JP2012136726A - Cu-Ni-Si BASED COPPER ALLOY SHEET EXCELLENT IN FATIGUE RESISTANCE AND SPRING PROPERTY AFTER BENDING WORKING, AND METHOD OF MANUFACTURING THE SAME - Google Patents

Cu-Ni-Si BASED COPPER ALLOY SHEET EXCELLENT IN FATIGUE RESISTANCE AND SPRING PROPERTY AFTER BENDING WORKING, AND METHOD OF MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2012136726A
JP2012136726A JP2010288486A JP2010288486A JP2012136726A JP 2012136726 A JP2012136726 A JP 2012136726A JP 2010288486 A JP2010288486 A JP 2010288486A JP 2010288486 A JP2010288486 A JP 2010288486A JP 2012136726 A JP2012136726 A JP 2012136726A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
crystal grains
area
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010288486A
Other languages
Japanese (ja)
Other versions
JP5180283B2 (en
Inventor
Takeshi Sakurai
健 櫻井
Yoshio Abe
良雄 阿部
Akira Saito
晃 斉藤
Yoshihiro Kameyama
嘉裕 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010288486A priority Critical patent/JP5180283B2/en
Publication of JP2012136726A publication Critical patent/JP2012136726A/en
Application granted granted Critical
Publication of JP5180283B2 publication Critical patent/JP5180283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Ni-Si based copper alloy sheet which has excellent fatigue resistance and a spring property even if used at high temperature and high oscillation environment for a long time after bending working of a prescribed shape as a raw material as a relay movable piece, a socket terminal or the like of various electric parts.SOLUTION: The Cu-Ni-Si based copper alloy sheet includes 1.0-3.0 mass% of Ni; 1/6-1/4 concentration of Si based on Ni, and a rest consisting of Cu and inevitable impurities, wherein orientations of all pixel in a measured area of a surface are measured at 0.5 μm of a step size by an EBSD method, an area ratio of a crystal grain in which an average orientation difference among the all pixel in the crystal grain is less than 4° when a border in which an orientation difference between abutting pixel is at least 5° is made a crystal grain boundary is 45-55% of a measured area, an area average GAM of a crystal grain existing in an area to be measured is 0.8-1.6°, a number of a Ni-Si precipitated object particle in which a particle diameter exceeds 100 nm is 0.2-0.7 piece/μm, and a concentration of Si solid solved in a crystal grain is 0.1-0.4 mass%.

Description

本発明は、曲げ加工後の耐疲労特性及びばね特性に優れたCu−Ni−Si系銅合金板及びその製造方法に関し、特に詳しくは、各種電子部品の素材として所定形状に曲げ加工後に長時間に亘り高温及び高振動環境下で使用されても優れた耐疲労特性及びばね特性を有するCu−Ni−Si系銅合金及びその製造方法に関する。   The present invention relates to a Cu-Ni-Si-based copper alloy plate excellent in fatigue resistance and spring characteristics after bending and a method for manufacturing the same, and in particular, as a material for various electronic components, it is a long time after bending into a predetermined shape. The present invention relates to a Cu—Ni—Si based copper alloy having excellent fatigue resistance and spring characteristics even when used under high temperature and high vibration environments, and a method for producing the same.

近年の電子機器の軽薄短小化に伴い、リレー、端子、コネクタ等も小型化及び薄肉化が進行しており、それに使用される銅合金材料には、高強度と曲げ加工性が要求されている。
それに伴い、従来の燐青銅や黄銅といった固溶強化型銅合金に替わり、コルソン(Cu−Ni−Si系)合金、ベリリウム銅、チタン銅といった析出強化型銅合金の需要が増加している。
なかでも、コルソン合金は、ケイ化ニッケル化合物の銅に対する固溶限が温度によって著しく変化する合金で、焼き入れ・焼き戻しによって硬化する析出硬化型合金の一種であり、比較的安価で耐熱性や高温強度も良好で、強度と導電率のバランスにも優れ、導電用各種ばねや高抗張力用電線などに広く使用されており、最近では、リレー、端子、コネクタ等の電子部品に使用される頻度が高まっている。
一般に強度と曲げ加工性は相反する性質であり、コルソン合金においても、高い強度を維持しつつ、曲げ加工性を改善することが従来から研究されており、製造工程を調整し、結晶粒径、析出物の個数及び形状、集合組織を個々にあるいは相互に制御することで曲げ加工性を改善しようという取り組みが広く行われてきた。
最近では、コルソン合金を各種電子部品の素材として所定形状に曲げ加工後に長時間に亘り高温及び高振動環境下で使用されても優れた耐疲労特性及びばね特性を有するCu−Ni−Si系銅合金が求められている。
As electronic devices have become lighter and thinner in recent years, relays, terminals, connectors, etc. are also becoming smaller and thinner, and the copper alloy materials used for them are required to have high strength and bending workability. .
Accordingly, the demand for precipitation-strengthened copper alloys such as corson (Cu—Ni—Si) alloys, beryllium copper and titanium copper is increasing in place of conventional solid solution strengthened copper alloys such as phosphor bronze and brass.
Among them, the Corson alloy is an alloy in which the solid solubility limit of the nickel silicide compound with respect to copper changes remarkably with temperature, and is a kind of precipitation hardening type alloy that hardens by quenching and tempering. Good high-temperature strength, excellent balance between strength and electrical conductivity, widely used in various springs for electric conduction and electric wires for high tensile strength, and recently used in electronic parts such as relays, terminals, connectors, etc. Is growing.
Generally, strength and bending workability are contradictory properties, and in Corson alloys, it has been studied conventionally to improve bending workability while maintaining high strength, adjusting the manufacturing process, crystal grain size, There have been widespread efforts to improve bending workability by controlling the number, shape, and texture of precipitates individually or mutually.
Recently, Cu-Ni-Si based copper has excellent fatigue resistance and spring characteristics even when used in high temperature and high vibration environment for a long time after bending to a predetermined shape as a material for various electronic components. There is a need for alloys.

特許文献1には、コネクタ等の電子材料に利用される高強度銅合金であるCu−Ni− Si系合金の疲労特性の改良を目的として、質量百分率(%)に基づいて、Ni:1.0〜4.5%、Si:0.2〜1.2 %を含有し、残部がCuおよび不可避的不純物から成る銅合金であって、表面に20〜200MPaの圧縮残留応力が存在することを特徴とするCu−Ni −Si系合金が開示されている。
特許文献2には、導電性、強度を高く維持しながら、曲げ加工性および疲労特性を顕著に改善した電気・電子部品に好適な銅合金板材として、析出強化型銅合金の冷間圧延材にテンションレベラーで繰り返し曲げ加工を施すことにより、板厚方向1/8位置における平均硬さHs(HV)と板厚方向1/2位置における平均硬さHc(HV)が、(Hs−Hc)/Hc×100≦−5を満たすように、両表層部を中央部より軟質にした銅合金板材が開示されており、合金組成として、例えば質量%でNi:0 .4〜4 .8%、Si:0 .1〜1 .2% 、必要に応じてMg:0 .3%以下またはZn:15 % 以下を含み、さらに必要に応じてSn、Co、Cr、P、B、Al、Fe、Zr、Ti 、Mnの1 種以上を合計3%以下の範囲で含み、残部実質的にC u の組成が挙げられている。
特許文献3には、耐力が700N/mm以上、導電率が35%IACS以上、かつ曲げ加工性にも優れたコルソン(Cu−N−Si系)銅合金板が開示される。この銅合金板は、Ni:2.5%(質量%、以下同じ)以上6.0%未満、及びSi:0.5%以上1.5%未満を、NiとSiの質量比Ni/Siが4〜5の範囲となるように含み、さらにSn:0.01% 以上4% 未満を含み、残部がCu及び不可避的不純物からなり、平均結晶粒径が10μm以下、SEM−EBSP法による測定結果でCube方位{001}〈100〉の割合が50%以上である集合組織を有し、連続焼鈍により溶体化再結晶組織を得た後、加工率20%以下の冷間圧延及び400〜600℃×1〜8時間の時効処理を行い、続いて加工率1〜20%の最終冷間圧延後、400〜550℃×30秒以下の短時間焼鈍を行って製造される。
In Patent Document 1, for the purpose of improving the fatigue characteristics of a Cu—Ni—Si-based alloy, which is a high-strength copper alloy used for electronic materials such as connectors, Ni: 1. It is a copper alloy containing 0 to 4.5%, Si: 0.2 to 1.2%, the balance being Cu and inevitable impurities, and having a compressive residual stress of 20 to 200 MPa on the surface. A characteristic Cu—Ni—Si based alloy is disclosed.
Patent Document 2 discloses a precipitation-strengthening-type copper alloy cold rolled material as a copper alloy sheet suitable for electric and electronic parts with significantly improved bending workability and fatigue characteristics while maintaining high conductivity and strength. By repeatedly bending with a tension leveler, the average hardness Hs (HV) at the 1/8 position in the plate thickness direction and the average hardness Hc (HV) at the 1/2 position in the plate thickness direction are (Hs−Hc) / A copper alloy plate material in which both surface layer portions are softer than the center portion so as to satisfy Hc × 100 ≦ −5 is disclosed, and the alloy composition is, for example, Ni: 0.4 to 4.8% by mass, Si : 0.1-1.2%, if necessary Mg: 0.3% or less or Zn: 15% or less, further Sn, Co, Cr, P, B, Al, Fe, Zr as necessary , Ti, and Mn in a total range of 3% or less, Composition parts substantially C u are mentioned.
Patent Document 3 discloses a Corson (Cu—N—Si) copper alloy plate having a yield strength of 700 N / mm 2 or more, an electrical conductivity of 35% IACS or more, and excellent bending workability. This copper alloy plate has Ni: 2.5% (mass%, the same shall apply hereinafter) and less than 6.0%, and Si: 0.5% and less than 1.5%. In the range of 4 to 5, Sn: 0.01% or more and less than 4%, the balance is made of Cu and inevitable impurities, the average crystal grain size is 10 μm or less, and measurement by SEM-EBSP method As a result, after having a texture where the ratio of Cube orientation {001} <100> is 50% or more and obtaining a solution recrystallized structure by continuous annealing, cold rolling with a working rate of 20% or less and 400 to 600 It is manufactured by performing an aging treatment at 1 ° C. for 1 to 8 hours, followed by a short annealing at 400 to 550 ° C. for 30 seconds or less after the final cold rolling at a processing rate of 1 to 20%.

