width of 10 mm and a length of 30 mm are taken from the thin sheet for characteristic evaluation so that the bending axis is perpendicular to the rolling direction, the bending angle is 90 degrees, and the bending radius is 0.5 mm (R / A W-bending test was performed using a W-shaped jig of t = 1).
Judgment is made as “X” when a crack is observed by visually observing the outer periphery of the bent portion, “◯” when a large wrinkle is observed, and “◎” when a fracture, a fine crack, or a large wrinkle cannot be confirmed. It was. In addition, (double-circle) and (circle) were judged to be the allowable bending workability. The evaluation results are shown in Table 3.

(耐応力緩和特性)
耐応力緩和特性試験は、日本伸銅協会技術標準JCBA−T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、150℃の温度で1000時間保持後の残留応力率を測定した。評価結果を表3に示す。
試験方法としては、各特性評価用条材から圧延方向に対して直交する方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面最大応力(MPa)=1.5Etδ0/Ls 2
ただし、
E:ヤング率(MPa)
t:試料の厚み(t=0.25mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。
150℃の温度で、1000h保持後の曲げ癖から、残留応力率を測定し、耐応力緩和特性を評価した。なお残留応力率は次式を用いて算出した。
残留応力率(%)=(1−δt0)×100
ただし、
δ:150℃で1000h保持後の永久たわみ変位(mm)−常温で24h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
である。
(Stress relaxation characteristics)
In the stress relaxation resistance test, stress was applied by a method according to the cantilevered screw method of Japan Copper and Brass Association Technical Standard JCBA-T309: 2004, and the residual stress ratio after holding for 1000 hours at a temperature of 150 ° C. was measured. . The evaluation results are shown in Table 3.
As a test method, a specimen (width 10 mm) is taken from each characteristic evaluation strip in a direction orthogonal to the rolling direction, and the initial deflection displacement is set so that the maximum surface stress of the specimen is 80% of the proof stress. The span length was adjusted to 2 mm. The maximum surface stress is determined by the following equation.
Maximum surface stress (MPa) = 1.5 Etδ 0 / L s 2
However,
E: Young's modulus (MPa)
t: sample thickness (t = 0.25 mm)
δ 0 : Initial deflection displacement (2 mm)
L s : Span length (mm)
It is.
Residual stress rate was measured from the bending habit after holding for 1000 hours at a temperature of 150 ° C., and the stress relaxation resistance was evaluated. The residual stress rate was calculated using the following formula.
Residual stress rate (%) = (1−δ t / δ 0 ) × 100
However,
δ t : Permanent deflection displacement after holding for 1000 h at 150 ° C. (mm) −Permanent deflection displacement after holding for 24 h at room temperature (mm)
δ 0 : Initial deflection displacement (mm)
It is.

Figure 0005910790
Figure 0005910790

Figure 0005910790
Figure 0005910790

Figure 0005910790
Figure 0005910790

比較例1は、Mgの含有量が本発明の範囲よりも少なく、0.2%耐力が低く、強度不足であった。
比較例2は、Mgの含有量が本発明の範囲よりも多く、導電率が低下した。
比較例3は、Mgの含有量が本発明の範囲よりも多く、かつ、〔Mg〕/〔P〕も400を超えており、非常に深い肌荒れが発生したため、その後の評価を中止した。
比較例4は、Pの含有量が本発明の範囲よりも多く、粗圧延時に大きな耳割れが発生したため、その後の評価を中止した。
比較例5〜7は、〔Mg〕+20×〔P〕が0.5を超えており、粗圧延時に大きな耳割れが発生したため、その後の評価を中止した。
In Comparative Example 1, the Mg content was less than the range of the present invention, the 0.2% proof stress was low, and the strength was insufficient.
In Comparative Example 2, the Mg content was greater than the range of the present invention, and the electrical conductivity decreased.
In Comparative Example 3, the Mg content was larger than the range of the present invention, and [Mg] / [P] was more than 400, and a very deep skin roughness occurred. Therefore, the subsequent evaluation was stopped.
Since the comparative example 4 had more P content than the range of this invention, and the big ear crack generate | occur | produced at the time of rough rolling, subsequent evaluation was stopped.
In Comparative Examples 5 to 7, [Mg] + 20 × [P] exceeded 0.5, and a large ear crack was generated during rough rolling, so the subsequent evaluation was stopped.

これに対して、本発明例においては、0.2%耐力、導電率、耐応力緩和特性、曲げ加工性、鋳造性に優れていることが確認される。
以上のことから、本発明例によれば、導電性、強度、曲げ加工性、耐応力緩和特性、鋳造性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材を提供できることが確認された。
On the other hand, in the example of the present invention, it is confirmed that 0.2% proof stress, electrical conductivity, stress relaxation resistance, bending workability, and castability are excellent.
From the above, according to the example of the present invention, the copper alloy for electronic / electric equipment and the copper alloy plastic working material for electronic / electric equipment excellent in conductivity, strength, bending workability, stress relaxation resistance and castability are obtained. It was confirmed that it could be provided.

