JP5522692B2 - High strength copper alloy forging - Google Patents
High strength copper alloy forging Download PDFInfo
- Publication number
- JP5522692B2 JP5522692B2 JP2011030660A JP2011030660A JP5522692B2 JP 5522692 B2 JP5522692 B2 JP 5522692B2 JP 2011030660 A JP2011030660 A JP 2011030660A JP 2011030660 A JP2011030660 A JP 2011030660A JP 5522692 B2 JP5522692 B2 JP 5522692B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- strength
- conductivity
- processing
- forging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 23
- 238000005242 forging Methods 0.000 title claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 239000000956 alloy Substances 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 8
- 230000032683 aging Effects 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011888 foil Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 229910018594 Si-Cu Inorganic materials 0.000 description 1
- 229910008465 Si—Cu Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/003—Selecting material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Conductive Materials (AREA)
Description
本発明は、樹脂射出金型材を始めとした鍛造成形品などに好適な高強度銅合金鍛造材に関する。 The present invention relates to a high-strength copper alloy forging material suitable for forging products such as resin injection mold materials.
従来、導電性・熱伝導性に優れた合金として、黄銅(Cu−Zn系)、青銅(Cu−Sn系)、Be銅やコルソン合金(Cu−Ni−Si系)といった銅合金が用いられている。特に熱伝導とともに強度や硬度が要求されるような樹脂射出金型材や航空機部材などにはBe銅やコルソン合金が用いられている。しかし、上記のBe銅は溶解や加工時に生じる粉塵の有毒性が懸念され代替材が求められている。また、コルソン合金には更なる高熱伝導性、高強度、高硬度が求められている。
また、一般にCu合金は鍛造時や熱処理時に割れが発生しやすく、熱間加工性に加え延性の向上も求められる。
Conventionally, copper alloys such as brass (Cu—Zn), bronze (Cu—Sn), Be copper and Corson alloy (Cu—Ni—Si) have been used as alloys having excellent conductivity and thermal conductivity. Yes. In particular, Be copper and Corson alloy are used for resin injection mold materials and aircraft members that require heat conduction and strength and hardness. However, the above-mentioned Be copper is concerned about the toxicity of dust generated during melting and processing, and an alternative material is required. Further, the Corson alloy is required to have higher thermal conductivity, higher strength, and higher hardness.
In general, Cu alloys are liable to crack during forging or heat treatment, and it is required to improve ductility in addition to hot workability.
近年、銅合金の箔帯で強度を増大し、かつ曲げ加工性を向上させる方策として、Cu−Ni−Si系銅合金にMg、Sn、Ti、Zr、Al、Mnなどを添加した銅合金が提案されている(特許文献1〜5参照)。Mg、Snはマトリックスに固溶して強度を向上させる。Ti、Zr、Al、Mnは硫黄との親和性が強いため硫黄と化合物を形成し、熱間加工割れの原因である粒界への硫化物の偏析を軽減する。 In recent years, copper alloys obtained by adding Mg, Sn, Ti, Zr, Al, Mn, etc. to a Cu—Ni—Si based copper alloy as a measure to increase the strength and improve the bending workability with a copper alloy foil strip. It has been proposed (see Patent Documents 1 to 5). Mg and Sn are dissolved in the matrix to improve the strength. Ti, Zr, Al, and Mn have a strong affinity for sulfur, so they form a compound with sulfur, reducing the segregation of sulfides to the grain boundaries that cause hot work cracking.
特許文献2、3、5に示すような銅合金箔帯は、Sn、Mn、Zrなどを添加して、さらに、固溶化処理と時効処理の前後で、熱間圧延、冷間圧延や熱間引抜、冷間引抜を繰り返し行うことで従来の銅合金箔帯を上回る曲げ加工性と強度を有している。 The copper alloy foil strips as shown in Patent Documents 2, 3, and 5 are added with Sn, Mn, Zr, and the like, and before and after the solution treatment and the aging treatment, hot rolling, cold rolling and hot rolling. By repeatedly performing drawing and cold drawing, it has bending workability and strength exceeding conventional copper alloy foil strips.