特開2005−48262号公報JP 2005-48262 A 特開2007−100145号公報JP 2007-1000014 A 特開2006−283059号公報JP 2006-283059 A

従来のCu−Ni−Si系のコルソン合金では、曲げ加工性、耐疲労特性、ばね特性等の改良はなされているが、各種電子部品のリレー可動片やソケット端子等の素材として所定形状に曲げ加工後、長時間に亘り高温及び高振動環境下で使用された際の、耐疲労特性及びばね特性が不十分であり、素材として信頼性に欠けるという欠点が見られた。
本発明は、この様な事情に鑑みてなされたものであり、各種電子部品のリレー可動片やソケット端子等の素材として所定形状に曲げ加工後に長時間に亘り高温及び高振動環境下で使用されても、優れた耐疲労特性及びばね特性を有するCu−Ni−Si系銅合金板及びその製造方法を提供することを目的とする。
Conventional Cu-Ni-Si-based Corson alloys have been improved in bending workability, fatigue resistance, spring characteristics, etc., but bent into a predetermined shape as a material for relay movable pieces and socket terminals of various electronic components. After processing, when used under a high temperature and high vibration environment for a long time, the fatigue resistance and the spring characteristics are insufficient, and there is a defect that the material is not reliable.
The present invention has been made in view of such circumstances, and is used under a high temperature and high vibration environment for a long time after being bent into a predetermined shape as a material such as a relay movable piece or socket terminal of various electronic components. However, an object of the present invention is to provide a Cu—Ni—Si based copper alloy sheet having excellent fatigue resistance and spring characteristics and a method for producing the same.

本発明者らは、上述の課題を解くべく鋭意検討の結果、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、残部がCu及び不可避的不純物からなるCu−Ni−Si系銅合金板において、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、測定面積の45〜55%であり、測定面積内に存在する結晶粒の面積平均GAMが0.8〜1.6°であり、電解放射型電子顕微鏡にて測定した粒径が100nmを超えるNi−Si析出物粒子の個数が0.2〜0.7個/μmであり、透過型電子顕微鏡にて測定した結晶粒内に固溶しているSiの濃度が0.1〜0.4質量%であると、曲げ加工後の耐疲労特性及びばね特性に優れた特性を発揮することを見出した。
また、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、測定面積内に存在する結晶粒の面積平均GAM、及び、透過型電子顕微鏡にて測定した結晶粒内に固溶しているSiの濃度は、曲げ加工後の耐疲労特性に大きく関与しており、双方が最適範囲内であることにより、優れた曲げ加工後の耐疲労特性を発揮できることを見出した。
また、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合、及び、電解放射型電子顕微鏡にて測定した結晶粒の粒径が100nmを超えるNi−Si析出物粒子の個数は、曲げ加工後のばね特性に大きく関与しており、双方が最適範囲内であることにより、優れた曲げ加工後のばね特性を発揮できることを見出した。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention contain 1.0 to 3.0% by mass of Ni and have a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni. In a Cu-Ni-Si based copper alloy plate containing Cu and the inevitable impurities in the balance, copper at a step size of 0.5 μm by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system When the orientation of all pixels within the measurement area of the surface of the alloy strip is measured, and a boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as a grain boundary, between all the pixels in the crystal grain The area ratio of the crystal grains whose average misorientation is less than 4 ° is 45 to 55% of the measurement area, and the area average GAM of the crystal grains existing in the measurement area is 0.8 to 1.6 °, N having a particle size of more than 100 nm as measured with an electro-luminescence electron microscope The number of -Si precipitates particles are 0.2 to 0.7 pieces / [mu] m 2, the concentration of Si in solid solution in the transmission-type crystal grains were measured by an electron microscope is 0.1 to 0.4 It has been found that when it is% by mass, it exhibits excellent fatigue resistance and bending properties after bending.
In addition, by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system, the orientation of all the pixels within the measurement area of the surface of the copper alloy strip is measured at a step size of 0.5 μm. When the boundary where the orientation difference is 5 ° or more is regarded as a grain boundary, the area average GAM of the crystal grains existing in the measurement area and the solid solution in the crystal grains measured by the transmission electron microscope It has been found that the concentration of Si greatly contributes to the fatigue resistance after bending, and that both of them are within the optimum range, thereby exhibiting excellent fatigue resistance after bending.
In addition, the entire boundary within a crystal grain when a boundary where the orientation difference between adjacent pixels is 5 ° or more measured by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system is regarded as a crystal grain boundary. The area ratio of crystal grains having an average orientation difference between pixels of less than 4 °, and the number of Ni—Si precipitate particles having a grain diameter of more than 100 nm as measured with an electrolytic emission electron microscope are bent. It was found that the spring characteristics after bending were able to be exhibited by being greatly involved in the later spring characteristics and both being within the optimum range.

更に、本発明のCu−Ni−Si系銅合金板を、熱間圧延、冷間圧延、溶体化処理、時効処理、最終冷間圧延、テンションレベリング、歪み取り焼鈍をこの順序で含む工程で銅合金板を製造するに際して、上述の測定面積内に存在する結晶粒の面積平均GAMは、基本的に歪み取り焼鈍工程の温度及び時間により影響され、上述の結晶粒内に固溶しているSiの濃度は、基本的に溶体化処理工程の温度及び時間により影響され、上述の結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合は、テンションレベリング工程の張力により影響され、上述の結晶粒の粒径が100nmを超えるNi−Si析出物粒子の個数は、時効処理工程の温度及び時間により影響されることを見出した。   Further, the Cu-Ni-Si-based copper alloy sheet of the present invention is subjected to a process including hot rolling, cold rolling, solution treatment, aging treatment, final cold rolling, tension leveling, and strain relief annealing in this order. When manufacturing the alloy plate, the area average GAM of the crystal grains existing in the above-mentioned measurement area is basically influenced by the temperature and time of the strain relief annealing process, and is dissolved in the above-mentioned crystal grains. The concentration of is basically affected by the temperature and time of the solution treatment process, and the area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° is the tension in the tension leveling process. It has been found that the number of Ni—Si precipitate particles having a crystal grain size exceeding 100 nm is influenced by the temperature and time of the aging treatment step.

これらの知見より、本発明の曲げ加工後の耐疲労特性及びばね特性に優れたCu−Ni−Si系銅合金板は、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、残部がCu及び不可避的不純物からなり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、前記測定面積内に存在する結晶粒の面積平均GAMが0.8〜1.6°であり、電解放射型電子顕微鏡にて測定した粒径が100nmを超えるNi−Si析出物粒子の個数が0.2〜0.7個/μmであり、透過型電子顕微鏡にて測定した結晶粒内に固溶しているSiの濃度が0.1〜0.4質量%であることを特徴とする。 From these findings, the Cu-Ni-Si-based copper alloy plate excellent in fatigue resistance and spring characteristics after bending according to the present invention contains 1.0 to 3.0 mass% Ni, and the mass of Ni It contains Si at a concentration of 1/6 to 1/4 with respect to the% concentration, the balance is made of Cu and inevitable impurities, and the step size is 0 by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. When measuring the orientation of all the pixels within the measurement area of the surface at 5 μm and considering the boundary where the orientation difference between adjacent pixels is 5 ° or more as the grain boundary, between all the pixels in the crystal grain The area ratio of crystal grains having an average misorientation of less than 4 ° is 45 to 55% of the measurement area, and the area average GAM of crystal grains existing in the measurement area is 0.8 to 1.6 °. Yes, the particle size measured with an electrolytic emission electron microscope is 100 nm. The number of excess Ni-Si precipitate particles is 0.2 to 0.7 pieces / [mu] m 2, the concentration of Si in solid solution in the transmission-type crystal grains were measured by an electron microscope is from 0.1 to 0 .4 mass%.

Ni及びSiは、適切な熱処理を行うことにより、NiSiを主とする金属間化合物の微細な粒子を形成する。その結果、合金の強度が著しく増加し、同時に電気伝導性も上昇する。
Niは1.0〜3.0質量%、好ましくは、1.5〜2.5質量%の範囲で添加する。Niが1.0質量%未満であると充分な強度が得られない。Niが3.0質量%を超えると熱間割れが発生する。Siの添加濃度(質量%)は、Niの添加濃度(質量%)の1/6〜1/4とする。Si添加濃度がNi添加濃度の1/6より少ないと強度が低下し、Ni添加濃度の1/4より多いと強度に寄与しないばかりでなく、過剰なSiによって導電性が低下する。
結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が45%未満、或いは、55%を超えると十分なばね特性効果が得られない。
測定面積内に存在する結晶粒の面積平均GAMが0.8°未満では、十分な疲労特性効果が得られず、また引張強度の低下を来たす。1.6°を超えると、疲労特性効果の低下を来たす。
粒径が100nmを超えるNi−Si析出物粒子の個数が0.2個/μm未満であると、ばね特性効果の低下と共に引張強度の低下を来たし、0.7個/μmを超えると、十分なばね特性効果が得られない。
結晶粒内に固溶しているSiの濃度が0.1質量%未満では、疲労特性効果の低下と共に引張強度の低下を来たし、0.4質量%を超えると、疲労特性効果の低下と共に亀裂が生じ易くなる。
Ni and Si form fine particles of an intermetallic compound mainly composed of Ni 2 Si by performing an appropriate heat treatment. As a result, the strength of the alloy is significantly increased and at the same time the electrical conductivity is increased.
Ni is added in the range of 1.0 to 3.0% by mass, preferably 1.5 to 2.5% by mass. If Ni is less than 1.0% by mass, sufficient strength cannot be obtained. When Ni exceeds 3.0 mass%, a hot crack will generate | occur | produce. The addition concentration (mass%) of Si is 1/6 to 1/4 of the addition concentration (mass%) of Ni. If the Si addition concentration is less than 1/6 of the Ni addition concentration, the strength is reduced. If the Si addition concentration is more than 1/4 of the Ni addition concentration, not only does not contribute to the strength, but the conductivity is reduced due to excessive Si.
If the area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° is less than 45% or exceeds 55%, a sufficient spring characteristic effect cannot be obtained.
If the area average GAM of the crystal grains present in the measurement area is less than 0.8 °, sufficient fatigue characteristic effects cannot be obtained, and the tensile strength is lowered. If it exceeds 1.6 °, the fatigue property effect will be reduced.
When the number of Ni-Si precipitate particles having a particle size of more than 100 nm is less than 0.2 / μm 2 , the tensile strength decreases with a decrease in the spring characteristic effect, and when the number exceeds 0.7 / μm 2. A sufficient spring characteristic effect cannot be obtained.
If the concentration of Si dissolved in the crystal grains is less than 0.1% by mass, the fatigue property effect decreases and the tensile strength decreases. If it exceeds 0.4% by mass, the fatigue property effect decreases and cracking occurs. Is likely to occur.

また、本発明のCu−Ni−Si系銅合金は、更にSnを0.2〜0.8質量%、Znを0.3〜1.5質量%含有してもよい。
Sn及びZnには、強度及び耐熱性を改善する作用があり、更にSnには耐応力緩和特性の改善作用が、Znには、はんだ接合の耐熱性を改善する作用がある。Snは0.2〜0.8質量%、Znは0.3〜1.5質量%の範囲で添加する。前述の範囲を下回ると所望の効果が得られず、上回ると導電性が低下する。
Moreover, the Cu—Ni—Si based copper alloy of the present invention may further contain 0.2 to 0.8 mass% of Sn and 0.3 to 1.5 mass% of Zn.
Sn and Zn have an effect of improving strength and heat resistance, Sn has an effect of improving stress relaxation resistance, and Zn has an effect of improving heat resistance of solder joints. Sn is added in the range of 0.2 to 0.8 mass%, and Zn is added in the range of 0.3 to 1.5 mass%. If it is below the above range, the desired effect cannot be obtained, and if it exceeds, the conductivity is lowered.

更に、本発明のCu−Ni−Si系銅合金は、更にMgを0.001〜0.2質量%含有してもよい。
Mgには応力緩和特性及び熱間加工性を改善する効果があるが、0.2質量%を超えると鋳造性(鋳肌品質の低下)、熱間加工性及びめっき耐熱剥離性が低下する。
Furthermore, the Cu—Ni—Si based copper alloy of the present invention may further contain 0.001 to 0.2 mass% of Mg.
Mg has the effect of improving the stress relaxation characteristics and hot workability, but if it exceeds 0.2% by mass, the castability (decrease in casting surface quality), hot workability, and plating heat-resistant peelability deteriorate.

更に、本発明のCu−Ni−Si系銅合金は、更にFe:0.007〜0.25質量%、P:0.001〜0.2質量%、C:0.0001〜0.001質量%、Cr:0.001〜0.3質量%、Zr:0.001〜0.3質量%を1種又は2種以上を含有してもよい。
Feには、熱間圧延性を向上させる効果(表面割れや耳割れの発生を抑制する効果)およびNiとSiの化合物析出を微細化し、よってメッキ加熱密着性を向上させる効果等を通じて、コネクタの信頼性を高める作用があるが、その含有量が0.007%未満では上記作用に所望の効果が得られず、一方、その含有量が0.25%を越えると熱間圧延性効果が飽和し、むしろ低下傾向が現われるようになると共に、導電性にも悪影響を及ぼすようになることから、その含有量を0.007〜0.25%と定めた。
Pには、曲げ加工によって起るばね性の低下を抑制し、よって成型加工して得たコネクタの挿抜特性を向上させる作用および耐マイグレーション特性を向上させる作用があるが、その含有量が0.001%未満では所望の効果が得られず、一方、その含有量が0.2%を越えると、はんだ耐熱剥離性を著しく損なうようになることから、その含有量を0.001〜0.2%と定めた。
Cには、打抜き加工性を向上させる作用があり、さらにNiとSiの化合物を微細化させることにより合金の強度を向上させる作用があるが、その含有量が0.0001%未満では所望の効果が得られず、一方、0.001%を越えて含有すると熱間加工性に悪い影響を与えるので好ましくない。したがって、C含有量は0.0001〜0.001%に定めた。
CrおよびZrには、Cとの親和力が強くCu合金中にCを含有させ易くするほか、NiおよびSiの化合物を一層微細化して合金の強度を向上させる作用およびそれ自身の析出によって強度を一層向上させる作用を有するが、CrおよびZrのうちの1種または2種の含有量が0.001%未満含有されていても合金の強度向上効果が得られず、一方、0.3%を越えて含有するとCrおよび/またはZrの大きな析出物が生成し、そのためにめっき性が悪くなり、打抜き加工性も悪くなるとともにさらに熱間加工性が損われるようになるので好ましくない。したがって、CrおよびZrのうちの1種または2種の含有量は0.001〜0.3%に定めた。
Furthermore, the Cu—Ni—Si based copper alloy of the present invention is further Fe: 0.007 to 0.25 mass%, P: 0.001 to 0.2 mass%, and C: 0.0001 to 0.001 mass. %, Cr: 0.001 to 0.3 mass%, Zr: 0.001 to 0.3 mass%, or one or more of them may be contained.
Fe has the effect of improving the hot rolling property (the effect of suppressing the occurrence of surface cracks and ear cracks) and the effect of minimizing the Ni and Si compound precipitation, thereby improving the plating heat adhesion. Although there is an action to increase the reliability, if the content is less than 0.007%, a desired effect cannot be obtained in the above action. On the other hand, if the content exceeds 0.25%, the hot rolling effect is saturated. However, since the decreasing tendency appears and the conductivity is adversely affected, the content is determined to be 0.007 to 0.25%.
P has an effect of suppressing a decrease in spring property caused by bending, thereby improving an insertion / extraction characteristic of a connector obtained by molding and an effect of improving migration resistance. If the content is less than 001%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.2%, the heat resistance peelability of the solder is remarkably impaired. %.
C has an effect of improving punching workability, and further has an effect of improving the strength of the alloy by refining a compound of Ni and Si. However, when the content is less than 0.0001%, the desired effect is obtained. On the other hand, if the content exceeds 0.001%, the hot workability is adversely affected. Therefore, the C content is set to 0.0001 to 0.001%.
Cr and Zr have a strong affinity for C and make it easy to contain C in the Cu alloy. In addition, Ni and Si compounds are further refined to improve the strength of the alloy and by precipitation of the alloy itself, the strength is further increased. Although it has an action to improve, even if the content of one or two of Cr and Zr is less than 0.001%, the effect of improving the strength of the alloy cannot be obtained, while it exceeds 0.3% If it is contained, a large precipitate of Cr and / or Zr is generated, which results in poor plating properties, poor punching workability, and further deteriorates hot workability. Therefore, the content of one or two of Cr and Zr is set to 0.001 to 0.3%.

更に、本発明の曲げ加工後の耐疲労特性及びばね特性に優れたCu−Ni−Si系銅合金板の製造方法は、熱間圧延、冷間圧延、溶体化処理、時効処理、最終冷間圧延、テンションレベリング、歪み取り焼鈍をこの順序で含む工程で銅合金板を製造するに際して、溶体化処理を700〜900℃で60〜120秒間にて実施し、時効処理を400〜500℃で7〜14時間にて実施し、テンションレベリングを49〜147N/mmの張力にて実施し、歪み取り焼鈍を450〜550℃で10〜60秒にて実施することを特徴とする。
歪み取り焼鈍を450〜550℃で10〜60秒にて実施することにより、測定面積内に存在する結晶粒の面積平均GAMが0.8〜1.6°の範囲内となり、溶体化処理を700〜900℃で60〜120秒間にて実施することにより、結晶粒内に固溶しているSiの濃度が0.1〜0.4質量%の範囲内となり、曲げ加工後の優れた耐疲労特性が発揮されることになる。
Furthermore, the manufacturing method of the Cu-Ni-Si-based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending according to the present invention includes hot rolling, cold rolling, solution treatment, aging treatment, and final cold. When producing a copper alloy sheet in a process including rolling, tension leveling, and strain relief annealing in this order, solution treatment is performed at 700 to 900 ° C. for 60 to 120 seconds, and aging treatment is performed at 400 to 500 ° C. It is carried out in ˜14 hours, tension leveling is carried out at a tension of 49 to 147 N / mm 2 , and strain relief annealing is carried out at 450 to 550 ° C. in 10 to 60 seconds.
By carrying out strain relief annealing at 450 to 550 ° C. for 10 to 60 seconds, the area average GAM of the crystal grains existing in the measurement area becomes within the range of 0.8 to 1.6 °, and the solution treatment is performed. By carrying out at 700 to 900 ° C. for 60 to 120 seconds, the concentration of Si dissolved in the crystal grains is in the range of 0.1 to 0.4% by mass, and excellent resistance to bending after bending. The fatigue characteristics will be exhibited.

歪み取り焼鈍の温度が450℃未満、或いは、時間が10秒未満では、測定面積内に存在する結晶粒の面積平均GAMが1.6°を超え、温度が550℃を超える、或いは、時間が60秒を超えると、結晶粒の面積平均GAMが0.8°未満となる。
溶体化処理の温度が700℃未満、或いは、時間が60秒未満では、結晶粒内に固溶しているSiの濃度が0.1%未満となり、温度が900℃を超える、或いは、時間が120秒を超えると、Siの濃度が0.4%を超える。
テンションレベリングの張力を49〜147N/mm(5〜15kgf/mm)にて実施することにより、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が45〜55%の範囲内となり、時効処理を400〜500℃で7〜14時間にて実施することにより、測定面積内に存在する結晶粒の粒径が100nmを超えるNi−Si析出物粒子の個数が0.2〜0.7個/μmの範囲内となり、曲げ加工後の優れたばね特性が発揮されることになる。
テンションレベリングの張力が49N/mm(5kgf/mm)未満では、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が55%を超え、147N/mm(15kgf/mm)を超えると結晶粒の面積割合が45%未満となる。
時効処理の温度が400℃未満、或いは、時間が7時間未満では、測定面積内に存在する結晶粒の粒径が100nmを超えるNi−Si析出物粒子の個数が0.2個/μm未満となり、温度が500℃、或いは、時間が14時間を超えると、個数が0.7個/μmを超える。
When the temperature of strain relief annealing is less than 450 ° C. or when the time is less than 10 seconds, the area average GAM of the grains existing in the measurement area exceeds 1.6 ° and the temperature exceeds 550 ° C. or the time If it exceeds 60 seconds, the area average GAM of the crystal grains becomes less than 0.8 °.
If the solution treatment temperature is less than 700 ° C. or the time is less than 60 seconds, the concentration of Si dissolved in the crystal grains is less than 0.1%, and the temperature exceeds 900 ° C. or the time If it exceeds 120 seconds, the Si concentration exceeds 0.4%.
By carrying out the tension leveling tension at 49 to 147 N / mm 2 (5 to 15 kgf / mm 2 ), the area ratio of crystal grains having an average orientation difference between all pixels in the crystal grains of less than 4 ° is 45. The number of Ni—Si precipitate particles in which the grain size of the crystal grains existing within the measurement area exceeds 100 nm by performing the aging treatment at 400 to 500 ° C. for 7 to 14 hours within the range of ˜55%. Is in the range of 0.2 to 0.7 pieces / μm 2 , and excellent spring characteristics after bending are exhibited.
When the tension of the tension leveling is less than 49 N / mm 2 (5 kgf / mm 2 ), the area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° exceeds 55%, and 147 N / mm 2 If it exceeds (15 kgf / mm 2 ), the area ratio of crystal grains becomes less than 45%.
When the temperature of the aging treatment is less than 400 ° C. or the time is less than 7 hours, the number of Ni—Si precipitate particles having a grain size exceeding 100 nm in the measurement area is less than 0.2 / μm 2. When the temperature is 500 ° C. or the time exceeds 14 hours, the number exceeds 0.7 / μm 2 .

