JP2007314847A - Copper alloy having high strength, high electroconductivity and superior bend formability, and manufacturing method therefor - Google Patents

Copper alloy having high strength, high electroconductivity and superior bend formability, and manufacturing method therefor Download PDF

Info

Publication number
JP2007314847A
JP2007314847A JP2006147088A JP2006147088A JP2007314847A JP 2007314847 A JP2007314847 A JP 2007314847A JP 2006147088 A JP2006147088 A JP 2006147088A JP 2006147088 A JP2006147088 A JP 2006147088A JP 2007314847 A JP2007314847 A JP 2007314847A
Authority
JP
Japan
Prior art keywords
copper alloy
average
precipitates
precipitate
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147088A
Other languages
Japanese (ja)
Other versions
JP4006460B1 (en
Inventor
Takeshi Kudo
健 工藤
Yasuhiro Ariga
康博 有賀
Katsura Kajiwara
桂 梶原
Akira Fugono
章 畚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006147088A priority Critical patent/JP4006460B1/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to KR1020087026720A priority patent/KR101049655B1/en
Priority to US12/297,069 priority patent/US8268098B2/en
Priority to EP07743960A priority patent/EP2048251B1/en
Priority to EP11009246.7A priority patent/EP2426225B1/en
Priority to EP11009245.9A priority patent/EP2426224B1/en
Priority to CN2007800165290A priority patent/CN101437969B/en
Priority to AT07743960T priority patent/ATE542926T1/en
Priority to PCT/JP2007/060526 priority patent/WO2007138956A1/en
Application granted granted Critical
Publication of JP4006460B1 publication Critical patent/JP4006460B1/en
Publication of JP2007314847A publication Critical patent/JP2007314847A/en
Priority to US13/491,942 priority patent/US9177686B2/en
Priority to US13/491,911 priority patent/US8357248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy which has all of high strength, high electroconductivity and superior bend formability. <P>SOLUTION: The copper alloy having all of the high strength, high electroconductivity and superior bend formability includes particular amounts of Ni, Si and P respectively so as to balance the strength and the electroconductivity; and has a structure which makes a reliable number density of precipitations with a particular size of 50 to 200 nm exist therein, further makes P-containing precipitates exist therein by controlling an average atom density of P contained in the precipitates with the size of the above range into a fixed range, and has fine crystal grains with an average size of 10 μm or smaller, produced by a pinning effect of restraining a crystalline grain growth by the P-containing precipitates. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度、高導電率であり、かつ曲げ加工性に優れた、コルソン系銅合金に関し、例えば、家電、半導体装置用リードフレーム等の半導体部品、プリント配線板等の電気・電子部品材料、開閉器部品、ブスバー、端子・コネクタ等の機構部品や産業用機器などに用いられる銅合金板条として好適な銅合金およびその製造方法に関する。   The present invention relates to a Corson-based copper alloy having high strength, high conductivity, and excellent bending workability, for example, semiconductor parts such as home appliances and lead frames for semiconductor devices, and electrical / electronic parts such as printed wiring boards. The present invention relates to a copper alloy suitable as a copper alloy sheet used for materials, switch parts, bus bars, mechanical parts such as terminals and connectors, and industrial equipment, and a method for producing the same.

電子機器の小型化及び軽量化の要請に伴い、電気・電子部品の小型化及び軽量化が進んでいる。そして、この電気・電子部品の小型化及び軽量化が端子部品の小型化及び軽量化のために、これらに使用される銅合金材料も板厚及び幅が小さくなり、ICにおいては、板厚が0 . 1 〜 0 .1 5 mmと薄い銅合金板も使用されるようになってきている。   With the demand for downsizing and weight reduction of electronic devices, downsizing and weight reduction of electric / electronic parts are progressing. And since the miniaturization and weight reduction of this electric / electronic component are miniaturization and weight reduction of the terminal component, the plate thickness and width of the copper alloy material used for these also become small. Copper alloy sheets as thin as 0.1 to 0.15 mm are also being used.

その結果、これらの電気・電子部品に使用される銅合金材料には、より一層高い引張強度が求められるようになっている。例えば、自動車用コネクタなどでは、8 0 0 M P a以上の高強度銅合金板が求められるようになっている。   As a result, copper alloy materials used for these electric / electronic parts are required to have higher tensile strength. For example, high strength copper alloy plates of 80 Mpa or more are required for automobile connectors and the like.

また、電気・電子部品の前記薄板化及び幅狭化の傾向は、銅合金材料の導電性部分の断面積を減少させる。この断面積の減少による導電性の低下を補うためには、銅合金材料自体に、導電率が4 0 %I A C S 以上の良好な導電率が求められるようになっている。   In addition, the tendency of the electric and electronic parts to become thinner and narrower reduces the cross-sectional area of the conductive portion of the copper alloy material. In order to compensate for the decrease in conductivity due to the reduction in the cross-sectional area, the copper alloy material itself is required to have a good conductivity of 40% I A C S or higher.

さらに、これらコネクタ、端子、スイッチ、リレー、リードフレームなどに用いられる銅合金板は、前記高強度および高導電率はもちろんのこと、ノッチング後の90°曲げなど、厳しい曲げ加工性が要求されることが多くなってきている。   Furthermore, the copper alloy plates used for these connectors, terminals, switches, relays, lead frames, etc. are required to have severe bending workability such as 90 ° bending after notching as well as the high strength and high conductivity. A lot is happening.

従来から、高強度な銅合金材料としては、4 2 アロイ(Fe - 4 2質量% Ni合金)が知られている。この4 2 アロイは約5 8 0 M P a 程度の引張強さを有し、異方性も少なく、また曲げ加工性も良好である。しかしながら、この4 2 アロイは8 0 0 M P a以上の高強度化の要求には応えられない。また、4 2 アロイはNiを多量に含有するため、価格が高いという問題点もある。   Conventionally, 4 2 alloy (Fe-4 2 mass% Ni alloy) is known as a high-strength copper alloy material. This 4 2 alloy has a tensile strength of about 5 80 MPa, has little anisotropy, and has good bending workability. However, this 4 2 alloy cannot meet the demand for higher strength of 800 MPa or more. In addition, 4 2 alloy contains a large amount of Ni, and therefore has a problem of high price.

このため、前記種々の特性に優れ、且つ安価なコルソン合金(Cu−Ni−Si系合金)が電気・電子部品用に使用されるようになった。このコルソン合金は、ケイ化ニッケル化合物(Ni2 Si)の銅に対する固溶限が温度によって著しく変化する合金で、焼入・焼戻によって硬化する析出硬化型合金であり、耐熱性や高温強度も良好で、これまでも、導電用各種バネや高抗張力用電線などに広く使用されている。 For this reason, the Corson alloy (Cu-Ni-Si alloy) which is excellent in the above-mentioned various characteristics and is inexpensive has come to be used for electric / electronic parts. This Corson alloy is an alloy in which the solid solubility limit of nickel silicide compound (Ni 2 Si) to copper changes remarkably with temperature. It is a precipitation hardening type alloy that hardens by quenching and tempering, and has high heat resistance and high temperature strength. It is good and has been widely used for various conductive springs and high tensile strength cables.

しかし、このコルソン合金においても、銅合金材料の強度を向上させると、導電性や曲げ加工性は低下する。即ち、高強度のコルソン合金において、良好な導電率及び曲げ加工性とすることは非常に困難な課題であり、更なる強度、導電性及び曲げ加工性の向上が求められている。   However, also in this Corson alloy, when the strength of the copper alloy material is improved, the conductivity and the bending workability are lowered. That is, in a high-strength Corson alloy, it is a very difficult problem to achieve good conductivity and bending workability, and further improvement in strength, conductivity and bending workability is required.

このコルソン合金の強度、導電性及び曲げ加工性の向上の方策は従来から提案されている。例えば、特許文献1によれば、Ni、Siに加えて、Sn、Zn、Fe、P 、Mg、Pb量などを規定し、導電性に加え、曲げ部の耐はんだ剥離性、耐熱クリープ特性、耐マイグレーション特性、熱間加工性を維持しつつ強度及び打抜き加工性を向上させている。   Conventionally, measures for improving the strength, conductivity and bending workability of the Corson alloy have been proposed. For example, according to Patent Document 1, in addition to Ni and Si, the amount of Sn, Zn, Fe, P, Mg, Pb, etc. is specified, and in addition to conductivity, the solder peel resistance of the bent portion, the heat resistant creep characteristics, Strength and punching workability are improved while maintaining migration resistance and hot workability.

特許文献2によれば、Ni、Siに加えて、Mg量と合金中に存在する析出物及び介在物のうち粒径が10μm 以上のものの単位面積あたりの個数を規定し、導電率、強度及び高温強度を向上させている。   According to Patent Document 2, in addition to Ni and Si, the Mg amount and the number per unit area of precipitates and inclusions present in the alloy having a particle size of 10 μm or more are defined, and the conductivity, strength and High temperature strength is improved.

特許文献3によれば、Ni、Siに加えてMgを含有し、同時にS の含有量を制限して好適な強度、導電性、曲げ加工性、応力緩和特性、メッキ密着性を向上させている。   According to Patent Document 3, Mg is contained in addition to Ni and Si, and at the same time, the content of S 2 is limited to improve suitable strength, conductivity, bending workability, stress relaxation characteristics, and plating adhesion. .

特許文献4によれば、Fe量を0.1%以下に制限し、強度、導電率、曲げ加工性及びを向上させている。   According to Patent Document 4, the amount of Fe is limited to 0.1% or less, and strength, conductivity, bending workability, and the like are improved.

特許文献5によれば、介在物の大きさが10μm以下であり、かつ、5 〜10μm の大きさの介在物個数を制限し、強度、導電率、曲げ加工性、エッチング性、メッキ性を向上させている。   According to Patent Document 5, the size of inclusions is 10 μm or less and the number of inclusions having a size of 5 to 10 μm is limited to improve strength, conductivity, bending workability, etching property, and plating property. I am letting.

特許文献6によれば、Ni2Si 析出物の分散状態を制御し、強度、導電率、曲げ加工性を向上させている。 According to Patent Document 6, the dispersion state of Ni 2 Si precipitates is controlled to improve the strength, conductivity, and bending workability.

特許文献7によれば、銅板表面組織の結晶粒の延伸形状を規定する事で、耐磨耗性を向上させている。
特開平9−209061号公報 (全文) 特開平8−225869号公報 (全文) 特開2002−180161号公報 (全文) 特開2001−207229号公報 (全文) 特開2001−49369号公報 (全文) 特開2005−89843号公報 (全文) 特開平5−279825号公報 (全文)
According to Patent Document 7, the wear resistance is improved by defining the extending shape of the crystal grains of the surface texture of the copper plate.
Japanese Patent Laid-Open No. 9-209061 (full text) JP-A-8-225869 (full text) JP 2002-180161 A (full text) JP 2001-207229 A (full text) JP 2001-49369 A (full text) Japanese Patent Laying-Open No. 2005-89843 (full text) JP-A-5-279825 (full text)

しかし、特許文献1はコルソン合金の各成分含有量を規定したのみであり、成分組成のみの制御では十分な強度が得られないし、実際にも、十分な強度が得られていない。   However, Patent Document 1 only defines the content of each component of the Corson alloy, and sufficient strength cannot be obtained by controlling only the component composition, and in fact, sufficient strength is not obtained.

特許文献2は、コルソン合金の組織に注目し、存在する析出物及び介在物の大きさ、個数を規定しているものの、それ以上に組織には踏み込んでおらず、また、溶体化工程も規定していないために、十分な強度が得られていない。   Patent Document 2 pays attention to the structure of the Corson alloy and regulates the size and number of the existing precipitates and inclusions, but does not go further into the structure, and also defines the solution treatment process. As a result, sufficient strength is not obtained.

特許文献3は、導電率が低く要求に達せず(実施例では29〜33%IACS)また、規定される量までSを減らすことによる製造コストの増大が懸念され、実用的では無い。   Patent Document 3 is not practical because the electrical conductivity is low and does not meet the requirement (29 to 33% IACS in the examples), and there is a concern about an increase in manufacturing cost by reducing S to a specified amount.

特許文献4のようにFe量を0.1%以下に制限するだけでは、十分な導電率、強度及び曲げ性は得られない。   As in Patent Document 4, sufficient conductivity, strength and bendability cannot be obtained simply by limiting the Fe content to 0.1% or less.

特許文献5は、コルソン合金の組織に注目し、存在する介在物の大きさ、個数を規定しているものの、それ以上に組織には踏み込んでおらず、また、溶体化工程の制御も不十分であり、十分な強度が得られていない。   Patent Document 5 pays attention to the structure of the Corson alloy and regulates the size and number of inclusions present, but does not go into the structure any more, and the solution process is not sufficiently controlled. And sufficient strength is not obtained.

特許文献6は、コルソン合金の組織に注目し、100万倍の透過型電子顕微鏡で組織観察される、ケイ化ニッケル析出物(Ni2 Si)の平均粒径を3〜10nmにするとともに、間隔を25nm以下として、析出物の分散状態を制御している。しかし、基本的に、Ni、Siの含有量が多すぎるため、導電率が十分高くない。 Patent Document 6 pays attention to the structure of the Corson alloy, sets the average particle diameter of nickel silicide precipitates (Ni 2 Si) observed by a transmission electron microscope at a magnification of 1 million times to 3 to 10 nm, and the interval. Is controlled to 25 nm or less, and the dispersion state of the precipitate is controlled. However, basically, the conductivity is not sufficiently high because the contents of Ni and Si are too large.

特許文献7は、銅板表面組織の結晶粒の延伸形状を規定しているものの、結晶粒の形状だけでは十分な強度が得られず、溶体化工程の制御も不十分であり、導電率が十分高くない。   Although Patent Document 7 defines the stretched shape of the crystal grains of the copper plate surface structure, sufficient strength cannot be obtained only by the shape of the crystal grains, the solution process is not sufficiently controlled, and the electrical conductivity is sufficient. not high.

本発明はこのような課題を解決するためになされたものであって、高強度、高導電率であり、かつ優れた曲げ加工性を兼備したコルソン系銅合金およびその製造方法を提供することである。   The present invention has been made to solve such problems, and provides a Corson copper alloy having high strength, high electrical conductivity, and excellent bending workability, and a method for producing the same. is there.

この目的を達成するために、本発明の高強度、高導電率および曲げ加工性に優れた銅合金の要旨は、質量%で、Ni:0.4〜4.0%、Si:0.05〜1.0%、P:0.005〜0.5%を各々含有し、残部銅および不可避的不純物からなる銅合金であって、この銅合金組織の、倍率30000倍の電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、50〜200nmのサイズの析出物の数密度が平均で0.2〜7.0個/μm2 であり、この範囲のサイズの析出物に含まれるPの平均原子濃度が0.1〜50at%であるとともに、電界放出型走査電子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定した、結晶粒の数をn、それぞれの測定した結晶粒径をxとした時、(Σx)/nで表される平均結晶粒径が10μm 以下であることとする。 In order to achieve this object, the gist of the copper alloy having high strength, high electrical conductivity, and excellent bending workability according to the present invention is mass%, Ni: 0.4 to 4.0%, Si: 0.05. -1.0%, P: 0.005 to 0.5%, each of which is a copper alloy composed of the remaining copper and unavoidable impurities, and a field emission type transmission electron having a magnification of 30000 times of this copper alloy structure The number density of precipitates having a size of 50 to 200 nm, measured by a microscope and an energy dispersive analyzer, is 0.2 to 7.0 / μm 2 on average, and P contained in precipitates having a size within this range The average atomic concentration is 0.1 to 50 at%, and n is the number of crystal grains measured by the crystal orientation analysis method in which a backscattered electron diffraction image system is mounted on a field emission scanning electron microscope. When the particle size is x, (Σx) / n The average crystal grain size represented is to be at 10μm or less.

この目的を達成するために、本発明の高強度、高導電率および曲げ加工性に優れた銅合金の製造方法の要旨は、上記要旨あるいは後述する好ましい態様などのの銅合金の板を製造する方法であって、銅合金の鋳造、熱間圧延、冷間圧延、溶体化処理、冷間圧延、時効硬化処理、歪取り焼鈍を含む工程により銅合金板を得るに際し、溶体化処理における400℃までの平均昇温速度を5〜100℃/hの範囲、400℃から溶体化処理温度までの平均昇温速度を100℃/s以上、溶体化処理温度を700℃以上、900℃未満とし、溶体化処理後の平均冷却速度を50℃/s以上と各々することである。   In order to achieve this object, the summary of the copper alloy production method of the present invention having high strength, high electrical conductivity, and excellent bending workability is to produce a copper alloy plate according to the above summary or a preferred embodiment described later. In the method of obtaining a copper alloy sheet by a process including copper alloy casting, hot rolling, cold rolling, solution treatment, cold rolling, age hardening treatment, and strain relief annealing, 400 ° C. in the solution treatment. Up to an average temperature increase rate from 400 ° C. to a solution treatment temperature of 100 ° C./s or more, a solution treatment temperature of 700 ° C. or more and less than 900 ° C. The average cooling rate after the solution treatment is set to 50 ° C./s or more.

上記目的を達成するために、本発明の高強度および曲げ加工性に優れた銅合金は、更に、銅合金組織の前記電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、50〜200nmのサイズの析出物に含まれるPとSiとの原子数比P/Siが平均で0.01〜10であることが好ましい。   In order to achieve the above object, the copper alloy excellent in high strength and bending workability of the present invention was further measured by the field emission type transmission electron microscope and energy dispersive analyzer of the copper alloy structure, 50 ~ It is preferable that the atomic ratio P / Si of P and Si contained in the precipitate having a size of 200 nm is 0.01 to 10 on average.

本発明の高強度および曲げ加工性に優れた銅合金は、更に、質量%で、Cr、Ti、Fe、Mg、Co、Zrのうち一種または二種以上を合計で0.01〜3.0%を含有しても良い。また、質量%で、Zn:0.005〜3.0%を含有しても良い。また、質量%で、Sn:0.01〜5.0%を含有しても良い。   The copper alloy excellent in high strength and bending workability of the present invention is further in mass%, and one or more of Cr, Ti, Fe, Mg, Co, and Zr are added in a total amount of 0.01 to 3.0. % May be contained. Moreover, you may contain Zn: 0.005-3.0% by the mass%. Moreover, you may contain Sn: 0.01-5.0% by the mass%.

本発明は、コルソン系銅合金組織における平均結晶粒径を10μm 以下に微細化させて、銅合金の曲げ加工性を向上させる。そして、組織におけるこの結晶粒微細化を、Ni−Si−P、Fe−P、Fe−Ni−P、Ni−Si−Fe−P等のP含有析出物(以下、リン化物、リン化合物とも言う)の結晶粒成長抑制のピン止め効果によって達成することを特徴とする。   The present invention improves the bending workability of a copper alloy by refining the average crystal grain size in the Corson-based copper alloy structure to 10 μm or less. And this crystal grain refinement in the structure is a P-containing precipitate such as Ni-Si-P, Fe-P, Fe-Ni-P, Ni-Si-Fe-P (hereinafter also referred to as phosphide or phosphorus compound). ), Which is achieved by the pinning effect of suppressing crystal grain growth.

本発明者らは、上記P含有析出物の結晶粒成長抑制のピン止め効果は、Pを含有しない通常のNi2 Si系析出物のピン止め効果に比して著しく大きいことを知見した。そして、同時に、このピン止め効果の大きさは、P含有析出物におけるPの含有量(原子濃度)によって左右されることも知見した。 The present inventors have found that the pinning effect of suppressing the crystal grain growth of the P-containing precipitate is significantly larger than the pinning effect of a normal Ni 2 Si-based precipitate not containing P. At the same time, it was also found that the magnitude of this pinning effect depends on the P content (atomic concentration) in the P-containing precipitate.

言い換えると、従来のコルソン系銅合金組織において、平均結晶粒径を10μm 以下に微細化させることが、実質的に困難であった理由は、Pを含有しない通常のNi2 Si系析出物だけでは、ピン止め効果には大きな限界があったためと推考される。 In other words, in the conventional Corson-type copper alloy structure, it was practically difficult to make the average crystal grain size finer to 10 μm or less because the ordinary Ni 2 Si-based precipitate containing no P is used alone. This is probably because the pinning effect has a big limit.

ここで、合金成分としてPを含有しても、銅合金組織において存在する析出物全てがP含有析出物となる訳ではない。即ち、実際の銅合金組織においては、P含有析出物の他に、他のPを含有しないNi2 Si系などの析出物が混在する。言い換えると、結晶粒成長抑制のピン止め効果が大きいP含有析出物と、結晶粒成長抑制のピン止め効果が小さい、Pを含有しない他のNi2 Si系などの析出物が混在することとなる。 Here, even if P is contained as an alloy component, not all precipitates present in the copper alloy structure become P-containing precipitates. That is, in an actual copper alloy structure, in addition to P-containing precipitates, other precipitates such as Ni 2 Si that do not contain P are mixed. In other words, a P-containing precipitate having a large pinning effect for suppressing crystal grain growth and a precipitate such as another Ni 2 Si-based material that does not contain P and has a small pinning effect for suppressing crystal grain growth. .

このため、実際の結晶粒成長抑制のピン止め効果は、銅合金組織におけるP含有析出物の量に依存する。言い換えると、銅合金組織の平均結晶粒径を10μm 以下に微細化させるためには、銅合金組織中に一定量以上のP含有析出物を存在させることが必要である。   For this reason, the pinning effect of actual crystal grain growth suppression depends on the amount of P-containing precipitates in the copper alloy structure. In other words, in order to refine the average crystal grain size of the copper alloy structure to 10 μm or less, it is necessary that a certain amount or more of P-containing precipitates exist in the copper alloy structure.

この点、本発明では、銅合金組織中に存在するP含有析出物の量を直接規定するのではなく、銅合金組織中に存在する上記特定サイズ(50〜200nm)の全析出物中のPの原子濃度によって、P含有析出物の量を制御する。銅合金組織中に混在するP含有析出物とPを含有しない他の析出物の中から、P含有析出物だけをピックアップして分析、測定することは非効率で、かつ測定が不正確となるからである。   In this regard, in the present invention, the amount of P-containing precipitates present in the copper alloy structure is not directly defined, but P in all precipitates of the specific size (50 to 200 nm) present in the copper alloy structure. The amount of P-containing precipitates is controlled by the atomic concentration. It is inefficient and inaccurate to pick up and analyze only P-containing precipitates from P-containing precipitates mixed in the copper alloy structure and other precipitates not containing P. Because.

したがって、本発明では、これら特定サイズの全析出物(Pを含有するか否かにかかわらない全析出物)を対象として、Pの原子濃度を測定し、この析出物中のPの平均原子濃度によって、銅合金組織中におけるP含有析出物の量を制御する。また、この前提として、本発明では、上記特定サイズの全析出物(化合物)の数密度を保証(規定)する。   Therefore, in the present invention, the atomic concentration of P is measured for all precipitates of these specific sizes (total precipitates regardless of whether or not they contain P), and the average atomic concentration of P in the precipitates is measured. To control the amount of P-containing precipitates in the copper alloy structure. As a premise, in the present invention, the number density of all precipitates (compounds) of the specific size is guaranteed (defined).

これによって、本発明では、結晶粒成長抑制の大きなピン止め効果を発揮させ、コルソン系銅合金組織における平均結晶粒径を10μm 以下に微細化させて、銅合金の曲げ加工性を向上させる。   As a result, in the present invention, the pinning effect of suppressing the crystal grain growth is exerted, the average crystal grain size in the Corson-based copper alloy structure is refined to 10 μm or less, and the bending workability of the copper alloy is improved.

これら特定サイズの析出物(化合物)の数密度の保証と、析出物中のPの平均原子濃度の制御は、前提として、Pなどの本発明範囲での含有量の制御と、溶体化処理時における昇温速度と溶体化処理後の冷却速度の制御によって可能となる。そして、この析出物に含まれるPの平均原子濃度の制御(P含有析出物量の制御)によらなければ、コルソン系銅合金組織における平均結晶粒径を10μm 以下に微細化させることは難しい。   The guarantee of the number density of precipitates (compounds) of these specific sizes and the control of the average atomic concentration of P in the precipitates are based on the control of the content of the present invention such as P and the solution treatment. This can be achieved by controlling the rate of temperature rise and the cooling rate after solution treatment. If the average atomic concentration of P contained in the precipitate is not controlled (control of the amount of P-containing precipitate), it is difficult to reduce the average crystal grain size in the Corson-based copper alloy structure to 10 μm or less.

この他、本発明では、導電率を高めに維持するために、基本合金成分であるNi、Siの含有量を比較的低く制御する。そして、前記したP含有析出物やNi2 Siを含めた他の析出物を微細に析出させて強度を向上させ、Ni、Siの含有量を比較的低く制御しても高強度とする。 In addition, in the present invention, in order to keep the electrical conductivity high, the contents of Ni and Si, which are basic alloy components, are controlled to be relatively low. Then, the aforementioned P-containing precipitates and other precipitates including Ni 2 Si are finely precipitated to improve the strength, and the strength is increased even if the Ni and Si contents are controlled to be relatively low.