Claims (9)

Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、
Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕+20×〔P〕<0.5
の関係を満たすとともに、導電率が75%IACS超えであることを特徴とする電子・電気機器用銅合金。
Mg is contained in the range of 0.15 mass% or more and less than 0.35 mass%, P is contained in the range of 0.0005 mass% or more and less than 0.01 mass%, and the balance consists of Cu and inevitable impurities,
Mg content [Mg] and P content [P] are in mass ratio,
[Mg] + 20 × [P] <0.5
And a copper alloy for electronic and electrical equipment, wherein the electrical conductivity exceeds 75% IACS.
Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕/〔P〕≦400
の関係を満たすことを特徴とする請求項1に記載の電子・電気機器用銅合金。
Mg content [Mg] and P content [P] are in mass ratio,
[Mg] / [P] ≦ 400
The copper alloy for electronic / electric equipment according to claim 1, wherein:
圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上であることを特徴とする請求項1又は請求項2に記載の電子・電気機器用銅合金。   The copper alloy for electronic / electric equipment according to claim 1 or 2, wherein a 0.2% yield strength when a tensile test is performed in a direction orthogonal to the rolling direction is 300 MPa or more. 残留応力率が150℃、1000時間で50%以上であることを特徴とする請求項1から請求項3のいずれか一項に記載の電子・電気機器用銅合金。   4. The copper alloy for electronic and electrical equipment according to claim 1, wherein the residual stress ratio is 50% or more at 1000 ° C. at 150 ° C. 5. 請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする電子・電気機器用銅合金塑性加工材。   A copper alloy plastic working material for electronic / electric equipment comprising the copper alloy for electronic / electric equipment according to any one of claims 1 to 4. 表面にSnめっき層又はAgめっき層を有することを特徴とする請求項5に記載の電子・電気機器用銅合金塑性加工材。   6. The copper alloy plastic working material for electronic / electric equipment according to claim 5, wherein the surface has an Sn plating layer or an Ag plating layer. 請求項5又は請求項6に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とする電子・電気機器用部品。   An electronic / electric equipment part comprising the copper alloy plastic working material for electronic / electric equipment according to claim 5. 請求項5又は請求項6に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とする端子。   A terminal comprising the copper alloy plastic working material for an electronic / electrical device according to claim 5 or 6. 請求項5又は請求項6に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とするバスバー。   A bus bar comprising the copper alloy plastic working material for electronic / electric equipment according to claim 5.
JP2015235096A 2015-09-09 2015-12-01 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars Active JP5910790B1 (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
JP2015235096A JP5910790B1 (en) 2015-12-01 2015-12-01 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
CN201680032194.0A CN107636179B (en) 2015-09-09 2016-09-08 Copper alloy for electronic and electrical equipment, copper alloy plastic working material for electronic and electrical equipment, module for electronic and electrical equipment, terminal, and bus bar
EP16844412.3A EP3243918B1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
SG11201705831UA SG11201705831UA (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
TW105129151A TWI665318B (en) 2015-09-09 2016-09-08 Copper alloy for electronic and electric device, plastically-worked copper alloy material for electronic and electric device, electronic and electric device, terminal and bus bar
PCT/JP2016/076456 WO2017043577A1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
MX2018001139A MX2018001139A (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar.
EP16844438.8A EP3348659B1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
KR1020177030943A KR102474714B1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
MX2017009888A MX2017009888A (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar.
US15/543,664 US10453582B2 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
KR1020177019315A KR101994015B1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
MYPI2017705078A MY196265A (en) 2015-09-09 2016-09-08 Copper Alloy for Electronic/Electrical Device, Copper Alloy Plastically-Worked Material For Electronic/Electrical Device, Component for Electronic/Electrical Device, Terminal, And Busbar
PCT/JP2016/076376 WO2017043556A1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
MX2018000330A MX2018000330A (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar.
MYPI2017705081A MY184755A (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
EP16844417.2A EP3348656B1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
SG11201710511UA SG11201710511UA (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
TW105129156A TWI740842B (en) 2015-09-09 2016-09-08 Copper alloy for electronic and electric device, plastically-worked copper alloy material for electronic and electric device, electronic and electric device, terminal and bus bar
MYPI2017702648A MY170901A (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
SG11201710361SA SG11201710361SA (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
CN201680032070.2A CN107614714B (en) 2015-09-09 2016-09-08 Copper alloy sheet for electronic/electrical equipment, copper alloy plastic working material for electronic/electrical equipment, module for electronic/electrical equipment, terminal, and bus bar
KR1020177030942A KR102474009B1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
PCT/JP2016/076362 WO2017043551A1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US15/737,642 US20180171437A1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
TW105129154A TWI701351B (en) 2015-09-09 2016-09-08 Copper alloy for electronic and electric device, plastically-worked copper alloy material for electronic and electric device, electronic and electric device, terminal and bus bar
CN201680008019.8A CN107208189B (en) 2015-09-09 2016-09-08 Copper alloy, copper alloy plastic working material, assembly, terminal, and bus bar
US15/741,148 US10676803B2 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
PH12017501348A PH12017501348A1 (en) 2015-09-09 2017-07-28 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal and busbar
PH12017502293A PH12017502293A1 (en) 2015-09-09 2017-12-13 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
PH12017502294A PH12017502294A1 (en) 2015-09-09 2017-12-13 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235096A JP5910790B1 (en) 2015-12-01 2015-12-01 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars

Publications (2)

Publication Number Publication Date
JP5910790B1 true JP5910790B1 (en) 2016-04-27
JP2017101283A JP2017101283A (en) 2017-06-08

Family

ID=55808167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235096A Active JP5910790B1 (en) 2015-09-09 2015-12-01 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars

Country Status (1)

Country Link
JP (1) JP5910790B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170733A1 (en) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
WO2017170699A1 (en) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP2018059132A (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component and heat radiation component
US11342631B2 (en) 2017-05-29 2022-05-24 Lg Energy Solution, Ltd. Battery module having a bus bar with a main frame and metal plates
US11655523B2 (en) 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680042B2 (en) * 2016-03-30 2020-04-15 三菱マテリアル株式会社 Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
JP6680041B2 (en) * 2016-03-30 2020-04-15 三菱マテリアル株式会社 Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
JP7443737B2 (en) 2019-12-10 2024-03-06 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311283A (en) * 1992-05-01 1993-11-22 Mitsubishi Shindoh Co Ltd Cu alloy extra fine wire excellent in wire drawability and repeated bendability
JP2007056297A (en) * 2005-08-23 2007-03-08 Dowa Holdings Co Ltd Cu-Mg-P COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP2011174127A (en) * 2010-02-24 2011-09-08 Mitsubishi Shindoh Co Ltd Cu-mg-p-based copper alloy bar stock and method for producing the same
JP2012007231A (en) * 2010-06-28 2012-01-12 Mitsubishi Shindoh Co Ltd Cu-Mg-P-BASED COPPER ALLOY BAR MATERIAL AND MANUFACTURING METHOD THEREFOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311283A (en) * 1992-05-01 1993-11-22 Mitsubishi Shindoh Co Ltd Cu alloy extra fine wire excellent in wire drawability and repeated bendability
JP2007056297A (en) * 2005-08-23 2007-03-08 Dowa Holdings Co Ltd Cu-Mg-P COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP2011174127A (en) * 2010-02-24 2011-09-08 Mitsubishi Shindoh Co Ltd Cu-mg-p-based copper alloy bar stock and method for producing the same
JP2012007231A (en) * 2010-06-28 2012-01-12 Mitsubishi Shindoh Co Ltd Cu-Mg-P-BASED COPPER ALLOY BAR MATERIAL AND MANUFACTURING METHOD THEREFOR

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170733A1 (en) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
WO2017170699A1 (en) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP2018059132A (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component and heat radiation component
WO2018066413A1 (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
US11342631B2 (en) 2017-05-29 2022-05-24 Lg Energy Solution, Ltd. Battery module having a bus bar with a main frame and metal plates
US11655523B2 (en) 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar

Also Published As

Publication number Publication date
JP2017101283A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6226097B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP5910790B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
WO2017043551A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
WO2017170699A1 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP6187629B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP6680041B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
CN107636179B (en) Copper alloy for electronic and electrical equipment, copper alloy plastic working material for electronic and electrical equipment, module for electronic and electrical equipment, terminal, and bus bar
JP7180101B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheet materials for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
KR102474009B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
WO2019189534A1 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP6680042B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
WO2017170733A1 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
WO2015087624A1 (en) Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
JP6187630B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP6311299B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JP6155407B1 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts, terminals, and bus bars
JP2013104095A (en) Copper alloy for electronic equipment, method of manufacturing copper alloy for electronic equipment, plastically worked material of copper alloy for electronic equipment, and component for electronic equipment
JP2014111810A (en) Copper alloy, copper alloy plastic processing material, component and terminal, for electronic and electrical equipment
JP6248386B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150