本発明により、各種電子部品のリレー可動片やソケット端子等の素材として所定形状に曲げ加工後に、長時間に亘り高温及び高振動環境下で使用されても優れた耐疲労特性及びばね特性を有するCu−Ni−Si系銅合金板を得ることができる。   According to the present invention, it has excellent fatigue resistance and spring characteristics even when used in a high temperature and high vibration environment for a long time after bending into a predetermined shape as a material for relay movable pieces and socket terminals of various electronic components. A Cu—Ni—Si based copper alloy plate can be obtained.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

[銅合金条の成分組成]
本発明の銅合金条材は、質量%で、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、残部がCu及び不可避的不純物である組成を有する。
Ni及びSiは、適切な熱処理を行うことにより、NiSiを主とする金属間化合物の微細な粒子を形成する。その結果、合金の強度が著しく増加し、同時に電気伝導性も上昇する。
Niは1.0〜3.0質量%、好ましくは、1.5〜2.5質量%の範囲で添加する。Niが1.0質量%未満であると充分な強度が得られない。Niが3.0質量%を超えると熱間割れが発生する。Siの添加濃度(質量%)は、Niの添加濃度(質量%)の1/6〜1/4とする。Si添加濃度がNi添加濃度の1/6より少ないと強度が低下し、Ni添加濃度の1/4より多いと強度に寄与しないばかりでなく、過剰なSiによって導電性が低下する。
[Component composition of copper alloy strip]
The copper alloy strip of the present invention is 1.0% by mass and contains 1.0 to 3.0% by mass of Ni, and contains Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni. The balance is Cu and inevitable impurities.
Ni and Si form fine particles of an intermetallic compound mainly composed of Ni 2 Si by performing an appropriate heat treatment. As a result, the strength of the alloy is significantly increased and at the same time the electrical conductivity is increased.
Ni is added in the range of 1.0 to 3.0% by mass, preferably 1.5 to 2.5% by mass. If Ni is less than 1.0% by mass, sufficient strength cannot be obtained. When Ni exceeds 3.0 mass%, a hot crack will generate | occur | produce. The addition concentration (mass%) of Si is 1/6 to 1/4 of the addition concentration (mass%) of Ni. If the Si addition concentration is less than 1/6 of the Ni addition concentration, the strength is reduced. If the Si addition concentration is more than 1/4 of the Ni addition concentration, not only does not contribute to the strength, but the conductivity is reduced due to excessive Si.

また、この銅合金は、上記の基本組成に対して、更にSnを0.2〜0.8質量%、Znを0.3〜1.5質量%含有しても良い。
Sn及びZnには、強度及び耐熱性を改善する作用があり、更にSnには耐応力緩和特性の改善作用が、Znには、はんだ接合の耐熱性を改善する作用がある。Snは0.2〜0.8質量%、Znは0.3〜1.5質量%の範囲で添加する。前述の範囲を下回ると所望の効果が得られず、上回ると導電性が低下する。
Moreover, this copper alloy may contain Sn 0.2-0.8 mass% and Zn 0.3-1.5 mass% further with respect to said basic composition.
Sn and Zn have an effect of improving strength and heat resistance, Sn has an effect of improving stress relaxation resistance, and Zn has an effect of improving heat resistance of solder joints. Sn is added in the range of 0.2 to 0.8 mass%, and Zn is added in the range of 0.3 to 1.5 mass%. If it is below the above range, the desired effect cannot be obtained, and if it exceeds, the conductivity is lowered.

また、この銅合金は、上記の基本組成に対して、更にMgを0.001〜0.2質量%含有しても良い。Mgには、応力緩和特性及び熱間加工性を改善する効果があり、0.001〜0.2質量%の範囲で添加する。0.2質量%を超えると鋳造性(鋳肌品質の低下)、熱間加工性及びめっき耐熱剥離性が低下する。   Moreover, this copper alloy may contain 0.001-0.2 mass% of Mg further with respect to said basic composition. Mg has an effect of improving stress relaxation characteristics and hot workability, and is added in the range of 0.001 to 0.2 mass%. When it exceeds 0.2% by mass, castability (decrease in casting surface quality), hot workability, and plating heat resistance peelability are deteriorated.

また、この銅合金は、上記の基本組成に対して、更にFe:0.007〜0.25質量%、P:0.001〜0.2質量%、C:0.0001〜0.001質量%、Cr:0.001〜0.3質量%、Zr:0.001〜0.3質量%を1種又は2種以上を含有しても良い。
Feには、熱間圧延性を向上させる効果(表面割れや耳割れの発生を抑制する効果)およびNiとSiの化合物析出を微細化し、よってメッキ加熱密着性を向上させる効果等を通じて、コネクタの信頼性を高める作用があるが、その含有量が0.007%未満では上記作用に所望の効果が得られず、一方、その含有量が0.25%を越えると熱間圧延性効果が飽和し、むしろ低下傾向が現われるようになると共に、導電性にも悪影響を及ぼすようになることから、その含有量を0.007〜0.25%と定めた。
Pには、曲げ加工によって起るばね性の低下を抑制し、よって成型加工して得たコネクタの挿抜特性を向上させる作用および耐マイグレーション特性を向上させる作用があるが、その含有量が0.001%未満では所望の効果が得られず、一方、その含有量が0.2%を越えると、はんだ耐熱剥離性を著しく損なうようになることから、その含有量を0.001〜0.2%と定めた。
Cには、打抜き加工性を向上させる作用があり、さらにNiとSiの化合物を微細化させることにより合金の強度を向上させる作用があるが、その含有量が0.0001%未満では所望の効果が得られず、一方、0.001%を越えて含有すると熱間加工性に悪い影響を与えるので好ましくない。したがって、C含有量は0.0001〜0.001%に定めた。
CrおよびZrには、Cとの親和力が強くCu合金中にCを含有させ易くするほか、NiおよびSiの化合物を一層微細化して合金の強度を向上させる作用およびそれ自身の析出によって強度を一層向上させる作用を有するが、CrおよびZrのうちの1種または2種の含有量が0.001%未満含有されていても合金の強度向上効果が得られず、一方、0.3%を越えて含有するとCrおよび/またはZrの大きな析出物が生成し、そのためにめっき性が悪くなり、打抜き加工性も悪くなるとともにさらに熱間加工性が損われるようになるので好ましくない。したがって、CrおよびZrのうちの1種または2種の含有量は0.001〜0.3%に定めた。
Moreover, this copper alloy is further Fe: 0.007-0.25 mass%, P: 0.001-0.2 mass%, C: 0.0001-0.001 mass with respect to said basic composition. %, Cr: 0.001 to 0.3 mass%, Zr: 0.001 to 0.3 mass%, or one or more of them may be contained.
Fe has the effect of improving the hot rolling property (the effect of suppressing the occurrence of surface cracks and ear cracks) and the effect of minimizing the Ni and Si compound precipitation, thereby improving the plating heat adhesion. Although there is an action to increase the reliability, if the content is less than 0.007%, a desired effect cannot be obtained in the above action. On the other hand, if the content exceeds 0.25%, the hot rolling effect is saturated. However, since the decreasing tendency appears and the conductivity is adversely affected, the content is determined to be 0.007 to 0.25%.
P has an effect of suppressing a decrease in spring property caused by bending, thereby improving an insertion / extraction characteristic of a connector obtained by molding and an effect of improving migration resistance. If the content is less than 001%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.2%, the heat resistance peelability of the solder is remarkably impaired. %.
C has an effect of improving punching workability, and further has an effect of improving the strength of the alloy by refining a compound of Ni and Si. However, when the content is less than 0.0001%, the desired effect is obtained. On the other hand, if the content exceeds 0.001%, the hot workability is adversely affected. Therefore, the C content is set to 0.0001 to 0.001%.
Cr and Zr have a strong affinity for C and make it easy to contain C in the Cu alloy. In addition, Ni and Si compounds are further refined to improve the strength of the alloy and by precipitation of the alloy itself, the strength is further increased. Although it has an action to improve, even if the content of one or two of Cr and Zr is less than 0.001%, the effect of improving the strength of the alloy cannot be obtained, while it exceeds 0.3% If it is contained, a large precipitate of Cr and / or Zr is generated, which results in poor plating properties, poor punching workability, and further deteriorates hot workability. Therefore, the content of one or two of Cr and Zr is set to 0.001 to 0.3%.

[銅合金板の合金組織]
本発明のCu−Ni−Si系銅合金板は、合金組織中の後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて銅合金板の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、測定面積の45〜55%であり、測定面積内に存在する結晶粒の面積平均GAMが0.8〜1.6°であり、電解放射型電子顕微鏡にて測定した粒径が100nmを超えるNi−Si析出物粒子の個数が0.2〜0.7個/μmであり、透過型電子顕微鏡にて測定した結晶粒内に固溶しているSiの濃度が0.1〜0.4質量%であり、曲げ加工後の耐疲労特性及びばね特性に優れている。
[Alloy structure of copper alloy sheet]
The Cu—Ni—Si copper alloy plate of the present invention is measured on the surface of a copper alloy plate at a step size of 0.5 μm by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system in the alloy structure. When the orientation of all pixels in the area is measured and the boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as the grain boundary, the average orientation difference between all the pixels in the crystal grain is less than 4 ° The area ratio of the crystal grains is 45 to 55% of the measurement area, the area average GAM of the crystal grains existing in the measurement area is 0.8 to 1.6 °, and an electrolytic emission electron microscope The number of Ni—Si precipitate particles having a measured particle size exceeding 100 nm is 0.2 to 0.7 / μm 2 , and the Si particles dissolved in the crystal grains measured with a transmission electron microscope Concentration is 0.1-0.4% by mass, fatigue resistance after bending And it has excellent spring characteristics.

[結晶粒の面積割合、面積平均GAM、Ni−Si析出物粒子の個数、結晶粒内に固溶しているSiの濃度]
EBSD法によるステップサイズ0.5μmにて銅合金板の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合は、次の様に測定した。
前処理として、圧延材から採取した10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、TSL社製EBSDシステム付きの日立ハイテクノロジーズ社製走査型電子顕微鏡S−3400Nでその試料表面を観察した。観察条件は、加速電圧25kV、測定面積150μm×150μm(結晶粒を5000個以上含む)とした。
観察結果より、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の全測定面積に対する面積割合は次の条件にて求めた。
ステップサイズ0.5μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした。次に、結晶粒界で囲まれた個々の結晶粒について、結晶粒内の全ピクセル間の方位差の平均値(GOS:Grain Orientation Spread)を(1)式にて計算し、平均値が4°未満の結晶粒の面積を算出し、それを全測定面積で除して、全結晶粒に占める結晶粒内の平均方位差が4°未満の結晶粒の面積の割合を求めた。なお、2ピクセル以上が連結しているものを結晶粒とした。
[Area ratio of crystal grains, area average GAM, number of Ni-Si precipitate particles, concentration of Si dissolved in crystal grains]
When the orientation of all pixels within the measurement area of the surface of the copper alloy plate is measured at a step size of 0.5 μm by the EBSD method, and the boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as a grain boundary The area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° was measured as follows.
As a pretreatment, a 10 mm × 10 mm sample taken from a rolled material is immersed in 10% sulfuric acid for 10 minutes, then washed with water and sprinkled by air blow, and then the water sprayed sample is a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation. The surface treatment was performed at an acceleration voltage of 5 kV, an incident angle of 5 °, and an irradiation time of 1 hour.
Next, the sample surface was observed with a scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation equipped with an EBSD system manufactured by TSL. The observation conditions were an acceleration voltage of 25 kV and a measurement area of 150 μm × 150 μm (including 5000 or more crystal grains).
From the observation results, the area ratio with respect to the total measurement area of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° was obtained under the following conditions.
At a step size of 0.5 μm, the orientation of all pixels within the measurement area range was measured, and a boundary where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary. Next, for each crystal grain surrounded by the crystal grain boundary, an average value (GOS: Grain Orientation Spread) of orientation differences between all the pixels in the crystal grain is calculated by the equation (1), and the average value is 4 The area of the crystal grains of less than 0 ° was calculated and divided by the total measured area, and the ratio of the area of the crystal grains having an average orientation difference within the crystal grains of less than 4 ° to the total crystal grains was determined. In addition, what connected 2 pixels or more was made into the crystal grain.

Figure 2012136726
Figure 2012136726

上式において、i、jは結晶粒内のピクセルの番号を示す。
nは結晶粒内のピクセル数を示す。
αijはピクセルiとjの方位差を示す。
In the above formula, i and j indicate the numbers of pixels in the crystal grains.
n indicates the number of pixels in the crystal grains.
α ij represents the difference in orientation between pixels i and j.

測定面積内に存在する結晶粒の面積平均GAMは、次のようにして求めた。
前処理として、圧延材から採取した10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、TSL社製EBSDシステム付きの日立ハイテクノロジーズ社製走査型電子顕微鏡S−3400Nでその試料表面を観察した。観察条件は、加速電圧25kV、測定面積150μm×150μm(結晶粒を5000個以上含む)とした。
観察結果より、測定面積内に存在する結晶粒の面積平均GAMは、次の条件にて求めた。
ステップサイズ0.5μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした。
GAMは同一結晶粒内における隣接する測定点(ピクセル)間のミスオリエンテーションの平均値であり、隣接測定点の境界iにおける方位差を(2)式とすると、結晶粒内にピクセル間の境界がm個存在する場合、この結晶粒のGAM値は(3)式で表わされる。
The area average GAM of the crystal grains existing within the measurement area was determined as follows.
As a pretreatment, a 10 mm × 10 mm sample taken from a rolled material is immersed in 10% sulfuric acid for 10 minutes, then washed with water and sprinkled by air blow, and then the water sprayed sample is a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation. The surface treatment was performed at an acceleration voltage of 5 kV, an incident angle of 5 °, and an irradiation time of 1 hour.
Next, the sample surface was observed with a scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation equipped with an EBSD system manufactured by TSL. The observation conditions were an acceleration voltage of 25 kV and a measurement area of 150 μm × 150 μm (including 5000 or more crystal grains).
From the observation results, the area average GAM of the crystal grains existing within the measurement area was determined under the following conditions.
At a step size of 0.5 μm, the orientation of all pixels within the measurement area range was measured, and a boundary where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary.
GAM is the average value of misorientation between adjacent measurement points (pixels) in the same crystal grain. When the difference in orientation at the boundary i between adjacent measurement points is expressed by equation (2), the boundary between pixels in the crystal grain is When m exist, the GAM value of this crystal grain is expressed by the equation (3).

Figure 2012136726
Figure 2012136726

Figure 2012136726
Figure 2012136726

個々の結晶粒におけるGAMの値を(GAM)、各結晶粒の面積をSとすると、測定範囲内にM個の結晶粒が存在する場合、面積平均GAMは(4)式で表される。 When the value of the GAM in individual grains (GAM) k, the area of each crystal grain and S k, if there are M grain within the measurement range, area average GAM is expressed by equation (4) The

Figure 2012136726
Figure 2012136726

電解放射型電子顕微鏡による粒径が100nmを超えるNi−Si析出物粒子の個数、及び、結晶粒内に固溶しているSiの濃度は、次の様に測定した。
前処理として、10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、日立ハイテクノロジーズ社製電解放射型電子顕微鏡S−4800を使用し、2万倍にてその試料の圧延方向垂直断面の表面より深さ10μm、30μm、80μmの各地点を観察し、各々の100μm中の粒径が100nmを超えるNi−Si析出物粒子の個数をカウントして個数/μmに換算し、その平均値を求めた。
透過型電子顕微鏡による結晶粒内に固溶しているSiの濃度は、次のようにして求めた。
日本電子社製透過型電子顕微鏡JEM−2010Fを使用し、5万倍にてその試料の圧延方向垂直断面の表面より深さ10μm、30μm.80μmの各地点の結晶粒内に固溶している各々のSiの濃度を観察し、その平均値を求めた。
The number of Ni—Si precipitate particles having a particle diameter exceeding 100 nm and the concentration of Si dissolved in the crystal grains were measured as follows using an electrolytic emission electron microscope.
As a pretreatment, a 10 mm × 10 mm sample was immersed in 10% sulfuric acid for 10 minutes, washed with water and sprinkled with air blow, and the sprinkled sample was accelerating with a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation at an acceleration voltage of 5 kV. The surface treatment was performed at an incident angle of 5 ° and an irradiation time of 1 hour.
Next, using an electrolytic emission electron microscope S-4800 manufactured by Hitachi High-Technologies Corp., each point of 10 μm, 30 μm, and 80 μm in depth from the surface of the vertical cross section in the rolling direction of the sample was observed at 20,000 times. The number of Ni—Si precipitate particles having a particle diameter in 100 μm 2 exceeding 100 nm was counted and converted to the number / μm 2 to obtain the average value.
The concentration of Si dissolved in the crystal grains by a transmission electron microscope was determined as follows.
Using a transmission electron microscope JEM-2010F manufactured by JEOL Ltd., a depth of 10 μm, 30 μm. The concentration of each Si dissolved in the crystal grains at each point of 80 μm was observed, and the average value was obtained.

[製造方法]
本発明のCu−Ni−Si系銅合金の製造方法は、熱間圧延、冷間圧延、溶体化処理、時効処理、最終冷間圧延、テンションレベリング、歪み取り焼鈍をこの順序で含む工程で銅合金板を製造するに際して、溶体化処理を700〜900℃で60〜120秒間にて実施し、時効処理を400〜500℃で7〜14時間にて実施し、テンションレベラーの張力を49〜147N/mm(5〜15kgf/mm)にて実施し、歪み取り焼鈍を450〜550℃で10〜60秒にて実施する。
歪み取り焼鈍を450〜550℃で10〜60秒にて実施することにより、測定面積内に存在する結晶粒の面積平均GAMが0.8〜1.6°の範囲内となり、溶体化処理を700〜900℃で60〜120秒間にて実施することにより、結晶粒内に固溶しているSiの濃度が0.1〜0.4質量%の範囲内となり、曲げ加工後の優れた耐疲労特性が発揮されることになる。
歪み取り焼鈍の温度が450℃未満、或いは、時間が10秒未満では、測定面積内に存在する結晶粒の面積平均GAMが1.6°を超え、温度が550℃を超える、或いは、時間が60秒を超えると、結晶粒の面積平均GAMが0.8°未満となる。
溶体化処理の温度が700℃未満、或いは、時間が60秒未満では、結晶粒内に固溶しているSiの濃度が0.1%未満となり、温度が900℃を超える、或いは、時間が120秒を超えると、Siの濃度が0.4%を超える。
[Production method]
The method for producing a Cu—Ni—Si based copper alloy of the present invention is a process including hot rolling, cold rolling, solution treatment, aging treatment, final cold rolling, tension leveling, and strain relief annealing in this order. When manufacturing the alloy plate, solution treatment is performed at 700 to 900 ° C. for 60 to 120 seconds, aging treatment is performed at 400 to 500 ° C. for 7 to 14 hours, and the tension leveler tension is 49 to 147 N. / mm 2 performed at (5~15kgf / mm 2), it is carried out in 10 to 60 seconds the strain relief annealing at 450~550 ℃.
By carrying out strain relief annealing at 450 to 550 ° C. for 10 to 60 seconds, the area average GAM of the crystal grains existing in the measurement area becomes within the range of 0.8 to 1.6 °, and the solution treatment is performed. By carrying out at 700 to 900 ° C. for 60 to 120 seconds, the concentration of Si dissolved in the crystal grains is in the range of 0.1 to 0.4% by mass, and excellent resistance to bending after bending. The fatigue characteristics will be exhibited.
When the temperature of strain relief annealing is less than 450 ° C. or when the time is less than 10 seconds, the area average GAM of the grains existing in the measurement area exceeds 1.6 ° and the temperature exceeds 550 ° C. or the time If it exceeds 60 seconds, the area average GAM of the crystal grains becomes less than 0.8 °.
If the solution treatment temperature is less than 700 ° C. or the time is less than 60 seconds, the concentration of Si dissolved in the crystal grains is less than 0.1%, and the temperature exceeds 900 ° C. or the time If it exceeds 120 seconds, the Si concentration exceeds 0.4%.

テンションレベラーの張力を49〜147N/mm(5〜15kgf/mm)にて実施することにより、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が45〜55%の範囲内となり、時効処理を400〜500℃で7〜14時間にて実施することにより、測定面積内に存在する結晶粒の粒径が100nmを超えるNi−Si析出物粒子の個数が0.2〜0.7個/μmの範囲内となり、曲げ加工後の優れたばね特性が発揮されることになる。
テンションレベラーの張力が49N/mm(5kgf/mm)未満では、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が55%を超え、147N/mm(15kgf/mm)を超えると結晶粒の面積割合が45%未満となる。
時効処理の温度が400℃未満、或いは、時間が7時間未満では、測定面積内に存在する結晶粒の粒径が100nmを超えるNi−Si析出物粒子の個数が0.2個/μm未満となり、温度が500℃、或いは、時間が14時間を超えると、個数が0.7個/μmを超える。
By carrying out tension of the tension leveler at 49 to 147 N / mm 2 (5 to 15 kgf / mm 2 ), the area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° is 45. The number of Ni—Si precipitate particles in which the grain size of the crystal grains existing within the measurement area exceeds 100 nm by performing the aging treatment at 400 to 500 ° C. for 7 to 14 hours within the range of ˜55%. Is in the range of 0.2 to 0.7 pieces / μm 2 , and excellent spring characteristics after bending are exhibited.
When the tension leveler tension is less than 49 N / mm 2 (5 kgf / mm 2 ), the area ratio of crystal grains in which the average orientation difference between all pixels in the crystal grains is less than 4 ° exceeds 55%, and 147 N / mm 2 If it exceeds (15 kgf / mm 2 ), the area ratio of crystal grains becomes less than 45%.
When the temperature of the aging treatment is less than 400 ° C. or the time is less than 7 hours, the number of Ni—Si precipitate particles having a grain size exceeding 100 nm in the measurement area is less than 0.2 / μm 2. When the temperature is 500 ° C. or the time exceeds 14 hours, the number exceeds 0.7 / μm 2 .

具体的な製造方法の一例としては、次の方法があげられる。
先ず、本発明のCu−Ni−Si系銅合金板の組成となる様に材料を調合し、還元性雰囲気の低周波溶解炉を用いて溶解鋳造を行い銅合金鋳塊を得る。次に、この銅合金鋳塊を900〜980℃に加熱した後、熱間圧延にて適度の厚みの熱延板とし、この熱延板を水冷した後に両面を適度に面削し、次に、圧延率60〜90%にて冷間圧延を施し、適度な厚みの冷延板を作製した後、700〜800℃にて7〜15秒間保持の条件で連続焼鈍を施し、更に、50〜60%の加工率にて冷間圧延を施して適度な厚みの冷延板を作製する。次に、この冷延板を700〜900℃で60〜120秒間保持した後に急冷して溶体化処理を施した後、400〜500℃で7〜14時間保持して時効化処理を施した後に、酸洗処理を施して、3〜20%の加工率にて最終冷間圧延を施した後に、テンションレベラーにて49〜147N/mm(5〜15kgf/mm)の張力にて板形状を矯正し、更に、450〜550℃で10〜60秒間保持にて歪み取り焼鈍を施して銅合金板を作製する。
The following method is mention | raise | lifted as an example of a specific manufacturing method.
First, materials are prepared so as to have the composition of the Cu—Ni—Si based copper alloy plate of the present invention, and melt casting is performed using a low frequency melting furnace in a reducing atmosphere to obtain a copper alloy ingot. Next, after heating this copper alloy ingot to 900 to 980 ° C., it is hot rolled to obtain a hot rolled sheet having an appropriate thickness. After this hot rolled sheet is cooled with water, both sides are appropriately faced, Then, after cold rolling at a rolling rate of 60 to 90% to produce a cold-rolled sheet having an appropriate thickness, continuous annealing is performed at 700 to 800 ° C. for 7 to 15 seconds, and 50 to 50%. Cold rolling is performed at a processing rate of 60% to produce a cold-rolled sheet having an appropriate thickness. Next, after this cold-rolled sheet is held at 700 to 900 ° C. for 60 to 120 seconds and then rapidly cooled and subjected to a solution treatment, it is held at 400 to 500 ° C. for 7 to 14 hours and then subjected to an aging treatment. , After pickling treatment and final cold rolling at a processing rate of 3 to 20%, a plate shape with a tension leveler of 49 to 147 N / mm 2 (5 to 15 kgf / mm 2 ) Further, strain relief annealing is performed by holding at 450 to 550 ° C. for 10 to 60 seconds to produce a copper alloy plate.

この様に製造された本発明の銅合金板は、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、残部がCu及び不可避的不純物からなり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて銅合金板の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、測定面積の45〜55%であり、測定面積内に存在する結晶粒の面積平均GAMが0.8〜1.6°であり、電解放射型電子顕微鏡にて測定した粒径が100nmを超えるNi−Si析出物粒子の個数が0.2〜0.7個/μmであり、透過型電子顕微鏡にて測定した結晶粒内に固溶しているSiの濃度が0.1〜0.4質量%であり、優れた曲げ加工後の耐疲労特性及びばね特性を有する。 The copper alloy sheet of the present invention thus produced contains 1.0 to 3.0% by mass of Ni, and contains Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni. The remainder consists of Cu and inevitable impurities, and the orientation of all pixels within the measurement area of the surface of the copper alloy plate with a step size of 0.5 μm by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system The ratio of the area of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° when the boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as the grain boundary. However, it is 45 to 55% of the measurement area, the area average GAM of the crystal grains present in the measurement area is 0.8 to 1.6 °, and the particle diameter measured with an electro-electron emission electron microscope is 100 nm. the number of excess Ni-Si precipitate particles 0.2 to 0.7 pieces / [mu] m And the concentration of Si in solid solution in the transmission-type crystal grains were measured with an electron microscope is 0.1 to 0.4 wt%, have excellent flexural fatigue resistance and spring properties after processing .

表1に示す成分となるように材料を調合し、還元性雰囲気の低周波溶解炉を用いて溶解鋳造を行い銅合金鋳塊を得る。次に、この銅合金鋳塊を900〜980℃に加熱した後、熱間圧延にて適度の厚みの熱延板とし、この熱延板を水冷した後に両面を適度に面削し、次に、圧延率60〜90%にて冷間圧延を施し、適度な厚みの冷延板を作製した後、700〜800℃にて7〜15秒間保持の条件で連続焼鈍を施し、更に、50〜60%の加工率にて冷間圧延を施して適度な厚みの冷延板を作製した。次に、表1に示す条件にて溶体化処理を施した後、表1に示す条件にて時効化処理を施した後に、酸洗処理を施して、3〜20%の加工率にて最終冷間圧延を施した後に、表1に示す張力でテンションレベラーにて銅板形状を矯正し、更に、表1に示す条件に歪み取り焼鈍を施して、実施例1〜10、比較例1〜9の銅合金薄板を作製した。
なお、表1中、テンションレベラー張力として、SI単位のN/mmによるものを表記し、kgf/mmによるものを括弧内に併記した。
Materials are prepared so as to have the components shown in Table 1, and melt casting is performed using a low-frequency melting furnace in a reducing atmosphere to obtain a copper alloy ingot. Next, after heating this copper alloy ingot to 900 to 980 ° C., it is hot rolled to obtain a hot rolled sheet having an appropriate thickness. After this hot rolled sheet is cooled with water, both sides are appropriately faced, Then, after cold rolling at a rolling rate of 60 to 90% to produce a cold-rolled sheet having an appropriate thickness, continuous annealing is performed at 700 to 800 ° C. for 7 to 15 seconds, and 50 to 50%. Cold rolling was performed at a processing rate of 60% to produce a cold-rolled sheet having an appropriate thickness. Next, after the solution treatment was performed under the conditions shown in Table 1, the aging treatment was performed under the conditions shown in Table 1, then the pickling treatment was performed, and the final rate was 3 to 20%. After cold rolling, the copper plate shape was corrected with a tension leveler with the tension shown in Table 1, and further subjected to strain relief annealing under the conditions shown in Table 1, Examples 1 to 10 and Comparative Examples 1 to 9 A copper alloy sheet was prepared.
In Table 1, the tension leveler tension is expressed by N / mm 2 in SI units, and the one by kgf / mm 2 is also written in parentheses.

Figure 2012136726
Figure 2012136726

実施例1〜10、比較例1〜9の銅合金板から得られた試料につき、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて銅合金板の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合、及び、測定面積内に存在する結晶粒の面積平均GAMを測定した。その結果を表2に示す。
隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合は、次の様に測定した。
前処理として、圧延材から採取した10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、TSL社製EBSDシステム付きの日立ハイテクノロジーズ社製走査型電子顕微鏡S−3400Nでその試料表面を観察した。観察条件は、加速電圧25kV、測定面積150μm×150μm(結晶粒を5000個以上含む)とした。
観察結果より、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の全測定面積に対する面積割合は次の条件にて求めた。
ステップサイズ0.5μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした。次に、結晶粒界で囲まれた個々の結晶粒について、結晶粒内の全ピクセル間の方位差の平均値(GOS:Grain Orientation Spread)を(1)式にて計算し、平均値が4°未満の結晶粒の面積を算出し、それを全測定面積で除して、全結晶粒に占める結晶粒内の平均方位差が4°未満の結晶粒の面積の割合を求めた。なお、2ピクセル以上が連結しているものを結晶粒とした。
For the samples obtained from the copper alloy plates of Examples 1 to 10 and Comparative Examples 1 to 9, the copper alloy plate at a step size of 0.5 μm by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. The average orientation difference between all pixels in a crystal grain when measuring the orientation of all pixels within the measurement area of the surface of the surface and considering the boundary where the orientation difference between adjacent pixels is 5 ° or more as the grain boundary The area ratio of crystal grains having an angle of less than 4 ° and the area average GAM of crystal grains existing within the measurement area were measured. The results are shown in Table 2.
When the boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as a grain boundary, the area ratio of the crystal grains where the average orientation difference between all the pixels in the crystal grain is less than 4 ° is Measured in the same manner.
As a pretreatment, a 10 mm × 10 mm sample taken from a rolled material is immersed in 10% sulfuric acid for 10 minutes, then washed with water and sprinkled by air blow, and then the water sprayed sample is a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation. The surface treatment was performed at an acceleration voltage of 5 kV, an incident angle of 5 °, and an irradiation time of 1 hour.
Next, the sample surface was observed with a scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation equipped with an EBSD system manufactured by TSL. The observation conditions were an acceleration voltage of 25 kV and a measurement area of 150 μm × 150 μm (including 5000 or more crystal grains).
From the observation results, the area ratio with respect to the total measurement area of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° was obtained under the following conditions.
At a step size of 0.5 μm, the orientation of all pixels within the measurement area range was measured, and a boundary where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary. Next, for each crystal grain surrounded by the crystal grain boundary, an average value (GOS: Grain Orientation Spread) of orientation differences between all the pixels in the crystal grain is calculated by the equation (1), and the average value is 4 The area of the crystal grains of less than 0 ° was calculated and divided by the total measured area, and the ratio of the area of the crystal grains having an average orientation difference within the crystal grains of less than 4 ° to the total crystal grains was determined. In addition, what connected 2 pixels or more was made into the crystal grain.

Figure 2012136726
Figure 2012136726

上式において、i、jは結晶粒内のピクセルの番号を示す。
nは結晶粒内のピクセル数を示す。
αijはピクセルiとjの方位差を示す。
In the above formula, i and j indicate the numbers of pixels in the crystal grains.
n indicates the number of pixels in the crystal grains.
α ij represents the difference in orientation between pixels i and j.

測定面積内に存在する結晶粒の面積平均GAMは、次のようにして求めた。
前処理として、圧延材から採取した10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、TSL社製EBSDシステム付きの日立ハイテクノロジーズ社製走査型電子顕微鏡S−3400Nでその試料表面を観察した。観察条件は、加速電圧25kV、測定面積150μm×150μm(結晶粒を5000個以上含む)とした。
観察結果より、測定面積内に存在する結晶粒の面積平均GAMは、次の条件にて求めた。
ステップサイズ0.5μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした。
GAMは同一結晶粒内における隣接する測定点(ピクセル)間のミスオリエンテーションの平均値であり、隣接測定点の境界iにおける方位差を(2)式とすると、結晶粒内にピクセル間の境界がm個存在する場合、この結晶粒のGAM値は(3)式で表わされる。
The area average GAM of the crystal grains existing within the measurement area was determined as follows.
As a pretreatment, a 10 mm × 10 mm sample taken from a rolled material is immersed in 10% sulfuric acid for 10 minutes, then washed with water and sprinkled by air blow, and then the water sprayed sample is a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation. The surface treatment was performed at an acceleration voltage of 5 kV, an incident angle of 5 °, and an irradiation time of 1 hour.
Next, the sample surface was observed with a scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation equipped with an EBSD system manufactured by TSL. The observation conditions were an acceleration voltage of 25 kV and a measurement area of 150 μm × 150 μm (including 5000 or more crystal grains).
From the observation results, the area average GAM of the crystal grains existing within the measurement area was determined under the following conditions.
At a step size of 0.5 μm, the orientation of all pixels within the measurement area range was measured, and a boundary where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary.
GAM is the average value of misorientation between adjacent measurement points (pixels) in the same crystal grain. When the difference in orientation at the boundary i between adjacent measurement points is expressed by equation (2), the boundary between pixels in the crystal grain is When m exist, the GAM value of this crystal grain is expressed by the equation (3).

Figure 2012136726
Figure 2012136726

Figure 2012136726
Figure 2012136726

個々の結晶粒におけるGAMの値を(GAM)、各結晶粒の面積をSとすると、測定範囲内にM個の結晶粒が存在する場合、面積平均GAMは(4)式で表される。 When the value of the GAM in individual grains (GAM) k, the area of each crystal grain and S k, if there are M grain within the measurement range, area average GAM is expressed by equation (4) The

Figure 2012136726
Figure 2012136726

また、実施例1〜10、比較例1〜9の銅合金板から得られた試料につき、結晶粒径が100nmを超えるNi−Si析出物粒子の個数、及び、結晶粒内に固溶しているSiの濃度(質量%)を測定した。その結果を表2に示す。
結晶粒径が100nmを超えるNi−Si析出物粒子の個数は、次の様に測定した。
前処理として、10mm×10mmの試料を10%硫酸に10分間浸漬した後、水洗、エアブローにより散水した後に、散水後の試料を日立ハイテクノロジーズ社製フラットミリング(イオンミリング)装置で、加速電圧5kV、入射角5°、照射時間1時間にて表面処理を施した。
次に、日立ハイテクノロジーズ社製電解放射型電子顕微鏡S−4800を使用し、2万倍にてその試料の圧延方向垂直断面の表面より深さ10μm、30μm、80μmの地点を観察し、各々の100μm中の粒径が100nmを超えるNi−Si析出物粒子の個数をカウントして個数/μmに換算し、その平均値を求めた。
結晶粒内に固溶しているSiの濃度は、次のようにして求めた。
日本電子社製透過型電子顕微鏡JEM−2010Fを使用し、5万倍にてその試料の圧延方向垂直断面の表面より深さ10μm、30μm、80μmの地点の結晶粒内に固溶している各々のSiの濃度を観察し、その平均値を求めた。
Moreover, about the sample obtained from the copper alloy board of Examples 1-10 and Comparative Examples 1-9, the number of the Ni-Si precipitate particle | grains in which a crystal grain diameter exceeds 100 nm, and solid solution in a crystal grain, The concentration (mass%) of Si was measured. The results are shown in Table 2.
The number of Ni—Si precipitate particles having a crystal grain size exceeding 100 nm was measured as follows.
As a pretreatment, a 10 mm × 10 mm sample was immersed in 10% sulfuric acid for 10 minutes, washed with water and sprinkled with air blow, and the sprinkled sample was accelerating with a flat milling (ion milling) device manufactured by Hitachi High-Technologies Corporation at an acceleration voltage of 5 kV. The surface treatment was performed at an incident angle of 5 ° and an irradiation time of 1 hour.
Next, using an electrolytic emission electron microscope S-4800 manufactured by Hitachi High-Technologies Corporation, observations were made at a depth of 10 μm, 30 μm, and 80 μm from the surface of the sample in a vertical cross section in the rolling direction at 20,000 times. in terms of number / [mu] m 2 particle size in the 100 [mu] m 2 is to count the number of Ni-Si precipitate particles greater than 100 nm, and the average value was calculated.
The concentration of Si dissolved in the crystal grains was determined as follows.
Using a JEM-2010F transmission electron microscope manufactured by JEOL Ltd., each of which is dissolved in crystal grains at a depth of 10 μm, 30 μm and 80 μm from the surface of the sample in the vertical direction in the rolling direction at 50,000 times. The concentration of Si was observed and the average value was determined.

また、実施例1〜10、比較例1〜9の銅合金板から得られた試料につき、曲げ加工後の耐疲労特性、及び、ばね限界値特性を測定した。その結果を表2に示す。
曲げ加工後の耐疲労特性は次のようにして求めた。
圧延方向に対し平行方向の幅10mmの短冊状の試験片に対し、圧延方向に対し直角方向(G.W.)の曲げ半径R=0.8mmの45°曲げを2ヵ所実施し、曲げ加工を施した試験片を作成し、JIS Z2273に従って行った。試験片の曲げ加工部分の1ヵ所が固定端の位置になるように固定具に固定し、他端をナイフエッジを介して正弦波振動を与え疲労寿命を求めた。試験片表面の最大付加応力(固定端での応力)が462MPaでの疲労寿命(試験片が破断に至るまでの繰り返し振動回数)を測定した。測定は同じ条件下で4回行い、4回の測定の平均値を疲労寿命とした。
Moreover, about the sample obtained from the copper alloy plate of Examples 1-10 and Comparative Examples 1-9, the fatigue resistance after a bending process and the spring limit value characteristic were measured. The results are shown in Table 2.
The fatigue resistance after bending was determined as follows.
A strip-shaped test piece having a width of 10 mm parallel to the rolling direction was bent at 45 ° with a bending radius R = 0.8 mm perpendicular to the rolling direction (GW) at two locations. The test piece which gave was made, and it performed according to JISZ2273. The test piece was fixed to the fixture so that one of the bent portions was at the fixed end, and the other end was subjected to sinusoidal vibration through a knife edge to determine the fatigue life. The fatigue life (the number of repeated vibrations until the test piece was broken) was measured when the maximum additional stress (stress at the fixed end) on the surface of the test piece was 462 MPa. The measurement was performed four times under the same conditions, and the average value of the four measurements was defined as the fatigue life.

曲げ加工後のばね限界値特性は次のようにして求めた。
圧延方向に対し平行方向の幅10mmの短冊状の試験片に対し、圧延方向に対し直角方向(G.W.)の曲げ半径R=0.8mmの45°曲げを2ヵ所実施し、曲げ加工を施した試験片を作成し、JIS H3130に従って行った。試験片の曲げ加工部分の1ヵ所が固定端の位置になるように固定具に固定し、モーメント式試験により永久たわみ量を測定し、R.T.におけるKb0.1(永久たわみ量0.1mmに対応する固定端における表面最大応力値:ばね限界値)を算出した。
The spring limit value characteristics after bending were obtained as follows.
A strip-shaped test piece having a width of 10 mm parallel to the rolling direction was bent at 45 ° with a bending radius R = 0.8 mm perpendicular to the rolling direction (GW) at two locations. The test piece which gave was made, and it performed according to JISH3130. The test piece is fixed to the fixture so that one of the bent portions is located at the fixed end, and the amount of permanent deflection is measured by a moment type test. T.A. Kb0.1 (surface maximum stress value at the fixed end corresponding to a permanent deflection amount of 0.1 mm: spring limit value) was calculated.

Figure 2012136726
Figure 2012136726

表1及び表2の結果より、本発明のCu−Ni−Si系銅合金は、各種種電子部品のリレー可動片やソケット端子等の素材として所定形状に曲げ加工後に、長時間に亘り高温及び高振動環境下で使用されても優れた耐疲労特性及びばね特性を有することがわかる。   From the results of Table 1 and Table 2, the Cu—Ni—Si based copper alloy of the present invention is subjected to a high temperature for a long time after bending into a predetermined shape as a material such as a relay movable piece or a socket terminal of various types of electronic components. It can be seen that even when used in a high vibration environment, it has excellent fatigue resistance and spring characteristics.

以上、本発明の実施形態の製造方法について説明したが、本発明はこの記載に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   As mentioned above, although the manufacturing method of embodiment of this invention was demonstrated, this invention is not limited to this description, A various change can be added in the range which does not deviate from the meaning of this invention.

Claims (5)

1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度
のSiを含有し、残部がCu及び不可避的不純物からなり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、前記測定面積内に存在する結晶粒の面積平均GAMが0.8〜1.6°であり、電解放射型電子顕微鏡にて測定した粒径が100nmを超えるNi−Si析出物粒子の個数が0.2〜0.7個/μmであり、透過型電子顕微鏡にて測定した結晶粒内に固溶しているSiの濃度が0.1〜0.4質量%であることを特徴とする曲げ加工後の耐疲労特性及びばね特性に優れたCu−Ni−Si系銅合金板。
It contains 1.0 to 3.0% by mass of Ni, contains Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni, the balance is made of Cu and inevitable impurities, and backscattered electrons Boundary where the azimuth difference between adjacent pixels is 5 ° or more by measuring the azimuth of all pixels within the measurement area of the surface with a step size of 0.5 μm by the EBSD method using a scanning electron microscope with a diffraction image system , The area ratio of crystal grains in which the average orientation difference between all pixels in the crystal grains is less than 4 ° is 45 to 55% of the measurement area, and within the measurement area The area average GAM of the existing crystal grains is 0.8 to 1.6 °, and the number of Ni—Si precipitate particles having a particle diameter measured by an electro-luminescence emission electron microscope exceeding 100 nm is 0.2 to 0.00. a 7 / [mu] m 2, binding was measured by a transmission electron microscope Cu-Ni-Si based copper alloy plate excellent in fatigue resistance and spring characteristics after bending, characterized in that the concentration of Si dissolved in the grains is 0.1 to 0.4% by mass .
更にSnを0.2〜0.8質量%、Znを0.3〜1.5質量%含有することを特徴とする請求項1に記載の曲げ加工後の耐疲労特性及びばね特性に優れたCu−Ni−Si系銅合金板。   Furthermore, Sn is contained in an amount of 0.2 to 0.8% by mass and Zn is contained in an amount of 0.3 to 1.5% by mass. Cu-Ni-Si based copper alloy plate. 更にMgを0.001〜0.2質量%含有することを特徴とする請求項1或いは請求項2に記載の曲げ加工後の耐疲労特性及びばね特性に優れたCu−Ni−Si系銅合金板。   The Cu-Ni-Si-based copper alloy having excellent fatigue resistance and spring characteristics after bending according to claim 1 or 2, further comprising Mg in an amount of 0.001 to 0.2 mass%. Board. 更にFe:0.007〜0.25質量%、P:0.001〜0.2質量%、C:0.0001〜0.001質量%、Cr:0.001〜0.3質量%、Zr:0.001〜0.3質量%を1種又は2種以上を含有することを特徴とする請求項1から請求項3のいずれか1項に記載の曲げ加工後の耐疲労特性及びばね特性に優れたCu−Ni−Si系銅合金板。   Furthermore, Fe: 0.007 to 0.25 mass%, P: 0.001 to 0.2 mass%, C: 0.0001 to 0.001 mass%, Cr: 0.001 to 0.3 mass%, Zr The fatigue resistance and spring characteristics after bending according to any one of claims 1 to 3, wherein 0.001 to 0.3% by mass is contained in one kind or two or more kinds. Cu-Ni-Si based copper alloy plate with excellent resistance. 請求項1から4のいずれか1項に記載の銅合金板の製造方法であって、熱間圧延、冷間圧延、溶体化処理、時効処理、最終冷間圧延、テンションレベリング、歪み取り焼鈍をこの順序で含む工程で銅合金板を製造するに際して、溶体化処理を700〜900℃で60〜120秒間にて実施し、時効処理を400〜500℃で7〜14時間にて実施し、テンションレベリングを49〜147N/mmの張力にて実施し、歪み取り焼鈍を450〜550℃で10〜60秒にて実施することを特徴とする曲げ加工後の耐疲労特性及びばね特性に優れたCu−Ni−Si系銅合金板の製造方法。 A method for producing a copper alloy sheet according to any one of claims 1 to 4, wherein hot rolling, cold rolling, solution treatment, aging treatment, final cold rolling, tension leveling, and strain relief annealing are performed. When producing a copper alloy plate in the process including this order, solution treatment is performed at 700 to 900 ° C. for 60 to 120 seconds, aging treatment is performed at 400 to 500 ° C. for 7 to 14 hours, Excellent fatigue resistance and spring characteristics after bending, characterized in that leveling is performed at a tension of 49 to 147 N / mm 2 and strain relief annealing is performed at 450 to 550 ° C. for 10 to 60 seconds. A method for producing a Cu—Ni—Si based copper alloy plate.
JP2010288486A 2010-12-24 2010-12-24 Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same Active JP5180283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288486A JP5180283B2 (en) 2010-12-24 2010-12-24 Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288486A JP5180283B2 (en) 2010-12-24 2010-12-24 Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012136726A true JP2012136726A (en) 2012-07-19
JP5180283B2 JP5180283B2 (en) 2013-04-10

Family

ID=46674375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288486A Active JP5180283B2 (en) 2010-12-24 2010-12-24 Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5180283B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201958A (en) * 2011-03-28 2012-10-22 Mitsubishi Shindoh Co Ltd Cu-Ni-Si BASED COPPER ALLOY SHEET HAVING EXCELLENT STRESS RELAXATION RESISTANCE, AND FATIGUE RESISTANCE AND SPRING PROPERTY AFTER BENDING, AND METHOD FOR PRODUCING THE SAME
WO2023106262A1 (en) * 2021-12-08 2023-06-15 古河電気工業株式会社 Copper alloy sheet material and method for manufacturing same, electronic component, and raising-processed article
JP7394025B2 (en) 2020-06-04 2023-12-07 古河電気工業株式会社 Parts for electrical/electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227620A (en) * 1994-02-18 1995-08-29 Kobe Steel Ltd Strip material for electric and electronic parts for half etching and their production
JP2007100145A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Copper-alloy sheet material with improved bendability and fatigue characteristic
JP2007291458A (en) * 2006-04-26 2007-11-08 Nikko Kinzoku Kk Cu-Ni-Si ALLOY-TINNED STRIP
JP2007314847A (en) * 2006-05-26 2007-12-06 Kobe Steel Ltd Copper alloy having high strength, high electroconductivity and superior bend formability, and manufacturing method therefor
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY
JP2009263784A (en) * 2008-03-31 2009-11-12 Nippon Mining & Metals Co Ltd Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227620A (en) * 1994-02-18 1995-08-29 Kobe Steel Ltd Strip material for electric and electronic parts for half etching and their production
JP2007100145A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Copper-alloy sheet material with improved bendability and fatigue characteristic
JP2007291458A (en) * 2006-04-26 2007-11-08 Nikko Kinzoku Kk Cu-Ni-Si ALLOY-TINNED STRIP
JP2007314847A (en) * 2006-05-26 2007-12-06 Kobe Steel Ltd Copper alloy having high strength, high electroconductivity and superior bend formability, and manufacturing method therefor
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY
JP2009263784A (en) * 2008-03-31 2009-11-12 Nippon Mining & Metals Co Ltd Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201958A (en) * 2011-03-28 2012-10-22 Mitsubishi Shindoh Co Ltd Cu-Ni-Si BASED COPPER ALLOY SHEET HAVING EXCELLENT STRESS RELAXATION RESISTANCE, AND FATIGUE RESISTANCE AND SPRING PROPERTY AFTER BENDING, AND METHOD FOR PRODUCING THE SAME
JP7394025B2 (en) 2020-06-04 2023-12-07 古河電気工業株式会社 Parts for electrical/electronic equipment
WO2023106262A1 (en) * 2021-12-08 2023-06-15 古河電気工業株式会社 Copper alloy sheet material and method for manufacturing same, electronic component, and raising-processed article
JP7328471B1 (en) 2021-12-08 2023-08-16 古河電気工業株式会社 Copper alloy sheet material, manufacturing method thereof, electronic component and drawn product

Also Published As

Publication number Publication date
JP5180283B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP4830048B1 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
JP4516154B1 (en) Cu-Mg-P copper alloy strip and method for producing the same
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4563508B1 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
JP5192536B2 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
US20070051442A1 (en) Copper alloy material and method of making same
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP6126791B2 (en) Cu-Ni-Si copper alloy
JP2011162848A (en) Copper alloy having small strength anisotropy and superior bendability
JP5619389B2 (en) Copper alloy material
WO2009123137A1 (en) Cu-ni-si-co-cr alloy for electronic material
JP2012007231A (en) Cu-Mg-P-BASED COPPER ALLOY BAR MATERIAL AND MANUFACTURING METHOD THEREFOR
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
TW201602369A (en) Copper alloy material, manufacturing method of the same, lead frame and connector
JP5180283B2 (en) Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same
WO2012160726A1 (en) Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JP5684022B2 (en) Cu-Ni-Si based copper alloy sheet excellent in stress relaxation resistance, fatigue resistance after bending and spring characteristics, and method for producing the same
JP5030191B1 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
TWI541366B (en) Cu-Ni-Si type copper alloy sheet excellent in deep drawing workability and a method for producing the same
JP2016204757A (en) Cu-Ni-Si-BASED COPPER ALLOY
JP2011012302A (en) Copper alloy material for terminal/connector and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5180283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250