しかし、Cu合金成形品を製造する場合は、主に熱間鍛造で加工成形を行うため、箔帯製造で行うような圧延や引抜加工を採用できない場合、特許文献2、3、5に示すような成分で鍛造成形品を製造しても高強度が得られない。
高強度を得るためにはNiとSiの添加量の増加が有効であるが、熱伝導率や熱間加工性が低下する。また、凝固中に生成する晶出物や熱処理中に生成する析出物が増加し、熱処理後の延性が低下する。
However, when manufacturing a Cu alloy molded product, since it is mainly formed by hot forging, when rolling and drawing processes such as those performed in foil strip manufacturing cannot be employed, Patent Documents 2, 3, and 5 are shown. Even if a forged molded product is manufactured with various components, high strength cannot be obtained.
In order to obtain high strength, an increase in the amount of Ni and Si is effective, but the thermal conductivity and hot workability are reduced. Moreover, the crystallized substance produced | generated during solidification and the precipitate produced | generated during heat processing increase, and the ductility after heat processing falls.
本発明は、上記事情を背景としてなされたものであり、樹脂射出金型材を始めとした鍛造成形品などに使用可能で、高硬度、高強度、高延性、高熱伝導率の特性を得ることができる高強度銅合金鍛造材を提供することを目的としている。 The present invention has been made against the background of the above circumstances, and can be used for forged molded articles such as resin injection mold materials, and can obtain characteristics of high hardness, high strength, high ductility, and high thermal conductivity. It aims at providing the high strength copper alloy forging material which can be performed.
本発明は、上記の課題を解決するために、Cu−Ni−Si系銅合金に、粒界へのNi2Siの析出を抑制して延性を高める効果を有するZrを適量含有させ、さらに、微細析出物の密度を増加させる効果を有し、かつ、Ni、SiならびにZrと化合物を形成するPを適量含有させることで、高硬度、高強度、高熱伝導性の特性を有する材料を得ることを可能にするものである。 In order to solve the above problems, the present invention contains a suitable amount of Zr having an effect of increasing the ductility by suppressing the precipitation of Ni 2 Si to the grain boundary in the Cu—Ni—Si based copper alloy, To obtain a material having the effect of increasing the density of fine precipitates and having characteristics of high hardness, high strength, and high thermal conductivity by containing an appropriate amount of P that forms a compound with Ni, Si and Zr. Is possible.
すなわち、本発明の高強度銅合金鍛造材のうち、第1の本発明は、質量%で、Ni:3〜7.2%、Si:0.7〜1.8%、Zr:0.02〜0.35%、P:0.002〜0.05%を含有し、残部がCuおよび不可避不純物からなり、0.2%耐力が650MPa以上、伸びが5%以上、導電率が30%IACS以上であることを特徴とする。 That is, among the high-strength copper alloy forgings of the present invention, the first present invention is mass%, Ni: 3 to 7.2%, Si: 0.7 to 1.8%, Zr: 0.02 to 0.35% P: containing from 0.002 to 0.05%, balance Ri Do Cu and inevitable impurities, 0.2% proof stress above 650 MPa, elongation of 5% or more, conductivity is 30% It is more than IACS .
第2の本発明の高強度銅合金鍛造材は、質量%で、Ni:3〜7.2%、Si:0.7〜1.8%、Zr:0.02〜0.35%、P:0.002〜0.05%を含有し、さらに、Cr、Mn、Znの1種または2種以上を合計で1.5%以下含有し、残部がCuおよび不可避不純物からなり、0.2%耐力が650MPa以上、伸びが5%以上、導電率が30%IACS以上であることを特徴とする。 The high-strength copper alloy forging material of the second aspect of the present invention is, in mass%, Ni: 3 to 7.2%, Si: 0.7 to 1.8%, Zr: 0.02 to 0.35%, P : containing 0.002 to 0.05%, further, Cr, Mn, and containing 1.5% or less in total of one or more of Zn, Ri Do the balance is Cu and inevitable impurities, 0. 2% yield strength is 650 MPa or more, elongation is 5% or more, and conductivity is 30% IACS or more .
以下に本発明における各成分の組成限定理由を説明する。なお、下記成分の含有量はいずれも質量%で示されている。 The reasons for limiting the composition of each component in the present invention will be described below. In addition, all the content of the following component is shown by the mass%.
