JP7126915B2 - Aluminum alloy extruded material and its manufacturing method - Google Patents

Aluminum alloy extruded material and its manufacturing method Download PDF

Info

Publication number
JP7126915B2
JP7126915B2 JP2018186375A JP2018186375A JP7126915B2 JP 7126915 B2 JP7126915 B2 JP 7126915B2 JP 2018186375 A JP2018186375 A JP 2018186375A JP 2018186375 A JP2018186375 A JP 2018186375A JP 7126915 B2 JP7126915 B2 JP 7126915B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
temperature
hours
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018186375A
Other languages
Japanese (ja)
Other versions
JP2020056059A (en
Inventor
能昌 菅野
智史 宇田川
雅敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
UACJ Corp
UACJ Extrusion Corp
Original Assignee
Honda Motor Co Ltd
UACJ Corp
UACJ Extrusion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, UACJ Corp, UACJ Extrusion Corp filed Critical Honda Motor Co Ltd
Priority to JP2018186375A priority Critical patent/JP7126915B2/en
Publication of JP2020056059A publication Critical patent/JP2020056059A/en
Application granted granted Critical
Publication of JP7126915B2 publication Critical patent/JP7126915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、耐熱性に優れたアルミニウム合金、及びその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to an aluminum alloy with excellent heat resistance and a method for producing the same.

近年、CO2削減による地球環境に対する配慮や、省エネルギーの観点から、自動車や二輪車などの輸送機において、各種構造部材の軽量化及びコストダウンの要求が高まり、各種部材の材料を鉄鋼からアルミニウム合金へ切り替えるための開発が行われている。その中でも、エンジンなどに搭載される内燃機関用部品に用いられるアルミニウム合金には、室温環境だけではなく、高温環境下における高強度化が要求されている。 In recent years, there has been an increasing demand for weight reduction and cost reduction of various structural members in automobiles, motorcycles, and other transportation equipment from the viewpoint of energy conservation and consideration for the global environment by reducing CO2 emissions. A switch is under development. Among them, aluminum alloys used for internal combustion engine parts mounted in engines and the like are required to have high strength not only in room temperature environment but also in high temperature environment.

エンジン部品用のアルミニウム合金には、AA規格のAA2618、AA2219合金が適用されている。これまで、200℃付近までの高温強度を確保するために、Cu、Mg及びNiを主要成分とするアルミニウム合金に、Agを添加して高強度化する試みが行われている(特許文献1)。また、アルミニウム合金の高強度化として、アルミニウム合金の溶融開始温度を基に、溶体化処理温度を設定することで、過飽和固溶量を増大させ、時効処理時の微細析出物の析出量の増加によりアルミニウム合金を高強度化する試みが行われている(特許文献2)。 AA standard AA2618 and AA2219 alloys are applied to aluminum alloys for engine parts. Until now, in order to ensure high-temperature strength up to around 200 ° C., attempts have been made to increase the strength by adding Ag to aluminum alloys containing Cu, Mg and Ni as main components (Patent Document 1). . In order to increase the strength of the aluminum alloy, by setting the solution treatment temperature based on the melting start temperature of the aluminum alloy, the amount of supersaturated solid solution is increased, and the amount of fine precipitates during aging treatment is increased. Attempts have been made to increase the strength of aluminum alloys by (Patent Document 2).

特開2008-115413号公報JP 2008-115413 A 特開2008-202121号公報Japanese Patent Application Laid-Open No. 2008-202121

しかしながら、特許文献1のAgを添加する手法には、Agの地金が高価なため、製造コストが増大するという問題がある。また、特許文献2では、アルミニウム合金の溶融開始温度近傍で溶体化処理を行うため、局所的に溶融開始温度まで加熱されて、アルミニウム合金が部分溶解し、また、高温加熱によりアルミニウム合金の組織が部分再結晶して、強度低下につながるおそれがある。 However, the technique of adding Ag in Patent Literature 1 has a problem that the manufacturing cost increases because the base metal of Ag is expensive. Further, in Patent Document 2, since the solution treatment is performed near the melting start temperature of the aluminum alloy, the aluminum alloy is locally heated to the melting start temperature, the aluminum alloy is partially melted, and the structure of the aluminum alloy is deformed by high temperature heating. Partial recrystallization may lead to a decrease in strength.

従って、本発明の目的は、Al-Cu-Mg系アルミニウム合金であり、耐熱性に優れる高強度アルミニウム合金を提供することにある。 Accordingly, an object of the present invention is to provide a high-strength aluminum alloy which is an Al--Cu--Mg-based aluminum alloy and which is excellent in heat resistance.

本発明者らは、合金成分と、加工及び処理と、内部組織等との関連を検討した結果、合金成分、特にCu、Mgの含有量を特定の範囲とすること、溶体化処理を二段処理とすること等により、アルミニウム合金を高強度化するとともに、再結晶粒の粗大化を抑え、平均アスペクト比が5以上の繊維状組織を形成させることができ、そのことにより、耐熱性に優れる高強度のアルミニウム合金が得られることを見出し、本発明を完成させた。 The present inventors have studied the relationship between the alloy components, working and treatment, and the internal structure, etc. As a result, the content of the alloy components, especially Cu and Mg, is set to a specific range, and the solution treatment is performed in two steps. By treating it, etc., it is possible to increase the strength of the aluminum alloy, suppress the coarsening of recrystallized grains, and form a fibrous structure with an average aspect ratio of 5 or more, thereby improving heat resistance. The inventors have found that a high-strength aluminum alloy can be obtained, and completed the present invention.

すなわち、本発明(1)は、Cu:2.0~3.5質量%、Si:0.1~0.5質量%、Fe:0.5~1.0質量%、Mn:0.3~0.8質量%、Mg:1.5~2.5質量%、Ti:0.05~0.2質量%、Ni:0.5~2.0質量%、及びZr:0.05~0.3質量%を含有し、残部が不可避不純物及びアルミニウムからなり、
塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織であり、25℃での引張強さ(A)が480MPa以上であり、且つ、25℃での引張強さ(A)と、200℃の温度で10時間暴露保持した後、25℃で測定したときの引張強さ(B)との差(A-B)が50MPa以下であること、
を特徴とするアルミニウム合金押出材を提供するものである。
That is, the present invention (1) has Cu: 2.0 to 3.5 mass%, Si: 0.1 to 0.5 mass%, Fe: 0.5 to 1.0 mass%, Mn: 0.3 ~0.8 mass%, Mg: 1.5 to 2.5 mass%, Ti: 0.05 to 0.2 mass%, Ni: 0.5 to 2.0 mass%, and Zr: 0.05 to containing 0.3% by mass, the remainder consisting of inevitable impurities and aluminum,
A fiber structure in which the average aspect ratio of crystal grains in a cross section parallel to the plastic working direction is 5 or more, the tensile strength (A) at 25 ° C. is 480 MPa or more, and the tensile strength at 25 ° C. ( The difference (A - B) between A) and the tensile strength (B) measured at 25°C after being exposed for 10 hours at a temperature of 200°C is 50 MPa or less,
To provide an aluminum alloy extruded material characterized by

また、本発明(2)は、更に、Sc:0.05~0.3質量%を含有することを特徴とする請求項1記載のアルミニウム合金押出材を提供するものである。 Moreover, the present invention (2) provides the aluminum alloy extruded material according to claim 1, further comprising Sc: 0.05 to 0.3% by mass.

また、本発明()は、Cu:2.0~3.5質量%、Si:0.1~0.5質量%、Fe:0.5~1.0質量%、Mn:0.3~0.8質量%、Mg:1.5~2.5質量%、Ti:0.05~0.2質量%、Ni:0.5~2.0質量%、及びZr:0.05~0.3質量%を含有し、残部が不可避不純物及びアルミニウムからなるアルミニウム合金の鋳塊を、400~520℃の温度で1~20時間保持する均質化処理と、
該均質化処理を行い得られる均質化処理材を、300~500℃の温度で熱間加工する熱間加工工程と、
該熱間加工工程を行い得られる熱間加工材を、該熱間加工材の溶融開始温度より10~20℃低い温度域で、0.5~5時間保持する一段目の溶体化処理と、該一段目の溶体化処理温度より5~10℃高い温度域で、0.5~5時間保持する二段目の溶体化処理と、を続けて行った後、水冷して焼入れする二段溶体化処理と、
該二段溶体化処理を行い得られる二段溶体化処理材を、150~220℃の温度で、2~30時間保持する人工時効処理と、
を有するアルミニウム合金押出材の製造方法であり、
該アルミニウム合金押出材は、塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織であり、25℃での引張強さ(A)が480MPa以上であり、且つ、25℃での引張強さ(A)と、200℃の温度で10時間暴露保持した後、25℃で測定したときの引張強さ(B)との差(A-B)が50MPa以下であること、
を特徴とするアルミニウム合金押出材の製造方法を提供するものである。
In addition, the present invention ( 3 ) has Cu: 2.0 to 3.5% by mass, Si: 0.1 to 0.5% by mass, Fe: 0.5 to 1.0% by mass, Mn: 0.3 ~0.8 mass%, Mg: 1.5 to 2.5 mass%, Ti: 0.05 to 0.2 mass%, Ni: 0.5 to 2.0 mass%, and Zr: 0.05 to A homogenization treatment of holding an aluminum alloy ingot containing 0.3% by mass and the balance consisting of inevitable impurities and aluminum at a temperature of 400 to 520 ° C. for 1 to 20 hours;
A hot working step of hot working the homogenized material obtained by the homogenization treatment at a temperature of 300 to 500 ° C.;
A first-stage solution treatment in which the hot-worked material obtained by the hot-working step is held at a temperature range 10 to 20° C. lower than the melting start temperature of the hot-worked material for 0.5 to 5 hours; A second-stage solution treatment in which the second-stage solution treatment is held for 0.5 to 5 hours at a temperature range 5 to 10 ° C higher than the first-stage solution treatment temperature, and then water-cooled and quenched. and
An artificial aging treatment in which the two-step solution treated material obtained by the two-step solution treatment is held at a temperature of 150 to 220 ° C. for 2 to 30 hours,
A method for producing an aluminum alloy extruded material having
The aluminum alloy extruded material has a fiber structure in which the average aspect ratio of crystal grains in a cross section parallel to the direction of plastic working is 5 or more, the tensile strength (A) at 25 ° C. is 480 MPa or more, and 25 ° C. The difference (AB) between the tensile strength (A) at 200° C. and the tensile strength (B) measured at 25° C. after being exposed for 10 hours at a temperature of 200° C. is 50 MPa or less,
To provide a method for producing an aluminum alloy extruded material characterized by

本発明によれば、Al-Cu-Mg系アルミニウム合金であり、耐熱性に優れる高強度アルミニウム合金を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a high-strength aluminum alloy which is an Al--Cu--Mg-based aluminum alloy and has excellent heat resistance.

繊維組織の形態例の図である。FIG. 10 is a diagram of an example of the morphology of a fibrous tissue; 再結晶組織の形態例の図である。FIG. 3 is a diagram of an example of the morphology of a recrystallized structure;

本発明のアルミニウム合金は、Cu:2.0~3.5質量%、Si:0.1~0.5質量%、Fe:0.5~1.0質量%、Mn:0.3~0.8質量%、Mg:1.5~2.5質量%、Ti:0.05~0.3質量%、Ni:0.5~2.0質量%、及びZr:0.05~0.3質量%を含有し、残部が不可避不純物及びアルミニウムからなり、塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織であることを特徴とするアルミニウム合金である。 The aluminum alloy of the present invention has Cu: 2.0 to 3.5 mass%, Si: 0.1 to 0.5 mass%, Fe: 0.5 to 1.0 mass%, Mn: 0.3 to 0. .8% by mass, Mg: 1.5-2.5% by mass, Ti: 0.05-0.3% by mass, Ni: 0.5-2.0% by mass, and Zr: 0.05-0. An aluminum alloy containing 3% by mass, the balance being inevitable impurities and aluminum, and having a fiber structure in which the average aspect ratio of crystal grains in a cross section parallel to the direction of plastic working is 5 or more.

本発明のアルミニウム合金は、Cu、Si、Fe、Mn、Mg、Ti、Ni、及びZrを、必須成分として含有し、残部不可避不純物及びアルミニウムからなる。また、本発明のアルミニウム合金は、必要に応じて、これらの成分に加えて、更に、Scを含有することができる。 The aluminum alloy of the present invention contains Cu, Si, Fe, Mn, Mg, Ti, Ni, and Zr as essential components, and the remainder consists of unavoidable impurities and aluminum. Moreover, the aluminum alloy of the present invention can further contain Sc in addition to these components, if necessary.

本発明のアルミニウム合金のCu含有量は、2.0~3.5質量%、好ましくは2.5~3.3質量%である。Cuは引張強さや疲労強度などの機械的性質の向上に寄与する元素である。アルミニウム合金のCu含有量が上記範囲にあることにより、引張強さが高くなる。一方、アルミニウム合金のCu含有量が、上記範囲未満だと、強度向上の効果が小さくなり、また、上記範囲を超えると、融点が大幅に低くなるため、溶体化処理温度を低くしなければならず、そのため、溶体化処理後のマトリックス中の過飽和度が小さくなり、強度向上の効果が得られない。 The Cu content of the aluminum alloy of the present invention is 2.0-3.5 mass %, preferably 2.5-3.3 mass %. Cu is an element that contributes to improvement of mechanical properties such as tensile strength and fatigue strength. When the Cu content of the aluminum alloy is within the above range, the tensile strength is increased. On the other hand, if the Cu content of the aluminum alloy is less than the above range, the effect of improving strength is reduced, and if it exceeds the above range, the melting point is significantly lowered, so the solution treatment temperature must be lowered. Therefore, the degree of supersaturation in the matrix after solution treatment becomes small, and the effect of strength improvement cannot be obtained.

本発明のアルミニウム合金のSi含有量は、0.1~0.5質量%、好ましくは0.2~0.4質量%である。SiはMnとともにAl-Mn-Si系化合物の微細分散相を析出させ、転位のピンニング効果を高めて、溶体化処理中の再結晶粒の粗大化を防止する。アルミニウム合金のSi含有量が上記範囲にあることにより、高温強度が高くなる。一方、アルミニウム合金のSi含有量が、上記範囲未満だと、強度向上の効果が小さくなり、また、上記範囲を超えると、粗大な化合物を形成するため、高温強度が低くなる。 The Si content of the aluminum alloy of the present invention is 0.1-0.5 mass %, preferably 0.2-0.4 mass %. Si precipitates fine dispersed phases of Al--Mn--Si compounds together with Mn, enhances the pinning effect of dislocations, and prevents coarsening of recrystallized grains during solution treatment. When the Si content of the aluminum alloy is within the above range, the high temperature strength is increased. On the other hand, if the Si content of the aluminum alloy is less than the above range, the strength improvement effect is reduced, and if it exceeds the above range, coarse compounds are formed, resulting in low high-temperature strength.

本発明のアルミニウム合金のFe含有量は、0.5~1.0質量%、好ましくは0.6~0.9質量%である。FeはNiとの化合物を形成し、耐熱性を向上させる。アルミニウム合金のFe含有量が上記範囲にあることにより、耐熱性が高くなる。一方、アルミニウム合金のFe含有量が、上記範囲未満だと、耐熱性の向上効果が小さくなり、また、上記範囲を超えると、Al-Fe系、Al-Fe-Cu系などのFe系化合物がマトリックス中に分散するため、耐熱性の向上効果が小さくなる。 The Fe content of the aluminum alloy of the present invention is 0.5-1.0 mass %, preferably 0.6-0.9 mass %. Fe forms a compound with Ni to improve heat resistance. When the Fe content of the aluminum alloy is within the above range, the heat resistance is enhanced. On the other hand, if the Fe content of the aluminum alloy is less than the above range, the effect of improving the heat resistance becomes small, and if it exceeds the above range, Fe-based compounds such as Al-Fe and Al-Fe-Cu are generated. Since it is dispersed in the matrix, the effect of improving heat resistance is reduced.

本発明のアルミニウム合金のMn含有量は、0.3~0.8質量%、好ましくは0.4~0.7質量%である。Mnは機械的性質を向上させるとともに、Siとともに微細なAl-Mn-Si系化合物を析出し、分散することで、合金の溶体化処理中に生じる再結晶が抑制され、繊維状組織が形成され、強度を向上させる。アルミニウム合金のMn含有量が上記範囲にあることにより、強度及び耐熱性が高くなる。一方、アルミニウム合金のMn含有量が、上記範囲未満だと、強度及び耐熱性の向上効果が小さくなり、また、上記範囲を超えると、鋳造時に巨大晶出物が発生し易くなり、強度低下を招く。 The Mn content of the aluminum alloy of the present invention is 0.3-0.8 mass %, preferably 0.4-0.7 mass %. Mn improves mechanical properties, and precipitates and disperses fine Al-Mn-Si-based compounds together with Si, thereby suppressing recrystallization that occurs during solution treatment of the alloy and forming a fibrous structure. , improve strength. When the Mn content of the aluminum alloy is within the above range, strength and heat resistance are enhanced. On the other hand, if the Mn content of the aluminum alloy is less than the above range, the effect of improving strength and heat resistance is reduced, and if it exceeds the above range, large crystallized substances are likely to occur during casting, resulting in a decrease in strength. Invite.

本発明のアルミニウム合金のMg含有量は、1.5~2.5質量%、好ましくは1.7~2.1質量%である。Mgは機械的性質を向上させる。アルミニウム合金のMg含有量が上記範囲にあることにより、強度が高くなる。一方、アルミニウム合金のMg含有量が、上記範囲未満だと、強度向上の効果が小さくなり、また、上記範囲を超えると、成形加工性が悪くなり、生産性が低くなる。 The Mg content of the aluminum alloy of the present invention is 1.5-2.5% by mass, preferably 1.7-2.1% by mass. Mg improves mechanical properties. When the Mg content of the aluminum alloy is within the above range, the strength is increased. On the other hand, if the Mg content of the aluminum alloy is less than the above range, the effect of improving the strength will be small, and if it exceeds the above range, the formability will be poor and the productivity will be low.

本発明のアルミニウム合金のTi含有量は、0.05~0.3質量%、好ましくは0.1~0.2質量%である。Tiは微細な金属間化合物を形成し、微細結晶粒組織が安定して得られる。アルミニウム合金のTi含有量が上記範囲にあることにより、アルミニウム合金の鋳塊に粗大な化合物が生じることが抑制されるため、高い成形性を維持できる。一方、アルミニウム合金のTi含有量が、上記範囲未満だと、上記効果が小さくなり、上記範囲を超えると、成形加工性が悪くなる。また、Tiは単独で添加するか、Bと組み合わせて複合添加して含有させてもよい。結晶粒微細化のためにはBを併せて含有することで、より大きな効果が得られる。 The Ti content of the aluminum alloy of the present invention is 0.05-0.3 mass %, preferably 0.1-0.2 mass %. Ti forms a fine intermetallic compound, and a fine crystal grain structure can be stably obtained. When the Ti content of the aluminum alloy is within the above range, formation of coarse compounds in the ingot of the aluminum alloy is suppressed, so that high formability can be maintained. On the other hand, if the Ti content of the aluminum alloy is less than the above range, the above effect will be reduced, and if it exceeds the above range, formability will be poor. Also, Ti may be added alone, or may be added in combination with B in a composite manner. A greater effect can be obtained by containing B together for crystal grain refinement.

本発明のアルミニウム合金のNi含有量は、0.5~2.0質量%、好ましくは0.8~1.3質量%である。NiはFeとの化合物を形成し、耐熱性を向上させる。アルミニウム合金のNi含有量が上記範囲にあることにより、耐熱性が高くなる。一方、アルミニウム合金のNi含有量が、上記範囲未満だと、耐熱性の向上効果が小さくなり、また、上記範囲を超えると、Al-Ni系、Al-Ni-Cu系などのNi系化合物がマトリックス中に分散するため、高温強度が低くなる。 The Ni content of the aluminum alloy of the present invention is 0.5-2.0 mass %, preferably 0.8-1.3 mass %. Ni forms a compound with Fe to improve heat resistance. When the Ni content of the aluminum alloy is within the above range, the heat resistance is enhanced. On the other hand, if the Ni content of the aluminum alloy is less than the above range, the effect of improving the heat resistance becomes small, and if it exceeds the above range, Ni-based compounds such as Al-Ni-based and Al-Ni-Cu-based compounds are generated. Dispersion in the matrix results in low high temperature strength.

本発明のアルミニウム合金のZr含有量は、0.05~0.3質量%、好ましくは0.1~0.2質量%である。ZrはAl3Zr化合物の微細分散により、溶体化処理中に生じる再結晶粒の粗大化を抑制し、繊維状組織を形成させて、強度を高める。アルミニウム合金のZr含有量が上記範囲にあることにより、強度が高くなる。一方、アルミニウム合金のZr含有量が、上記範囲未満だと、強度向上の効果が小さくなり、また、上記範囲を超えると、鋳造時に巨大晶出物が発生し、成形性が悪くなる。 The Zr content of the aluminum alloy of the present invention is 0.05-0.3 mass %, preferably 0.1-0.2 mass %. Zr suppresses the coarsening of recrystallized grains that occur during the solution treatment by finely dispersing the Al 3 Zr compound, forms a fibrous structure, and increases the strength. When the Zr content of the aluminum alloy is within the above range, the strength is increased. On the other hand, if the Zr content of the aluminum alloy is less than the above range, the strength improvement effect will be small, and if it exceeds the above range, large crystallized substances will occur during casting, resulting in poor moldability.

本発明のアルミニウム合金がScを含有する場合、本発明のアルミニウム合金のSc含有量は、0.05~0.3質量%、好ましくは0.1~0.2質量%である。ScはAl3Sc化合物の微細分散により、溶体化処理中に生じる再結晶粒の粗大化を抑制するとともに、300℃付近で析出硬化に寄与するため、耐熱性が高くなる。アルミニウム合金のSc含有量が上記範囲にあることにより、耐熱性が高くなる。一方、アルミニウム合金のSc含有量が、上記範囲未満だと、耐熱性の向上効果が小さくなり、また、上記範囲を超えると、微細に析出せずに、粗大化合物を形成し強度が低くなる。 When the aluminum alloy of the present invention contains Sc, the Sc content of the aluminum alloy of the present invention is 0.05-0.3% by mass, preferably 0.1-0.2% by mass. Sc suppresses the coarsening of recrystallized grains that occur during the solution treatment by finely dispersing the Al 3 Sc compound, and contributes to precipitation hardening at around 300° C., resulting in high heat resistance. When the Sc content of the aluminum alloy is within the above range, the heat resistance is enhanced. On the other hand, if the Sc content of the aluminum alloy is less than the above range, the effect of improving the heat resistance becomes small, and if it exceeds the above range, coarse compounds are formed without fine precipitation, resulting in a decrease in strength.

本発明のアルミニウム合金は、塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織である。アルミニウム合金が、塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織(例えば、図1に示す組織)であることにより、耐熱性が高くなる。一方、アルミニウム合金の塑性加工方向に再結晶組織(例えば、図2に示す組織)を形成し、平行な断面の結晶粒の平均アスペクト比が5未満だと、耐熱性が低くなる。なお、本発明において、塑性加工方向に平行な断面の結晶粒の平均アスペクト比は、以下の測定方法により求められる。各試験材の塑性加工方向に平行な断面を電解エッチングし結晶粒を現出させ、材料組織を偏光光学顕微鏡により、倍率25倍で撮影する。次いで、撮影写真上に観察される結晶粒から、任意に10個選択し、個々の結晶粒について、「(塑性加工方向の長さ)/(塑性加工方向に直行する方向の長さ)」の式により、アスペクト比を計算し、選択した10個の結晶粒の平均を求めて、平均アスペクト比とする。アスペクト比が十分に大きく、全ての結晶粒の塑性加工方向の長さが撮影視野を超え、アスペクト比が5以上と判断できる場合は、平均アスペクト比は5以上とする。 The aluminum alloy of the present invention has a fiber structure in which the average aspect ratio of crystal grains in a cross section parallel to the direction of plastic working is 5 or more. Since the aluminum alloy has a fiber structure (for example, the structure shown in FIG. 1) in which the average aspect ratio of crystal grains in a cross section parallel to the direction of plastic working is 5 or more, heat resistance is enhanced. On the other hand, if a recrystallized structure (for example, the structure shown in FIG. 2) is formed in the plastic working direction of the aluminum alloy and the average aspect ratio of the crystal grains in the parallel cross section is less than 5, the heat resistance will be low. In the present invention, the average aspect ratio of crystal grains in a cross section parallel to the direction of plastic working is obtained by the following measuring method. A cross section parallel to the direction of plastic working of each test material is electrolytically etched to expose crystal grains, and the material structure is photographed with a polarizing optical microscope at a magnification of 25 times. Next, arbitrarily select 10 crystal grains from the crystal grains observed on the photograph, and for each crystal grain, "(length in the direction of plastic working) / (length in the direction perpendicular to the direction of plastic working)" The aspect ratio is calculated by the formula, and the average of 10 selected crystal grains is obtained to obtain the average aspect ratio. If the aspect ratio is sufficiently large, the length of all crystal grains in the direction of plastic working exceeds the field of view, and the aspect ratio can be determined to be 5 or more, the average aspect ratio is set to 5 or more.

本発明のアルミニウム合金は、25℃での引張強さ(A)が480MPa以上であり、且つ、25℃での引張強さ(A)と、200℃の温度で10時間暴露保持した後、25℃で測定したときの引張強さ(B)との差(A-B)が50MPa以下である。エンジンなどに搭載される内燃機関用部品は、高温環境下で長時間用いられると、強度が低下するおそれがある。そして、本発明のアルミニウム合金は、25℃での引張強さ(A)が480MPa以上であり、且つ、25℃での引張強さ(A)と、200℃の温度で10時間暴露保持した後、25℃で測定したときの引張強さ(B)との差(A-B)が50MPa以下であることにより、高強度であり、且つ、高温環境下での部品の強度低下を最小限度に抑え、製品寿命を延ばすことができる。なお、引張強さ(B)は、試験対象を、100℃/時間の昇温速度で、200℃まで加熱し、次いで、200℃で10時間保持し、次いで、空冷して、室温程度まで冷却した後、25℃で試験対象を測定したときの引張強さである。また、引張強さ(A)は、試験対象に上記のような加熱処理を施す前に、25℃で試験対象を測定したときの引張強さである。 The aluminum alloy of the present invention has a tensile strength (A) at 25 ° C. of 480 MPa or more, and has a tensile strength (A) at 25 ° C. and a temperature of 200 ° C. After 10 hours of exposure and holding, The difference (AB) from the tensile strength (B) when measured at °C is 50 MPa or less. 2. Description of the Related Art Parts for an internal combustion engine mounted on an engine or the like may lose strength when used for a long time in a high temperature environment. The aluminum alloy of the present invention has a tensile strength (A) at 25 ° C. of 480 MPa or more, and the tensile strength (A) at 25 ° C. and after exposure and holding at a temperature of 200 ° C. for 10 hours , The difference (AB) from the tensile strength (B) when measured at 25 ° C. is 50 MPa or less, so that the strength is high and the strength reduction of the parts in a high temperature environment is minimized. can be reduced and the product life can be extended. The tensile strength (B) is measured by heating the test object to 200°C at a heating rate of 100°C/hour, then holding it at 200°C for 10 hours, and then air-cooling it to about room temperature. It is the tensile strength when the test object is measured at 25°C after it has been heated. Moreover, the tensile strength (A) is the tensile strength when the test object is measured at 25° C. before the test object is subjected to the heat treatment described above.

本発明のアルミニウム合金には、上記以外の元素が、不可避不純物元素として含有されていてもよい。本発明のアルミニウム合金中の不可避不純物元素の含有量は、本発明の効果が損なわれない範囲であれば、特に制限されず、それぞれの不可避不純物元素の含有量が0.05質量%以下であることが好ましい。 The aluminum alloy of the present invention may contain elements other than those mentioned above as unavoidable impurity elements. The content of the inevitable impurity elements in the aluminum alloy of the present invention is not particularly limited as long as the effects of the present invention are not impaired, and the content of each inevitable impurity element is 0.05% by mass or less. is preferred.

本発明のアルミニウム合金は、例えば、以下に示す本発明のアルミニウム合金の製造方法により、製造される。 The aluminum alloy of the present invention is manufactured, for example, by the method of manufacturing the aluminum alloy of the present invention described below.

本発明のアルミニウム合金の製造方法は、Cu:2.0~3.5質量%、Si:0.1~0.5質量%、Fe:0.5~1.0質量%、Mn:0.3~0.8質量%、Mg:1.5~2.5質量%、Ti:0.05~0.3質量%、Ni:0.5~2.0質量%、及びZr:0.05~0.3質量%を含有し、残部が不可避不純物及びアルミニウムからなるアルミニウム合金の鋳塊を、400~520℃の温度で1~20時間保持する均質化処理と、
該均質化処理を行い得られる均質化処理材を、300~500℃の温度で熱間加工する熱間加工工程と、
該熱間加工工程を行い得られる熱間加工材を、該熱間加工材の溶融開始温度より10~20℃低い温度域で、0.5~5時間保持する一段目の溶体化処理と、該一段目の溶体化処理温度より5~10℃高い温度域で、0.5~5時間保持する二段目の溶体化処理と、を続けて行った後、水冷して焼入れする二段溶体化処理と、
該二段溶体化処理を行い得られる二段溶体化処理材を、150~220℃の温度で、2~30時間保持する人工時効処理と、
を有することを特徴とするアルミニウム合金の製造方法である。
The method for producing the aluminum alloy of the present invention comprises: Cu: 2.0 to 3.5% by mass; Si: 0.1 to 0.5% by mass; Fe: 0.5 to 1.0% by mass; 3 to 0.8% by mass, Mg: 1.5 to 2.5% by mass, Ti: 0.05 to 0.3% by mass, Ni: 0.5 to 2.0% by mass, and Zr: 0.05 A homogenization treatment of holding an aluminum alloy ingot containing ~0.3% by mass and the balance consisting of inevitable impurities and aluminum at a temperature of 400 to 520 ° C. for 1 to 20 hours;
A hot working step of hot working the homogenized material obtained by the homogenization treatment at a temperature of 300 to 500 ° C.;
A first-stage solution treatment in which the hot-worked material obtained by the hot-working step is held at a temperature range 10 to 20° C. lower than the melting start temperature of the hot-worked material for 0.5 to 5 hours; A second-stage solution treatment in which the second-stage solution treatment is held for 0.5 to 5 hours at a temperature range 5 to 10 ° C higher than the first-stage solution treatment temperature, and then water-cooled and quenched. and
An artificial aging treatment in which the two-step solution treated material obtained by the two-step solution treatment is held at a temperature of 150 to 220 ° C. for 2 to 30 hours,
A method for producing an aluminum alloy characterized by having

本発明のアルミニウム合金の製造方法では、先ず、所定の組成を有するアルミニウム合金を溶解し、DC鋳造により、所定の組成を有するアルミニウム合金からなるビレットを造塊する。ビレット中のCu含有量は、2.0~3.5質量%、好ましくは2.5~3.3質量%であり、Si含有量は、0.1~0.5質量%、好ましくは0.2~0.4質量%であり、Fe含有量は、0.5~1.0質量%、好ましくは0.6~0.9質量%であり、Mn含有量は、0.3~0.8質量%、好ましくは0.4~0.7質量%であり、Mg含有量は、1.5~2.5質量%、好ましくは1.7~2.1質量%であり、Ti含有量は、0.05~0.3質量%、好ましくは0.1~0.2質量%であり、Ni含有量は、0.5~2.0質量%、好ましくは0.8~1.3質量%であり、Zr含有量は、0.05~0.3質量%、好ましくは0.1~0.2質量%であり、必要に応じて、Scを含有する場合、Sc含有量は、0.05~0.3質量%、好ましくは0.1~0.2質量%である。 In the method for producing an aluminum alloy according to the present invention, first, an aluminum alloy having a predetermined composition is melted, and a billet made of the aluminum alloy having a predetermined composition is cast by DC casting. The Cu content in the billet is 2.0 to 3.5 mass%, preferably 2.5 to 3.3 mass%, and the Si content is 0.1 to 0.5 mass%, preferably 0. .2 to 0.4 mass %, the Fe content is 0.5 to 1.0 mass %, preferably 0.6 to 0.9 mass %, the Mn content is 0.3 to 0 .8 wt%, preferably 0.4 to 0.7 wt%, Mg content is 1.5 to 2.5 wt%, preferably 1.7 to 2.1 wt%, Ti content The amount is 0.05-0.3% by weight, preferably 0.1-0.2% by weight, and the Ni content is 0.5-2.0% by weight, preferably 0.8-1.0% by weight. 3% by mass, the Zr content is 0.05 to 0.3% by mass, preferably 0.1 to 0.2% by mass, and if necessary, when Sc is contained, the Sc content is , 0.05 to 0.3% by weight, preferably 0.1 to 0.2% by weight.

本発明のアルミニウム合金の製造方法に係る均質化処理では、鋳造により得られるビレットを、400~520℃の温度で1~20時間保持することにより、均質化を行い、均質化処理材を得る。均質化温度が、400℃未満だと、十分な均質化が行われず、また、520℃を超えると、偏在するミクロ偏析が共晶融解を起こすため、疲労強度が低くなる。均質化時間が、1時間未満だと、十分な均質化が行われず、また、20時間を超えると、均質化処理のための熱処理炉の占有時間が長くなり過ぎるため、製造コストを増大させる。 In the homogenization treatment according to the aluminum alloy production method of the present invention, a billet obtained by casting is homogenized by holding at a temperature of 400 to 520° C. for 1 to 20 hours to obtain a homogenized material. When the homogenization temperature is less than 400°C, sufficient homogenization is not performed, and when it exceeds 520°C, unevenly distributed micro-segregation causes eutectic melting, resulting in low fatigue strength. If the homogenization time is less than 1 hour, sufficient homogenization will not be achieved, and if it exceeds 20 hours, the heat treatment furnace will be occupied for too long for the homogenization treatment, increasing the production cost.

本発明のアルミニウム合金の製造方法に係る熱間加工工程では、均質化処理材を、300~500℃の温度で熱間加工することにより、熱間加工材を得る。熱間加工としては、押出加工、鍛造加工が好ましい。熱間加工工程では、1回以上熱間加工を行う。熱間加工を行わないと、鋳造組織のまま、ミクロ的な偏析が存在しているため、疲労強度が低くなる。熱間加工温度が300℃未満だと、加工ひずみが材料内部に蓄積されるため、溶体化処理の際に結晶粒の粗大化が生じて、強度が低くなり、また、500℃を超えると、加工変形中の加工発熱が加わり、部分的に共晶融解が発生して、疲労強度が低くなる。 In the hot working step according to the method for producing an aluminum alloy of the present invention, the homogenized material is hot worked at a temperature of 300 to 500° C. to obtain a hot worked material. Extrusion and forging are preferable as the hot working. In the hot working step, hot working is performed one or more times. If hot working is not performed, microscopic segregation is present in the as-cast structure, resulting in low fatigue strength. If the hot working temperature is less than 300°C, processing strain is accumulated inside the material, which causes coarsening of crystal grains during solution treatment, resulting in a decrease in strength. Heat generated during working deformation is added, and eutectic melting occurs partially, resulting in a decrease in fatigue strength.

本発明のアルミニウム合金の製造方法に係る二段溶体化処理では、熱間加工材を、熱間加工材の溶融開始温度より10~20℃低い温度域で、0.5~5時間保持する一段目の溶体化処理と、一段目の溶体化処理温度より5~10℃高い温度域で、0.5~5時間保持する二段目の溶体化処理とを、続けて行った後、水冷して焼入れし、二段溶体化処理材を得る。 In the two-stage solution treatment according to the method for producing an aluminum alloy of the present invention, the hot-worked material is held in a temperature range 10 to 20 ° C. lower than the melting start temperature of the hot-worked material for 0.5 to 5 hours. After the first solution treatment and the second solution treatment in which the temperature is maintained for 0.5 to 5 hours at a temperature range 5 to 10 ° C higher than the first solution treatment temperature, water cooling is performed. and quenching to obtain a two-stage solution heat-treated material.

一段目の溶体化処理では、熱間加工材の溶融開始温度より10~20℃低い温度域で加熱することにより、熱間加工材の表面から内部にかけてミクロ偏析を熱的になくして均質化し、表層と内部の溶融開始温度差をなくすことで、二段目の溶体化処理を一段目の溶体化処理より高温で行うことが可能になる。溶体化処理の温度が高いほど、合金マトリックス中の過飽和固溶量が増大し、人工時効による微細析出物の析出量が多くなって、強度が高くなる。熱間加工材の溶融開始温度と、一段目の溶体化処理温度との差が、10℃未満だと、ミクロ偏析が存在する場合には、共晶融解が生じ、靭性が低くなり、表面のふくれ発生の原因となり、また、熱間加工材の溶融開始温度と、一段目の溶体化処理温度との差が、20℃を超えると、均質化が十分ではないために、二段目の溶体化処理において共晶融解が発生するおそれがある。また、一段目の溶体化処理時間が、0.5時間未満だと、均質化が十分ではないために、二段目の溶体化処理において共晶融解が発生するおそれがあり、また、一段目の溶体化処理時間が、5時間を超えると、熱処理炉の占有時間が長くなり過ぎるため、製造コストを増大させる。なお、一段目の溶体化処理において、熱間加工材の溶融開始温度より10~20℃低い温度域で加熱するとは、例えば、熱間加工後の熱間加工材の溶融開始温度が500℃であったとすると、一段目の溶体化処理では、480~490℃の温度域で加熱するということを指す。 In the first-stage solution treatment, by heating in a temperature range 10 to 20 ° C lower than the melting start temperature of the hot-worked material, the micro-segregation is thermally eliminated from the surface to the inside of the hot-worked material and homogenized. By eliminating the melting start temperature difference between the surface layer and the inside, it becomes possible to perform the second-stage solution treatment at a higher temperature than the first-stage solution treatment. The higher the temperature of the solution treatment, the greater the amount of supersaturated solid solution in the alloy matrix, the greater the amount of fine precipitates produced by artificial aging, and the higher the strength. If the difference between the melting start temperature of the hot-worked material and the first-stage solution treatment temperature is less than 10°C, eutectic melting occurs in the presence of microsegregation, the toughness decreases, and the surface If the difference between the melting start temperature of the hot-worked material and the first-stage solution treatment temperature exceeds 20 ° C., homogenization is not sufficient, and the second-stage solution treatment Eutectic melting may occur in the heat treatment. Also, if the first-stage solution treatment time is less than 0.5 hours, homogenization is not sufficient, and eutectic melting may occur in the second-stage solution treatment. If the solution treatment time exceeds 5 hours, the occupancy time of the heat treatment furnace becomes too long, increasing the production cost. In the first-stage solution treatment, heating in a temperature range 10 to 20 ° C. lower than the melting start temperature of the hot-worked material means, for example, that the hot-worked material after hot working has a melting start temperature of 500 ° C. If so, it means that the first stage of solution heat treatment involves heating in the temperature range of 480 to 490°C.

二段目の溶体化処理では、一段目の溶体化処理温度より5~10℃高い温度域で加熱することより、高い温度で溶体化処理を行うことになるので、合金マトリックス中の過飽和固溶量が増大し、人工時効による微細析出物の析出量が多くなって、強度が高くなる。二段目の溶体化処理温度と、一段目の溶融開始温度との差が、10℃を超えると、部分的な再結晶組織の形成や共晶融解を招き、強度及びシャルピー衝撃値が低くなり、表面のふくれ発生の原因となり、また、二段目の溶体化処理温度と、一段目の溶体化処理温度との差が、5℃未満だと、合金マトリックス中のCuやMgの過飽和固溶量が少なくなるため、強度が高くならない。また、二段目の溶体化処理時間が、0.5時間未満だと、合金マトリックス中のCuやMgの過飽和固溶量が少なくなるため、強度が高くならず、また、二段目の溶体化処理時間が、5時間を超えると、熱処理炉の占有時間が長くなり過ぎるため、製造コストを増大させる。なお、二段目の溶体化処理において、一段目の溶体化処理温度より5~10℃高い温度域で加熱するとは、例えば、一段目の溶体化処理で、485℃で加熱したとすると、二段目の溶体化処理では、490~495℃の温度域で加熱することを指す。 In the second-stage solution treatment, heating is performed at a temperature range 5 to 10°C higher than the first-stage solution treatment temperature. As the amount increases, the amount of fine precipitates produced by artificial aging increases, and the strength increases. If the difference between the second-stage solution treatment temperature and the first-stage melting start temperature exceeds 10°C, the formation of a partial recrystallized structure and eutectic melting will occur, and the strength and Charpy impact value will decrease. If the difference between the second-stage solution treatment temperature and the first-stage solution treatment temperature is less than 5°C, a supersaturated solid solution of Cu and Mg in the alloy matrix will occur. Since the amount is less, the strength is not increased. In addition, if the second-stage solution treatment time is less than 0.5 hours, the amount of supersaturated solid solution of Cu and Mg in the alloy matrix decreases, so the strength does not increase. If the hardening treatment time exceeds 5 hours, the occupancy time of the heat treatment furnace becomes too long, increasing the manufacturing cost. In the second-stage solution treatment, heating in a temperature range 5 to 10 ° C higher than the first-stage solution treatment temperature means, for example, if heating is performed at 485 ° C. in the first-stage solution treatment, two The step of solution heat treatment means heating in a temperature range of 490 to 495°C.

本発明のアルミニウム合金の製造方法に係る人工時効処理では、二段溶体化処理材を、150~220℃の温度で、2~30時間保持する。人工時効処理温度が、150℃未満だと、析出量が少ないため、強度が低くなり、また、220℃を超えると、粗大な析出物が生じるため、強度が低くなる。また、人工時効処理温度が、2時間未満だと、析出量が少ないため、強度が低くなり、また、30時間を超えると、熱処理炉の占有時間が長くなり過ぎるため、製造コストを増大させる。 In the artificial aging treatment according to the method for producing an aluminum alloy of the present invention, the two-stage solution-treated material is held at a temperature of 150 to 220° C. for 2 to 30 hours. When the artificial aging treatment temperature is less than 150°C, the amount of precipitates is small, resulting in low strength. On the other hand, if the artificial aging treatment temperature is less than 2 hours, the amount of precipitation is small and the strength is low.

本発明のアルミニウム合金の製造方法を行うことにより得られるアルミニウム合金は、塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織である。そのため、本発明のアルミニウム合金の製造方法を行うことにより得られるアルミニウム合金は、25℃での引張強さ(A)が480MPa以上であり、且つ、25℃での引張強さ(A)と、200℃の温度で10時間暴露保持した後、25℃で測定したときの引張強さ(B)との差(A-B)が50MPa以下である。つまり、本発明のアルミニウム合金の製造方法を行うことにより得られるアルミニウム合金は、強度が高く且つ耐熱性が高い。 The aluminum alloy obtained by carrying out the method for producing an aluminum alloy of the present invention has a fiber structure in which the average aspect ratio of crystal grains in a cross section parallel to the direction of plastic working is 5 or more. Therefore, the aluminum alloy obtained by performing the method for producing an aluminum alloy of the present invention has a tensile strength (A) at 25 ° C. of 480 MPa or more, and a tensile strength (A) at 25 ° C. The difference (AB) from the tensile strength (B) measured at 25°C after being exposed to a temperature of 200°C for 10 hours is 50 MPa or less. That is, the aluminum alloy obtained by carrying out the method for producing an aluminum alloy of the present invention has high strength and high heat resistance.

以下に、実施例を示して、本発明を具体的に説明するが、本発明は、以下に示す実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples shown below.

(実施例1及び比較例1)
DC鋳造によって得た表1(実施例)及び表2(比較例)に示す組成のアルミニウム合金のビレット(直径90mm)を、470℃で20時間均質化処理した。なお、表1及び表2では、含有量は質量%であり、残部はアルミニウムである。次いで、400℃で熱間押出し、直径15mmの丸棒材形状の熱間押出材を得た。次いで、熱間押出材に、一段目の溶体化処理として、520℃の温度で2時間保持し、続けて、二段目の溶体化処理として、527℃の温度で2時間保持した後、水冷却による焼入れを行った。次いで、190℃で20時間の人工時効処理を行い、T6調質のアルミニウム合金を得た。
次いで、得られたアルミニウム合金の評価を行った。その結果を表3に示す。
(Example 1 and Comparative Example 1)
Aluminum alloy billets (diameter 90 mm) having compositions shown in Table 1 (Example) and Table 2 (Comparative Example) obtained by DC casting were homogenized at 470°C for 20 hours. In addition, in Table 1 and Table 2, the content is mass %, and the balance is aluminum. Then, it was hot extruded at 400° C. to obtain a hot extruded material in the form of a round bar with a diameter of 15 mm. Next, the hot extruded material is held at a temperature of 520 ° C. for 2 hours as a first-stage solution treatment, and then held at a temperature of 527 ° C. for 2 hours as a second-stage solution treatment. Quenching by cooling was performed. Then, artificial aging treatment was performed at 190° C. for 20 hours to obtain an aluminum alloy with a T6 temper.
Then, the obtained aluminum alloy was evaluated. Table 3 shows the results.

<共晶融解開始温度の測定>
熱間押出材を示差走査熱量計で測定し、共晶融解開始温度を求めた。
<Measurement of eutectic melting start temperature>
The hot extruded material was measured with a differential scanning calorimeter to determine the eutectic melting start temperature.

<引張強さの測定>
JIS Z 2241に準拠して、引張強さを測定した。
試験試料は、人工時効処理を行い得られたアルミニウム合金(試験試料1)と、人工時効処理を行い得られたアルミニウム合金を、100℃/時間の昇温速度で、200℃まで加熱し、次いで、200℃で10時間保持し、次いで、空冷して、室温程度まで冷却したアルミニウム合金(試験試料2)とした。
<Measurement of tensile strength>
The tensile strength was measured according to JIS Z 2241.
The test samples were an aluminum alloy obtained by artificial aging treatment (test sample 1) and an aluminum alloy obtained by artificial aging treatment, which were heated to 200 ° C. at a heating rate of 100 ° C./hour, and then , and held at 200° C. for 10 hours, followed by air cooling to obtain an aluminum alloy (test sample 2) cooled to about room temperature.

<結晶粒の平均アスペクト比の測定>
アルミニウム合金の塑性加工方向に平行な断面を、電解エッチングにより結晶粒を現出させ、材料組織を偏光光学顕微鏡により、倍率25倍で撮影した。撮影写真上に観察される結晶粒から、任意に10個選択し、個々の結晶粒について、「(塑性加工方向の長さ)/(塑性加工方向に直行する方向の長さ)」の式により、アスペクト比を計算した。任意に選択した10個の結晶粒のアスペクト比を平均し、平均アスペクト比を求めた。なお、アスペクト比が十分に大きく、全ての結晶粒の塑性加工方向の長さが撮影視野を超え、アスペクト比が5以上と判断できる場合は、平均アスペクト比は5以上とした。
<Measurement of average aspect ratio of crystal grains>
A cross section parallel to the direction of plastic working of the aluminum alloy was exposed to crystal grains by electrolytic etching, and the material structure was photographed with a polarizing optical microscope at a magnification of 25 times. Select 10 arbitrarily from the crystal grains observed on the photograph, and for each crystal grain, by the formula "(length in the direction of plastic working) / (length in the direction perpendicular to the direction of plastic working)" , to calculate the aspect ratio. The aspect ratios of 10 arbitrarily selected crystal grains were averaged to obtain an average aspect ratio. When the aspect ratio is sufficiently large, the length of all crystal grains in the direction of plastic working exceeds the field of view, and the aspect ratio can be determined to be 5 or more, the average aspect ratio is set to 5 or more.

Figure 0007126915000001
Figure 0007126915000001

Figure 0007126915000002
Figure 0007126915000002

Figure 0007126915000003
Figure 0007126915000003

比較例No.21~37は、本発明の範囲外であるため、材料の成形が良好ではないか、引張強さが良好なものが得られなかった。
比較例No.21は、Cu含有量が2.0質量%未満のため、強度が低かった。
比較例No.22は、Cu含有量が3.5質量%を超えているため、共晶融解開始温度が低くなり、再結晶が生じ、材料の引張強さが低かった。
比較例No.23は、Si含有量が0.1質量%未満のため、再結晶組織が形成され、引張強さと結晶粒の平均アスペクト比が低かった。
比較例No.24は、Si含有量が0.5質量%を超えているため、粗大化合物が形成され、200℃で10時間曝露保持後の強度が低下した。
比較例No.25は、Fe含有量が0.1質量%未満のため、強度が低かった。
比較例No.26は、Fe含有量が1.0質量%を超えているため、粗大化合物を形成し、200℃で10時間曝露保持後の強度が低下した。
比較例No.27は、Mn含有量が0.3質量%未満のため、再結晶組織が形成され、引張強さと結晶粒の平均アスペクト比が低くなった。
比較例No.28は、Mn含有量が0.8質量%を超えているため、粗大化合物を形成し、200℃で10時間曝露保持後の強度が低下した。
比較例No.29は、Mg含有量が1.5質量%未満のため、強度が低かった。
比較例No.30は、Mg含有量が2.5質量%を超えているため、成形加工性が悪く、押出加工時に割れが生じた。
比較例No.31は、Ti含有量が0.05質量%未満のため、再結晶組織が形成され、引張強さと結晶粒の平均アスペクト比が低くなった。
比較例No.32は、Ti含有量が0.27質量%であるため、鋳塊に粗大な化合物が生じ、押出加工時に割れが生じた。
比較例No.33は、Ni含有量が0.5質量%未満のため、高温強度が低かった。
比較例No.34は、Ni含有量が2.0質量%を超えているため、Ni系金属間化合物がマトリックス中に分散し、高温強度が低かった。
比較例No.35は、Zr含有量が0.05質量%未満のため、再結晶組織が形成され、引張強さと結晶粒の平均アスペクト比が低かった。
比較例No.36は、Zr含有量が0.3質量%を超えているため、鋳塊に粗大な化合物が生じ、押出加工時に割れが生じた。
比較例No.37は、Sc含有量が0.3質量%を超えているため、微細に析出せずに粗大化合物を形成したため、強度が低くなった。
それに対し、実施例No.1~20は、本発明の範囲内であるため、塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織で、25℃で測定した引張強さが480MPa以上であり、且つ、25℃での引張強さ(A)と、25℃で測定した引張強さと、200℃の温度で10時間暴露保持した後、25℃で測定した引張強さとの差が、50MPa以下であった。
Comparative example no. Nos. 21 to 37 were out of the scope of the present invention, and either the materials were not well formed, or good tensile strength was not obtained.
Comparative example no. In No. 21, the strength was low because the Cu content was less than 2.0% by mass.
Comparative example no. In No. 22, since the Cu content exceeded 3.5% by mass, the eutectic melting initiation temperature was low, recrystallization occurred, and the tensile strength of the material was low.
Comparative example no. In No. 23, since the Si content was less than 0.1% by mass, a recrystallized structure was formed, and the tensile strength and the average aspect ratio of crystal grains were low.
Comparative example no. In No. 24, since the Si content exceeded 0.5% by mass, a coarse compound was formed and the strength was lowered after being exposed to 200° C. for 10 hours.
Comparative example no. In No. 25, the strength was low because the Fe content was less than 0.1% by mass.
Comparative example no. In No. 26, since the Fe content exceeded 1.0% by mass, a coarse compound was formed, and the strength after exposure and holding at 200° C. for 10 hours decreased.
Comparative example no. In No. 27, since the Mn content was less than 0.3% by mass, a recrystallized structure was formed, and the tensile strength and the average aspect ratio of crystal grains were low.
Comparative example no. In No. 28, since the Mn content exceeded 0.8% by mass, a coarse compound was formed, and the strength after exposure to 200° C. for 10 hours decreased.
Comparative example no. No. 29 had a low strength because the Mg content was less than 1.5% by mass.
Comparative example no. In No. 30, since the Mg content exceeded 2.5% by mass, moldability was poor and cracks occurred during extrusion.
Comparative example no. In No. 31, since the Ti content was less than 0.05% by mass, a recrystallized structure was formed, and the tensile strength and the average aspect ratio of crystal grains were low.
Comparative example no. In No. 32, since the Ti content was 0.27% by mass , coarse compounds were generated in the ingot, and cracks were generated during extrusion.
Comparative example no. No. 33 had a low high-temperature strength because the Ni content was less than 0.5% by mass.
Comparative example no. In No. 34, since the Ni content exceeded 2.0% by mass, the Ni-based intermetallic compound was dispersed in the matrix and the high-temperature strength was low.
Comparative example no. In No. 35, since the Zr content was less than 0.05% by mass, a recrystallized structure was formed, and the tensile strength and the average aspect ratio of crystal grains were low.
Comparative example no. In No. 36, since the Zr content exceeded 0.3% by mass, coarse compounds were generated in the ingot, and cracks occurred during extrusion.
Comparative example no. In No. 37, since the Sc content exceeded 0.3% by mass, coarse compounds were formed without fine precipitation, resulting in low strength.
On the other hand, Example No. 1 to 20 are within the scope of the present invention, so the fiber structure has an average aspect ratio of 5 or more of the crystal grains in the cross section parallel to the plastic working direction, and the tensile strength measured at 25 ° C. is 480 MPa or more. And, the difference between the tensile strength (A) at 25 ° C., the tensile strength measured at 25 ° C., and the tensile strength measured at 25 ° C. after exposure and holding at a temperature of 200 ° C. for 10 hours is 50 MPa or less. Met.

(実施例2及び比較例2)
DC鋳造によって得た表4に示す組成のアルミニウム合金のビレット(直径90mm)を、470℃で20時間均質化処理した。なお、表4では、含有量は質量%であり、残部はアルミニウムである。次いで、400℃で熱間押出し、直径15mmの丸棒材形状の熱間押出材を得た。次いで、熱間押出材に、表5又は表6に示す条件で、一段目の溶体化処理を行い、続けて、二段目の溶体化処理を行った後、水冷却による焼入れを行った。次いで、190℃で20時間の人工時効処理を行い、T6調質のアルミニウム合金を得た。
次いで、得られたアルミニウム合金の評価を行った。その結果を表7に示す。
(Example 2 and Comparative Example 2)
An aluminum alloy billet (90 mm in diameter) having the composition shown in Table 4 obtained by DC casting was homogenized at 470° C. for 20 hours. In addition, in Table 4, the content is mass %, and the balance is aluminum. Then, it was hot extruded at 400° C. to obtain a hot extruded material in the form of a round bar with a diameter of 15 mm. Next, the hot extruded materials were subjected to the first-stage solution treatment under the conditions shown in Table 5 or Table 6, followed by the second-stage solution treatment, and then quenched by water cooling. Then, artificial aging treatment was performed at 190° C. for 20 hours to obtain an aluminum alloy with a T6 temper.
Then, the obtained aluminum alloy was evaluated. Table 7 shows the results.

Figure 0007126915000004
Figure 0007126915000004

Figure 0007126915000005
Figure 0007126915000005

Figure 0007126915000006
Figure 0007126915000006

Figure 0007126915000007
Figure 0007126915000007

比較例No.42~45は、本発明の範囲外であるため、材料の成形が良好ではないか、引張強さが良好なものが得られなかった。
比較例No.42と比較例No.44は、熱間加工材の共晶融解開始温度と、一段目の溶体化処理温度との差が、20℃を超え、二段目の溶体化処理温度と、一段目の溶体化処理温度との差が、5℃未満であるため、溶体化処理による過飽和固溶量が少なく、人工時効処理で析出強化が不十分であったため、材料の強度向上効果が得られなかった。
比較例No.43と比較例No.45は、熱間加工材の共晶融解開始温度と、一段目の溶体化処理温度との差が、10℃未満であり、二段目の溶体化処理温度と、一段目の溶体化処理温度との差が、10℃を超えているため、材料に再結晶が生じ、アスペクト比が低下した結果、25℃の強度及び200℃の温度で10時間曝露保持後の強度が低下した。
それに対し、実施例No.38~41は、本発明の範囲内であるため、塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織で、25℃で測定した引張強さが480MPa以上であり、且つ、25℃での引張強さ(A)と、25℃で測定した引張強さと、200℃の温度で10時間暴露保持した後、25℃で測定した引張強さとの差が、50MPa以下であった。
Comparative example no. Nos. 42 to 45 are outside the scope of the present invention, so the material was not well molded or did not have good tensile strength.
Comparative example no. 42 and comparative example no. 44, the difference between the eutectic melting start temperature of the hot-worked material and the first-stage solution treatment temperature exceeds 20 ° C., and the second-stage solution treatment temperature and the first-stage solution treatment temperature is less than 5°C, the amount of supersaturated solid solution due to solution treatment is small, and precipitation strengthening due to artificial aging treatment is insufficient, so that the effect of improving the strength of the material cannot be obtained.
Comparative example no. 43 and Comparative Example No. In 45, the difference between the eutectic melting start temperature of the hot-worked material and the first-stage solution treatment temperature is less than 10 ° C., and the second-stage solution treatment temperature and the first-stage solution treatment temperature are less than 10 ° C. Since the difference between the two exceeds 10°C, the material recrystallizes and the aspect ratio decreases, resulting in a decrease in the strength at 25°C and after exposure and holding at a temperature of 200°C for 10 hours.
On the other hand, Example No. 38 to 41 are within the scope of the present invention, so the fiber structure has an average aspect ratio of 5 or more of the crystal grains in the cross section parallel to the plastic working direction, and the tensile strength measured at 25 ° C. is 480 MPa or more. And, the difference between the tensile strength (A) at 25 ° C., the tensile strength measured at 25 ° C., and the tensile strength measured at 25 ° C. after exposure and holding at a temperature of 200 ° C. for 10 hours is 50 MPa or less. Met.

Claims (3)

Cu:2.0~3.5質量%、Si:0.1~0.5質量%、Fe:0.5~1.0質量%、Mn:0.3~0.8質量%、Mg:1.5~2.5質量%、Ti:0.05~0.2質量%、Ni:0.5~2.0質量%、及びZr:0.05~0.3質量%を含有し、残部が不可避不純物及びアルミニウムからなり、
塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織であり、25℃での引張強さ(A)が480MPa以上であり、且つ、25℃での引張強さ(A)と、200℃の温度で10時間暴露保持した後、25℃で測定したときの引張強さ(B)との差(A-B)が50MPa以下であること、
を特徴とするアルミニウム合金押出材
Cu: 2.0 to 3.5% by mass, Si: 0.1 to 0.5% by mass, Fe: 0.5 to 1.0% by mass, Mn: 0.3 to 0.8% by mass, Mg: 1.5 to 2.5% by mass, Ti: 0.05 to 0.2 % by mass, Ni: 0.5 to 2.0% by mass, and Zr: 0.05 to 0.3% by mass, The balance consists of inevitable impurities and aluminum,
A fiber structure in which the average aspect ratio of crystal grains in a cross section parallel to the plastic working direction is 5 or more, the tensile strength (A) at 25 ° C. is 480 MPa or more, and the tensile strength at 25 ° C. ( The difference (A - B) between A) and the tensile strength (B) measured at 25°C after being exposed for 10 hours at a temperature of 200°C is 50 MPa or less,
An aluminum alloy extrusion characterized by:
更に、Sc:0.05~0.3質量%を含有することを特徴とする請求項1記載のアルミニウム合金押出材The aluminum alloy extruded material according to claim 1, further comprising Sc: 0.05 to 0.3% by mass. Cu:2.0~3.5質量%、Si:0.1~0.5質量%、Fe:0.5~1.0質量%、Mn:0.3~0.8質量%、Mg:1.5~2.5質量%、Ti:0.05~0.2質量%、Ni:0.5~2.0質量%、及びZr:0.05~0.3質量%を含有し、残部が不可避不純物及びアルミニウムからなるアルミニウム合金の鋳塊を、400~520℃の温度で1~20時間保持する均質化処理と、
該均質化処理を行い得られる均質化処理材を、300~500℃の温度で熱間加工する熱間加工工程と、
該熱間加工工程を行い得られる熱間加工材を、該熱間加工材の溶融開始温度より10~20℃低い温度域で、0.5~5時間保持する一段目の溶体化処理と、該一段目の溶体化処理温度より5~10℃高い温度域で、0.5~5時間保持する二段目の溶体化処理と、を続けて行った後、水冷して焼入れする二段溶体化処理と、
該二段溶体化処理を行い得られる二段溶体化処理材を、150~220℃の温度で、2~30時間保持する人工時効処理と、
を有するアルミニウム合金押出材の製造方法であり、
該アルミニウム合金押出材は、塑性加工方向に平行な断面の結晶粒の平均アスペクト比が5以上の繊維組織であり、25℃での引張強さ(A)が480MPa以上であり、且つ、25℃での引張強さ(A)と、200℃の温度で10時間暴露保持した後、25℃で測定したときの引張強さ(B)との差(A-B)が50MPa以下であること、
を特徴とするアルミニウム合金押出材の製造方法。
Cu: 2.0 to 3.5% by mass, Si: 0.1 to 0.5% by mass, Fe: 0.5 to 1.0% by mass, Mn: 0.3 to 0.8% by mass, Mg: 1.5 to 2.5% by mass, Ti: 0.05 to 0.2 % by mass, Ni: 0.5 to 2.0% by mass, and Zr: 0.05 to 0.3% by mass, A homogenization treatment in which an aluminum alloy ingot whose balance is inevitable impurities and aluminum is held at a temperature of 400 to 520 ° C. for 1 to 20 hours;
A hot working step of hot working the homogenized material obtained by the homogenization treatment at a temperature of 300 to 500 ° C.;
A first-stage solution treatment in which the hot-worked material obtained by the hot-working step is held at a temperature range 10 to 20° C. lower than the melting start temperature of the hot-worked material for 0.5 to 5 hours; A second-stage solution treatment in which the second-stage solution treatment is held for 0.5 to 5 hours at a temperature range 5 to 10 ° C higher than the first-stage solution treatment temperature, and then water-cooled and quenched. and
An artificial aging treatment in which the two-step solution treated material obtained by the two-step solution treatment is held at a temperature of 150 to 220 ° C. for 2 to 30 hours,
A method for producing an aluminum alloy extruded material having
The aluminum alloy extruded material has a fiber structure in which the average aspect ratio of crystal grains in a cross section parallel to the direction of plastic working is 5 or more, the tensile strength (A) at 25 ° C. is 480 MPa or more, and 25 ° C. The difference (AB) between the tensile strength (A) at 200° C. and the tensile strength (B) measured at 25° C. after being exposed for 10 hours at a temperature of 200° C. is 50 MPa or less,
A method for producing an aluminum alloy extruded material , characterized by:
JP2018186375A 2018-10-01 2018-10-01 Aluminum alloy extruded material and its manufacturing method Active JP7126915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186375A JP7126915B2 (en) 2018-10-01 2018-10-01 Aluminum alloy extruded material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186375A JP7126915B2 (en) 2018-10-01 2018-10-01 Aluminum alloy extruded material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020056059A JP2020056059A (en) 2020-04-09
JP7126915B2 true JP7126915B2 (en) 2022-08-29

Family

ID=70106587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186375A Active JP7126915B2 (en) 2018-10-01 2018-10-01 Aluminum alloy extruded material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7126915B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115413A (en) 2006-11-01 2008-05-22 Honda Motor Co Ltd High-strength and high-toughness aluminum alloy superior in heat resistance, and manufacturing method therefor
JP2010018854A (en) 2008-07-11 2010-01-28 Sumitomo Light Metal Ind Ltd Lightweight and high strength aluminum alloy excellent in heat resistance
JP2017043802A (en) 2015-08-25 2017-03-02 株式会社Uacj Aluminum alloy extrusion material and manufacturing method therefor
JP2017128789A (en) 2016-01-19 2017-07-27 株式会社神戸製鋼所 Heat resistant aluminum alloy shape material and aluminum alloy member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115413A (en) 2006-11-01 2008-05-22 Honda Motor Co Ltd High-strength and high-toughness aluminum alloy superior in heat resistance, and manufacturing method therefor
JP2010018854A (en) 2008-07-11 2010-01-28 Sumitomo Light Metal Ind Ltd Lightweight and high strength aluminum alloy excellent in heat resistance
JP2017043802A (en) 2015-08-25 2017-03-02 株式会社Uacj Aluminum alloy extrusion material and manufacturing method therefor
JP2017128789A (en) 2016-01-19 2017-07-27 株式会社神戸製鋼所 Heat resistant aluminum alloy shape material and aluminum alloy member

Also Published As

Publication number Publication date
JP2020056059A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP4187018B2 (en) Cast aluminum alloy with excellent relaxation resistance and heat treatment method
WO2012026354A1 (en) Co-based alloy
US20040191111A1 (en) Er strengthening aluminum alloy
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
CN109136681B (en) 6061 aluminum cast bar and casting process thereof
JP2010018854A (en) Lightweight and high strength aluminum alloy excellent in heat resistance
JP2007070686A (en) Highly workable magnesium alloy, and method for producing the same
JP5004032B2 (en) Aluminum-based alloy having excellent high-temperature strength and low thermal expansibility and method for producing the same
JP4676906B2 (en) Heat-resistant aluminum alloy for drawing
JP2019108579A (en) Aluminum alloy material, and method for producing aluminum alloy product
JP2005320618A (en) High-strength alpha+beta-type titanium alloy
JP4228166B2 (en) Seamless copper alloy tube with excellent fatigue strength
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
RU2749073C1 (en) Heat-resistant cast deformable aluminum alloys based on al-cu-y and al-cu-er systems (options)
JPH08144003A (en) High strength aluminum alloy excellent in heat resistance
KR102312430B1 (en) Aluminum alloy and method of manufacturing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP6015536B2 (en) Heat treatment type aluminum alloy for cold plastic working and manufacturing method thereof
JPH10259464A (en) Production of aluminum alloy sheet for forming
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material
KR100909699B1 (en) Aluminum alloy with improved impact energy and extrusion made from the same
KR102566987B1 (en) High strength aluminum-zinc-magnesium-cooper alloy thick plate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220817

R150 Certificate of patent or registration of utility model

Ref document number: 7126915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150