これによって、本発明は、高強度、高導電率および優れた曲げ加工性をバランスよく備えた銅合金を得る。   Thus, the present invention obtains a copper alloy having a high balance of high strength, high conductivity, and excellent bending workability.

(銅合金の成分組成)
先ず、前記各種用途用として、必要強度や導電率、更には、高い曲げ加工性や耐応力緩和特性を満たすための、本発明コルソン系合金における化学成分組成を、以下に説明する。
(Copper alloy component composition)
First, the chemical component composition in the Corson alloy of the present invention for satisfying the required strength and electrical conductivity and further high bending workability and stress relaxation resistance will be described below for various applications.

本発明では、高強度、高導電率、また、高い曲げ加工性を達成するために、質量%で、Ni:0.4〜4.0%、Si:0.05〜1.0%、P:0.005〜0.5%を各々含有し、残部銅および不可避的不純物からなる銅合金からなる基本組成とする。この組成は、銅合金組織の結晶粒を微細化するとともに、析出物(Ni2 Si)に含まれるPの平均原子濃度を制御するための、成分組成側からの重要な前提条件となる。なお、以下の各元素の説明において記載する%表示は全て質量%である。 In the present invention, in order to achieve high strength, high electrical conductivity, and high bending workability, Ni: 0.4 to 4.0%, Si: 0.05 to 1.0%, P : 0.005 to 0.5% each, and a basic composition comprising a copper alloy composed of the remaining copper and inevitable impurities. This composition is an important precondition from the component composition side to refine the crystal grains of the copper alloy structure and to control the average atomic concentration of P contained in the precipitate (Ni 2 Si). In addition, all the% display described in description of each following element is the mass%.

この基本組成に対し、更に、Cr、Ti、Fe、Mg、Co、Zrのうち一種または二種以上を合計で0.01〜3.0%を含有しても良い。また、Zn:0.005〜3.0%を含有しても良い。また、Sn:0.01〜5.0%を含有しても良い。   In addition to this basic composition, one or more of Cr, Ti, Fe, Mg, Co, and Zr may be contained in a total of 0.01 to 3.0%. Moreover, you may contain Zn: 0.005-3.0%. Moreover, you may contain Sn: 0.01-5.0%.

Ni:0.4〜4.0%
Niは、Siとの化合物(Ni2 Siなど)を晶出または析出させることにより、銅合金の強度および導電率を確保する作用がある。また、Pとの化合物も形成する。Niの含有量が0.4%未満と少な過ぎると、晶・析出物の生成量が不十分であるため所望の強度が得られないばかりか、銅合金組織の結晶粒が粗大化する。また、偏析しやすい晶出物の割合が高くなって最終製品の特性のばらつきが大きくなる。一方、Niの含有量が4.0%を越えて多過ぎると、導電率が低下するのに加えて、析出物数密度が大きくなりすぎ、曲げ加工性が低下する。したがって、Ni量は0.4〜4.0%の範囲とする。
Ni: 0.4-4.0%
Ni has the effect of securing the strength and conductivity of the copper alloy by crystallizing or precipitating a compound with Si (Ni 2 Si or the like). It also forms compounds with P. If the Ni content is too low, less than 0.4%, the crystal / precipitate generation amount is insufficient, so that the desired strength cannot be obtained and the crystal grains of the copper alloy structure become coarse. Moreover, the ratio of the crystallized substance which is easy to segregate becomes high, and the dispersion | variation in the characteristic of a final product becomes large. On the other hand, if the Ni content exceeds 4.0% and the conductivity is too low, in addition to the decrease in conductivity, the number density of precipitates becomes too high and the bending workability decreases. Therefore, the Ni content is in the range of 0.4 to 4.0%.

Si:0.05〜1.0%
Siは、Niとの化合物(Ni2 Si)を晶・析出させて銅合金の強度および導電率を向上させる。また、Pとの化合物も形成する。Siの含有量が0.05%未満と少な過ぎる場合は、晶・析出物の生成が不十分であるため所望の強度が得られないばかりか、結晶粒が粗大化する。また、偏析しやすい晶出物の割合が高くなって、最終製品の特性のばらつきが大きくなる。一方、Siの含有量が1.0%を越えて多過ぎると、析出物の数が多くなりすぎ、曲げ加工性が低下すると同時に、析出物に含まれるPとSiの原子数比P/Siが低くなりすぎる。したがって、Si含有量は0.05〜1.0%の範囲とする。
Si: 0.05-1.0%
Si crystallizes and precipitates a compound with Ni (Ni 2 Si) to improve the strength and conductivity of the copper alloy. It also forms compounds with P. If the Si content is too low, less than 0.05%, the formation of crystals / precipitates is insufficient, so that the desired strength cannot be obtained and the crystal grains become coarse. Moreover, the ratio of the crystallized substance which is easy to segregate becomes high, and the dispersion | variation in the characteristic of a final product becomes large. On the other hand, if the Si content is more than 1.0%, the number of precipitates increases too much, and bending workability deteriorates, and at the same time, the atomic ratio P / Si of P and Si contained in the precipitates is low. Too much. Therefore, the Si content is in the range of 0.05 to 1.0%.

P:0.005〜0.5%
Pは、P含有析出物を生成させるとともに、P含有析出物中のPの原子濃度を上記した特定範囲に制御するための重要元素である。P含有析出物(リン化物、リン化合物)を形成することで、強度、導電率が向上するとともに、リン化物の形成により結晶粒が微細化し、曲げ加工性が向上する。但し、これらの効果の内、特に曲げ加工性向上効果は、P含有析出物のPの原子濃度を上記した特定範囲に制御することによって発揮される。
P: 0.005-0.5%
P is an important element for generating a P-containing precipitate and controlling the atomic concentration of P in the P-containing precipitate within the specific range described above. By forming P-containing precipitates (phosphides and phosphorus compounds), strength and electrical conductivity are improved, and crystal grains are refined by the formation of phosphides and bending workability is improved. However, among these effects, the bending workability improving effect is exhibited particularly by controlling the atomic concentration of P in the P-containing precipitate within the specific range described above.

Pの含有量が0.005%未満と少な過ぎる場合には、これらの作用、効果が有効に発揮されない。一方、Pの含有量が0.5%を超えて多過ぎると、析出物が粗大になり、曲げ加工性を損なうとともに、析出物に含まれるPの原子濃度が高くなりすぎる。したがって、Pの含有量は0.005〜0.5%の範囲とする。   If the P content is too low, less than 0.005%, these functions and effects are not effectively exhibited. On the other hand, if the content of P exceeds 0.5%, the precipitate becomes coarse, the bending workability is impaired, and the atomic concentration of P contained in the precipitate becomes too high. Therefore, the P content is in the range of 0.005 to 0.5%.

ここで本発明で言うP含有析出物とは、Ni−Si−Pの基本組成では、Ni−Si−PのP含有析出物である。これにFeやMgなどを含有すると、Ni−Si−PのP含有析出物とともに、あるいはこれに代わって、(Fe、Mg)−P、(Fe、Mg)−Ni−P、Ni−Si−(Fe、Mg)−P等のP含有析出物が生成する。また、Cr、Ti、Co、Zrなどを含有すると、これらFeやMgなどの部分が、一部乃至全部置換したP含有析出物が生成する。   Here, the P-containing precipitate referred to in the present invention is a P-containing precipitate of Ni—Si—P in the basic composition of Ni—Si—P. When Fe, Mg, or the like is contained therein, together with or instead of the P-containing precipitates of Ni—Si—P, (Fe, Mg) —P, (Fe, Mg) —Ni—P, Ni—Si— P-containing precipitates such as (Fe, Mg) -P are generated. In addition, when Cr, Ti, Co, Zr, or the like is contained, a P-containing precipitate is formed in which these Fe and Mg parts are partially or completely substituted.

Cr、Ti、Fe、Mg、Co、Zr:合計で0.01〜3.0%
これらの元素は、上記した通り、リン化物を形成することで、強度、導電率を向上させるとともに、結晶粒微細化にも効果がある。これらの効果を発揮させる場合には、選択的に、Cr、Ti、Fe、Mg、Co、Zrのうち一種または二種以上を合計で0.01%以上含有させる。しかし、これらの元素の合計含有量(総量)が3.0%を超えると、析出物が粗大になり、曲げ加工性を損なうとともに、析出物に含まれるPの原子濃度が低くなりすぎる。したがって、選択的に含有させる場合のCr、Ti、Fe、Mg、Co、Zrの含有量は、合計で(総量で)0.01〜3.0%の範囲とする。
Cr, Ti, Fe, Mg, Co, Zr: 0.01 to 3.0% in total
As described above, these elements form phosphides, thereby improving the strength and electrical conductivity, and are effective in refining crystal grains. In order to exert these effects, one or more of Cr, Ti, Fe, Mg, Co, and Zr are selectively contained in a total of 0.01% or more. However, if the total content (total amount) of these elements exceeds 3.0%, the precipitate becomes coarse, the bending workability is impaired, and the atomic concentration of P contained in the precipitate becomes too low. Therefore, the content of Cr, Ti, Fe, Mg, Co, and Zr in the case where they are selectively contained is in the range of 0.01 to 3.0% in total (total amount).

Zn:0.005〜3.0%
Znは電子部品の接合に用いるSnめっきやはんだの耐熱剥離性を改善し、熱剥離を抑制するのに有効な元素である。このような効果を有効に発揮させる場合には、選択的に0.005%以上含有させる。しかし、3.0%を越えて過剰に含有すると、却って溶融Snやはんだの濡れ広がり性を劣化させ、また、含有量が多くなると、導電率も大きく低下させる。したがって、Znは、耐熱剥離性向上効果と導電率低下作用とを考慮した上で、選択的に含有させ、その場合のZn含有量は0.005〜3.0%の範囲、好ましくは0.005〜1.5%の範囲とする。
Zn: 0.005 to 3.0%
Zn is an element effective for improving the heat-resistant peelability of Sn plating and solder used for joining electronic components and suppressing thermal peeling. When such an effect is exhibited effectively, 0.005% or more is selectively contained. However, if the content exceeds 3.0%, the wet Sn spreadability of the molten Sn or solder is deteriorated. On the other hand, if the content is increased, the electrical conductivity is greatly reduced. Accordingly, Zn is selectively contained in consideration of the effect of improving the heat-resistant peelability and the effect of decreasing the conductivity, and the Zn content in that case is in the range of 0.005 to 3.0%, preferably 0.00. The range is 005 to 1.5%.

Sn:0.01〜5.0%
Snは、銅合金中に固溶して強度向上に寄与する。このような効果を有効に発揮させる場合には、選択的に0.01%以上含有させる。しかし、5.0%を越えて過剰に含有すると、その効果が飽和し、また、含有量が多くなると導電率を大きく低下させる。したがって、Snは、強度向上効果と導電率低下作用とを考慮した上で、選択的に含有させ、その場合のSn含有量は0.01〜5.0%の範囲、好ましくは0.01〜1.0%の範囲とする。
Sn: 0.01-5.0%
Sn dissolves in the copper alloy and contributes to strength improvement. In order to effectively exhibit such an effect, the content is selectively 0.01% or more. However, if the content exceeds 5.0%, the effect is saturated, and if the content is increased, the conductivity is greatly reduced. Accordingly, Sn is selectively contained in consideration of the strength improving effect and the conductivity lowering effect, and the Sn content in that case is in the range of 0.01 to 5.0%, preferably 0.01 to The range is 1.0%.

その他の元素含有量:
その他の元素は、基本的に不純物であって、できるだけ少ないほうが好ましい。例えば、Al、Be、V 、Nb、Mo、W などの不純物元素は、粗大な晶・析出物を生成しやすくなり、曲げ加工性が劣化するばかりか、導電率の低下も引き起こしやすくなる。したがって、これらの元素は総量で0.5%以下の極力少ない含有量にすることが好ましい。この他、銅合金中に微量に含まれるB 、C 、Na、S 、Ca、As、Se、Cd、In、Sb、Bi、MM(ミシュメタル)等の元素も、導電率の低下を引き起こしやすくなるので、これらの総量で0.1%以下の極力少ない含有量に抑えることが望ましい。但し、これらの元素を低減するためには、地金使用や精錬などの製造コストが上昇しがちであり、製造コストの上昇を抑制するためには、これら元素の総量の各々上記した上限までの含有は許容する。
Other element content:
The other elements are basically impurities and are preferably as small as possible. For example, impurity elements such as Al, Be, V, Nb, Mo, and W tend to generate coarse crystals / precipitates, which not only deteriorates the bending workability but also easily lowers the conductivity. Therefore, it is preferable that these elements have a total content of 0.5% or less as much as possible. In addition, elements such as B, C, Na, S, Ca, As, Se, Cd, In, Sb, Bi, and MM (Mischi metal) contained in trace amounts in the copper alloy are likely to cause a decrease in conductivity. Therefore, it is desirable to keep the total amount of these contents as small as 0.1% or less. However, in order to reduce these elements, manufacturing costs such as the use of metal and refining tend to increase, and in order to suppress the increase in manufacturing costs, the total amount of these elements up to the above-mentioned upper limit. Inclusion is allowed.

(銅合金組織)
本発明では、以上のCu−Ni−Si−P系合金組成を前提に、この銅合金の組織を設計して、平均結晶粒径を10μm 以下に微細化させて、銅合金の曲げ加工性を向上させる。
(Copper alloy structure)
In the present invention, on the premise of the above Cu-Ni-Si-P alloy composition, the structure of this copper alloy is designed, the average crystal grain size is refined to 10 μm or less, and the bending workability of the copper alloy is improved. Improve.

そして、この組織設計を、銅合金組織中に存在する析出物に含まれるPの平均原子濃度の制御(P含有析出物量の制御)によって達成する。この析出物に含まれるPの平均原子濃度の制御によらなければ、結晶粒成長抑制のピン止め効果が大きいP含有析出物を銅合金組織中に適正量確保できない。この結果、銅合金組織における平均結晶粒径を10μm 以下に微細化させることは難しい。   This structure design is achieved by controlling the average atomic concentration of P contained in precipitates existing in the copper alloy structure (controlling the amount of P-containing precipitates). Unless control of the average atomic concentration of P contained in this precipitate is performed, an appropriate amount of P-containing precipitate having a large pinning effect for suppressing crystal grain growth cannot be secured in the copper alloy structure. As a result, it is difficult to reduce the average crystal grain size in the copper alloy structure to 10 μm or less.

(析出物の数密度)
但し、この前提として、銅合金組織に存在する析出物の数密度を保証することが必要である。銅合金組織に存在する析出物の数密度が少な過ぎる、あるいは多過ぎると、これら析出物に含まれるPの平均原子濃度、あるいはPとSiとの平均原子濃度を制御したとしても、曲げ性の向上効果が十分に発揮できない場合も当然起こり得る。したがって、本発明では、析出物による結晶粒径微細化効果を保証するために、特定サイズの析出物の数密度を一定範囲とする。
(Number density of precipitates)
However, as this premise, it is necessary to guarantee the number density of precipitates present in the copper alloy structure. If the number density of precipitates present in the copper alloy structure is too small or too large, even if the average atomic concentration of P contained in these precipitates or the average atomic concentration of P and Si is controlled, the bendability is improved. Of course, this may occur when the above cannot be fully demonstrated. Therefore, in the present invention, in order to guarantee the effect of refining the crystal grain size due to the precipitates, the number density of the precipitates having a specific size is set within a certain range.

即ち、前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、50〜200nmのサイズの析出物の数密度が0.2〜7.0個/μm2 であることとする。ここで規定する特定サイズの析出物は、Pを含有するか否かにかかわりなく、各析出物のサイズ(最大径)のみを選別基準としている。 That is, the number density of precipitates having a size of 50 to 200 nm as measured by the field emission transmission electron microscope and energy dispersive analyzer of the copper alloy structure is 0.2 to 7.0 / μm 2. And Regardless of whether or not the precipitate of a specific size specified here contains P, only the size (maximum diameter) of each precipitate is used as a selection criterion.

この析出物の数密度が0.2個/μm2 より小さいと、析出物が少な過ぎる。このため、この析出物に含まれるPあるいはPとSiとの平均原子濃度を制御しても、結晶粒径微細化効果が十分に発揮できず、結晶粒が粗大化し、曲げ加工性が低下する可能性がある。 If the number density of these precipitates is less than 0.2 / μm 2 , the amount of precipitates is too small. For this reason, even if the average atomic concentration of P or P and Si contained in this precipitate is controlled, the effect of refining the crystal grain size cannot be sufficiently exhibited, the crystal grains become coarse, and the bending workability decreases. there is a possibility.

一方、この析出物の数密度が7.0個/μm2 よりも大きいと、析出物が多過ぎ、曲げ加工時に、せん断帯の形成が促進され、却って曲げ加工性が低下する。したがって、50〜200nmのサイズの析出物の数密度は、0.2〜7.0個/μm2 、好ましくは0.5〜5.0個/μm2 の範囲とする。 On the other hand, when the number density of the precipitates is larger than 7.0 / μm 2 , the precipitates are excessive, and the formation of shear bands is promoted during bending, and the bending workability is lowered. Accordingly, the number density of precipitates having a size of 50 to 200 nm is set to a range of 0.2 to 7.0 / μm 2 , preferably 0.5 to 5.0 / μm 2 .

(析出物の数密度測定方法)
析出物の数密度測定方法は、後述する、析出物に含まれるPの平均原子濃度測定の前段となる。具体的には、製造された最終の銅合金(板など)から試料を採取して、電解研磨によりTEM観察用薄膜サンプルを作製する。そして、このサンプルを例えば日立製作所製:HF−2200電界放出型透過電子顕微鏡(FE-TEM)により、倍率×30000倍で明視野像を得る。この明視野像を焼付、現像し、その写真より析出物の直径及び数を測定し、各析出物の最大の径が50〜200nmの範囲にあるサイズの析出物を特定する。この測定から50〜200nmの範囲にあるサイズの析出物の数密度(個/μm2 )を算出できる。
(Method for measuring the number density of precipitates)
The method for measuring the number density of precipitates is a pre-stage for measuring the average atomic concentration of P contained in the precipitates, which will be described later. Specifically, a sample is collected from the manufactured final copper alloy (such as a plate), and a thin film sample for TEM observation is prepared by electrolytic polishing. Then, a bright field image is obtained from this sample, for example, by Hitachi: HF-2200 field emission transmission electron microscope (FE-TEM) at a magnification of 30000 times. This bright-field image is printed and developed, and the diameter and number of precipitates are measured from the photograph, and the precipitate having a size in which the maximum diameter of each precipitate is in the range of 50 to 200 nm is specified. From this measurement, the number density (number / μm 2 ) of precipitates having a size in the range of 50 to 200 nm can be calculated.

(析出物に含まれるPの平均原子濃度)
析出物の数密度を保証した上で、本発明では、銅合金組織における平均結晶粒径を10μm 以下に微細化させるために、銅合金組織の、倍率30000倍の電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、50〜200nmのサイズのケイ化ニッケルなどの析出物に含まれるPの平均原子濃度を0.1〜50at%の範囲に制御する。
(Average atomic concentration of P contained in the precipitate)
In the present invention, after guaranteeing the number density of precipitates, in order to refine the average crystal grain size in the copper alloy structure to 10 μm or less, the field emission type transmission electron microscope and the energy dispersion type of the copper alloy structure have a magnification of 30000 times. The average atomic concentration of P contained in a precipitate such as nickel silicide having a size of 50 to 200 nm measured by an analyzer is controlled in the range of 0.1 to 50 at%.

前記した通り、本発明では、銅合金組織中に存在するP含有析出物の量を直接規定するのではなく、銅合金組織中に存在する上記特定サイズ(50〜200nm)の全析出物中のPの平均原子濃度によって、P含有析出物の量を制御する。したがって、本発明では、これら特定サイズの全析出物(Pを含有するか否かにかかわらない析出物)を対象としてPの原子濃度を測定し、これらの析出物中のPの平均原子濃度によって、銅合金組織中におけるP含有析出物の量を制御する。   As described above, in the present invention, the amount of the P-containing precipitates present in the copper alloy structure is not directly defined, but in the total precipitates of the specific size (50 to 200 nm) present in the copper alloy structure. The amount of P-containing precipitates is controlled by the average atomic concentration of P. Therefore, in the present invention, the atomic concentration of P is measured for all the precipitates of these specific sizes (precipitates regardless of whether or not they contain P), and the average atomic concentration of P in these precipitates is measured. The amount of P-containing precipitates in the copper alloy structure is controlled.

前記析出物内に含まれるPの平均原子濃度が低過ぎて、0.1at%未満となると、銅合金組織の結晶粒が粗大化し、曲げ加工性が低下する。一方、前記析出物内に含まれるPの平均原子濃度が高過ぎて、50at%を越えると、銅合金組織へのP以外の固溶元素が多くなりすぎて、導電率が低下する。したがって、析出物に含まれるPの平均原子濃度は0.1〜50at%の範囲、好ましくは0.5〜40at%の範囲とする。   When the average atomic concentration of P contained in the precipitate is too low and less than 0.1 at%, the crystal grains of the copper alloy structure become coarse and bending workability is deteriorated. On the other hand, if the average atomic concentration of P contained in the precipitate is too high and exceeds 50 at%, the amount of solid solution elements other than P in the copper alloy structure increases so that the conductivity decreases. Therefore, the average atomic concentration of P contained in the precipitate is in the range of 0.1 to 50 at%, preferably in the range of 0.5 to 40 at%.

(析出物に含まれるPとSiとの原子数比)
本発明では、銅合金の結晶粒径の微細化を保証するために、更に、銅合金組織の前記電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、50〜200nmのサイズの析出物に含まれるPとSiとの原子数比P/Siが平均で0.01〜10であることが好ましい。
(Atom ratio of P and Si contained in the precipitate)
In the present invention, in order to guarantee the refinement of the crystal grain size of the copper alloy, the precipitation of 50 to 200 nm in size measured by the field emission transmission electron microscope and the energy dispersive analyzer of the copper alloy structure. It is preferable that the atomic ratio P / Si of P and Si contained in the product is 0.01 to 10 on average.

析出物に含まれるPとSiとの原子数比P/Siが平均で0.01よりも小さいと、結晶粒が粗大化し、曲げ加工性が低下する可能性が高くなる。一方、析出物に含まれるPとSiとの原子数比P/Siが平均で10より大きいと、固溶Si量が多くなりすぎ、導電率が低下する可能性が高くなる。したがって、析出物に含まれるPとSiとの原子数比P/Siは平均で、好ましくは0.01〜10、より好ましくは0.10〜5.0とする。   When the atomic ratio P / Si between P and Si contained in the precipitate is smaller than 0.01 on average, the crystal grains are coarsened, and the possibility that the bending workability is lowered increases. On the other hand, if the atomic ratio P / Si of P and Si contained in the precipitate is larger than 10 on average, the amount of solute Si is excessively increased, and the possibility that the conductivity is lowered is increased. Therefore, the atomic ratio P / Si between P and Si contained in the precipitate is, on average, preferably 0.01 to 10, more preferably 0.10 to 5.0.

(析出物内に含まれるPの平均原子濃度測定方法)
前記析出物の数密度を測定した、倍率30000倍の電界放出型透過電子顕微鏡による、同一の明視野像(同一の観察像)の各析出物に対して、例えばNoran社製NSSエネルギー分散型分析装置(EDX)により、各析出物の成分定量分析を実施する。この分析の際のビーム径は5nm以下で実施する。この分析を、前記最大の径が50〜200nmのサイズの各析出物(全析出物)に対してのみ実施し(これ以外のサイズの析出物に対しては実施せず)、視野内の各析出物(全析出物)内のP及びSiの原子濃度(at%)をそれぞれ測定する。そして、明視野像内の、析出物内に含まれるP及びSiの平均原子濃度を算出する。
(Measuring method of average atomic concentration of P contained in precipitate)
For each precipitate of the same bright field image (the same observation image) by a field emission type transmission electron microscope having a magnification of 30000 times, the number density of the precipitates was measured. The component quantitative analysis of each precipitate is performed by EDX). The beam diameter for this analysis is 5 nm or less. This analysis was performed only on each precipitate (total precipitate) having a size with a maximum diameter of 50 to 200 nm (not performed on precipitates of other sizes), and The atomic concentration (at%) of P and Si in the precipitate (total precipitate) is measured. Then, the average atomic concentration of P and Si contained in the precipitate in the bright field image is calculated.

(析出物内に含まれるPとSiとの原子数比測定方法)
この析出物内(析出物中)に含まれるP及びSiの平均原子濃度の測定から、50〜200nmの範囲にあるサイズの析出物に含まれるPとSiとの原子数比P/Siの平均も算出できる。
(Method for measuring the number ratio of P and Si contained in the precipitate)
From the measurement of the average atomic concentration of P and Si contained in the precipitate (in the precipitate), the average atomic ratio P / Si of P and Si contained in the precipitate having a size in the range of 50 to 200 nm. Can also be calculated.

これらの測定乃至算出の再現性と精度向上のために、銅合金から採取する測定用試料は任意の10箇所からの10個とし、上記析出物内に含まれるP及びSiの平均原子濃度、PとSiとの原子数比P/Si、析出物の数密度などの各数値は、これら10個の平均とする。   In order to improve the reproducibility and accuracy of these measurements or calculations, the number of measurement samples collected from the copper alloy is 10 from any 10 locations, and the average atomic concentration of P and Si contained in the precipitate, P Each numerical value such as the atomic number ratio P / Si between Si and Si, and the number density of precipitates is the average of these ten.

(平均結晶粒径)
本発明では、これら銅合金組織の析出物制御によって微細化させた、銅合金組織の結晶粒径が、曲げ加工性を実質的に向上させる目安として、銅合金組織の平均結晶粒径を規定する。即ち、倍率350倍の電界放出型走査電子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定した、結晶粒の数をn、それぞれの測定した結晶粒径をxとした時、(Σx)/nで表される平均結晶粒径が10μm 以下であることとする。
(Average crystal grain size)
In the present invention, the crystal grain size of the copper alloy structure refined by controlling the precipitates of the copper alloy structure defines the average crystal grain size of the copper alloy structure as a measure for substantially improving the bending workability. . That is, when the number of crystal grains measured by a crystal orientation analysis method in which a backscattered electron diffraction image system is mounted on a field emission scanning electron microscope with a magnification of 350 times is n, and each measured crystal grain size is x, The average crystal grain size represented by (Σx) / n is 10 μm or less.

平均結晶粒径が10μm を越えて大きくなると、本発明が得ようとする曲げ加工性が得られない。したがって、平均結晶粒径は10μm 以下、好ましくは7μm 以下とする。   If the average crystal grain size is larger than 10 μm, the bending workability that the present invention intends to obtain cannot be obtained. Therefore, the average crystal grain size is 10 μm or less, preferably 7 μm or less.

(平均結晶粒径測定方法)
本発明で、これら平均結晶粒径の測定方法を、電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM )に、後方散乱電子回折像[EBSP: Electron Back Scattering (Scattered) Pattern]システムを搭載した結晶方位解析法と規定するのは、この測定方法が、高分解能ゆえに高精度であるためである。
(Average crystal grain size measurement method)
In the present invention, these average crystal grain size measurement methods are installed in a field emission scanning electron microscope (FESEM) with a backscattered electron diffraction image (EBSP: Electron Back Scattering (Scattered) Pattern) system. The crystal orientation analysis method is defined because the measurement method is highly accurate because of its high resolution.

EBSP法は、FESEM の鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点に対して自動的に行なわれるので、測定終了時には数万〜数十万点の結晶方位データが得られる。   The EBSP method projects an EBSP on a screen by irradiating a sample set in a FESEM column with an electron beam. This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data are obtained at the end of measurement.

このように、EBSP法には、X 線回折法や透過電子顕微鏡を用いた電子線回折法よりも、観察視野が広く、数百個以上の多数の結晶粒に対する、平均結晶粒径、平均結晶粒径の標準偏差、あるいは方位解析の情報を、数時間以内で得られる利点がある。また、結晶粒毎の測定ではなく、指定した領域を任意の一定間隔で走査して測定するために、測定領域全体を網羅した上記多数の測定ポイントに関する、上記各情報を得ることができる利点もある。なお、これらFESEM にEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)P66-70などに詳細に記載されている。   As described above, the EBSP method has a wider field of view than the X-ray diffraction method or the electron diffraction method using a transmission electron microscope. There is an advantage that information on the standard deviation of particle diameter or orientation analysis can be obtained within a few hours. In addition, since the measurement is performed by scanning a specified region at an arbitrary fixed interval instead of measurement for each crystal grain, there is also an advantage that each of the above-described information on the numerous measurement points covering the entire measurement region can be obtained. is there. Details of the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs are described in detail in Kobe Steel Engineering Reports / Vol.52 No.2 (Sep.2002) P66-70 and the like.

これらFESEM にEBSPシステムを搭載した結晶方位解析法を用いて、本発明では、製品銅合金の板厚方向の表面部の集合組織を測定し、平均結晶粒径の測定を行なう。   Using the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs, in the present invention, the texture of the surface portion of the product copper alloy in the plate thickness direction is measured, and the average crystal grain size is measured.

ここで、通常の銅合金板の場合、主に、以下に示す如きCube方位、Goss方位、Brass 方位(以下、B方位ともいう)、Copper方位(以下、Cu方位ともいう)、S方位等と呼ばれる多くの方位因子からなる集合組織を形成し、それらに応じた結晶面が存在する。これらの事実は、例えば、長島晋一編著、「集合組織」(丸善株式会社刊)や軽金属学会「軽金属」解説Vol.43、1993、P285-293などの記載されている。   Here, in the case of a normal copper alloy plate, the Cube orientation, Goss orientation, Brass orientation (hereinafter also referred to as B orientation), Copper orientation (hereinafter also referred to as Cu orientation), S orientation, etc. as shown below. A texture composed of many orientation factors called is formed, and there are crystal planes corresponding to them. These facts are described in, for example, edited by Shinichi Nagashima, “Aggregate” (published by Maruzen Co., Ltd.) and “Light Metal”, Vol. 43, 1993, P285-293, published by the Japan Institute of Light Metals.

これらの集合組織の形成は同じ結晶系の場合でも加工、熱処理方法によって異なる。圧延による板材の集合組織の場合は、圧延面と圧延方向で表されており、圧延面は{ABC}で表現され、圧延方向は<DEF>で表現される(ABCDEFは整数を示す)。かかる表現に基づき、各方位は下記の如く表現される。   The formation of these textures differs depending on the processing and heat treatment methods even in the case of the same crystal system. In the case of a texture of a plate material by rolling, it is expressed by a rolling surface and a rolling direction, the rolling surface is expressed by {ABC}, and the rolling direction is expressed by <DEF> (ABCDEF indicates an integer). Based on this expression, each direction is expressed as follows.

Cube方位 {001}<100>
Goss方位 {011}<100>
Rotated-Goss方位 {011}<011>
Brass 方位(B方位) {011}<211>
Copper方位(Cu方位) {112}<111>
(若しくはD方位{4 4 11}<11 11 8 >
S方位 {123}<634>
B/G方位 {011}<511>
B/S方位 {168}<211>
P方位 {011}<111>
Cube orientation {001} <100>
Goss direction {011} <100>
Rotated-Goss orientation {011} <011>
Brass direction (B direction) {011} <211>
Copper orientation (Cu orientation) {112} <111>
(Or D direction {4 4 11} <11 11 8>
S orientation {123} <634>
B / G direction {011} <511>
B / S orientation {168} <211>
P direction {011} <111>

本発明においては、基本的に、これらの結晶面から±15°以内の方位のずれのものは同一の結晶面(方位因子)に属するものとする。また、隣り合う結晶粒の方位差が5°以上の結晶粒の境界を結晶粒界と定義する。   In the present invention, basically, deviations of orientation within ± 15 ° from these crystal planes belong to the same crystal plane (orientation factor). Further, a boundary between crystal grains in which the orientation difference between adjacent crystal grains is 5 ° or more is defined as a crystal grain boundary.

その上で、本発明においては、測定エリア300 ×300 μm に対して0.5 μm のピッチで電子線を照射し、上記結晶方位解析法により測定した結晶粒の数をn、それぞれの測定した結晶粒径をxとした時、上記平均結晶粒径を(Σx)/n、と表す。   In addition, in the present invention, the number of crystal grains measured by the crystal orientation analysis method is n, and the measured crystal grains are irradiated with an electron beam at a pitch of 0.5 μm to a measurement area of 300 × 300 μm. When the diameter is x, the average crystal grain size is represented as (Σx) / n.

(製造条件)
次に、銅合金の組織を上記本発明規定の組織とするための、好ましい製造条件について以下に説明する。本発明銅合金は基本的に銅合金板であり、これを幅方向にスリットした条や、これら板条をコイル化したものが本発明銅合金の範囲に含まれる。
(Production conditions)
Next, preferable manufacturing conditions for making the structure of the copper alloy the structure defined in the present invention will be described below. The copper alloy of the present invention is basically a copper alloy plate, and strips obtained by slitting the strip in the width direction and those obtained by coiling these strips are included in the scope of the copper alloy of the present invention.

本発明でも、一般的な製造工程と同様に、特定成分組成に調整した銅合金溶湯の鋳造、鋳塊面削、均熱、熱間圧延、そして冷間圧延と、溶体化処理(再結晶焼鈍)、時効硬化処理(析出焼鈍)、歪取り焼鈍などを含む工程により最終(製品)板が得られる。但し、上記製造工程の内でも、以下に説明する好ましい各製造条件を組み合わせて実施することで、本発明規定の組織、強度・高導電率及び曲げ加工性を得ることが可能となる。   Also in the present invention, as with a general manufacturing process, casting of a copper alloy melt adjusted to a specific component composition, ingot chamfering, soaking, hot rolling, cold rolling, and solution treatment (recrystallization annealing) ), Age (hardening) treatment (precipitation annealing), strain relief annealing, etc., the final (product) plate is obtained. However, even in the above manufacturing process, it is possible to obtain the structure, strength / high conductivity and bending workability defined in the present invention by carrying out a combination of preferable manufacturing conditions described below.

先ず、熱間圧延の終了温度は550〜850℃とすることが好ましい。この温度が550℃より低い温度域で熱間圧延を行うと、再結晶が不完全なため不均一組織となり、曲げ加工性が劣化する。熱間圧延の終了温度が850℃より高いと、結晶粒が粗大化し、曲げ加工性が劣化する。この熱間圧延後は水冷することが好ましい。   First, the end temperature of hot rolling is preferably 550 to 850 ° C. When hot rolling is performed at a temperature lower than 550 ° C., recrystallization is incomplete, resulting in a non-uniform structure, and bending workability is deteriorated. When the end temperature of hot rolling is higher than 850 ° C., the crystal grains become coarse and bending workability deteriorates. It is preferable to perform water cooling after this hot rolling.

次に、この熱間圧延後で、溶体化処理(再結晶焼鈍)前の、冷間圧延における冷延率を70〜98%とすることが好ましい。冷延率が70%より低いと、再結晶核となるサイトが少なすぎる為に、本発明が得ようとする平均結晶粒径よりも必然的に大きくなり、曲げ加工性が劣化する可能性がある。一方、冷延率が98%より高いと、結晶粒径のばらつきが大きくなるために、結晶粒が不均一となり、本発明が得ようとする曲げ加工性が劣化する可能性がある。   Next, it is preferable that the cold rolling rate in the cold rolling after the hot rolling and before the solution treatment (recrystallization annealing) is 70 to 98%. If the cold rolling rate is lower than 70%, there are too few sites to be recrystallized nuclei, which inevitably becomes larger than the average crystal grain size to be obtained by the present invention, and the bending workability may be deteriorated. is there. On the other hand, if the cold rolling rate is higher than 98%, the variation in crystal grain size becomes large, so that the crystal grains become non-uniform and the bending workability that the present invention intends to obtain may deteriorate.

(溶体化処理)
溶体化処理は、本発明における銅合金組織の析出物制御によって、結晶粒径を微細化させ、銅合金の曲げ加工性を向上させるために重要な工程である。特に、溶体化処理開始時における昇温速度と、溶体化処理後の溶体化処理温度からの冷却速度との制御は、銅合金組織の析出物制御のために重要となる。
(Solution treatment)
The solution treatment is an important step in order to refine the crystal grain size and improve the bending workability of the copper alloy by controlling the precipitate of the copper alloy structure in the present invention. In particular, the control of the rate of temperature rise at the start of the solution treatment and the cooling rate from the solution treatment temperature after the solution treatment is important for the control of precipitates in the copper alloy structure.

この点、本発明では、溶体化処理における400℃までの平均昇温速度を5〜100℃/hの範囲、400℃から溶体化処理温度までの平均昇温速度を100℃/s以上、溶体化処理温度を700℃以上、900℃未満とし、溶体化処理後の平均冷却速度を50℃/s以上と各々する。   In this regard, in the present invention, the average temperature increase rate up to 400 ° C. in the solution treatment is in the range of 5 to 100 ° C./h, the average temperature increase rate from 400 ° C. to the solution treatment temperature is 100 ° C./s or more, The heat treatment temperature is set to 700 ° C. or higher and lower than 900 ° C., and the average cooling rate after the solution heat treatment is set to 50 ° C./s or higher.

溶体化処理工程における昇温、冷却過程では、まず、室温から約600℃以下の比較的低温の領域では、ケイ化ニッケル析出物(Ni2 Si)などの析出が起こり、約600℃以上の高温の領域では、これら析出物が再固溶する。また、本発明銅合金の再結晶温度範囲は約500〜700℃であり、銅合金の結晶粒径はこの再結晶時の析出物の分散状態に大きく影響を受ける。 In the temperature raising and cooling processes in the solution treatment step, first, precipitation of nickel silicide precipitates (Ni 2 Si) or the like occurs in a relatively low temperature region from room temperature to about 600 ° C. or less, and high temperature of about 600 ° C. or more. In these regions, these precipitates are dissolved again. In addition, the recrystallization temperature range of the copper alloy of the present invention is about 500 to 700 ° C., and the crystal grain size of the copper alloy is greatly influenced by the dispersion state of precipitates during the recrystallization.

溶体化昇温開始時より400℃到達までの平均昇温速度は、比較的小さくし、5〜100℃/hとする。但し、平均昇温速度がこの5℃/hより小さいと、析出した析出物が粗大化してしまい、平均結晶粒径が大きくなり、曲げ加工性が低下する。一方、平均昇温速度が100℃/hより大きいと、析出物の生成量が少なくなる。このため、析出物の数密度が不足して、平均結晶粒径が大きくなり、曲げ加工性が低下する。   The average rate of temperature rise from the start of solution heat-up to 400 ° C. is relatively small, and is 5 to 100 ° C./h. However, if the average heating rate is less than 5 ° C./h, the deposited precipitate becomes coarse, the average crystal grain size becomes large, and the bending workability decreases. On the other hand, if the average rate of temperature increase is greater than 100 ° C./h, the amount of precipitates produced decreases. For this reason, the number density of precipitates is insufficient, the average crystal grain size is increased, and bending workability is lowered.

次に、上記400℃から溶体化温度までの平均昇温速度は、比較的大きくし、100℃/s以上とする。昇温速度が100℃/s未満と、100℃/sより小さいと、再結晶粒の成長が促進され、平均結晶粒径が大きくなり、曲げ加工性が低下する。   Next, the average rate of temperature increase from 400 ° C. to the solution temperature is relatively increased to 100 ° C./s or more. When the rate of temperature increase is less than 100 ° C./s and less than 100 ° C./s, the growth of recrystallized grains is promoted, the average crystal grain size is increased, and bending workability is lowered.

溶体化処理温度は700℃以上、900℃未満とする。溶体化処理温度は700℃より低いと、溶体化が不十分となり、本発明が得ようとする高強度が得られないばかりか、曲げ性が低下する。一方、溶体化処理温度が900℃以上と、900℃よりも高いと、析出物の数密度が小さくなりすぎるとともに、析出物に含まれるPの原子濃度が低くなりすぎ、本発明が得ようとする曲げ加工性及び高導電率が得られない。   Solution treatment temperature shall be 700 degreeC or more and less than 900 degreeC. When the solution treatment temperature is lower than 700 ° C., the solution treatment becomes insufficient, and not only the high strength desired by the present invention is obtained but also the bendability is lowered. On the other hand, when the solution treatment temperature is 900 ° C. or higher and higher than 900 ° C., the number density of the precipitates becomes too small, and the atomic concentration of P contained in the precipitates becomes too low. Processability and high conductivity cannot be obtained.

溶体化処理後の平均冷却速度は50℃/s以上とする。冷却速度が50℃/sより小さいと、結晶粒の成長が促進され、本発明が得ようとする平均結晶粒径より大きくなるとともに、曲げ加工性が低下する。   The average cooling rate after the solution treatment is 50 ° C./s or more. When the cooling rate is less than 50 ° C./s, the growth of crystal grains is promoted, and becomes larger than the average crystal grain size to be obtained by the present invention, and the bending workability is lowered.

(溶体化処理後の処理)
この溶体化処理後(再結晶焼鈍後)に、約300〜450℃の範囲の温度で析出焼鈍(中間焼鈍、二次焼鈍)を行ない、微細な析出物を形成させ、銅合金板の強度と導電率を向上(回復)させても良い。また、これら焼鈍後に、10〜30%の範囲で最終の冷間圧延を行なっても良い。なお、この最終の冷間圧延前で、前記溶体化処理後に、導電率を回復するための中間焼鈍を行なっても良い。
(Process after solution treatment)
After this solution treatment (after recrystallization annealing), precipitation annealing (intermediate annealing, secondary annealing) is performed at a temperature in the range of about 300 to 450 ° C. to form fine precipitates, and the strength of the copper alloy sheet The conductivity may be improved (recovered). Moreover, you may perform the last cold rolling in 10 to 30% of range after these annealing. In addition, you may perform the intermediate annealing for recovering electrical conductivity before the final cold rolling and after the solution treatment.

以上説明した、これらの製造条件を適切に組み合わせて実施することで、本発明の前記要件を満たす高強度・高導電率及び曲げ加工性に優れた銅合金を得ることが可能となる。かくして得られる本発明の銅合金は高強度・高導電率及び曲げ加工性が優れているので、家電、半導体部品、産業用機器並びに、自動車用電機電子部品に幅広く有効に活用できる。   By carrying out by appropriately combining these manufacturing conditions described above, it is possible to obtain a copper alloy excellent in high strength, high conductivity and bending workability that satisfies the above requirements of the present invention. Since the copper alloy of the present invention thus obtained has high strength, high electrical conductivity and excellent bending workability, it can be used widely and effectively for home appliances, semiconductor parts, industrial equipment, and automotive electric electronic parts.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and both are included in the technical scope of the present invention.

以下に、本発明の実施例を説明する。Cu合金組成と製造方法、特に溶体化処理条件を変えて、Cu合金組織中の析出物内のP平均原子濃度などを種々変えて、得られたCu合金薄板の平均結晶粒径を変化させ、強度、導電率、曲げ性などの特性を各々評価した。   Examples of the present invention will be described below. By changing the Cu alloy composition and manufacturing method, in particular the solution treatment conditions, variously changing the P average atomic concentration in the precipitate in the Cu alloy structure, etc., changing the average crystal grain size of the obtained Cu alloy thin plate, Properties such as strength, conductivity and bendability were evaluated.

具体的には、下記表1、2に示す化学成分組成の銅合金を、それぞれクリプトル炉において大気中で木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、厚さが50mm、幅が75mm、長さが180mmの鋳塊を得た。そして、鋳塊の表面を面削した後、950℃の温度で厚さが20mmになるまで熱間圧延し、750℃以上の熱間圧延終了温度から水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延を行い、厚さが0.25mmの板を得た。   Specifically, copper alloys having the chemical composition shown in the following Tables 1 and 2 were melted under a charcoal coating in the atmosphere in a kryptor furnace, cast into a cast iron book mold, and had a thickness of 50 mm and a width of 75 mm. An ingot with a length of 180 mm was obtained. Then, after chamfering the surface of the ingot, it was hot-rolled at a temperature of 950 ° C. until the thickness became 20 mm, and quenched into water from the hot rolling end temperature of 750 ° C. or higher. Next, after removing the oxide scale, primary cold rolling was performed to obtain a plate having a thickness of 0.25 mm.

続いて、塩浴炉を使用し、表2、3に示すように、昇温、冷却条件を種々変えて溶体化処理を行なった。なお、溶体化温度における板の保持時間は共通して3 0秒間とした。次に、仕上げ冷間圧延により、各々厚さが0.20mmの冷延板にした。この冷延板を450 ℃×4hの人工時効硬化処理して最終の銅合金板を得た。   Subsequently, using a salt bath furnace, as shown in Tables 2 and 3, solution treatment was performed by changing the temperature raising and cooling conditions in various ways. The plate holding time at the solution temperature was commonly 30 seconds. Next, cold rolled sheets each having a thickness of 0.20 mm were obtained by finish cold rolling. This cold-rolled sheet was subjected to an artificial age hardening treatment at 450 ° C. for 4 hours to obtain a final copper alloy sheet.

このようにして製造した銅合金板に対して、各例とも、上記最終銅合金板から切り出した試料を使用して、組織調査と、引張試験による強度(0.2%耐力)測定、導電率測定、曲げ試験及び評価を実施した。これらの結果を表3、4に示す。   For each of the copper alloy plates thus produced, in each example, using a sample cut out from the final copper alloy plate, the structure investigation and the strength (0.2% proof stress) measurement by tensile test, conductivity Measurement, bending test and evaluation were carried out. These results are shown in Tables 3 and 4.

ここで、表1、2に示す各銅合金とも、記載元素量を除いた残部組成はCuであり、表1 、2に記載以外の他の元素として、Al、Be、V 、Nb、Mo、W などの不純物元素は総量で0.5%以下であった。この他、B 、C 、Na、S 、Ca、As、Se、Cd、In、Sb、Bi、MM(ミシュメタル)等の元素もこれらの総量で0.1%以下であった。なお、表1、2の各元素含有量において示す「−」は検出限界以下であることを示す。   Here, in each of the copper alloys shown in Tables 1 and 2, the remaining composition excluding the element amount described is Cu, and other elements other than those described in Tables 1 and 2 are Al, Be, V, Nb, Mo, The total amount of impurity elements such as W was 0.5% or less. In addition, elements such as B 2, C 2, Na, S 2, Ca, As, Se, Cd, In, Sb, Bi, and MM (Mischmetal) were 0.1% or less in total. In addition, "-" shown in each element content of Tables 1 and 2 indicates that it is below the detection limit.

これら銅合金試料組織の調査は、50〜200nmのサイズの析出物に含まれるPの平均原子濃度 (at%) 、同じく50〜200nmのサイズの析出物に含まれるPとSiとの平均原子数比P/Si、同じく50〜200nmのサイズの析出物の平均数密度 (個/μm2)を、各々前記した方法により測定した。 These copper alloy sample structures were examined by examining the average atomic concentration (at%) of P contained in precipitates having a size of 50 to 200 nm and the average number of atoms of P and Si contained in precipitates having a size of 50 to 200 nm. The ratio P / Si, and the average number density (pieces / μm 2 ) of precipitates having a size of 50 to 200 nm were measured by the methods described above.

また、銅合金試料組織の、結晶粒の数をn、それぞれの測定した結晶粒径をxとした時に、(Σx)/nで表される平均結晶粒径 (μm)を、前記した電界放出型走査電子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定した。具体的には、製品銅合金の圧延面表面を機械研磨し、更に、バフ研磨に次いで電解研磨して、表面を調整した試料を用意した。その後、日本電子社製FESEM(JEOL JSM 5410)を用いて、EBSPによる結晶方位測定並びに結晶粒径測定を行った。測定領域は300 μm×300 μmの領域であり、測定ステップ間隔0.5 μmとした。EBSP測定・解析システムは、EBSP:TSL 社製 (OIM)を用いた。   In addition, when the number of crystal grains of the copper alloy sample structure is n and each measured crystal grain size is x, the average crystal grain size (μm) represented by (Σx) / n is the above-described field emission. Measured by crystal orientation analysis with backscattered electron diffraction image system mounted on scanning electron microscope. Specifically, the surface of the rolled surface of the product copper alloy was mechanically polished, and further subjected to electrolytic polishing after buffing to prepare a sample whose surface was adjusted. Thereafter, crystal orientation measurement and crystal grain size measurement by EBSP were performed using FESEM (JEOL JSM 5410) manufactured by JEOL Ltd. The measurement area was an area of 300 μm × 300 μm, and the measurement step interval was 0.5 μm. As the EBSP measurement / analysis system, EBSP: manufactured by TSL (OIM) was used.

(引張試験)
引張試験は、試験片の長手方向を圧延方向としたJIS13号B試験片を用いて、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、0.2%耐力(MPa) を測定した。同一条件の試験片を3本試験し、それらの平均値を採用した。
(Tensile test)
The tensile test was performed using a JIS No. 13 B test piece in which the longitudinal direction of the test piece was the rolling direction, at a room temperature, a test speed of 10.0 mm / min, and GL = 50 mm using a 5882 type Instron universal testing machine. The 0.2% yield strength (MPa) was measured. Three test pieces under the same conditions were tested, and the average value thereof was adopted.

(導電率測定)
導電率は、試験片の長手方向を圧延方向として、ミーリングにより、幅10mm×長さ300mm の短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。同一条件の試験片を3本試験し、それらの平均値を採用した。
(Conductivity measurement)
The electrical conductivity is measured by measuring the electrical resistance with a double-bridge resistance measurement device by processing a strip-shaped test piece of width 10 mm x length 300 mm by milling with the longitudinal direction of the test piece as the rolling direction. Calculated by the method. Three test pieces under the same conditions were tested, and the average value thereof was adopted.

(曲げ加工性の評価試験)
銅合金板試料の曲げ試験は、日本伸銅協会技術標準に従って行った。板材を幅10mm、長さ30mmに切出し、1000kgfの荷重をかけて曲げ半径0.15mmでGood Way(曲げ軸が圧延方向に直角)の曲げを行い、曲げ部における割れの有無を50倍の光学顕微鏡で目視観察した。この際に、割れの無いものを○、割れが生じたものを×と評価した。この曲げ試験に優れていれば、前記密着曲げあるいはノッチング後の90°曲げなどの厳しい曲げ加工性にも優れていると言える。
(Evaluation test for bending workability)
The bending test of the copper alloy sheet sample was performed according to the Japan Copper and Brass Association technical standard. The plate material is cut to a width of 10 mm and a length of 30 mm, and a Good Way (bending axis is perpendicular to the rolling direction) is bent at a bending radius of 0.15 mm with a load of 1000 kgf, and the presence or absence of cracks in the bent portion is 50 times optical. Visual observation was performed with a microscope. At this time, the case where there was no crack was evaluated as ○, and the case where the crack occurred was evaluated as ×. If it is excellent in this bending test, it can be said that it is excellent also in severe bending workability such as 90 ° bending after contact bending or notching.

表1、3から明らかな通り、本発明組成内の銅合金である発明例1〜18は、溶体化処理が好ましい条件範囲内で行なわれて、製品銅合金板を得ている。   As is apparent from Tables 1 and 3, Invention Examples 1 to 18, which are copper alloys within the composition of the present invention, are subjected to solution treatment within a preferable range of conditions to obtain product copper alloy sheets.

このため、発明例1〜18の組織は、前記各測定方法による、50〜200nmのサイズの析出物の数密度が平均で0.2〜7.0個/μm2 の範囲であり、この範囲のサイズの析出物に含まれるPの平均原子濃度が0.1〜50at%の範囲であり、平均結晶粒径が10μm 以下である。また、50〜200nmのサイズの析出物に含まれるPとSiとの原子数比P/Siが平均で0.01〜10である。 For this reason, the structures of Invention Examples 1 to 18 have an average number density of precipitates having a size of 50 to 200 nm according to each measurement method in the range of 0.2 to 7.0 / μm 2. The average atomic concentration of P contained in the precipitate is in the range of 0.1 to 50 at%, and the average crystal grain size is 10 μm or less. The atomic ratio P / Si between P and Si contained in the precipitate having a size of 50 to 200 nm is 0.01 to 10 on average.

この結果、発明例1〜18は、0.2%耐力が800MPa以上、導電率が40%IACS以上の高強度、高導電率であって、かつ、曲げ加工性に優れている。   As a result, Invention Examples 1 to 18 have high strength and high conductivity of 0.2% proof stress of 800 MPa or more, conductivity of 40% IACS or more, and excellent bending workability.

これに対して、比較例19〜27、33〜35の銅合金は成分組成が本発明範囲から外れている。このため、溶体化処理(製造方法)は好ましい条件範囲内で行なわれているにもかかわらず、曲げ加工性が共通して劣り、強度や導電率も低くなっている。   In contrast, the copper alloys of Comparative Examples 19 to 27 and 33 to 35 are out of the scope of the present invention in the component composition. For this reason, although the solution treatment (manufacturing method) is performed within a preferable range of conditions, the bending workability is commonly inferior, and the strength and conductivity are low.

比較例19の銅合金はPを含有していない。このため、析出物に含まれるPの平均原子濃度が0であり、平均結晶粒径が10μm を越えて粗大化している。このため、曲げ加工性とともに、強度が低い。   The copper alloy of Comparative Example 19 does not contain P. For this reason, the average atomic concentration of P contained in the precipitate is 0, and the average crystal grain size is larger than 10 μm. For this reason, strength is low with bending workability.

比較例20の銅合金は、Niの含有量が上限を高めに外れている。このため、曲げ加工性とともに、導電率が著しく低い。   In the copper alloy of Comparative Example 20, the Ni content is out of the upper limit. For this reason, electrical conductivity is remarkably low with bending workability.

比較例21の銅合金は、Niの含有量が下限を低めに外れている。このため、50〜200nmのサイズの析出物に含まれるPの平均原子濃度が4at%であるにもかかわらず、平均結晶粒径が10μm を越えて粗大化している。この結果、曲げ加工性とともに、強度が著しく低い。   In the copper alloy of Comparative Example 21, the Ni content deviates slightly from the lower limit. For this reason, although the average atomic concentration of P contained in the precipitate having a size of 50 to 200 nm is 4 at%, the average crystal grain size is coarsened exceeding 10 μm. As a result, the strength is extremely low along with the bending workability.

比較例22の銅合金は、Siの含有量が上限を高めに外れている。このため、50〜200nmのサイズの析出物に含まれるPの平均原子濃度が1.5at%であるにもかかわらず、平均結晶粒径が10μm を越えて粗大化している。この結果、曲げ加工性とともに、導電率が著しく低い。   In the copper alloy of Comparative Example 22, the Si content deviates from the upper limit. For this reason, although the average atomic concentration of P contained in the precipitate having a size of 50 to 200 nm is 1.5 at%, the average crystal grain size is coarsened exceeding 10 μm. As a result, the electrical conductivity is remarkably low as well as bending workability.

比較例23の銅合金は、Siの含有量が下限を低めに外れている。このため、50〜200nmのサイズの析出物の数密度が少な過ぎ、このサイズの析出物に含まれるPの平均原子濃度が20at%であるにもかかわらず、平均結晶粒径が10μm を越えて粗大化している。この結果、曲げ加工性とともに、強度、導電率が著しく低い。   In the copper alloy of Comparative Example 23, the Si content is off the lower limit. For this reason, the number density of the precipitates having a size of 50 to 200 nm is too small, and the average crystal grain size becomes coarser than 10 μm even though the average atomic concentration of P contained in this size precipitate is 20 at%. ing. As a result, strength and conductivity are extremely low as well as bending workability.

比較例24の銅合金は、Pの含有量が上限を高めに外れている。このため、曲げ加工性とともに、導電率が著しく低い。   In the copper alloy of Comparative Example 24, the P content deviates from the upper limit. For this reason, electrical conductivity is remarkably low with bending workability.

比較例25の銅合金は、50〜200nmのサイズの析出物に含まれるPの平均原子濃度が少な過ぎ、また、Feの含有量が上限3.0%を高めに外れている。このため、平均結晶粒径が10μm を越えて粗大化している。この結果、曲げ加工性とともに、導電率が著しく低い。   In the copper alloy of Comparative Example 25, the average atomic concentration of P contained in the precipitate having a size of 50 to 200 nm is too small, and the Fe content is not higher than the upper limit of 3.0%. For this reason, the average crystal grain size is coarsened exceeding 10 μm. As a result, the electrical conductivity is remarkably low as well as bending workability.

比較例26の銅合金は、50〜200nmのサイズの析出物に含まれるPの平均原子濃度が少な過ぎ、また、Cr、Coの含有量が上限3.0%を高めに外れている。このため、平均結晶粒径が10μm を越えて粗大化している。この結果、曲げ加工性とともに、強度、導電率が著しく低い。   In the copper alloy of Comparative Example 26, the average atomic concentration of P contained in the precipitate having a size of 50 to 200 nm is too small, and the contents of Cr and Co are outside the upper limit of 3.0%. For this reason, the average crystal grain size is coarsened exceeding 10 μm. As a result, strength and conductivity are extremely low as well as bending workability.

また、比較例27〜35の銅合金は成分組成は本発明範囲内であるにもかかわらず、溶体化処理条件(製造方法)が好ましい条件範囲から外れている。この結果、曲げ加工性が共通して劣り、強度や導電率も低くなっている。   Moreover, although the composition of the copper alloys of Comparative Examples 27 to 35 is within the range of the present invention, the solution treatment conditions (manufacturing method) are out of the preferable condition range. As a result, bending workability is inferior in common, and strength and conductivity are also low.

比較例27は溶体化処理における400℃までの平均昇温速度が小さ過ぎる。このため、50〜200nmのサイズの析出物に含まれるPの平均原子濃度が3.7at%で、平均結晶粒径が6μm であるにもかかわらず、曲げ加工性とともに、強度が著しく低い。   In Comparative Example 27, the average temperature increase rate up to 400 ° C. in the solution treatment is too small. For this reason, although the average atomic concentration of P contained in the precipitate having a size of 50 to 200 nm is 3.7 at% and the average crystal grain size is 6 μm, the bending strength and the strength are extremely low.

比較例28は溶体化処理における400℃までの平均昇温速度が大き過ぎる。このため、析出物の数密度が不足して、平均結晶粒径が大きくなり、曲げ加工性が低い。   In Comparative Example 28, the average heating rate up to 400 ° C. in the solution treatment is too large. For this reason, the number density of precipitates is insufficient, the average crystal grain size becomes large, and the bending workability is low.

比較例29は400℃から溶体化温度までの平均昇温速度が小さ過ぎる。このため、平均結晶粒径が大きくなり、曲げ加工性が低い。   In Comparative Example 29, the average rate of temperature increase from 400 ° C. to the solution temperature is too small. For this reason, an average crystal grain size becomes large and bending workability is low.

比較例30は、溶体化処理温度が低過ぎる。このため、溶体化が不十分となり、強度が低く、曲げ性が低い。   In Comparative Example 30, the solution treatment temperature is too low. For this reason, solutionization becomes insufficient, strength is low, and bendability is low.

比較例31は、溶体化処理温度が高過ぎる。このため、50〜200nmのサイズの析出物の数密度が少な過ぎ、このサイズの析出物に含まれるPの平均原子濃度も0.2at%と小さく、平均結晶粒径が10μm を越えて粗大化している。この結果、曲げ加工性及び導電率が低い。   In Comparative Example 31, the solution treatment temperature is too high. For this reason, the number density of precipitates having a size of 50 to 200 nm is too small, the average atomic concentration of P contained in the precipitates of this size is as small as 0.2 at%, and the average crystal grain size is coarsened exceeding 10 μm. . As a result, bending workability and electrical conductivity are low.

比較例32は、溶体化処理後の平均冷却速度が小さ過ぎる。このため、50〜200nmのサイズの析出物の数密度や、これに含まれるPの平均原子濃度は範囲内であるものの、結晶粒の成長が促進され、平均結晶粒径が大きく、曲げ加工性が低い。また、強度も低い。   In Comparative Example 32, the average cooling rate after the solution treatment is too small. For this reason, the number density of precipitates having a size of 50 to 200 nm and the average atomic concentration of P contained therein are within the range, but the growth of crystal grains is promoted, the average crystal grain size is large, and the bending workability is low. . Also, the strength is low.

比較例33、35の銅合金はPを含有していない。また、Cr、Coの含有量が上限3.0%を高めに外れている。更に、溶体化処理温度が高過ぎ、50〜200nmのサイズの析出物の数密度が少な過ぎる。このため、平均結晶粒径が10μm を越えて粗大化し、曲げ加工性が低い。また導電率も著しく低い。   The copper alloys of Comparative Examples 33 and 35 do not contain P. Moreover, the content of Cr and Co deviates from the upper limit of 3.0%. Furthermore, the solution treatment temperature is too high, and the number density of precipitates having a size of 50 to 200 nm is too small. For this reason, the average crystal grain size becomes larger than 10 μm and the bending workability is low. Also, the conductivity is remarkably low.

比較例34は、50〜200nmのサイズの析出物の数密度が少な過ぎ、このサイズの析出物に含まれるPの平均原子濃度が範囲内であるにもかかわらず、平均結晶粒径が10μm を越えて粗大化している。この結果、曲げ加工性及び強度が低い。   In Comparative Example 34, although the number density of precipitates having a size of 50 to 200 nm is too small and the average atomic concentration of P contained in this size precipitate is within the range, the average crystal grain size exceeds 10 μm. It has become coarse. As a result, bending workability and strength are low.

以上の結果から、高強度、高導電率化させた上で、曲げ加工性にも優れさせるための、本発明銅合金板の成分組成、組織、更には、組織を得るための好ましい製造条件の意義が裏付けられる。   From the above results, the component composition and structure of the copper alloy sheet of the present invention for further improving the bending workability after increasing the strength and conductivity, and further preferable manufacturing conditions for obtaining the structure The significance is supported.

Figure 2007314847
Figure 2007314847

Figure 2007314847
Figure 2007314847

Figure 2007314847
Figure 2007314847

Figure 2007314847
Figure 2007314847

以上説明したように、本発明によれば、高強度化、高導電率化とともに、優れた曲げ加工性を兼備した銅合金を提供することができる。この結果、小型化及び軽量化した電気電子部品用として、半導体装置用リードフレーム以外にも、リードフレーム、コネクタ、端子、スイッチ、リレーなどの、高強度高導電率化と、厳しい曲げ加工性が要求される用途に適用することができる。   As described above, according to the present invention, it is possible to provide a copper alloy that has excellent bending workability as well as high strength and high electrical conductivity. As a result, for electrical and electronic parts that have been reduced in size and weight, in addition to semiconductor device lead frames, lead frames, connectors, terminals, switches, relays, etc. have high strength and high conductivity, and severe bending workability. It can be applied to the required use.

Claims (6)

質量%で、Ni:0.4〜4.0%、Si:0.05〜1.0%、P:0.005〜0.5%を各々含有し、残部銅および不可避的不純物からなる銅合金であって、この銅合金組織の、倍率30000倍の電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、50〜200nmのサイズの析出物の数密度が平均で0.2〜7.0個/μm2 であり、この範囲のサイズの析出物に含まれるPの平均原子濃度が0.1〜50at%であるとともに、電界放出型走査電子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定した、結晶粒の数をn、それぞれの測定した結晶粒径をxとした時、(Σx)/nで表される平均結晶粒径が10μm 以下であることを特徴とする高強度、高導電率および曲げ加工性に優れた銅合金。 In mass%, Ni: 0.4 to 4.0%, Si: 0.05 to 1.0%, P: 0.005 to 0.5%, respectively, and the balance copper and inevitable impurities The number density of precipitates having a size of 50 to 200 nm as measured by a field emission transmission electron microscope having a magnification of 30000 times and an energy dispersive analyzer of the copper alloy structure is 0.2 to 7.7 on average. 0 pieces / [mu] m 2, the average atom concentration of P contained in the precipitate size in this range with a 0.1~50at%, equipped with a backscattered electron diffraction image system field emission scanning electron microscope The average crystal grain size represented by (Σx) / n is 10 μm or less, where n is the number of crystal grains measured by the crystal orientation analysis method and x is the measured crystal grain size. High strength, high conductivity and bending workability Excellent copper alloy. 前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、50〜200nmのサイズの析出物に含まれるPとSiとの原子数比P/Siが平均で0.01〜10である請求項1に記載の銅合金。   On average, the atomic ratio P / Si of P and Si contained in the precipitate having a size of 50 to 200 nm, measured by the field emission transmission electron microscope and the energy dispersive analyzer, of the copper alloy structure is 0. The copper alloy according to claim 1, which is 0.01 to 10. 前記銅合金が、更に、質量%で、Cr、Ti、Fe、Mg、Co、Zrのうち一種または二種以上を合計で0.01〜3.0%を含有する請求項1または2に記載の銅合金。   The copper alloy further contains 0.01 to 3.0% in total of one or more of Cr, Ti, Fe, Mg, Co, and Zr by mass%. Copper alloy. 前記銅合金が、更に、質量%で、Zn:0.005〜3.0%を含有する請求項1乃至3のいずれか1項に記載の銅合金。   The copper alloy according to any one of claims 1 to 3, wherein the copper alloy further contains Zn: 0.005 to 3.0% by mass. 前記銅合金板が、更に、質量%で、Sn:0.01〜5.0%を含有する請求項1乃至4のいずれか1項に記載の銅合金。   The copper alloy plate according to any one of claims 1 to 4, wherein the copper alloy plate further contains Sn: 0.01 to 5.0% by mass. 請求項1乃至5のいずれかの銅合金の板を製造する方法であって、銅合金の鋳造、熱間圧延、冷間圧延、溶体化処理、冷間圧延、時効硬化処理、歪取り焼鈍を含む工程により銅合金板を得るに際し、溶体化処理における400℃までの平均昇温速度を5〜100℃/hの範囲、400℃から溶体化処理温度までの平均昇温速度を100℃/s以上、溶体化処理温度を700℃以上、900℃未満とし、溶体化処理後の平均冷却速度を50℃/s以上と各々することを特徴とする高強度、高導電率および曲げ加工性に優れた銅合金の製造方法。   A method for producing a copper alloy plate according to any one of claims 1 to 5, wherein the casting, hot rolling, cold rolling, solution treatment, cold rolling, age hardening treatment, and strain relief annealing of the copper alloy are performed. In obtaining a copper alloy sheet by the process of including, the average temperature increase rate from 400 degreeC to solution treatment temperature is 100 degreeC / s in the range of 5-100 degreeC / h in the average temperature increase rate to 400 degreeC in solution treatment. As described above, the solution treatment temperature is set to 700 ° C. or more and less than 900 ° C., and the average cooling rate after the solution treatment is set to 50 ° C./s or more. Excellent in high strength, high conductivity and bending workability A method for producing copper alloy.
JP2006147088A 2006-05-26 2006-05-26 Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same Active JP4006460B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2006147088A JP4006460B1 (en) 2006-05-26 2006-05-26 Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
PCT/JP2007/060526 WO2007138956A1 (en) 2006-05-26 2007-05-23 Copper alloy having high strength, high electric conductivity and excellent bending workability
EP07743960A EP2048251B1 (en) 2006-05-26 2007-05-23 Copper alloy having high strength, high electric conductivity and excellent bending workability
EP11009246.7A EP2426225B1 (en) 2006-05-26 2007-05-23 Copper alloy with high strength, high electrical conductivity, and excellent bendability
EP11009245.9A EP2426224B1 (en) 2006-05-26 2007-05-23 Copper alloy with high strength, high electrical conductivity, and excellent bendability
CN2007800165290A CN101437969B (en) 2006-05-26 2007-05-23 Copper alloy having high strength, high electroconductivity and superior bend formability
KR1020087026720A KR101049655B1 (en) 2006-05-26 2007-05-23 Copper alloy with high strength, high conductivity and bendability
US12/297,069 US8268098B2 (en) 2006-05-26 2007-05-23 Copper alloy having high strength, high electric conductivity and excellent bending workability
AT07743960T ATE542926T1 (en) 2006-05-26 2007-05-23 COPPER ALLOY WITH HIGH STRENGTH, HIGH ELECTRICAL CONDUCTIVITY AND EXCELLENT BENDING WORKABILITY
US13/491,942 US9177686B2 (en) 2006-05-26 2012-06-08 Copper alloy having high strength, high electric conductivity and excellent bending workability
US13/491,911 US8357248B2 (en) 2006-05-26 2012-06-08 Copper alloy having high strength, high electric conductivity and excellent bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147088A JP4006460B1 (en) 2006-05-26 2006-05-26 Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same

Publications (2)

Publication Number Publication Date
JP4006460B1 JP4006460B1 (en) 2007-11-14
JP2007314847A true JP2007314847A (en) 2007-12-06

Family

ID=38769842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147088A Active JP4006460B1 (en) 2006-05-26 2006-05-26 Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same

Country Status (2)

Country Link
JP (1) JP4006460B1 (en)
CN (1) CN101437969B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126681A1 (en) * 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
WO2009096546A1 (en) * 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
WO2010016429A1 (en) 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
JP2012136726A (en) * 2010-12-24 2012-07-19 Mitsubishi Shindoh Co Ltd Cu-Ni-Si BASED COPPER ALLOY SHEET EXCELLENT IN FATIGUE RESISTANCE AND SPRING PROPERTY AFTER BENDING WORKING, AND METHOD OF MANUFACTURING THE SAME
KR101213801B1 (en) 2008-03-28 2013-01-09 미쓰비시 신도 가부시키가이샤 High strength and high conductivity copper alloy pipe, rod, or wire
JP2013095976A (en) * 2011-11-02 2013-05-20 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2013119639A (en) * 2011-12-06 2013-06-17 Jx Nippon Mining & Metals Corp Co-Si-BASED COPPER ALLOY SHEET
JP2014095151A (en) * 2012-11-09 2014-05-22 Poongsan Corp Copper alloy material for electric and electronic component and its manufacturing method
JP2015036452A (en) * 2013-08-14 2015-02-23 古河電気工業株式会社 Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material
KR20160119141A (en) * 2014-02-05 2016-10-12 후루카와 덴키 고교 가부시키가이샤 Electrical contact material and manufacturing method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515668B1 (en) * 2007-11-05 2015-04-27 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material
JP5522692B2 (en) * 2011-02-16 2014-06-18 株式会社日本製鋼所 High strength copper alloy forging
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
JP5117604B1 (en) * 2011-08-29 2013-01-16 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
EP2796577B1 (en) * 2011-12-22 2018-05-02 Mitsubishi Shindoh Co., Ltd. Cu-Ni-Si BASED COPPER ALLOY SHEET HAVING HIGH DIE ABRASION RESISTANCE AND GOOD SHEAR PROCESSABILITY AND METHOD FOR PRODUCING SAME
CN107058793A (en) * 2017-05-27 2017-08-18 苏州铭晟通物资有限公司 A kind of wearability copper metal material
CN109161721A (en) * 2018-08-20 2019-01-08 黄山名伦精密五金有限公司 Welding copper-based alloy material and its manufacturing method
CN109777994A (en) * 2019-04-01 2019-05-21 宁波金田铜业(集团)股份有限公司 A kind of electronic shield copper alloy wire and its preparation method and application
CN110306078B (en) * 2019-08-05 2020-10-23 成都云鑫有色金属有限公司 High-strength high-conductivity free-cutting C97 alloy material and preparation method thereof
CN111426722B (en) * 2020-03-24 2022-04-19 北京科技大学 Device and method for rapidly determining recrystallization temperature of metal material
KR20220155977A (en) * 2020-03-31 2022-11-24 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and its manufacturing method
TW202206612A (en) * 2020-06-30 2022-02-16 日商三菱綜合材料股份有限公司 Plastic copper alloy working material, copper alloy wire material, component for electronic and electrical equipment, and terminal
CN112251626B (en) * 2020-09-16 2022-05-31 中铝材料应用研究院有限公司 Cu-Ti series alloy with ultra-fine grain structure and preparation method thereof
CN115404376B (en) * 2021-05-26 2023-05-05 叶均蔚 High-strength abrasion-resistant multi-element copper alloy and application thereof
CN117051285B (en) * 2023-10-12 2023-12-15 中铝科学技术研究院有限公司 Copper-nickel-silicon alloy, preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4255330B2 (en) * 2003-07-31 2009-04-15 日鉱金属株式会社 Cu-Ni-Si alloy member with excellent fatigue characteristics

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126681A1 (en) * 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
JP2008266783A (en) * 2007-03-26 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy for electrical/electronic device and method for manufacturing the same
WO2009096546A1 (en) * 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
KR101213801B1 (en) 2008-03-28 2013-01-09 미쓰비시 신도 가부시키가이샤 High strength and high conductivity copper alloy pipe, rod, or wire
WO2010016429A1 (en) 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
JP2012136726A (en) * 2010-12-24 2012-07-19 Mitsubishi Shindoh Co Ltd Cu-Ni-Si BASED COPPER ALLOY SHEET EXCELLENT IN FATIGUE RESISTANCE AND SPRING PROPERTY AFTER BENDING WORKING, AND METHOD OF MANUFACTURING THE SAME
JP2013095976A (en) * 2011-11-02 2013-05-20 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2013119639A (en) * 2011-12-06 2013-06-17 Jx Nippon Mining & Metals Corp Co-Si-BASED COPPER ALLOY SHEET
JP2014095151A (en) * 2012-11-09 2014-05-22 Poongsan Corp Copper alloy material for electric and electronic component and its manufacturing method
JP2015036452A (en) * 2013-08-14 2015-02-23 古河電気工業株式会社 Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material
KR20160119141A (en) * 2014-02-05 2016-10-12 후루카와 덴키 고교 가부시키가이샤 Electrical contact material and manufacturing method thereof
KR102102583B1 (en) * 2014-02-05 2020-04-21 후루카와 덴키 고교 가부시키가이샤 Electrical contact material and manufacturing method thereof

Also Published As

Publication number Publication date
CN101437969B (en) 2011-03-02
CN101437969A (en) 2009-05-20
JP4006460B1 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
JP3838521B1 (en) Copper alloy having high strength and excellent bending workability and method for producing the same
EP2426225B1 (en) Copper alloy with high strength, high electrical conductivity, and excellent bendability
JP4809935B2 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
JP4959141B2 (en) High strength copper alloy
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
WO2007007517A1 (en) Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
JP2011162848A (en) Copper alloy having small strength anisotropy and superior bendability
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
TWI527914B (en) Strength, heat resistance and bending workability of the Fe-P copper alloy plate
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
JP2009242871A (en) High strength and high electric conductivity two-phase copper alloy foil
JP5101149B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP5079574B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP6762453B1 (en) Copper alloy plate material and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4006460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6