Ni:3〜7.2%
Si:0.7〜1.8%
Ni及びSiは、時効処理を行うことによりNiとSiが微細なNi2Siを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのNi2Siの析出に伴い、導電性が向上し、熱伝導率が向上する。ただし、Ni濃度が3%未満で、かつSi濃度が0.7%未満の場合は、所望とする強度が得られない。また、Ni濃度が7.2%を超え、かつSi濃度が1.8%を超える場合は、鋳造時にNi2Si、Ni5Si2などが大量に晶出又は析出し、鍛造時や熱処理時に割れやすくなる。加えて、Ni濃度が7.2%を超えると導電率も低下し、熱伝導率が低下する。製造性や特性のバランスを考慮すると、Ni濃度は、下限3.5%、上限6.6%が望ましい。Si濃度は、下限0.8%、上限1.7%が望ましい。なお、Ni/Si比は3.8〜4.6が望ましい。この比から外れると、過剰となったNi又はSiがCuマトリックス中に固溶して熱伝導率を低下させる。
Ni: 3 to 7.2%
Si: 0.7-1.8%
Ni and Si form precipitation particles of intermetallic compounds mainly composed of Ni 2 Si in which Ni and Si are fine by performing an aging treatment, and remarkably increase the strength of the alloy. Further, with the precipitation of Ni 2 Si in the aging treatment, the conductivity is improved and the thermal conductivity is improved. However, when the Ni concentration is less than 3% and the Si concentration is less than 0.7%, the desired strength cannot be obtained. Further, when the Ni concentration exceeds 7.2% and the Si concentration exceeds 1.8%, a large amount of Ni 2 Si, Ni 5 Si 2 or the like crystallizes or precipitates during casting, and during forging or heat treatment It becomes easy to break. In addition, if the Ni concentration exceeds 7.2%, the electrical conductivity also decreases, and the thermal conductivity decreases. In consideration of the balance between manufacturability and characteristics, the Ni concentration is desirably a lower limit of 3.5% and an upper limit of 6.6%. The Si concentration is desirably a lower limit of 0.8% and an upper limit of 1.7%. The Ni / Si ratio is preferably 3.8 to 4.6. If it deviates from this ratio, the excess Ni or Si is dissolved in the Cu matrix and the thermal conductivity is lowered.
Zr:0.02〜0.35%
Zrは、硫黄との親和性が強いため硫黄と化合物を形成し、加工割れ(熱間加工割れ)の原因である結晶粒界への硫化物の偏析を軽減することで加工性(熱間加工性)を改善する。一方で、発明者らが鋭意調査した結果、Zr含有によりNiやSiの拡散が抑制されて粒界に析出するNi2Siが減少し、時効後の延性が改善されることが見い出されている。この効果を得るためにZrを0.02%以上含有させる。しかし、0.35%超含有するとZr酸化物やNi2SiZrなどの晶出物の増加、凝集によって製造性や特性が劣化するため、上限を0.35%とする。製造性や特性のバランスを考慮すると、下限0.05%、上限0.3%が望ましい。
Zr: 0.02 to 0.35%
Zr has a strong affinity with sulfur, so it forms a compound with sulfur and reduces the segregation of sulfides to the grain boundaries that are the cause of work cracking (hot work cracking). Improvement). On the other hand, as a result of intensive investigations by the inventors, it has been found that the diffusion of Ni and Si is suppressed by containing Zr, Ni 2 Si precipitated at the grain boundary is reduced, and ductility after aging is improved. . To obtain this effect, 0.02% or more of Zr is contained. However, if the content exceeds 0.35%, the productivity and characteristics deteriorate due to the increase and aggregation of crystallized substances such as Zr oxide and Ni 2 SiZr, so the upper limit is made 0.35%. Considering the balance between manufacturability and characteristics, the lower limit is preferably 0.05% and the upper limit is 0.3%.
P:0.002〜0.05%
Pは微細析出物の密度を増加させることで強度を向上させる。また、Ni、SiならびにZrとNi2SiあるいはNi2SiZrなどに微量のPを含有した化合物を形成することで硬さが増加する。これらの効果を得るために0.002%以上含有させる。しかし、0.05%超含有すると熱伝導率が大きく低下するので上限を0.05%とする。同様の理由により、下限を0.01%、上限を0.04%とするのが望ましい。
P: 0.002 to 0.05%
P increases the strength by increasing the density of fine precipitates. Further, the hardness is increased by forming a compound containing a small amount of P in Ni, Si, Zr and Ni 2 Si or Ni 2 SiZr. In order to acquire these effects, it contains 0.002% or more. However, if it exceeds 0.05%, the thermal conductivity is greatly reduced, so the upper limit is made 0.05%. For the same reason, it is desirable to set the lower limit to 0.01% and the upper limit to 0.04%.
Cr、Mn、Zn:合計で1.5%以下
Cr、Mn、Znは、所望により1種以上を含有させる。
CrはSiと金属間化合物を形成し、強度を向上させたり、結晶粒を微細化したりする効果がある。Mnは硫黄との親和性が強いため硫黄と化合物を形成し、加工割れ(熱間加工割れ)の原因である結晶粒界への硫化物の偏析を低減することで加工性(熱間加工性)を改善する。Znは固溶強化により強度を向上させる。また、溶解時に安価な黄銅スクラップを使用可能であれば製造コストを削減できる。しかし、Cr、Mn、Znを合計量で過剰に含有すると熱伝導率が低下するため、Cr、MnおよびZnの合計量を1.5%以下とする。
望ましくは、合計量を1.0%以下とするのが望ましい。また、Cr、Mn、Znの1種以上を含有させる場合、合計量で0.1%以上とするのが望ましい。
Cr, Mn, Zn: 1.5% or less in total Cr, Mn, Zn contains one or more as desired.
Cr forms an intermetallic compound with Si, and has the effect of improving the strength and miniaturizing the crystal grains. Mn has a strong affinity for sulfur, so it forms a compound with sulfur and reduces workability (hot workability) by reducing the segregation of sulfides to the grain boundaries that cause work cracking (hot work cracking). ). Zn improves the strength by solid solution strengthening. Moreover, if an inexpensive brass scrap can be used at the time of melt | dissolution, a manufacturing cost can be reduced. However, if Cr, Mn, and Zn are excessively contained in the total amount, the thermal conductivity is lowered. Therefore, the total amount of Cr, Mn, and Zn is set to 1.5% or less.
Desirably, the total amount is 1.0% or less. Moreover, when it contains 1 or more types of Cr, Mn, and Zn, it is desirable to set it as 0.1% or more in total amount.
以上説明したように、本発明によれば、加工時や熱処理時に、材料に割れが生じにくく、高硬度、高強度、高熱伝導率の特性を有する高強度銅合金鍛造材を得ることができる。 As described above, according to the present invention, it is possible to obtain a high-strength copper alloy forged material that is less susceptible to cracking during processing or heat treatment and that has characteristics of high hardness, high strength, and high thermal conductivity.
本発明の高強度銅合金鍛造材は、常法によって製造することができる。
本発明に用いる銅合金は、常法により溶製することができ、真空雰囲気や不活性雰囲気、大気雰囲気などで材料を溶解し、鋳塊を得ることができる。雰囲気は真空雰囲気、不活性雰囲気が望ましいが例えば大気高周波炉で溶製することもできる。また、エレクトロスラグ再溶解炉などを用いた二次溶解を行ってもよい。連続鋳造法によって板材を得ることも可能である。
The high-strength copper alloy forged material of the present invention can be produced by a conventional method.
The copper alloy used in the present invention can be melted by a conventional method, and an ingot can be obtained by melting the material in a vacuum atmosphere, an inert atmosphere, an air atmosphere or the like. The atmosphere is preferably a vacuum atmosphere or an inert atmosphere. Further, secondary melting using an electroslag remelting furnace or the like may be performed. It is also possible to obtain a plate material by a continuous casting method.
銅合金は必要に応じて加工が施される。加工の内容は本発明としては特に限定されるものではなく、プレス、ハンマー、圧延などの既知の鍛造方法を採用することができ、いかなる加工方法を用いても、本発明の特性を得ることが可能である。なお、加工は、製造性を考慮すると熱間加工が望ましく、さらには600℃以上で行う熱間加工が望ましいが、室温での加工でも熱間加工と同様の特性を得ることが可能である。また、加工は熱間加工と冷間加工とを組み合わせたものであってもよい。また、加工としては鍛造、さらには熱間鍛造が望ましく、熱間鍛造も600℃以上で行うのが一層望ましい。 The copper alloy is processed as necessary. The content of the processing is not particularly limited as the present invention, and a known forging method such as pressing, hammering, rolling or the like can be employed, and the characteristics of the present invention can be obtained by using any processing method. Is possible. The processing is preferably hot processing in consideration of manufacturability, and further, hot processing performed at 600 ° C. or higher is preferable, but the same characteristics as hot processing can be obtained even at processing at room temperature. Further, the processing may be a combination of hot processing and cold processing. Further, forging and hot forging are desirable as processing, and it is more desirable to perform hot forging at 600 ° C. or higher.
加工された銅合金材では、加工後または加工途中に固溶化処理を行うことも可能である。固溶化処理の条件は、例えば800〜1000℃で1〜10時間保持した後、Ni、Siを十分固溶させるために500℃以上の温度域を5℃/秒以上の冷却速度で冷却するものが挙げられる。
加工された銅合金材は、固溶化処理後または加工ままで時効処理を行うことができる。時効処理の条件は、例えば、400〜500℃で1〜30時間保持するものが挙げられる。
得られた高強度銅合金材は、0.2%耐力が650MPa以上、伸びが5%以上、導電率が30%IACS以上の特性を有している。
なお、本発明は、鍛造材として優れた特性を有しているが、本発明の組成においては、加工が施されていない鋳造材においても良好な延性等の特性を得ることができる。
The processed copper alloy material can be subjected to a solution treatment after processing or during processing. The conditions of the solid solution treatment are, for example, holding at 800 to 1000 ° C. for 1 to 10 hours, and then cooling a temperature range of 500 ° C. or higher at a cooling rate of 5 ° C./second or more in order to sufficiently dissolve Ni and Si. Is mentioned.
The processed copper alloy material can be subjected to aging treatment after the solution treatment or as processed. As for the conditions of an aging treatment, what hold | maintains at 400-500 degreeC for 1 to 30 hours is mentioned, for example.
The obtained high-strength copper alloy material has characteristics such that 0.2% proof stress is 650 MPa or more, elongation is 5% or more, and conductivity is 30% IACS or more.
In addition, although this invention has the characteristic outstanding as a forging material, in the composition of this invention, characteristics, such as favorable ductility, can be acquired even in the casting material which is not processed.
以下に、本発明の実施例について説明する。
表1の成分組成(その他不可避不純物を含む)になるように、原料を配合し真空誘導溶解炉で溶解して100mm径×200mm長の合金を作製した。この合金を、900℃でハンマーにより熱間鍛造して25mm厚の板材とし、970℃で4時間保持した後に水冷する固溶化処理を実施した。その後、400〜500℃で1〜30時間の各成分の素材にに適する時効処理を施して供試材を得た。
Examples of the present invention will be described below.
Raw materials were blended so as to have the component composition shown in Table 1 (including other inevitable impurities) and melted in a vacuum induction melting furnace to prepare an alloy having a diameter of 100 mm × 200 mm. This alloy was hot-forged with a hammer at 900 ° C. to obtain a 25 mm thick plate material, which was kept at 970 ° C. for 4 hours and then subjected to a solution treatment in which it was cooled with water. Then, the aging treatment suitable for the raw material of each component for 1 to 30 hours was performed at 400-500 degreeC, and the test material was obtained.
作製した供試片に対して、下記に示す評価を行った
(引張試験)
各供試体にJISZ2201、Z2241に基づき常温引張試験を実施し、0.2%耐力(Y.S)、引張強度(T.S)、伸び、絞りを評価した。測定結果を表2に示した。
(ヴィッカース硬さ)
各供試体に対し、JISZ2244に基づき、荷重5kgでヴィッカース硬さを測定した。測定結果を表2に示した。
(熱伝導率)
各供試体について導電率を測定した。ヴィーデマン=フランツ則に示されるように熱伝導率と導電率はほぼ比例関係にあり、導電率で熱伝導率を評価することができる。測定結果を表2に示した。
The following evaluation was performed on the prepared specimen (tensile test).
Each specimen was subjected to a normal temperature tensile test based on JISZ2201 and Z2241, and 0.2% proof stress (YS), tensile strength (TS), elongation, and drawing were evaluated. The measurement results are shown in Table 2.
(Vickers hardness)
For each specimen, the Vickers hardness was measured with a load of 5 kg based on JISZ2244. The measurement results are shown in Table 2.
(Thermal conductivity)
The conductivity was measured for each specimen. As shown in the Wiedemann-Franz rule, the thermal conductivity and the electrical conductivity are in a substantially proportional relationship, and the thermal conductivity can be evaluated by the electrical conductivity. The measurement results are shown in Table 2.
表2に示すように、本発明の実施例は650MPa以上の0.2%耐力、5%以上の伸び、30%IACS以上の導電率を有していた。また比較例と同等あるいはそれ以上の硬さを有していた。
以上のように、本発明は、Ni−Si−Cu合金に適量のZrとPを含有することにより、高導電率すなわち高熱伝導率を維持しつつ強度、延性、高度が高くなるという優れた性能が得られることが明らかにされた。
As shown in Table 2, the examples of the present invention had a 0.2% proof stress of 650 MPa or more, an elongation of 5% or more, and a conductivity of 30% IACS or more. Moreover, it had a hardness equal to or higher than that of the comparative example.
As described above, according to the present invention, by including appropriate amounts of Zr and P in the Ni—Si—Cu alloy, excellent performance is achieved in that strength, ductility, and altitude are increased while maintaining high conductivity, that is, high thermal conductivity. It was revealed that
Claims (2)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011030660A JP5522692B2 (en) | 2011-02-16 | 2011-02-16 | High strength copper alloy forging |
PCT/JP2012/053414 WO2012111674A1 (en) | 2011-02-16 | 2012-02-14 | High-strength copper alloy forging |
KR1020137021662A KR20130109238A (en) | 2011-02-16 | 2012-02-14 | High-strength copper alloy forging |
EP12747404.7A EP2677051A4 (en) | 2011-02-16 | 2012-02-14 | High-strength copper alloy forging |
CN201280009422.4A CN103384727B (en) | 2011-02-16 | 2012-02-14 | High strength copper alloy forged material |
US13/985,729 US20130323114A1 (en) | 2011-02-16 | 2012-02-14 | High-strength copper alloy forging material |
TW101105033A TWI539016B (en) | 2011-02-16 | 2012-02-16 | High strength copper alloy forged material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011030660A JP5522692B2 (en) | 2011-02-16 | 2011-02-16 | High strength copper alloy forging |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012167347A JP2012167347A (en) | 2012-09-06 |
JP5522692B2 true JP5522692B2 (en) | 2014-06-18 |
Family
ID=46672591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011030660A Active JP5522692B2 (en) | 2011-02-16 | 2011-02-16 | High strength copper alloy forging |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130323114A1 (en) |
EP (1) | EP2677051A4 (en) |
JP (1) | JP5522692B2 (en) |
KR (1) | KR20130109238A (en) |
CN (1) | CN103384727B (en) |
TW (1) | TWI539016B (en) |
WO (1) | WO2012111674A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5688744B2 (en) * | 2012-10-04 | 2015-03-25 | 株式会社日本製鋼所 | High strength and high toughness copper alloy forging |
KR101472348B1 (en) * | 2012-11-09 | 2014-12-15 | 주식회사 풍산 | Copper alloy material for electrical and electronic components and process for producing same |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04218631A (en) * | 1990-12-17 | 1992-08-10 | Nikko Kyodo Co Ltd | Copper alloy for metal mold for plastic molding |
WO2005083137A1 (en) * | 2004-02-27 | 2005-09-09 | The Furukawa Electric Co., Ltd. | Copper alloy |
JP4166196B2 (en) | 2004-06-28 | 2008-10-15 | 日鉱金属株式会社 | Cu-Ni-Si copper alloy strip with excellent bending workability |
JP4566048B2 (en) * | 2005-03-31 | 2010-10-20 | 株式会社神戸製鋼所 | High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof |
JP4655834B2 (en) * | 2005-09-02 | 2011-03-23 | 日立電線株式会社 | Copper alloy material for electrical parts and manufacturing method thereof |
EP2048251B1 (en) * | 2006-05-26 | 2012-01-25 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy having high strength, high electric conductivity and excellent bending workability |
JP4006460B1 (en) * | 2006-05-26 | 2007-11-14 | 株式会社神戸製鋼所 | Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same |
JP4247922B2 (en) * | 2006-09-12 | 2009-04-02 | 古河電気工業株式会社 | Copper alloy sheet for electrical and electronic equipment and method for producing the same |
US20080190523A1 (en) | 2007-02-13 | 2008-08-14 | Weilin Gao | Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same |
JP4357536B2 (en) | 2007-02-16 | 2009-11-04 | 株式会社神戸製鋼所 | Copper alloy sheet for electrical and electronic parts with excellent strength and formability |
JP5170881B2 (en) * | 2007-03-26 | 2013-03-27 | 古河電気工業株式会社 | Copper alloy material for electrical and electronic equipment and method for producing the same |
JP2008266787A (en) | 2007-03-28 | 2008-11-06 | Furukawa Electric Co Ltd:The | Copper alloy material and its manufacturing method |
JP4981748B2 (en) * | 2007-05-31 | 2012-07-25 | 古河電気工業株式会社 | Copper alloy for electrical and electronic equipment |
US20100294534A1 (en) * | 2007-11-01 | 2010-11-25 | The Furukawa Electric Co., Ltd. | Conductor wire for electronic apparatus and electrical wire for wiring using the same |
JP4851596B2 (en) * | 2007-11-01 | 2012-01-11 | 古河電気工業株式会社 | Method for producing copper alloy material |
JP5546196B2 (en) * | 2008-10-03 | 2014-07-09 | 古河電気工業株式会社 | Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material |
JP4630387B1 (en) * | 2010-04-07 | 2011-02-09 | 古河電気工業株式会社 | Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material |
-
2011
- 2011-02-16 JP JP2011030660A patent/JP5522692B2/en active Active
-
2012
- 2012-02-14 US US13/985,729 patent/US20130323114A1/en not_active Abandoned
- 2012-02-14 EP EP12747404.7A patent/EP2677051A4/en not_active Withdrawn
- 2012-02-14 KR KR1020137021662A patent/KR20130109238A/en not_active Application Discontinuation
- 2012-02-14 CN CN201280009422.4A patent/CN103384727B/en active Active
- 2012-02-14 WO PCT/JP2012/053414 patent/WO2012111674A1/en active Application Filing
- 2012-02-16 TW TW101105033A patent/TWI539016B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN103384727A (en) | 2013-11-06 |
TW201235485A (en) | 2012-09-01 |
JP2012167347A (en) | 2012-09-06 |
EP2677051A1 (en) | 2013-12-25 |
WO2012111674A1 (en) | 2012-08-23 |
US20130323114A1 (en) | 2013-12-05 |
TWI539016B (en) | 2016-06-21 |
KR20130109238A (en) | 2013-10-07 |
EP2677051A4 (en) | 2014-09-03 |
CN103384727B (en) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2664687B1 (en) | Improved free-machining wrought aluminium alloy product and manufacturing process thereof | |
EP3085799B1 (en) | Copper alloy and method for manufacturing the same | |
JP6057855B2 (en) | Aluminum alloy extruded material for cutting | |
JP5703881B2 (en) | High strength magnesium alloy and method for producing the same | |
JP2017128789A (en) | Heat resistant aluminum alloy shape material and aluminum alloy member | |
JP2007126739A (en) | Copper alloy for electronic material | |
CN111212923B (en) | Casting die material and copper alloy material | |
US10072321B2 (en) | Copper nickel alloy | |
JP5232794B2 (en) | High strength and high conductivity copper alloy with excellent hot workability | |
JP5522692B2 (en) | High strength copper alloy forging | |
JP5688744B2 (en) | High strength and high toughness copper alloy forging | |
JP2020169378A (en) | Aluminum alloy for compressor slide components and compressor slide component forging | |
JP5852039B2 (en) | Heat-resistant magnesium alloy | |
JP7472318B2 (en) | Aluminum alloys and aluminum alloy castings | |
JP6122932B2 (en) | High toughness aluminum alloy casting | |
JP4017105B2 (en) | Aluminum alloy cast bar with excellent machinability and hot workability | |
US20210404038A1 (en) | 2xxx aluminum lithium alloys | |
JP4750602B2 (en) | Copper alloy with excellent hot workability | |
JP7126915B2 (en) | Aluminum alloy extruded material and its manufacturing method | |
JPH0832935B2 (en) | High strength and high toughness Cu alloy with little characteristic anisotropy | |
JP2017039979A (en) | Aluminum alloy | |
JP6345016B2 (en) | Aluminum alloy plate for hot forming and manufacturing method thereof | |
CN118434895A (en) | Aluminum alloy material and method for producing same | |
JP2020125528A (en) | Aluminum alloy casting material | |
JP5595961B2 (en) | Cu-Ni-Si based copper alloy for electronic materials and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120605 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120605 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140402 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5522692 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |