JP2017043802A - Aluminum alloy extrusion material and manufacturing method therefor - Google Patents

Aluminum alloy extrusion material and manufacturing method therefor Download PDF

Info

Publication number
JP2017043802A
JP2017043802A JP2015165985A JP2015165985A JP2017043802A JP 2017043802 A JP2017043802 A JP 2017043802A JP 2015165985 A JP2015165985 A JP 2015165985A JP 2015165985 A JP2015165985 A JP 2015165985A JP 2017043802 A JP2017043802 A JP 2017043802A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
extrusion
extruded material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015165985A
Other languages
Japanese (ja)
Other versions
JP6348466B2 (en
Inventor
裕子 玉田
Yuko Tamada
裕子 玉田
八太 秀周
Hidechika Hatta
秀周 八太
紘一 石田
Koichi Ishida
紘一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
UACJ Extrusion Corp
Original Assignee
UACJ Corp
UACJ Extrusion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp, UACJ Extrusion Corp filed Critical UACJ Corp
Priority to JP2015165985A priority Critical patent/JP6348466B2/en
Priority to CN201680032729.4A priority patent/CN107636181B/en
Priority to US15/754,161 priority patent/US20180237889A1/en
Priority to DE112016003841.0T priority patent/DE112016003841T5/en
Priority to PCT/JP2016/072198 priority patent/WO2017033663A1/en
Publication of JP2017043802A publication Critical patent/JP2017043802A/en
Application granted granted Critical
Publication of JP6348466B2 publication Critical patent/JP6348466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy extrusion material excellent in strength and creep resistance at high temperature and a manufacturing method therefor.SOLUTION: An aluminum alloy extrusion material contains, by mass%, Cu:2.5 to 3.3%, Mg:1.3 to 2.5%, Ni:0.50 to 1.3%, Fe:0.50 to 1.5%, Mn:less than 0.50%, Si:0.15 to 0.40%, Zr:0.06 to 0.20%, Ti:less than 0.05% and the balance Al with inevitable impurities. The aluminum alloy extrusion material has particle diameter of an intermetallic compound of 20 μm or less by equivalent circle diameter, density of intermetallic compound with particle diameter of 0.3 to 20 μm by equivalent circle diameter of 5×10/mmor more and average particle diameter of subgrain particle of 20 μm by equivalent circle diameter at a cross section.SELECTED DRAWING: None

Description

本発明は、アルミニウム合金押出材及びその製造方法に関する。   The present invention relates to an aluminum alloy extruded material and a method for producing the same.

近年、環境保護の観点から、自動車の内燃機関の燃費向上が求められている。自動車の内燃機関用部品(例えばピストン等)、過給機用部品(例えばコンプレッサホイール等)等に適用されるアルミニウム合金材は、内燃機関の高出力化のため、高温域での強度及び高温域での長時間の使用にも耐えうる耐クリープ性が求められている。   In recent years, from the viewpoint of environmental protection, there has been a demand for improved fuel efficiency of automobile internal combustion engines. Aluminum alloy materials applied to automobile internal combustion engine parts (for example, pistons) and supercharger parts (for example, compressor wheels) are used in high temperature areas and high temperature areas to increase the output of internal combustion engines. There is a need for creep resistance that can withstand long-term use.

例えば、特許文献1には、アルミニウム合金材の高温域(100〜180℃)での強度を向上させるため、導電率及び金属間化合物の平均粒子径を所定の範囲に制御することが提案されている。また、特許文献2には、アルミニウム合金材の高温域(200℃以上)での強度を向上させるため、Fe及びNiの含有量が所定の関係を満たすようにすることが提案されている。   For example, Patent Document 1 proposes to control the electrical conductivity and the average particle diameter of the intermetallic compound within a predetermined range in order to improve the strength of the aluminum alloy material in a high temperature range (100 to 180 ° C.). Yes. Patent Document 2 proposes that the contents of Fe and Ni satisfy a predetermined relationship in order to improve the strength of an aluminum alloy material in a high temperature range (200 ° C. or higher).

特開平1−152237号公報JP-A-1-152237 特開平7−242976号公報Japanese Patent Laid-Open No. 7-242976

しかしながら、上記特許文献1、2では、アルミニウム合金材の高温域での強度について検討がなされているものの、高温域での耐クリープ性については全く検討がなされていない。すなわち、従来は、アルミニウム合金材の高温域での耐クリープ性について十分な検討がなされていなかった。   However, in Patent Documents 1 and 2 described above, although the strength of the aluminum alloy material in the high temperature range has been studied, the creep resistance in the high temperature range has not been studied at all. That is, conventionally, sufficient investigation has not been made on the creep resistance of aluminum alloy materials at high temperatures.

本発明は、かかる背景に鑑みてなされたもので、高温での強度及び耐クリープ性に優れたアルミニウム合金押出材及びその製造方法を提供する。   This invention is made | formed in view of this background, and provides the aluminum alloy extrusion material excellent in the intensity | strength and creep resistance in high temperature, and its manufacturing method.

本発明の一の態様は、アルミニウム合金押出材であって、質量%で、Cu:2.5〜3.3%、Mg:1.3〜2.5%、Ni:0.50〜1.3%、Fe:0.50〜1.5%、Mn:0.50%未満、Si:0.15〜0.40%、Zr:0.06〜0.20%、Ti:0.05%未満を含有し、残部がAl及び不可避的不純物からなり、断面において、金属間化合物の粒径が円相当径で20μm以下であり、粒径が円相当径で0.3〜20μmの金属間化合物の密度が5×10個/mm以上であり、かつ、亜結晶粒の平均粒径が円相当径で20μm以下である。 One aspect of the present invention is an aluminum alloy extruded material, and in terms of mass%, Cu: 2.5 to 3.3%, Mg: 1.3 to 2.5%, Ni: 0.50 to 1. 3%, Fe: 0.50 to 1.5%, Mn: less than 0.50%, Si: 0.15 to 0.40%, Zr: 0.06 to 0.20%, Ti: 0.05% And the balance is made of Al and inevitable impurities, and in the cross section, the particle size of the intermetallic compound is 20 μm or less in equivalent circle diameter, and the particle size is 0.3 to 20 μm in equivalent circle diameter. Is 5 × 10 3 particles / mm 2 or more, and the average grain size of the sub-crystal grains is 20 μm or less in terms of equivalent circle diameter.

このアルミニウム合金押出材によれば、例えば200℃以上の高温域における強度及び耐クリープ性を向上させることができる。ここで、強度については、押出方向(L方向)の強度だけでなく、押出方向に直交する方向(LT方向)の強度も向上させることができる。また、耐クリープ性については、特にLT方向の耐クリープ性を向上させることができる。これにより、高温環境下で使用される自動車等の内燃機関や過給機等の部品等に適用することができる。   According to this aluminum alloy extruded material, the strength and creep resistance in a high temperature range of, for example, 200 ° C. or higher can be improved. Here, regarding the strength, not only the strength in the extrusion direction (L direction) but also the strength in the direction perpendicular to the extrusion direction (LT direction) can be improved. Further, regarding the creep resistance, the creep resistance in the LT direction can be improved. Thereby, it can apply to components, such as internal combustion engines, such as a motor vehicle used in a high temperature environment, and a supercharger.

本発明の他の態様は、上記アルミニウム合金押出材の製造方法であって、上記組成のアルミニウム合金の鋳塊を400〜500℃で均質化処理し、0.01℃/s以上の平均冷却速度で均質化処理の温度から200℃以下の温度まで冷却した後、310〜450℃で押出加工し、得られた押出材に対して溶体化処理及び焼入れを行い、その後48時間以内に2〜4%歪の引張矯正を行い、160〜220℃で時効処理を行う。   Another aspect of the present invention is a method for producing the aluminum alloy extruded material, wherein the aluminum alloy ingot having the above composition is homogenized at 400 to 500 ° C., and an average cooling rate of 0.01 ° C./s or more. After cooling to a temperature of 200 ° C. or less from the temperature of the homogenization treatment, extrusion is performed at 310 to 450 ° C., and the resulting extruded material is subjected to a solution treatment and quenching, and then within 2 to 4 within 48 hours. % Straightening is performed, and an aging treatment is performed at 160 to 220 ° C.

このアルミニウム合金押出材の製造方法によれば、例えば200℃以上の高温域における強度(L方向及びLT方向の強度)及び耐クリープ性(特にLT方向の耐クリープ性)に優れたアルミニウム合金押出材を製造することができる。製造されたアルミニウム合金押出材は、高温環境下で使用される自動車の内燃機関用部品、過給機用部品等に適用することができる。   According to this method for producing an aluminum alloy extruded material, for example, an aluminum alloy extruded material excellent in strength (strength in the L direction and LT direction) and creep resistance (particularly creep resistance in the LT direction) in a high temperature range of 200 ° C. or higher. Can be manufactured. The manufactured aluminum alloy extruded material can be applied to automobile internal combustion engine parts, supercharger parts, and the like used in high-temperature environments.

以下、本発明の実施形態について説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment, It cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from the summary of this invention.

<アルミニウム合金押出材>
アルミニウム合金押出材は、質量%で、Cu:2.5〜3.3%、Mg:1.3〜2.5%、Ni:0.50〜1.3%、Fe:0.50〜1.5%、Mn:0.50%未満、Si:0.15〜0.40%、Zr:0.06〜0.20%、Ti:0.05%未満を含有し、残部がAl及び不可避的不純物からなる。以下、アルミニウム合金押出材の各成分組成について詳細に説明する。
<Aluminum alloy extruded material>
The aluminum alloy extruded material is, in mass%, Cu: 2.5 to 3.3%, Mg: 1.3 to 2.5%, Ni: 0.50 to 1.3%, Fe: 0.50 to 1 0.5%, Mn: less than 0.50%, Si: 0.15 to 0.40%, Zr: 0.06 to 0.20%, Ti: less than 0.05%, the balance being Al and inevitable Consists of impurities. Hereinafter, each component composition of the aluminum alloy extruded material will be described in detail.

Cu:2.5〜3.3%
Cuは、常温及び高温におけるアルミニウム合金押出材の強度向上に寄与する。Cu含有量は2.5〜3.3%の範囲とする。Cu含有量が2.5%未満の場合には、強度向上の効果が十分に得られない。Cu含有量が3.3%を超える場合には、共晶融解開始温度が低下し、溶体化処理温度を低くしなければならないため、母相中への固溶量が減り、強度向上の効果が望めない。
Cu: 2.5-3.3%
Cu contributes to improving the strength of the aluminum alloy extruded material at room temperature and high temperature. The Cu content is in the range of 2.5 to 3.3%. When the Cu content is less than 2.5%, the effect of improving the strength cannot be obtained sufficiently. When the Cu content exceeds 3.3%, the eutectic melting start temperature is lowered and the solution treatment temperature has to be lowered, so the amount of solid solution in the parent phase is reduced, and the effect of improving the strength. I can't hope.

Mg:1.3〜2.5%
Mgは、Cuと共存して、常温及び高温におけるアルミニウム合金押出材の強度向上に寄与する。Mg含有量は1.3〜2.5%の範囲とする。Mg含有量が1.3%未満の場合には、強度向上の効果が小さい。Mg含有量が2.5%を超える場合には、押出等の熱間加工において材料の変形抵抗が高くなり、生産性が低下する。
Mg: 1.3-2.5%
Mg coexists with Cu and contributes to improving the strength of the extruded aluminum alloy at room temperature and high temperature. Mg content shall be 1.3 to 2.5% of range. When the Mg content is less than 1.3%, the effect of improving the strength is small. When the Mg content exceeds 2.5%, the deformation resistance of the material increases during hot working such as extrusion, and the productivity decreases.

Ni:0.50〜1.3%
Niは、Feと共にFe−Ni化合物を形成し、アルミニウム合金押出材の耐熱性を向上させる。Ni含有量は0.50〜1.3%の範囲とする。Ni含有量が0.50%未満の場合には、耐熱性向上の効果が十分に得られない。Ni含有量が1.3%を超える場合には、母相中に分散するAl−Ni系、Al−Ni−Cu系等のNi系化合物が形成されるため、耐熱性向上の効果が小さくなる。また、粗大なFe−Ni系化合物が形成されることにより、押出等の熱間加工において割れが発生しやすくなり、生産性が低下する。
Ni: 0.50 to 1.3%
Ni forms an Fe—Ni compound together with Fe and improves the heat resistance of the aluminum alloy extruded material. The Ni content is in the range of 0.50 to 1.3%. When the Ni content is less than 0.50%, the effect of improving heat resistance cannot be sufficiently obtained. When the Ni content exceeds 1.3%, an Ni-based compound such as an Al-Ni-based or Al-Ni-Cu-based material that is dispersed in the matrix phase is formed, so that the effect of improving heat resistance is reduced. . Moreover, by forming a coarse Fe—Ni compound, cracks are likely to occur during hot working such as extrusion, and productivity is lowered.

Fe:0.50〜1.5%
Feは、Niと共にFe−Ni化合物を形成し、アルミニウム合金押出材の耐熱性を向上させる。Fe含有量は0.50〜1.5%の範囲とする。Fe含有量が0.50%未満の場合には、耐熱性向上の効果が十分に得られない。Fe含有量が1.5%を超える場合には、母相中に分散するAl−Fe系、Al−Fe−Cu系等のFe系化合物が形成されるため、耐熱性向上の効果が小さくなる。
Fe: 0.50 to 1.5%
Fe forms a Fe—Ni compound together with Ni and improves the heat resistance of the aluminum alloy extruded material. The Fe content is in the range of 0.50 to 1.5%. When the Fe content is less than 0.50%, the effect of improving heat resistance cannot be sufficiently obtained. When the Fe content exceeds 1.5%, an Fe-based compound such as an Al-Fe-based or Al-Fe-Cu-based material that is dispersed in the parent phase is formed, so that the effect of improving heat resistance is reduced. .

Mn:0.50%未満
Mnは、Al−Mn−Si系化合物を析出、分散させ、溶体化処理中に生じる再結晶を抑制し、微細な亜結晶粒を形成させることにより、常温及び高温におけるアルミニウム合金押出材の強度向上に寄与する。Mn含有量は0.50%未満とする。Mg含有量が0.50%以上の場合には、鋳造時に巨大な晶出物が形成されやすくなり、強度が低下する。
Mn: Less than 0.50% Mn precipitates and disperses Al-Mn-Si compounds, suppresses recrystallization that occurs during solution treatment, and forms fine sub-crystal grains, so that at normal temperature and high temperature. Contributes to improving the strength of extruded aluminum alloys. The Mn content is less than 0.50%. When the Mg content is 0.50% or more, a huge crystallized product is easily formed during casting, and the strength is lowered.

Si:0.15〜0.40%
Siは、Mnと共にAl−Mn−Si系化合物の微細分散相を析出させ、転位のピンニング効果を高め、溶体化処理中の再結晶粒の粗大化を抑制することにより、アルミニウム合金押出材の強度を向上させる。Si含有量は0.15〜0.40%の範囲とする。Si含有量が0.15%未満の場合には、強度向上の効果が十分に得られない。Si含有量が0.40%を超える場合には、MgとSiの化合物が形成され、耐熱性が低下する。
Si: 0.15-0.40%
Si precipitates a finely dispersed phase of Al-Mn-Si compound together with Mn, enhances the pinning effect of dislocation, and suppresses the coarsening of recrystallized grains during solution treatment, thereby improving the strength of the extruded aluminum alloy material. To improve. The Si content is in the range of 0.15 to 0.40%. When the Si content is less than 0.15%, the effect of improving the strength cannot be obtained sufficiently. When the Si content exceeds 0.40%, a compound of Mg and Si is formed and the heat resistance is lowered.

Zr:0.06〜0.20%
Zrは、鋳造組織の微細化に寄与する。また、AlZr化合物の微細分散により、溶体化処理中に生じる再結晶を抑制し、微細な亜結晶粒を形成させることで、アルミニウム合金押出材の強度向上に寄与する。Zr含有量は0.06〜0.20%の範囲とする。Zr含有量が0.05%未満の場合には、鋳造組織の微細化及び強度向上の効果が十分に得られない。Zr含有量が0.20%を超える場合には、鋳造時に巨大な晶出物が形成されやすくなるため、鋳造組織の微細化及び強度向上の効果が小さくなる。
Zr: 0.06-0.20%
Zr contributes to refinement of the cast structure. In addition, the fine dispersion of the Al 3 Zr compound suppresses recrystallization that occurs during the solution treatment and forms fine sub-crystal grains, thereby contributing to an improvement in the strength of the aluminum alloy extruded material. The Zr content is in the range of 0.06 to 0.20%. When the Zr content is less than 0.05%, the effect of making the cast structure fine and improving the strength cannot be obtained sufficiently. When the Zr content exceeds 0.20%, a large crystallized product is likely to be formed during casting, so that the effects of refinement of the cast structure and improvement in strength are reduced.

Ti:0.05%未満
Tiは、Zrと同様、微細結晶粒組織を安定して得るために添加される。Ti含有量は0.05%未満とする。Ti含有量が0.05%以上の場合には、鋳造時に巨大なZr−Ti系化合物が形成され、強度が低下する。
Ti: Less than 0.05% Ti is added in order to stably obtain a fine grain structure, like Zr. The Ti content is less than 0.05%. When the Ti content is 0.05% or more, a huge Zr—Ti-based compound is formed during casting, and the strength decreases.

その他の元素:
上記元素の他は、基本的にはAl及び不可避的不純物とすればよいが、通常、アルミニウム合金に添加される上記元素以外の元素も、特性に大きな影響を与えない範囲内で許容される。
Other elements:
In addition to the above elements, Al and inevitable impurities may be basically used, but elements other than the above elements added to the aluminum alloy are generally allowed within a range that does not greatly affect the characteristics.

また、アルミニウム合金押出材は、断面において、金属間化合物の粒径が円相当径で20μm以下であり、粒径が円相当径で0.3〜20μmの金属間化合物の密度が5×10個/mm以上であり、かつ、亜結晶粒の平均粒径が円相当径で20μm以下である。以下、アルミニウム合金押出材の組織について詳細に説明する。 In addition, in the cross section of the extruded aluminum alloy material, the intermetallic compound particle size is 20 μm or less in terms of the equivalent circle diameter, and the density of the intermetallic compound in which the particle size is 0.3 to 20 μm in terms of the equivalent circle diameter is 5 × 10 3. Pieces / mm 2 or more, and the average grain size of the sub-crystal grains is 20 μm or less in terms of equivalent circle diameter. Hereinafter, the structure of the aluminum alloy extruded material will be described in detail.

アルミニウム合金押出材の組織において、高温で亜結晶粒径の粗大化を抑制し、優れた強度及び耐クリープ性を実現するためには、高温で転位が容易に移動しないよう、亜結晶粒界上に晶出物が細かく存在している必要がある。そこで、アルミニウム合金押出材の断面における、金属間化合物の粒径を円相当径で20μm以下(好ましくは10μm以下)とし、粒径が円相当径で0.3〜20μmの金属間化合物の密度を5×10個/mm以上としている。 In order to suppress the coarsening of the sub-crystal grain size at high temperature and to realize excellent strength and creep resistance in the structure of the aluminum alloy extruded material, on the sub-grain boundary so that dislocations do not move easily at high temperature. The crystallized product must be finely present. Therefore, the particle diameter of the intermetallic compound in the cross section of the aluminum alloy extruded material is set to 20 μm or less (preferably 10 μm or less) in terms of the equivalent circle diameter, and the density of the intermetallic compound having the equivalent particle diameter of 0.3 to 20 μm is set. 5 × 10 3 pieces / mm 2 or more.

アルミニウム合金押出材の断面における、金属間化合物の粒径が円相当径で20μmを超える場合には、破壊時の起点となり、強度が低下する。アルミニウム合金押出材の断面における、粒径が円相当径で0.3〜20μmの金属間化合物の密度が5×10個/mm未満の場合には、粒界上の析出物が疎になり、粒界すべりが抑制されず、耐熱性が低下する。 When the particle diameter of the intermetallic compound in the cross section of the aluminum alloy extruded material exceeds 20 μm in terms of the equivalent circle diameter, it becomes a starting point at the time of fracture, and the strength decreases. In the cross section of the aluminum alloy extruded material, when the density of the intermetallic compound having a diameter equivalent to a circle of 0.3 to 20 μm is less than 5 × 10 3 pieces / mm 2 , the precipitates on the grain boundaries are sparse. That is, the grain boundary sliding is not suppressed and the heat resistance is lowered.

アルミニウム合金押出材の組織において、高温での強度、特に押出方向に直交する方向(LT方向)の強度を向上させるために、アルミニウム合金押出材の断面における、亜結晶粒の平均粒径を円相当径で20μm以下としている。アルミニウム合金押出材の断面における、亜結晶粒の平均粒径が円相当径で20μmを超える場合には、高温での強度(特にLT方向の強度)を向上させる効果が小さくなる。   In order to improve the strength at high temperatures, especially the direction perpendicular to the extrusion direction (LT direction), the average grain size of the sub-crystal grains in the cross section of the aluminum alloy extruded material is equivalent to a circle in the structure of the aluminum alloy extruded material. The diameter is 20 μm or less. When the average grain size of the sub-crystal grains in the cross section of the aluminum alloy extruded material exceeds 20 μm in the equivalent circle diameter, the effect of improving the strength at a high temperature (particularly the strength in the LT direction) is reduced.

ここで、アルミニウム合金押出材の断面とは、アルミニウム合金押出材における所定方向の断面である。断面の方向は、何ら限定されるものではなく、例えば、押出方向に平行な断面、押出方向に直交する方向の断面等であってもよい。上述の金属間化合物の粒径(円相当径)、粒径(円相当径)が0.3〜20μmの金属間化合物の密度、亜結晶粒の平均粒径(円相当径)は、アルミニウム合金押出材における所定方向の断面であって、表層部分(例えば表面から2〜5mmの範囲)を除いた任意の領域を光学顕微鏡等で観察することにより求めることができる。   Here, the cross section of the aluminum alloy extruded material is a cross section in a predetermined direction of the aluminum alloy extruded material. The direction of the cross section is not limited at all, and may be a cross section parallel to the extrusion direction, a cross section perpendicular to the extrusion direction, or the like. The particle diameter (equivalent circle diameter) of the above-mentioned intermetallic compound, the density of the intermetallic compound having a particle diameter (equivalent circle diameter) of 0.3 to 20 μm, and the average particle diameter (equivalent circle diameter) of the subcrystalline grains are aluminum alloys. It can be determined by observing an arbitrary region excluding a surface layer portion (for example, a range of 2 to 5 mm from the surface) with an optical microscope or the like, which is a cross section in a predetermined direction in the extruded material.

<アルミニウム合金押出材の製造方法>
アルミニウム合金押出材の製造方法は、上記組成のアルミニウム合金の鋳塊を400〜500℃で均質化処理し、0.01℃/s以上の平均冷却速度で均質化処理の温度から200℃以下の温度まで冷却した後、310〜450℃で押出加工し、得られた押出材に対して溶体化処理及び焼入れを行い、その後48時間以内に2〜4%歪の引張矯正を行い、160〜220℃で時効処理を行う。以下、アルミニウム合金押出材の製造方法について詳細に説明する。
<Method for producing aluminum alloy extruded material>
The method for producing an aluminum alloy extruded material is to homogenize an ingot of aluminum alloy having the above composition at 400 to 500 ° C., and at an average cooling rate of 0.01 ° C./s or more, the temperature of the homogenization treatment is 200 ° C. or less. After cooling to a temperature, extrusion processing is performed at 310 to 450 ° C., and a solution treatment and quenching are performed on the obtained extruded material, and then 2 to 4% strain correction is performed within 48 hours, and 160 to 220 Aging is performed at ℃. Hereinafter, the manufacturing method of an aluminum alloy extruded material will be described in detail.

アルミニウム合金押出材を製造するに当たっては、まず、アルミニウム合金を常法により溶解し、造塊されたアルミニウム合金の鋳塊(ビレット:押出用に調整された鋳塊)を400〜500℃で均質化処理する(均質化処理工程)。上記組成のアルミニウム合金とは、Cu:2.5〜3.3%、Mg:1.3〜2.5%、Ni:0.50〜1.3%、Fe:0.50〜1.5%、Mn:0.50%未満、Si:0.15〜0.40%、Zr:0.06〜0.20%、Ti:0.05%未満を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金である。均質化処理の温度は、400〜500℃の範囲とする。均質化処理の温度が400℃未満の場合には、組織の均質化が不十分となる。均質化処理の温度が500℃を超える場合には、元素が偏析している部分で共晶融解が生じる。   In producing the aluminum alloy extruded material, first, the aluminum alloy is melted by a conventional method, and the ingot of the ingot aluminum alloy (billet: ingot adjusted for extrusion) is homogenized at 400 to 500 ° C. Process (homogenization process). The aluminum alloy having the above composition is: Cu: 2.5 to 3.3%, Mg: 1.3 to 2.5%, Ni: 0.50 to 1.3%, Fe: 0.50 to 1.5 %, Mn: less than 0.50%, Si: 0.15 to 0.40%, Zr: 0.06 to 0.20%, Ti: less than 0.05%, the balance being Al and inevitable impurities An aluminum alloy consisting of The temperature of the homogenization treatment is in the range of 400 to 500 ° C. When the temperature of the homogenization treatment is less than 400 ° C., the tissue is not sufficiently homogenized. When the temperature of the homogenization treatment exceeds 500 ° C., eutectic melting occurs in the portion where the elements are segregated.

次いで、均質化処理後のアルミニウム合金の鋳塊(ビレット)を、0.01℃/s以上の平均冷却速度で均質化処理の温度から200℃以下の所定の温度まで冷却する(冷却工程)。ここで、平均冷却速度は、均質化処理の温度をA℃、鋳塊(ビレット)をA℃から200℃まで冷却するのに要する時間をB秒とした場合、(A℃−200℃)/B秒で表される。平均冷却速度が0.01℃/s未満(0.01℃/sより遅い)場合には、冷却中にS相(AlCuMg)やFe−Ni系化合物が粗大に成長してしまう。 Next, the ingot (billet) of the aluminum alloy after the homogenization treatment is cooled from the homogenization treatment temperature to a predetermined temperature of 200 ° C. or less at an average cooling rate of 0.01 ° C./s or more (cooling step). Here, when the average cooling rate is A ° C. and the time required for cooling the ingot (billet) from A ° C. to 200 ° C. is B seconds, (A ° C.−200 ° C.) / Expressed in B seconds. When the average cooling rate is less than 0.01 ° C./s (slower than 0.01 ° C./s), the S phase (Al 2 CuMg) and the Fe—Ni-based compound grow coarsely during cooling.

例えば、粗大な化合物が形成されている状態で450℃以下の低温押出加工を行うと、押出加工により導入された転位が粗大な化合物近傍で消失してしまい、亜結晶粒径が粗大になる。特に、Fe−Ni系化合物は、押出加工後の工程である溶体化処理において溶入化されにくいため、最終製品まで残ってしまう。粗大な化合物は、クリープ特性を低下させてしまうため、均質化処理時に粗大にならないよう、冷却速度の制御が必要となる。そこで、均質化処理後の平均冷却速度を0.01℃/s以上とすることにより、微細なFe−Ni系及びCu−Mg系化合物が生じ、後の工程である引張矯正及び時効処理で均一かつ微細な析出物が生じることで、優れた耐熱性を有するアルミニウム合金押出材が得られる。なお、ここでの「粗大な化合物」とは、例えば、押出加工後にも粒径(円相当径)が20μm以上の大きさで残存しうる化合物のことをいう。   For example, when a low temperature extrusion process at 450 ° C. or less is performed in a state where a coarse compound is formed, dislocations introduced by the extrusion process disappear in the vicinity of the coarse compound, and the subcrystal grain size becomes coarse. In particular, the Fe—Ni-based compound is difficult to be infiltrated in the solution treatment, which is a process after extrusion, and therefore remains in the final product. Since a coarse compound deteriorates creep characteristics, it is necessary to control the cooling rate so as not to become coarse during the homogenization treatment. Therefore, by setting the average cooling rate after the homogenization treatment to 0.01 ° C./s or more, fine Fe—Ni-based and Cu—Mg-based compounds are generated, and are uniform in the subsequent steps of tensile straightening and aging treatment. Moreover, an aluminum alloy extruded material having excellent heat resistance can be obtained by producing fine precipitates. Here, the “coarse compound” means, for example, a compound that can remain in a particle size (equivalent circle diameter) of 20 μm or more even after extrusion.

次いで、冷却後のアルミニウム合金の鋳塊(ビレット)を310〜450℃で押出加工し、押出材(中間押出材)を得る(押出加工工程)。押出加工の際に鋳塊(ビレット)を再加熱するが、加熱炉では昇温に時間を要し、晶出物が粗大化するため、インダクションヒータ(誘導加熱)等で昇温後、すぐに押出加工を行うことが好ましい。押出加工の温度は、310〜450℃とする。押出加工の温度が310℃未満の場合には、押出加工時に材料の変形抵抗が高くなり、押出速度が遅くなるため、生産性が低下する。押出加工の温度が450℃を超える場合には、押出加工時に動的回復が生じ、微細な亜結晶粒が得られなくなる。   Next, the ingot (billet) of the aluminum alloy after cooling is extruded at 310 to 450 ° C. to obtain an extruded material (intermediate extruded material) (extrusion process). The ingot (billet) is reheated during the extrusion process, but it takes time to raise the temperature in the heating furnace, and the crystallized material becomes coarse, so immediately after the temperature rises with an induction heater (induction heating) etc. Extrusion is preferably performed. The extrusion temperature is 310 to 450 ° C. When the temperature of the extrusion process is less than 310 ° C., the deformation resistance of the material becomes high during the extrusion process, and the extrusion speed becomes slow, so the productivity is lowered. When the temperature of the extrusion process exceeds 450 ° C., dynamic recovery occurs during the extrusion process, and fine subcrystal grains cannot be obtained.

次いで、得られた押出材(中間押出材)に対して溶体化処理及び焼入れを行う(溶体化処理・焼入れ工程)。溶体化処理の温度は、共晶融解開始温度より3〜10℃低い温度域が好ましい。溶体化処理の温度が上記温度域よりも高い場合には、炉内温度のばらつきによって材料が共晶融解しやすくなることがある。溶体化処理の温度が上記温度域よりも低い場合には、組織中の溶体化が不十分となり、十分な強度が得られないことがある。   Next, solution treatment and quenching are performed on the obtained extruded material (intermediate extruded material) (solution treatment / quenching step). The temperature of the solution treatment is preferably a temperature range 3 to 10 ° C. lower than the eutectic melting start temperature. When the temperature of the solution treatment is higher than the above temperature range, the material may be easily eutectic melted due to variations in the furnace temperature. When the temperature of the solution treatment is lower than the above temperature range, solution formation in the structure becomes insufficient, and sufficient strength may not be obtained.

次いで、溶体化処理及び焼入れを行った後、48時間以内に、押出材(中間押出材)に対して2〜4%の引張矯正を行う。引張矯正では、残留応力を除去し、耐力を向上させる。また、転位が導入されるため、その後の時効処理時の析出を微細にすることが可能になり、高温においても微細な亜結晶粒を維持することができる。特に、亜結晶粒界上に微細に析出させることで転位の移動が抑制され、優れた高温クリープ特性が得られる。   Next, after solution treatment and quenching, 2 to 4% tensile correction is performed on the extruded material (intermediate extruded material) within 48 hours. In tension straightening, residual stress is removed and yield strength is improved. Further, since dislocations are introduced, it becomes possible to make fine precipitation during subsequent aging treatment, and fine subcrystal grains can be maintained even at high temperatures. In particular, by causing fine precipitation on the subgrain boundaries, the movement of dislocations is suppressed, and excellent high temperature creep characteristics can be obtained.

溶体化処理及び焼入れを行った後、引張矯正を行うまでの時間が48時間を超える場合には、残留応力が残っている部分での析出促進が顕著になる。微細析出物近傍に転位が導入されやすいため、部分的に析出が促進されると、引張矯正によって導入される転位も部分的になり、その後均一な亜結晶粒が維持できない。引張矯正量(引張矯正時の歪量)が2%未満の場合には、上述した引張矯正の効果が小さくなる。引張矯正量が4%を超える場合には、導入される転位が多くなりすぎ、析出が促進されるため、高温クリープ特性が低下する。   In the case where the time from the solution treatment and quenching to the tensile correction exceeds 48 hours, the acceleration of precipitation in the portion where the residual stress remains is significant. Since dislocations are easily introduced in the vicinity of fine precipitates, when precipitation is partially promoted, dislocations introduced by tensile straightening also become partial, and thereafter uniform subcrystal grains cannot be maintained. When the tensile straightening amount (the amount of strain during tensile straightening) is less than 2%, the effect of the above-described tensile straightening becomes small. When the tensile straightening amount exceeds 4%, too many dislocations are introduced and precipitation is promoted, so that the high temperature creep property is deteriorated.

次いで、引張矯正後の押出材(中間押出材)に対して160〜220℃で時効処理を行う(時効処理工程)。時効処理の温度が160℃未満の場合には、析出が十分に進行しない。時効処理の温度が220℃を超える場合には、析出物が粗大になり、十分な強度が得られない。   Next, an aging treatment is performed on the extruded material (intermediate extruded material) after tensile correction at 160 to 220 ° C. (aging treatment process). When the temperature of the aging treatment is less than 160 ° C., the precipitation does not proceed sufficiently. When the temperature of the aging treatment exceeds 220 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained.

以上の工程を経て、上記組成であって、上記組織(断面において、金属間化合物の粒径が円相当径で20μm以下、粒径が円相当径で0.3〜20μmの金属間化合物の密度が5×10個/mm以上であり、かつ、亜結晶粒の平均粒径が円相当径で20μm以下)のアルミニウム合金押出材が得られる。 Through the above steps, the density of an intermetallic compound having the above composition (in the cross section, the particle diameter of the intermetallic compound is equivalent to a circle equivalent diameter of 20 μm or less and the particle diameter is a circle equivalent diameter of 0.3 to 20 μm). 5 × 10 3 particles / mm 2 or more, and the average grain size of the sub-crystal grains is 20 μm or less in terms of the equivalent circle diameter).

以下、本発明の実施例を比較例と対比しながら説明し、本発明の効果を実証する。これらの実施例は、本発明の一実施態様を示すものであり、本発明は何らこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.

まず、表1に示す化学成分組成を有するアルミニウム合金(合金A1〜A14、B1〜B4)を連続鋳造により造塊し、ビレット(直径90mm)を得た。なお、表1において、化学成分の残部はAl及び不可避的不純物であり、その表記を省略した。また、化学成分が本発明の範囲外である場合には下線を付した。   First, aluminum alloys (alloys A1 to A14, B1 to B4) having the chemical composition shown in Table 1 were ingoted by continuous casting to obtain billets (diameter 90 mm). In Table 1, the balance of chemical components is Al and inevitable impurities, and the description thereof is omitted. Moreover, when a chemical component was outside the scope of the present invention, it was underlined.

得られたビレットを470℃、15時間の条件で均質化処理し、平均冷却速度0.012℃/sの条件で冷却した後、440℃の条件で熱間押出加工を行った。これにより、直径28mmの丸棒材(中間押出材)を得た。得られた丸棒材に対して、525℃、2時間の条件で溶体化処理を行い、焼入れを行った後、12時間経過したところで歪量2.4%の引張矯正を行い、190℃、18時間の条件で人工時効処理を行った。以上により、実施例1〜14、比較例15〜18のアルミニウム合金押出材(以下、適宜、単に押出材という)を作製した。   The obtained billet was homogenized at 470 ° C. for 15 hours, cooled at an average cooling rate of 0.012 ° C./s, and then hot extruded at 440 ° C. Thereby, a round bar (intermediate extruded material) having a diameter of 28 mm was obtained. The obtained round bar was subjected to a solution treatment under conditions of 525 ° C. for 2 hours, and after quenching, tensile correction was performed with a strain amount of 2.4% when 190 hours passed, Artificial aging treatment was performed under conditions of 18 hours. By the above, the aluminum alloy extrusion material of Examples 1-14 and Comparative Examples 15-18 (henceforth an appropriate extrusion material only hereafter) was produced.

Figure 2017043802
Figure 2017043802

作製した各押出材(実施例1〜14、比較例15〜18)について、断面における金属間化合物の最大粒径(円相当径)、粒径(円相当径)が0.3〜20μmの金属間化合物の密度、亜結晶粒の平均粒径(円相当径)を測定した。また、作製した各押出材について、引張試験により室温及び200℃での0.2%耐力(L方向、LT方向)を測定し、クリープラプチャー試験により耐クリープ性(LT方向)を評価した。以下、測定及び評価方法について説明する。   About each produced extrusion material (Examples 1-14, Comparative Examples 15-18), the maximum particle size (equivalent circle diameter) and particle size (equivalent circle diameter) of the intermetallic compound in the cross section are 0.3 to 20 μm. The density of the intermetallic compound and the average grain size (equivalent circle diameter) of the sub-crystal grains were measured. Moreover, about each produced extrusion material, the 0.2% yield strength (L direction and LT direction) in room temperature and 200 degreeC was measured by the tension test, and creep resistance (LT direction) was evaluated by the creep rupture test. Hereinafter, measurement and evaluation methods will be described.

<金属間化合物の最大粒径(円相当径)及び密度>
押出方向(L方向)の組織が観察できるように、押出材を押出方向(L方向)と平行な方向に、均等に2分割されるように(押出材の中心軸を含むように)切断し、その切断面を耐水研磨紙で研磨し、さらに研磨剤を塗布したバフで鏡面に仕上げた。次いで、押出材の切断面の中心部(切断面における長さ方向(押出方向)に直交する方向(幅方向)の中間位置に当たる部分)を光学顕微鏡にて200倍で観察した。これにより、金属間化合物の最大粒径(円相当径)、粒径(円相当径)が0.3〜20μmの金属間化合物の密度を測定した。
<Maximum particle size (equivalent circle diameter) and density of intermetallic compound>
Cut the extruded material so that the structure in the extrusion direction (L direction) can be observed, so that the extruded material is equally divided into two (including the central axis of the extruded material) in a direction parallel to the extrusion direction (L direction). The cut surface was polished with water-resistant abrasive paper, and further mirror finished with a buff coated with an abrasive. Next, the central portion of the cut surface of the extruded material (the portion corresponding to the intermediate position in the direction (width direction) perpendicular to the length direction (extrusion direction) in the cut surface) was observed with an optical microscope at 200 times. Thereby, the maximum particle diameter (equivalent circle diameter) of the intermetallic compound and the density of the intermetallic compound having a particle diameter (equivalent circle diameter) of 0.3 to 20 μm were measured.

<亜結晶粒の平均粒径(円相当径)>
押出方向(L方向)の組織が観察できるように、押出材を押出方向(L方向)と平行な方向に、均等に2分割されるように(押出材の中心軸を含むように)切断し、その切断面を耐水研磨紙で研磨し、さらに研磨剤を塗布したバフで鏡面に仕上げた。その後、押出材の切断面に対して、ケラー液によりエッチングを施した。次いで、押出材の切断面の中心部(切断面における長さ方向(押出方向)に直交する方向(幅方向)の中間位置に当たる部分)を光学顕微鏡にて200倍で観察した。これにより、亜結晶粒の平均粒径(円相当径)を測定した。
<Average grain size of sub-crystal grains (equivalent circle diameter)>
Cut the extruded material so that the structure in the extrusion direction (L direction) can be observed, so that the extruded material is equally divided into two (including the central axis of the extruded material) in a direction parallel to the extrusion direction (L direction). The cut surface was polished with water-resistant abrasive paper, and further mirror finished with a buff coated with an abrasive. Thereafter, the cut surface of the extruded material was etched with a Keller solution. Next, the central portion of the cut surface of the extruded material (the portion corresponding to the intermediate position in the direction (width direction) perpendicular to the length direction (extrusion direction) in the cut surface) was observed with an optical microscope at 200 times. Thereby, the average particle diameter (equivalent circle diameter) of the sub-crystal grains was measured.

<0.2%耐力>
室温での0.2%耐力については、各押出材を用いて試験片を作製した。具体的には、各押出材について、押出方向(L方向)が軸方向(長さ方向)となる試験片と押出方向に直交する方向(LT方向)が軸方向(長さ方向)となる試験片とを作製した。試験片は、平行部径5mm、標点距離15mm、肩部半径10mmとした。次いで、試験片を引張試験機にセットし、室温下で引張試験(JIS Z2241(2011年))を行った。なお、LT方向の引張試験においては、試験片の評価部の両端に共材を摩擦圧接し、試験片に必要な長さを確保した。この引張試験の結果より、室温での0.2%耐力(L方向、LT方向)を求めた。室温での0.2%耐力の評価については、従来(例えば上記特許文献2に開示された値)と比較し、室温での0.2%耐力の値が410MPa以上のものを合格とした。
<0.2% yield strength>
About 0.2% yield strength at room temperature, the test piece was produced using each extrusion material. Specifically, for each extruded material, a test piece in which the extrusion direction (L direction) is the axial direction (length direction) and a test direction in which the direction orthogonal to the extrusion direction (LT direction) is the axial direction (length direction). A piece was made. The test piece had a parallel part diameter of 5 mm, a gauge distance of 15 mm, and a shoulder radius of 10 mm. Next, the test piece was set in a tensile tester, and a tensile test (JIS Z2241 (2011)) was performed at room temperature. Note that, in the tensile test in the LT direction, a common material was friction-welded to both ends of the evaluation portion of the test piece to ensure a necessary length for the test piece. From the result of this tensile test, the 0.2% yield strength (L direction, LT direction) at room temperature was determined. Regarding the evaluation of 0.2% proof stress at room temperature, the 0.2% proof stress value at room temperature was 410 MPa or more as compared with the conventional one (for example, the value disclosed in Patent Document 2).

200℃での0.2%耐力については、各押出材を用いて上述した室温での0.2%耐力と同様の試験片を作製した。次いで、試験片を引張試験機にセットした状態で200℃まで加熱した。200℃に達してから10分間保持した後、引張試験(JIS Z2241(2011年))を行った。なお、LT方向の引張試験においては、試験片の評価部の両端に共材を摩擦圧接し、試験片に必要な長さを確保した。この引張試験の結果より、200℃での0.2%耐力(L方向、LT方向)を求めた。200℃での0.2%耐力の評価については、従来(例えば上記特許文献2に開示された値)と比較し、200での0.2%耐力の値が310MPa以上のものを合格とした。   For the 0.2% yield strength at 200 ° C., a test piece similar to the 0.2% yield strength at room temperature described above was prepared using each extruded material. Subsequently, it heated to 200 degreeC in the state set to the tensile tester. After reaching 200 ° C. for 10 minutes, a tensile test (JIS Z2241 (2011)) was performed. Note that, in the tensile test in the LT direction, a common material was friction-welded to both ends of the evaluation portion of the test piece to ensure a necessary length for the test piece. From the result of this tensile test, 0.2% yield strength (L direction, LT direction) at 200 ° C. was determined. For the evaluation of 0.2% yield strength at 200 ° C., the value of 0.2% yield strength at 200 was 310 MPa or more as compared with the past (for example, the value disclosed in Patent Document 2 above). .

<耐クリープ性>
各押出材を用いて上述した0.2%耐力と同様の試験片を作製した。次いで、試験片をクリープラプチャー試験機にセットした状態で200℃まで加熱した。200℃に達してから60分間保持した後、200℃下でクリープラプチャー試験を行った。クリープラプチャー試験では、試験片に対して200MPaの荷重を100時間負荷した。なお、負荷する荷重は、近年の高温特性が要求される値を基準として200MPaとした。耐クリープ性(LT方向)の評価については、200MPaの荷重を負荷して100時間で破断しなかったものを合格とし、破断したものを不合格とした。
<Creep resistance>
A test piece similar to the 0.2% proof stress described above was produced using each extruded material. Subsequently, it heated to 200 degreeC in the state which set the test piece to the creep rupture tester. After reaching 200 ° C., it was held for 60 minutes, and then a creep rupture test was conducted at 200 ° C. In the creep rupture test, a 200 MPa load was applied to the test piece for 100 hours. The load to be applied was set to 200 MPa on the basis of a value requiring recent high temperature characteristics. Regarding the evaluation of creep resistance (LT direction), a load that was 200 MPa was applied and the sample was not broken in 100 hours was accepted, and the broken sample was rejected.

Figure 2017043802
Figure 2017043802

上記測定及び評価の結果を表2に示す。なお、表2において、各項目の数値が本発明の範囲外である場合には下線を付した。
表2からわかるように、比較例15〜18は、本発明の範囲外であるため、0.2%耐力、耐クリープ性ともに良好なものは得られなかった。
Table 2 shows the results of the measurement and evaluation. In Table 2, when the numerical value of each item is outside the scope of the present invention, it is underlined.
As can be seen from Table 2, Comparative Examples 15 to 18 were outside the scope of the present invention, so that 0.2% proof stress and creep resistance were not good.

具体的には、比較例15は、合金成分のCu含有量が少ないため、室温での0.2%耐力(L方向、LT方向)が基準値(410MPa以上)を満たさず、200℃での0.2%耐力(L方向、LT方向)が基準値(310MPa以上)を満たさず、耐クリープ性(LT方向)が不合格であった。   Specifically, in Comparative Example 15, since the Cu content of the alloy component is small, the 0.2% yield strength (L direction, LT direction) at room temperature does not satisfy the reference value (410 MPa or more), and at 200 ° C. The 0.2% yield strength (L direction, LT direction) did not satisfy the standard value (310 MPa or more), and the creep resistance (LT direction) was not acceptable.

比較例16は、合金成分のNi含有量が少ないため、粒径0.3〜20μmの金属間化合物の密度が低く、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。   In Comparative Example 16, since the Ni content of the alloy component is small, the density of the intermetallic compound having a particle size of 0.3 to 20 μm is low, and the 0.2% proof stress (L direction, LT direction) at 200 ° C. is the reference value. The creep resistance (LT direction) was not acceptable.

比較例17は、合金成分のFe含有量が少ないため、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。
比較例18は、合金成分のZr含有量が少ないため、再結晶となり、室温での0.2%耐力(LT方向)、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。なお、表2における比較例18の亜結晶粒の平均粒径の欄に表記されている数値は、再結晶粒の平均粒径の数値である。
In Comparative Example 17, since the Fe content of the alloy component is small, the 0.2% yield strength (L direction, LT direction) at 200 ° C. does not satisfy the standard value, and the creep resistance (LT direction) is not acceptable. It was.
In Comparative Example 18, since the Zr content of the alloy component is small, recrystallization occurs, and 0.2% proof stress at room temperature (LT direction) and 0.2% proof stress at 200 ° C. (L direction, LT direction) are standards. The value was not satisfied and the creep resistance (LT direction) was unacceptable. In addition, the numerical value described in the column of the average particle diameter of the subcrystal grain of Comparative Example 18 in Table 2 is the numerical value of the average particle diameter of the recrystallized grain.

一方、実施例1〜14は、本発明の範囲内であるため、室温での0.2%耐力(L方向、LT方向)、200℃での0.2%耐力(L方向、LT方向)、耐クリープ性(LT方向)について、必要な特性を得ることができた。すなわち、本発明のアルミニウム合金押出材が高温での強度及び耐クリープ性に優れていることがわかった。   On the other hand, since Examples 1-14 are within the scope of the present invention, 0.2% yield strength at room temperature (L direction, LT direction), 0.2% yield strength at 200 ° C. (L direction, LT direction) In addition, necessary properties were obtained for creep resistance (LT direction). That is, it turned out that the aluminum alloy extruded material of the present invention is excellent in strength and creep resistance at high temperatures.

次に、アルミニウム合金(合金A14、化学成分組成は表1参照)を連続鋳造により造塊し、ビレット(直径356mm)を得た。得られたビレットを所定の条件で均質化処理し、所定の平均冷却速度で冷却した後、所定の条件で熱間押出加工を行った。これにより、直径58mmの丸棒材(中間押出材)を得た。得られた丸棒材に対して、525℃、2時間の条件で溶体化処理を行い、焼入れを行った後、所定の時間が経過したところで所定の歪量の引張矯正を行い、所定の条件で人工時効処理を行った。以上により、実施例21〜23、比較例24〜31のアルミニウム合金押出材(押出材)を作製した。   Next, an aluminum alloy (alloy A14, see Table 1 for chemical composition) was ingoted by continuous casting to obtain a billet (diameter 356 mm). The obtained billet was homogenized under predetermined conditions, cooled at a predetermined average cooling rate, and then subjected to hot extrusion under predetermined conditions. Thereby, a round bar material (intermediate extruded material) having a diameter of 58 mm was obtained. The obtained round bar material is subjected to a solution treatment under conditions of 525 ° C. for 2 hours, and after quenching, a predetermined strain amount is subjected to tensile correction when a predetermined time has elapsed, and predetermined conditions are satisfied. The artificial aging treatment was performed. By the above, the aluminum alloy extrusion material (extrusion material) of Examples 21-23 and Comparative Examples 24-31 was produced.

なお、均質化処理の温度及び時間、平均冷却速度、押出加工温度、溶体化処理及び焼入れ後引張矯正までの時間、引張矯正時の歪量、時効処理の温度及び時間については、表3に示した。表3において、製造方法の各工程の条件が本発明の範囲外である場合には下線を付した。   Table 3 shows the temperature and time of the homogenization treatment, the average cooling rate, the extrusion processing temperature, the time from solution treatment and quenching to tensile straightening, the amount of strain during tensile straightening, and the temperature and time of aging treatment. It was. In Table 3, when the conditions of each process of the manufacturing method are outside the scope of the present invention, they are underlined.

Figure 2017043802
Figure 2017043802

作製した各押出材(実施例21〜23、比較例24〜31)について、断面における金属間化合物の最大粒径(円相当径)、粒径(円相当径)が0.3〜20μmの金属間化合物の密度、亜結晶粒の平均粒径(円相当径)を測定した。また、作製した各押出材について、引張試験により室温及び200℃での0.2%耐力(L方向、LT方向)を測定し、クリープラプチャー試験により耐クリープ性(LT方向)を評価した。これらの測定及び評価方法は上記と同様である。   About each produced extrusion material (Examples 21-23, Comparative Examples 24-31), the maximum particle size (equivalent circle diameter) and particle size (equivalent circle diameter) of the intermetallic compound in the cross section are 0.3 to 20 μm. The density of the intermetallic compound and the average grain size (equivalent circle diameter) of the sub-crystal grains were measured. Moreover, about each produced extrusion material, the 0.2% yield strength (L direction and LT direction) in room temperature and 200 degreeC was measured by the tension test, and creep resistance (LT direction) was evaluated by the creep rupture test. These measurement and evaluation methods are the same as described above.

Figure 2017043802
Figure 2017043802

上記測定及び評価の結果を表4に示す。なお、表4において、各項目の数値が本発明の範囲外である場合には下線を付した。
表4からわかるように、比較例24〜31は、製造方法が本発明の範囲外であるため、0.2%耐力、耐クリープ性ともに良好なものは得られなかった。
The results of the measurement and evaluation are shown in Table 4. In Table 4, when the numerical value of each item is outside the scope of the present invention, it is underlined.
As can be seen from Table 4, in Comparative Examples 24-31, the production method was outside the scope of the present invention, so that 0.2% proof stress and creep resistance were not good.

具体的には、比較例24は、引張矯正時の歪量が少なかったため、室温での0.2%耐力(LT方向)、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。   Specifically, since Comparative Example 24 had a small amount of strain during tension correction, 0.2% yield strength (LT direction) at room temperature and 0.2% yield strength (L direction, LT direction) at 200 ° C. The reference value was not satisfied and the creep resistance (LT direction) was rejected.

比較例25は、引張矯正時の歪量が多かったため、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。
比較例26は、均質化処理の温度が低かったため、粒径0.3〜20μmの金属間化合物の密度が低く、200℃での0.2%耐力(LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。
In Comparative Example 25, since the amount of strain at the time of tensile correction was large, the 0.2% yield strength (L direction, LT direction) at 200 ° C. did not satisfy the standard value, and the creep resistance (LT direction) failed. It was.
In Comparative Example 26, since the temperature of the homogenization treatment was low, the density of the intermetallic compound having a particle size of 0.3 to 20 μm was low, and the 0.2% yield strength (LT direction) at 200 ° C. did not satisfy the standard value. The creep resistance (LT direction) was unacceptable.

比較例27は、均質化処理の温度が高かったため、室温での0.2%耐力(LT方向)、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。   In Comparative Example 27, since the temperature of the homogenization treatment was high, the 0.2% yield strength (LT direction) at room temperature and the 0.2% yield strength (L direction, LT direction) at 200 ° C. did not satisfy the standard values. The creep resistance (LT direction) was unacceptable.

比較例28は、平均冷却速度が遅かったため、粒径0.3〜20μmの金属間化合物の密度が低く、亜結晶粒の平均粒径が大きく、室温での0.2%耐力(L方向、LT方向)、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。   In Comparative Example 28, since the average cooling rate was slow, the density of the intermetallic compound having a grain size of 0.3 to 20 μm was low, the average grain size of the sub-crystal grains was large, and 0.2% proof stress (L direction, LT direction), 0.2% yield strength (L direction, LT direction) at 200 ° C. did not satisfy the standard value, and creep resistance (LT direction) was unacceptable.

比較例29は、押出加工温度が低かったため、押出ができなかった。そのため、押出材についての評価を行うことができなかった。
比較例30は、押出加工温度が高かったため、亜結晶粒の平均粒径が大きくなり、200℃での0.2%耐力(LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。
Comparative Example 29 could not be extruded because the extrusion process temperature was low. For this reason, the extruded material could not be evaluated.
In Comparative Example 30, since the extrusion processing temperature was high, the average grain size of the sub-crystal grains was increased, and the 0.2% yield strength (LT direction) at 200 ° C. did not satisfy the standard value, and the creep resistance (LT direction). Was rejected.

比較例31は、溶体化処理及び焼入れ後引張矯正までの時間が長かったため、亜結晶粒の平均粒径が大きくなり、室温での0.2%耐力(LT方向)、200℃での0.2%耐力(LT方向)が基準値を満たさず、耐クリープ性(LT方向)が不合格であった。   In Comparative Example 31, since the time from solution treatment and quenching to tensile correction was long, the average grain size of the sub-crystal grains increased, 0.2% yield strength at room temperature (LT direction), and 0.2% proof stress at 200 ° C. The 2% yield strength (LT direction) did not satisfy the standard value, and the creep resistance (LT direction) was rejected.

一方、実施例21〜23は、本発明の範囲内であるため、室温での0.2%耐力(L方向、LT方向)、200℃での0.2%耐力(L方向、LT方向)、耐クリープ性(LT方向)について、必要な特性を得ることができた。すなわち、本発明のアルミニウム合金押出材の製造方法によって、高温での強度及び耐クリープ性に優れたアルミニウム合金押出材が得られることがわかった。   On the other hand, since Examples 21-23 are within the scope of the present invention, 0.2% yield strength at room temperature (L direction, LT direction), 0.2% yield strength at 200 ° C. (L direction, LT direction) In addition, necessary properties were obtained for creep resistance (LT direction). That is, it was found that an aluminum alloy extruded material excellent in strength and creep resistance at high temperatures can be obtained by the method for producing an aluminum alloy extruded material of the present invention.

Claims (2)

アルミニウム合金押出材であって、
質量%で、Cu:2.5〜3.3%、Mg:1.3〜2.5%、Ni:0.50〜1.3%、Fe:0.50〜1.5%、Mn:0.50%未満、Si:0.15〜0.40%、Zr:0.06〜0.20%、Ti:0.05%未満を含有し、残部がAl及び不可避的不純物からなり、
断面において、金属間化合物の粒径が円相当径で20μm以下であり、粒径が円相当径で0.3〜20μmの金属間化合物の密度が5×10個/mm以上であり、かつ、亜結晶粒の平均粒径が円相当径で20μm以下であることを特徴とするアルミニウム合金押出材。
An aluminum alloy extrusion,
In mass%, Cu: 2.5 to 3.3%, Mg: 1.3 to 2.5%, Ni: 0.50 to 1.3%, Fe: 0.50 to 1.5%, Mn: Less than 0.50%, Si: 0.15 to 0.40%, Zr: 0.06 to 0.20%, Ti: less than 0.05%, the balance consisting of Al and inevitable impurities,
In the cross section, the particle size of the intermetallic compound is 20 μm or less in terms of the equivalent circle diameter, and the density of the intermetallic compound having a particle size of 0.3 to 20 μm in terms of the equivalent circle diameter is 5 × 10 3 pieces / mm 2 or more, And the average particle diameter of a subcrystal grain is 20 micrometers or less in an equivalent circle diameter, The aluminum alloy extrusion material characterized by the above-mentioned.
請求項1に記載のアルミニウム合金押出材の製造方法であって、
前記組成のアルミニウム合金の鋳塊を400〜500℃で均質化処理し、0.01℃/s以上の平均冷却速度で前記均質化処理の温度から200℃以下の温度まで冷却した後、310〜450℃で押出加工し、得られた押出材に対して溶体化処理及び焼入れを行い、その後48時間以内に2〜4%歪の引張矯正を行い、160〜220℃で時効処理を行うことを特徴とするアルミニウム合金押出材の製造方法。
It is a manufacturing method of the aluminum alloy extrusion material according to claim 1,
The ingot of the aluminum alloy having the above composition is homogenized at 400 to 500 ° C., and cooled from the temperature of the homogenizing process to a temperature of 200 ° C. or less at an average cooling rate of 0.01 ° C./s or more. Extrusion at 450 ° C, solution treatment and quenching of the resulting extruded material, followed by 2-4% strain straightening within 48 hours and aging at 160-220 ° C A method for producing an extruded aluminum alloy material.
JP2015165985A 2015-08-25 2015-08-25 Aluminum alloy extruded material and method for producing the same Expired - Fee Related JP6348466B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015165985A JP6348466B2 (en) 2015-08-25 2015-08-25 Aluminum alloy extruded material and method for producing the same
CN201680032729.4A CN107636181B (en) 2015-08-25 2016-07-28 Aluminium alloy extruded product and its manufacturing method
US15/754,161 US20180237889A1 (en) 2015-08-25 2016-07-28 Aluminum alloy extruded material and method of manufacturing the same
DE112016003841.0T DE112016003841T5 (en) 2015-08-25 2016-07-28 Extruded aluminum alloy material and manufacturing method therefor
PCT/JP2016/072198 WO2017033663A1 (en) 2015-08-25 2016-07-28 Aluminum alloy extruded material and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165985A JP6348466B2 (en) 2015-08-25 2015-08-25 Aluminum alloy extruded material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017043802A true JP2017043802A (en) 2017-03-02
JP6348466B2 JP6348466B2 (en) 2018-06-27

Family

ID=58099964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165985A Expired - Fee Related JP6348466B2 (en) 2015-08-25 2015-08-25 Aluminum alloy extruded material and method for producing the same

Country Status (5)

Country Link
US (1) US20180237889A1 (en)
JP (1) JP6348466B2 (en)
CN (1) CN107636181B (en)
DE (1) DE112016003841T5 (en)
WO (1) WO2017033663A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012183A (en) * 2018-07-20 2020-01-23 日本軽金属株式会社 Extrusion material for impeller, and manufacturing method therefor
JP2020056059A (en) * 2018-10-01 2020-04-09 株式会社Uacj Aluminum alloy and manufacturing method therefor
JP2021025085A (en) * 2019-08-05 2021-02-22 株式会社神戸製鋼所 Al-Cu-Mg-BASED ALUMINUM ALLOY EXTRUSION MATERIAL EXCELLENT IN HIGH-TEMPERATURE FATIGUE CHARACTERISTICS
JP7469072B2 (en) 2020-02-28 2024-04-16 株式会社神戸製鋼所 Aluminum alloy forgings and their manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441793B (en) * 2018-05-23 2021-01-15 山东南山铝业股份有限公司 Heat treatment method for forced setting of aluminum alloy and aviation aluminum alloy section
CN109811216A (en) * 2019-04-08 2019-05-28 广州市领格汽车零件制造有限公司 A kind of production technology of automobile heat-and corrosion-resistant aluminium alloy extrusions
CN110523791B (en) * 2019-08-13 2022-02-11 广东欧莱高新材料股份有限公司 Manufacturing method of aluminum-copper alloy pipe fitting
CN114277294B (en) * 2021-12-24 2023-04-07 东北轻合金有限责任公司 Preparation method of aluminum alloy bar with high temperature resistance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202121A (en) * 2007-02-22 2008-09-04 Honda Motor Co Ltd High-strength aluminum alloy superior in heat resistance, and manufacturing method therefor
JP2009114514A (en) * 2007-11-08 2009-05-28 Sumitomo Light Metal Ind Ltd Al-Zn-Mg-Cu ALLOY EXTRUDED MATERIAL WITH EXCELLENT WARM WORKABILITY, ITS MANUFACTURING METHOD, AND WARM WORKED MATERIAL USING THE EXTRUDED MATERIAL
JP2010018854A (en) * 2008-07-11 2010-01-28 Sumitomo Light Metal Ind Ltd Lightweight and high strength aluminum alloy excellent in heat resistance
JP2010159488A (en) * 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP2013014835A (en) * 2011-06-10 2013-01-24 Kobe Steel Ltd Aluminum alloy having excellent high-temperature characteristic
JP2014189844A (en) * 2013-03-27 2014-10-06 Uacj Corp Aluminum alloy and method of producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152237A (en) 1987-12-10 1989-06-14 Furukawa Alum Co Ltd Aluminum alloy material for engine member
JPH07242976A (en) 1994-03-01 1995-09-19 Nippon Steel Corp Aluminum alloy for elongation, excellent in heat resistance, and its production
CN102268621B (en) * 2011-09-09 2013-03-20 西南铝业(集团)有限责任公司 Production method of aluminium alloy bar
JP6057855B2 (en) * 2013-07-31 2017-01-11 株式会社神戸製鋼所 Aluminum alloy extruded material for cutting
JP5996048B2 (en) 2015-07-01 2016-09-21 株式会社平和 Game machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202121A (en) * 2007-02-22 2008-09-04 Honda Motor Co Ltd High-strength aluminum alloy superior in heat resistance, and manufacturing method therefor
JP2009114514A (en) * 2007-11-08 2009-05-28 Sumitomo Light Metal Ind Ltd Al-Zn-Mg-Cu ALLOY EXTRUDED MATERIAL WITH EXCELLENT WARM WORKABILITY, ITS MANUFACTURING METHOD, AND WARM WORKED MATERIAL USING THE EXTRUDED MATERIAL
JP2010018854A (en) * 2008-07-11 2010-01-28 Sumitomo Light Metal Ind Ltd Lightweight and high strength aluminum alloy excellent in heat resistance
JP2010159488A (en) * 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP2013014835A (en) * 2011-06-10 2013-01-24 Kobe Steel Ltd Aluminum alloy having excellent high-temperature characteristic
JP2014189844A (en) * 2013-03-27 2014-10-06 Uacj Corp Aluminum alloy and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012183A (en) * 2018-07-20 2020-01-23 日本軽金属株式会社 Extrusion material for impeller, and manufacturing method therefor
JP7131161B2 (en) 2018-07-20 2022-09-06 日本軽金属株式会社 Extruded material for impeller and manufacturing method thereof
JP2020056059A (en) * 2018-10-01 2020-04-09 株式会社Uacj Aluminum alloy and manufacturing method therefor
JP7126915B2 (en) 2018-10-01 2022-08-29 株式会社Uacj Aluminum alloy extruded material and its manufacturing method
JP2021025085A (en) * 2019-08-05 2021-02-22 株式会社神戸製鋼所 Al-Cu-Mg-BASED ALUMINUM ALLOY EXTRUSION MATERIAL EXCELLENT IN HIGH-TEMPERATURE FATIGUE CHARACTERISTICS
JP7469072B2 (en) 2020-02-28 2024-04-16 株式会社神戸製鋼所 Aluminum alloy forgings and their manufacturing method

Also Published As

Publication number Publication date
JP6348466B2 (en) 2018-06-27
CN107636181A (en) 2018-01-26
WO2017033663A1 (en) 2017-03-02
US20180237889A1 (en) 2018-08-23
DE112016003841T5 (en) 2018-05-17
CN107636181B (en) 2019-04-19

Similar Documents

Publication Publication Date Title
JP6348466B2 (en) Aluminum alloy extruded material and method for producing the same
TWI491745B (en) High-strength stainless steel wire excellent in resistance to deterioration due to heat, high-strength spring, and method for manufacturing the same
US10526689B2 (en) Heat-resistant Ti alloy and process for producing the same
JP6990527B2 (en) Aluminum alloy material
JP6057855B2 (en) Aluminum alloy extruded material for cutting
JPWO2017169962A1 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability, and method for producing the same
JP6491452B2 (en) Aluminum alloy continuous cast material and method for producing the same
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
JP5284935B2 (en) Heat-resistant aluminum alloy extruded material with excellent high-temperature strength and fatigue properties
JP2013142168A (en) Aluminum alloy excellent in creep resistance
JP2010018854A (en) Lightweight and high strength aluminum alloy excellent in heat resistance
CN109642275B (en) High-strength aluminum alloy, piston for internal combustion engine containing same, and method for producing piston for internal combustion engine
JP6355098B2 (en) High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP6718219B2 (en) Method for manufacturing heat resistant aluminum alloy material
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP2019108579A (en) Aluminum alloy material, and method for producing aluminum alloy product
JP4351609B2 (en) Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof
JP6660042B2 (en) Method for manufacturing extruded Ni-base superalloy and extruded Ni-base superalloy
JP2013053361A (en) Aluminum alloy for flying body excellent in heat-resistant strength
JP2004002987A (en) Aluminum alloy material for forging superior in high-temperature property
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JP2020090727A (en) Manufacturing method of heat resistant aluminum alloy material
JP2008202121A (en) High-strength aluminum alloy superior in heat resistance, and manufacturing method therefor
JP4058398B2 (en) Aluminum alloy forging with excellent high-temperature fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171017

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171017

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6348466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees