WO2017033663A1 - Aluminum alloy extruded material and method for producing same - Google Patents

Aluminum alloy extruded material and method for producing same Download PDF

Info

Publication number
WO2017033663A1
WO2017033663A1 PCT/JP2016/072198 JP2016072198W WO2017033663A1 WO 2017033663 A1 WO2017033663 A1 WO 2017033663A1 JP 2016072198 W JP2016072198 W JP 2016072198W WO 2017033663 A1 WO2017033663 A1 WO 2017033663A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
extruded material
less
extrusion
strength
Prior art date
Application number
PCT/JP2016/072198
Other languages
French (fr)
Japanese (ja)
Inventor
裕子 玉田
八太 秀周
紘一 石田
Original Assignee
株式会社Uacj
株式会社Uacj押出加工
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj, 株式会社Uacj押出加工 filed Critical 株式会社Uacj
Priority to US15/754,161 priority Critical patent/US20180237889A1/en
Priority to CN201680032729.4A priority patent/CN107636181B/en
Priority to DE112016003841.0T priority patent/DE112016003841T5/en
Publication of WO2017033663A1 publication Critical patent/WO2017033663A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the present disclosure relates to an aluminum alloy extruded material and a manufacturing method thereof.
  • Patent Document 1 proposes that the electrical conductivity and the average particle diameter of the intermetallic compound be controlled within a predetermined range in order to improve the strength of the aluminum alloy material in a high temperature range (100 to 180 ° C.).
  • Patent Document 2 proposes that the contents of Fe and Ni satisfy a predetermined relationship in order to improve the strength of an aluminum alloy material in a high temperature range (200 ° C. or higher).
  • Patent Documents 1 and 2 described above although the strength of the aluminum alloy material in the high temperature range has been studied, the creep resistance in the high temperature range has not been studied at all. That is, conventionally, sufficient investigation has not been made on the creep resistance of aluminum alloy materials at high temperatures.
  • an aluminum alloy extruded material excellent in strength and creep resistance at high temperatures and a manufacturing method thereof are desirable.
  • One aspect of the present disclosure is an aluminum alloy extruded material, and in terms of mass%, Cu: 2.5 to 3.3%, Mg: 1.3 to 2.5%, Ni: 0.50 to 1.3 %, Fe: 0.50 to 1.5%, Mn: Less than 0.50%, Si: 0.15 to 0.40%, Zr: 0.06 to 0.20%, Ti: Less than 0.05%
  • the balance is a chemical composition consisting of Al and inevitable impurities, and in the cross section, the particle size of the intermetallic compound is 20 ⁇ m or less in equivalent circle diameter, and the particle size is 0.3 to 20 ⁇ m in equivalent circle diameter.
  • the density of the intermetallic compound is 5 ⁇ 10 3 particles / mm 2 or more, and the average grain size of the sub-crystal grains is 20 ⁇ m or less in terms of the equivalent circle diameter.
  • the strength and creep resistance in a high temperature range of 200 ° C. or higher can be improved.
  • the strength not only the strength in the extrusion direction (hereinafter, appropriately referred to as L direction) but also the strength in the direction orthogonal to the extrusion direction (hereinafter, appropriately referred to as LT direction) can be improved.
  • the creep resistance the creep resistance in the LT direction can be improved.
  • Another aspect of the present disclosure is a method for producing the aluminum alloy extruded material, in which an ingot of the aluminum alloy having the chemical composition is homogenized at 400 to 500 ° C., and then the ingot is 0.01 ° C. Is cooled from the homogenization temperature to a temperature of 200 ° C. or less at an average cooling rate of at least / s, and then the ingot is extruded at 310 to 450 ° C., and then the intermediate extruded material obtained by the extrusion process Then, solution treatment and quenching are performed, then, after solution treatment and quenching, the intermediate extrudate is subjected to 2-4% strain correction within 48 hours, and then the intermediate extrudate is subjected to tension correction. Aging treatment at 160-220 ° C.
  • an aluminum alloy extruded material for example, an aluminum alloy extruded material excellent in strength (strength in the L direction and LT direction) and creep resistance (particularly creep resistance in the LT direction) in a high temperature range of 200 ° C. or higher.
  • the manufactured aluminum alloy extruded material can be applied to, for example, automobile internal combustion engine parts, turbocharger parts and the like used in a high temperature environment.
  • ⁇ Chemical composition of extruded aluminum alloy> Cu 2.5-3.3% Cu contributes to improving the strength of the aluminum alloy extruded material at room temperature and high temperature.
  • the Cu content is less than 2.5%, the effect of improving the strength cannot be obtained sufficiently.
  • the Cu content exceeds 3.3%, the eutectic melting start temperature is lowered and the solution treatment temperature has to be lowered, so the amount of solid solution in the parent phase is reduced, and the effect of improving the strength. I can't hope.
  • Mg 1.3-2.5% Mg coexists with Cu and contributes to improving the strength of the extruded aluminum alloy at room temperature and high temperature.
  • Mg content is less than 1.3%, the effect of improving the strength is small.
  • Mg content exceeds 2.5%, the deformation resistance of the processed material is increased in hot working such as extrusion, and the productivity is lowered.
  • Ni 0.50 to 1.3%
  • Ni forms an Fe—Ni compound together with Fe and improves the heat resistance of the extruded aluminum alloy.
  • the Ni content is less than 0.50%, the effect of improving heat resistance cannot be sufficiently obtained.
  • the Ni content exceeds 1.3%, Ni-based compounds such as Al-Ni-based and Al-Ni-Cu-based that are dispersed in the parent phase are formed, so the effect of improving heat resistance is reduced. .
  • the formation of a coarse Fe—Ni-based compound makes it easy for cracks to occur due to hot working such as extrusion, resulting in decreased productivity.
  • Fe 0.50 to 1.5% Fe forms a Fe—Ni compound together with Ni and improves the heat resistance of the aluminum alloy extruded material.
  • the Fe content is less than 0.50%, the effect of improving heat resistance cannot be sufficiently obtained.
  • an Fe-based compound such as an Al-Fe-based or Al-Fe-Cu-based material that is dispersed in the parent phase is formed, so that the effect of improving heat resistance is reduced. .
  • Mn less than 0.50% Mn precipitates and disperses Al-Mn-Si compounds, suppresses recrystallization that occurs during solution treatment, and forms fine sub-crystal grains. Contributes to improving the strength of extruded aluminum alloys. When the Mg content is 0.50% or more, a huge crystallized product is easily formed during casting, and the strength is lowered.
  • Si 0.15-0.40% Si precipitates a finely dispersed phase of Al-Mn-Si compound together with Mn, enhances the pinning effect of dislocation, and suppresses the coarsening of recrystallized grains during solution treatment. To improve. When the Si content is less than 0.15%, the effect of improving the strength cannot be obtained sufficiently. When the Si content exceeds 0.40%, Mg and Si compounds are formed, and the heat resistance is lowered.
  • Zr 0.06 to 0.20% Zr contributes to refinement of the cast structure.
  • Zr finely disperses Al 3 Zr compound together with Al, suppresses recrystallization that occurs during solution treatment, and forms fine sub-crystal grains, thereby contributing to improvement in strength of the aluminum alloy extruded material.
  • the Zr content is less than 0.06%, the effect of making the cast structure fine and improving the strength cannot be sufficiently obtained.
  • the Zr content exceeds 0.20%, a large crystallized product is likely to be formed during casting, so that the effects of refinement of the cast structure and improvement in strength are reduced.
  • Ti Less than 0.05% Ti is added in order to stably obtain a fine grain structure, like Zr.
  • the Ti content is less than 0.05%.
  • the Ti content is 0.05% or more, a huge Zr—Ti-based compound is formed during casting, and the strength decreases.
  • the particle diameter of the intermetallic compound is 20 ⁇ m or less (preferably 10 ⁇ m or less) in terms of the equivalent circle diameter, and the density of the intermetallic compound having the equivalent particle diameter of 0.3 to 20 ⁇ m 5 ⁇ 10 3 pieces / mm 2 or more.
  • the particle diameter of the intermetallic compound exceeds 20 ⁇ m in the equivalent circle diameter, it becomes a starting point at the time of fracture, and the strength is reduced.
  • the density of the intermetallic compound having a grain equivalent diameter of 0.3 to 20 ⁇ m is less than 5 ⁇ 10 3 pieces / mm 2 , the precipitates on the grain boundaries are sparse. That is, the grain boundary sliding is not suppressed and the heat resistance is lowered.
  • the average grain size of the sub-crystal grains is set to 20 ⁇ m or less in terms of the equivalent circle diameter in the cross section of the aluminum alloy extruded material.
  • the average grain size of the sub-crystal grains exceeds 20 ⁇ m in the equivalent circle diameter, the effect of improving the strength at high temperature (particularly the strength in the LT direction) is reduced.
  • the cross section of the aluminum alloy extruded material is a cross section in a predetermined direction of the aluminum alloy extruded material.
  • the direction of the cross section is not limited at all, and may be a cross section parallel to the extrusion direction, a cross section perpendicular to the extrusion direction, or the like.
  • the particle size (equivalent circle diameter) of the above-mentioned intermetallic compound, the density of the intermetallic compound having a particle diameter (equivalent circle diameter) of 0.3 to 20 ⁇ m, and the average grain size (equivalent circle diameter) of the subcrystalline grains are aluminum. This can be determined by observing an arbitrary region of the extruded alloy material in a predetermined direction, excluding a surface layer portion (for example, a range of 2 to 5 mm in the depth direction from the surface) with an optical microscope or the like.
  • ⁇ Method for producing aluminum alloy extruded material In producing the aluminum alloy extruded material, first, an aluminum alloy having the above chemical composition is melted by a conventional method, and the ingot of the ingot aluminum alloy is homogenized at 400 to 500 ° C. When the temperature of the homogenization treatment is less than 400 ° C., the tissue is not sufficiently homogenized. When the temperature of the homogenization treatment exceeds 500 ° C., eutectic melting occurs in the portion where the elements are segregated.
  • the ingot of the aluminum alloy after the homogenization treatment is cooled from the temperature of the homogenization treatment to a predetermined temperature of 200 ° C. or less at an average cooling rate of 0.01 ° C./s or more.
  • the average cooling rate is (A ° C. ⁇ 200 ° C.) / B seconds, where the temperature of the homogenization treatment is A ° C. and the time required for cooling the ingot from A ° C. to 200 ° C. is B seconds. expressed.
  • the average cooling rate is less than 0.01 ° C./s (slower than 0.01 ° C./s)
  • the S phase (Al 2 CuMg) and / or the Fe—Ni compound grows coarsely during cooling. .
  • the dislocation introduced by the extrusion process disappears in the vicinity of the coarse compound, and the subcrystal grain size becomes coarse.
  • the Fe—Ni-based compound is difficult to be infiltrated in the solution treatment, which is a process after extrusion, and therefore remains in the final product. Since a coarse compound deteriorates creep characteristics, it is necessary to control the cooling rate so as not to become coarse during the homogenization treatment.
  • the “coarse compound” means, for example, a compound that can remain in a particle size (equivalent circle diameter) of 20 ⁇ m or more even after extrusion.
  • the aluminum alloy ingot after cooling is extruded at 310 to 450 ° C. to obtain an intermediate extruded material.
  • the ingot is reheated at the time of extrusion, but it takes time to raise the temperature in the heating furnace, and the crystallized material becomes coarse. Therefore, the extrusion process is performed immediately after the temperature rises with an induction heater (induction heating). Preferably it is done.
  • an induction heater induction heating
  • the temperature of the extrusion process is less than 310 ° C., the deformation resistance of the material becomes high during the extrusion process, and the extrusion speed becomes slow, so the productivity is lowered.
  • the temperature of the extrusion process exceeds 450 ° C., dynamic recovery occurs during the extrusion process, and fine subcrystal grains cannot be obtained.
  • the temperature of the solution treatment is preferably a temperature range that is 3 to 10 ° C. lower than the eutectic melting start temperature.
  • the temperature of the solution treatment is higher than the above temperature range, the material may be easily eutectic melted due to variations in the furnace temperature.
  • the temperature of the solution treatment is lower than the above temperature range, solution formation in the structure becomes insufficient, and sufficient strength may not be obtained.
  • the intermediate extrudate is subjected to 2-4% tension correction within 48 hours.
  • tension straightening residual stress is removed and yield strength is improved.
  • dislocations since dislocations are introduced, it becomes possible to make the precipitation of the compound during the subsequent aging treatment fine, and fine subcrystal grains can be maintained even at high temperatures. In particular, by allowing the compound to precipitate finely on the subgrain boundaries, the movement of dislocations is suppressed, and excellent high-temperature creep characteristics can be obtained.
  • an aging treatment is performed at 160 to 220 ° C. on the intermediate extruded material after tension correction.
  • the temperature of the aging treatment is less than 160 ° C., the precipitation does not proceed sufficiently.
  • the temperature of the aging treatment exceeds 220 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained.
  • the obtained billet was homogenized at 470 ° C. for 15 hours, cooled at an average cooling rate of 0.012 ° C./s, and then hot extruded at 440 ° C. Thereby, a round bar (intermediate extruded material) having a diameter of 28 mm was obtained.
  • the obtained round bar was subjected to a solution treatment under conditions of 525 ° C. for 2 hours, and after quenching, tensile correction was performed with a strain amount of 2.4% when 190 hours passed, Artificial aging treatment was performed under conditions of 18 hours. In this manner, aluminum alloy extruded materials of Examples 1 to 14 and Comparative Examples 15 to 18 (hereinafter simply referred to as extruded materials) were produced.
  • the maximum particle size (equivalent circle diameter) of the intermetallic compound in the cross section, the density of the intermetallic compound having a particle diameter (equivalent circle diameter) of 0.3 to 20 ⁇ m, the average particle diameter of the subcrystalline grains ( The equivalent circle diameter) was measured.
  • the 0.2% yield strength (L direction and LT direction) in room temperature and 200 degreeC was measured by the tension test, and creep resistance (LT direction) was evaluated by the creep rupture test.
  • the central portion of the cut surface of the extruded material (the portion corresponding to the intermediate position in the direction (width direction) perpendicular to the length direction (extrusion direction) in the cut surface) was observed with an optical microscope at 200 times. Thereby, the average particle diameter (equivalent circle diameter) of the sub-crystal grains was measured.
  • the test piece was produced using each extrusion material. Specifically, for each extruded material, a test piece in which the extrusion direction (L direction) is the axial direction (length direction) and a test direction in which the direction orthogonal to the extrusion direction (LT direction) is the axial direction (length direction). A piece was made. The test piece had a parallel part diameter of 5 mm, a gauge distance of 15 mm, and a shoulder radius of 10 mm. Next, the test piece was set in a tensile tester, and a tensile test (JIS Z2241 (2011)) was performed at room temperature.
  • 0.2% yield strength at 200 ° C. For the 0.2% yield strength at 200 ° C., a test piece similar to the 0.2% yield strength at room temperature described above was prepared using each extruded material. Subsequently, it heated to 200 degreeC in the state set to the tensile tester. After reaching 200 ° C. for 10 minutes, a tensile test (JIS Z2241 (2011)) was performed. From the result of this tensile test, 0.2% yield strength (L direction, LT direction) at 200 ° C. was determined. For the evaluation of 0.2% yield strength at 200 ° C., compared to the conventional case (for example, the value disclosed in Patent Document 2 above), when the value of 0.2% yield strength at 200 ° C. is 310 MPa or more, it passes. It was.
  • ⁇ Creep resistance> Using each extruded material, similarly to the measurement of the 0.2% yield strength described above, a test piece was produced in which the direction orthogonal to the extrusion direction (LT direction) was the axial direction (length direction). Subsequently, it heated to 200 degreeC in the state which set the test piece to the creep rupture tester. After reaching 200 ° C., it was held for 60 minutes, and then a creep rupture test was conducted at 200 ° C. In the creep rupture test, a 200 MPa load was applied to the test piece for 100 hours. The load to be applied was set to 200 MPa on the basis of a value requiring recent high temperature characteristics. Regarding the evaluation of creep resistance (LT direction), a load of 200 MPa was applied, and the test was accepted when it did not break in 100 hours, and rejected when broken.
  • LT direction the direction orthogonal to the extrusion direction
  • Table 2 shows the results of the measurement and evaluation. In Table 2, when the numerical value of each item is out of the scope of the present disclosure, it is underlined. As can be seen from Table 2, since Comparative Examples 15 to 18 were outside the scope of the present disclosure, at least one of 0.2% yield strength and creep resistance was unacceptable.
  • Comparative Example 17 since the Fe content is small, the 0.2% yield strength (L direction, LT direction) at 200 ° C. does not satisfy the standard value, and the creep resistance (LT direction) is rejected. there were.
  • Comparative Example 18 since the Zr content is small, recrystallization occurs, and the 0.2% yield strength (LT direction) at room temperature and the 0.2% yield strength (L direction, LT direction) at 200 ° C. satisfy the standard values. The creep resistance (LT direction) was unacceptable.
  • the numerical value described in the column of the average particle diameter of the subcrystal grain of Comparative Example 18 in Table 2 is the numerical value of the average particle diameter of the recrystallized grain.
  • Examples 1 to 14 are within the scope of the present disclosure, 0.2% yield strength at room temperature (L direction, LT direction), 0.2% yield strength at 200 ° C. (L direction, LT direction) , And creep resistance (LT direction) were all passed. That is, it was found that the aluminum alloy extruded material of the present disclosure is excellent in strength and creep resistance at high temperatures.
  • an aluminum alloy (alloy A14, see Table 1 for the chemical composition) was ingoted by continuous casting to obtain a billet (diameter 356 mm).
  • the obtained billet was homogenized under predetermined conditions, cooled at a predetermined average cooling rate, and then subjected to hot extrusion under predetermined conditions.
  • a round bar material (intermediate extruded material) having a diameter of 58 mm was obtained.
  • the obtained round bar material is subjected to a solution treatment under conditions of 525 ° C. for 2 hours, and after quenching, a predetermined strain amount is subjected to tensile correction when a predetermined time has elapsed, and predetermined conditions are satisfied.
  • the artificial aging treatment was performed.
  • aluminum alloy extruded materials of Examples 21 to 23 and Comparative Examples 24 to 31 (hereinafter simply referred to as extruded materials) were produced.
  • Table 3 shows the temperature and time of the homogenization treatment, the average cooling rate, the extrusion processing temperature, the time from solution treatment and quenching to tensile straightening, the amount of strain during tensile straightening, and the temperature and time of aging treatment. It was. In Table 3, when the conditions of each process of the manufacturing method are outside the scope of the present disclosure, they are underlined.
  • the maximum particle diameter (equivalent circle diameter) of the intermetallic compound in the cross section, the density of the intermetallic compound having a particle diameter (equivalent circle diameter) of 0.3 to 20 ⁇ m, and the average particle diameter of the subcrystalline grains (Equivalent circle diameter) was measured.
  • the 0.2% yield strength (L direction and LT direction) in room temperature and 200 degreeC was measured by the tension test, and creep resistance (LT direction) was evaluated by the creep rupture test.
  • Comparative Example 24 had a small amount of strain at the time of tension correction, 0.2% yield strength (LT direction) at room temperature and 0.2% yield strength (L direction, LT direction) at 200 ° C. The reference value was not satisfied and the test was rejected, and the creep resistance (LT direction) was rejected.
  • Comparative Example 25 had a large amount of strain at the time of tensile correction, the 0.2% yield strength (L direction, LT direction) at 200 ° C. did not satisfy the standard value and failed, and the creep resistance (LT direction) was low. It was a failure.
  • Comparative Example 29 could not be extruded because the extrusion process temperature was low. For this reason, the extruded material could not be evaluated.
  • Comparative Example 30 since the extrusion processing temperature was high, the average grain size of the sub-crystal grains was large, the 0.2% proof stress (LT direction) at 200 ° C. did not satisfy the standard value, and the creep resistance was not satisfied. (LT direction) was rejected.
  • Examples 21 to 23 are within the scope of the present disclosure, 0.2% yield strength at room temperature (L direction, LT direction), 0.2% yield strength at 200 ° C. (L direction, LT direction) , And creep resistance (LT direction) were all passed. That is, it was found that an aluminum alloy extruded material excellent in strength and creep resistance at high temperatures can be obtained by the method for producing an aluminum alloy extruded material of the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

This aluminum alloy extruded material has a chemical composition that contains, in mass%, 2.5-3.3% of Cu, 1.3-2.5% of Mg, 0.50-1.3% of Ni, 0.50-1.5% of Fe, less than 0.50% of Mn, 0.15-0.40% of Si, 0.06-0.20% of Zr and less than 0.05% of Ti, with the balance made up of Al and unavoidable impurities. In a cross-section of this aluminum alloy extruded material, the circle-equivalent diameters of intermetallic compound particles are 20 μm or less; the density of intermetallic compound particles having circle-equivalent diameters of 0.3-20 μm is 5 × 103 particles/mm2 or more; and the average circle-equivalent diameter of crystal subgrains is 20 μm or less.

Description

アルミニウム合金押出材及びその製造方法Aluminum alloy extruded material and method for producing the same 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2015年8月25日に日本国特許庁に出願された日本国特許出願第2015-165985号に基づく優先権を主張するものであり、日本国特許出願第2015-165985号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2015-165985 filed with the Japan Patent Office on August 25, 2015, and Japanese Patent Application No. 2015-165985 The entire contents are incorporated by reference into this international application.
 本開示は、アルミニウム合金押出材及びその製造方法に関する。 The present disclosure relates to an aluminum alloy extruded material and a manufacturing method thereof.
 近年、環境保護の観点から、自動車の内燃機関の燃費向上が求められている。自動車の内燃機関用部品(例えばピストン等)、過給機用部品(例えばコンプレッサホイール等)等に適用されるアルミニウム合金材は、内燃機関の高出力化のため、高温域での強度及び高温域での長時間の使用にも耐えうる耐クリープ性が求められている。 In recent years, from the viewpoint of environmental protection, improvement in fuel consumption of automobile internal combustion engines has been demanded. Aluminum alloy materials applied to automobile internal combustion engine parts (for example, pistons) and supercharger parts (for example, compressor wheels) are used in high temperature areas and high temperature areas to increase the output of internal combustion engines. There is a need for creep resistance that can withstand long-term use.
 例えば、特許文献1には、アルミニウム合金材の高温域(100~180℃)での強度を向上させるため、導電率及び金属間化合物の平均粒子径を所定の範囲に制御することが提案されている。また、特許文献2には、アルミニウム合金材の高温域(200℃以上)での強度を向上させるため、Fe及びNiの含有量が所定の関係を満たすようにすることが提案されている。 For example, Patent Document 1 proposes that the electrical conductivity and the average particle diameter of the intermetallic compound be controlled within a predetermined range in order to improve the strength of the aluminum alloy material in a high temperature range (100 to 180 ° C.). Yes. Patent Document 2 proposes that the contents of Fe and Ni satisfy a predetermined relationship in order to improve the strength of an aluminum alloy material in a high temperature range (200 ° C. or higher).
特開平1-152237号公報Japanese Patent Laid-Open No. 1-152237 特開平7-242976号公報Japanese Unexamined Patent Publication No. 7-242976
 しかしながら、上記特許文献1、2では、アルミニウム合金材の高温域での強度について検討がなされているものの、高温域での耐クリープ性については全く検討がなされていない。すなわち、従来は、アルミニウム合金材の高温域での耐クリープ性について十分な検討がなされていなかった。 However, in Patent Documents 1 and 2 described above, although the strength of the aluminum alloy material in the high temperature range has been studied, the creep resistance in the high temperature range has not been studied at all. That is, conventionally, sufficient investigation has not been made on the creep resistance of aluminum alloy materials at high temperatures.
 本開示の一側面においては、高温での強度及び耐クリープ性に優れたアルミニウム合金押出材及びその製造方法が望ましい。 In one aspect of the present disclosure, an aluminum alloy extruded material excellent in strength and creep resistance at high temperatures and a manufacturing method thereof are desirable.
 本開示の一側面は、アルミニウム合金押出材であって、質量%で、Cu:2.5~3.3%、Mg:1.3~2.5%、Ni:0.50~1.3%、Fe:0.50~1.5%、Mn:0.50%未満、Si:0.15~0.40%、Zr:0.06~0.20%、Ti:0.05%未満を含有し、残部がAl及び不可避的不純物からなる化学組成を有し、断面において、金属間化合物の粒径が円相当径で20μm以下であり、粒径が円相当径で0.3~20μmの金属間化合物の密度が5×10個/mm以上であり、かつ、亜結晶粒の平均粒径が円相当径で20μm以下である。 One aspect of the present disclosure is an aluminum alloy extruded material, and in terms of mass%, Cu: 2.5 to 3.3%, Mg: 1.3 to 2.5%, Ni: 0.50 to 1.3 %, Fe: 0.50 to 1.5%, Mn: Less than 0.50%, Si: 0.15 to 0.40%, Zr: 0.06 to 0.20%, Ti: Less than 0.05% And the balance is a chemical composition consisting of Al and inevitable impurities, and in the cross section, the particle size of the intermetallic compound is 20 μm or less in equivalent circle diameter, and the particle size is 0.3 to 20 μm in equivalent circle diameter. The density of the intermetallic compound is 5 × 10 3 particles / mm 2 or more, and the average grain size of the sub-crystal grains is 20 μm or less in terms of the equivalent circle diameter.
 このアルミニウム合金押出材によれば、例えば200℃以上の高温域における強度及び耐クリープ性を向上させることができる。ここで、強度については、押出方向(以下、適宜、L方向という。)の強度だけでなく、押出方向に直交する方向(以下、適宜、LT方向という。)の強度も向上させることができる。また、耐クリープ性については、特にLT方向の耐クリープ性を向上させることができる。これにより、本開示のアルミニウム合金押出材は、例えば、高温環境下で使用される自動車の内燃機関用部品、過給機用部品等に適用することができる。 According to this aluminum alloy extruded material, for example, the strength and creep resistance in a high temperature range of 200 ° C. or higher can be improved. Here, regarding the strength, not only the strength in the extrusion direction (hereinafter, appropriately referred to as L direction) but also the strength in the direction orthogonal to the extrusion direction (hereinafter, appropriately referred to as LT direction) can be improved. Further, regarding the creep resistance, the creep resistance in the LT direction can be improved. Thereby, the aluminum alloy extruded material of the present disclosure can be applied to, for example, a part for an internal combustion engine of an automobile used in a high temperature environment, a part for a supercharger, or the like.
 本開示の他の側面は、上記アルミニウム合金押出材の製造方法であって、上記化学組成を有するアルミニウム合金の鋳塊を400~500℃で均質化処理し、次いで、鋳塊を0.01℃/s以上の平均冷却速度で均質化処理の温度から200℃以下の温度まで冷却し、次いで、鋳塊を310~450℃で押出加工し、次いで、押出加工により得られた中間押出材に対して溶体化処理及び焼入れを行い、次いで、溶体化処理及び焼入れを行った後、48時間以内に、中間押出材に対して2~4%歪の引張矯正を行い、次いで、中間押出材に対して160~220℃で時効処理を行う。 Another aspect of the present disclosure is a method for producing the aluminum alloy extruded material, in which an ingot of the aluminum alloy having the chemical composition is homogenized at 400 to 500 ° C., and then the ingot is 0.01 ° C. Is cooled from the homogenization temperature to a temperature of 200 ° C. or less at an average cooling rate of at least / s, and then the ingot is extruded at 310 to 450 ° C., and then the intermediate extruded material obtained by the extrusion process Then, solution treatment and quenching are performed, then, after solution treatment and quenching, the intermediate extrudate is subjected to 2-4% strain correction within 48 hours, and then the intermediate extrudate is subjected to tension correction. Aging treatment at 160-220 ° C.
 このアルミニウム合金押出材の製造方法によれば、例えば200℃以上の高温域における強度(L方向及びLT方向の強度)及び耐クリープ性(特にLT方向の耐クリープ性)に優れたアルミニウム合金押出材を製造することができる。製造されたアルミニウム合金押出材は、例えば、高温環境下で使用される自動車の内燃機関用部品、過給機用部品等に適用することができる。 According to this method for producing an aluminum alloy extruded material, for example, an aluminum alloy extruded material excellent in strength (strength in the L direction and LT direction) and creep resistance (particularly creep resistance in the LT direction) in a high temperature range of 200 ° C. or higher. Can be manufactured. The manufactured aluminum alloy extruded material can be applied to, for example, automobile internal combustion engine parts, turbocharger parts and the like used in a high temperature environment.
 以下、本開示の実施形態について説明する。なお、本開示は、以下の実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。 Hereinafter, embodiments of the present disclosure will be described. Note that the present disclosure is not limited to the following embodiments, and it is needless to say that the present disclosure can be implemented in various modes without departing from the gist of the present disclosure.
 <アルミニウム合金押出材の化学組成>
 Cu:2.5~3.3%
 Cuは、常温及び高温におけるアルミニウム合金押出材の強度向上に寄与する。Cu含有量が2.5%未満の場合には、強度向上の効果が十分に得られない。Cu含有量が3.3%を超える場合には、共晶融解開始温度が低下し、溶体化処理温度を低くしなければならないため、母相中への固溶量が減り、強度向上の効果が望めない。
<Chemical composition of extruded aluminum alloy>
Cu: 2.5-3.3%
Cu contributes to improving the strength of the aluminum alloy extruded material at room temperature and high temperature. When the Cu content is less than 2.5%, the effect of improving the strength cannot be obtained sufficiently. When the Cu content exceeds 3.3%, the eutectic melting start temperature is lowered and the solution treatment temperature has to be lowered, so the amount of solid solution in the parent phase is reduced, and the effect of improving the strength. I can't hope.
 Mg:1.3~2.5%
 Mgは、Cuと共存して、常温及び高温におけるアルミニウム合金押出材の強度向上に寄与する。Mg含有量が1.3%未満の場合には、強度向上の効果が小さい。Mg含有量が2.5%を超える場合には、押出等の熱間加工において加工材料の変形抵抗が高くなり、生産性が低下する。
Mg: 1.3-2.5%
Mg coexists with Cu and contributes to improving the strength of the extruded aluminum alloy at room temperature and high temperature. When the Mg content is less than 1.3%, the effect of improving the strength is small. When the Mg content exceeds 2.5%, the deformation resistance of the processed material is increased in hot working such as extrusion, and the productivity is lowered.
 Ni:0.50~1.3%
 Niは、Feと共にFe-Ni化合物を形成し、アルミニウム合金押出材の耐熱性を向上させる。Ni含有量が0.50%未満の場合には、耐熱性向上の効果が十分に得られない。Ni含有量が1.3%を超える場合には、母相中に分散するAl-Ni系、Al-Ni-Cu系等のNi系化合物が形成されるため、耐熱性向上の効果が小さくなる。また、粗大なFe-Ni系化合物が形成されることにより、押出等の熱間加工により割れが発生しやすくなり、生産性が低下する。
Ni: 0.50 to 1.3%
Ni forms an Fe—Ni compound together with Fe and improves the heat resistance of the extruded aluminum alloy. When the Ni content is less than 0.50%, the effect of improving heat resistance cannot be sufficiently obtained. When the Ni content exceeds 1.3%, Ni-based compounds such as Al-Ni-based and Al-Ni-Cu-based that are dispersed in the parent phase are formed, so the effect of improving heat resistance is reduced. . In addition, the formation of a coarse Fe—Ni-based compound makes it easy for cracks to occur due to hot working such as extrusion, resulting in decreased productivity.
 Fe:0.50~1.5%
 Feは、Niと共にFe-Ni化合物を形成し、アルミニウム合金押出材の耐熱性を向上させる。Fe含有量が0.50%未満の場合には、耐熱性向上の効果が十分に得られない。Fe含有量が1.5%を超える場合には、母相中に分散するAl-Fe系、Al-Fe-Cu系等のFe系化合物が形成されるため、耐熱性向上の効果が小さくなる。
Fe: 0.50 to 1.5%
Fe forms a Fe—Ni compound together with Ni and improves the heat resistance of the aluminum alloy extruded material. When the Fe content is less than 0.50%, the effect of improving heat resistance cannot be sufficiently obtained. When the Fe content exceeds 1.5%, an Fe-based compound such as an Al-Fe-based or Al-Fe-Cu-based material that is dispersed in the parent phase is formed, so that the effect of improving heat resistance is reduced. .
 Mn:0.50%未満
 Mnは、Al-Mn-Si系化合物を析出及び分散させ、溶体化処理中に生じる再結晶を抑制し、微細な亜結晶粒を形成させることにより、常温及び高温におけるアルミニウム合金押出材の強度向上に寄与する。Mg含有量が0.50%以上の場合には、鋳造時に巨大な晶出物が形成されやすくなり、強度が低下する。
Mn: less than 0.50% Mn precipitates and disperses Al-Mn-Si compounds, suppresses recrystallization that occurs during solution treatment, and forms fine sub-crystal grains. Contributes to improving the strength of extruded aluminum alloys. When the Mg content is 0.50% or more, a huge crystallized product is easily formed during casting, and the strength is lowered.
 Si:0.15~0.40%
 Siは、Mnと共にAl-Mn-Si系化合物の微細分散相を析出させ、転位のピンニング効果を高め、溶体化処理中の再結晶粒の粗大化を抑制することにより、アルミニウム合金押出材の強度を向上させる。Si含有量が0.15%未満の場合には、強度向上の効果が十分に得られない。Si含有量が0.40%を超える場合には、Mg及びSiの化合物が形成され、耐熱性が低下する。
Si: 0.15-0.40%
Si precipitates a finely dispersed phase of Al-Mn-Si compound together with Mn, enhances the pinning effect of dislocation, and suppresses the coarsening of recrystallized grains during solution treatment. To improve. When the Si content is less than 0.15%, the effect of improving the strength cannot be obtained sufficiently. When the Si content exceeds 0.40%, Mg and Si compounds are formed, and the heat resistance is lowered.
 Zr:0.06~0.20%
 Zrは、鋳造組織の微細化に寄与する。また、Zrは、Alと共にAlZr化合物を微細に分散させ、溶体化処理中に生じる再結晶を抑制し、微細な亜結晶粒を形成させることで、アルミニウム合金押出材の強度向上に寄与する。Zr含有量が0.06%未満の場合には、鋳造組織の微細化及び強度向上の効果が十分に得られない。Zr含有量が0.20%を超える場合には、鋳造時に巨大な晶出物が形成されやすくなるため、鋳造組織の微細化及び強度向上の効果が小さくなる。
Zr: 0.06 to 0.20%
Zr contributes to refinement of the cast structure. In addition, Zr finely disperses Al 3 Zr compound together with Al, suppresses recrystallization that occurs during solution treatment, and forms fine sub-crystal grains, thereby contributing to improvement in strength of the aluminum alloy extruded material. . When the Zr content is less than 0.06%, the effect of making the cast structure fine and improving the strength cannot be sufficiently obtained. When the Zr content exceeds 0.20%, a large crystallized product is likely to be formed during casting, so that the effects of refinement of the cast structure and improvement in strength are reduced.
 Ti:0.05%未満
 Tiは、Zrと同様、微細結晶粒組織を安定して得るために添加される。Ti含有量は0.05%未満とする。Ti含有量が0.05%以上の場合には、鋳造時に巨大なZr-Ti系化合物が形成され、強度が低下する。
Ti: Less than 0.05% Ti is added in order to stably obtain a fine grain structure, like Zr. The Ti content is less than 0.05%. When the Ti content is 0.05% or more, a huge Zr—Ti-based compound is formed during casting, and the strength decreases.
 その他の元素:
 上記元素の他は、基本的にはAl及び不可避的不純物とすればよい。通常、アルミニウム合金に添加される上記元素以外の元素は、不可避的不純物として特性に大きな影響を与えない範囲内で許容される。
Other elements:
In addition to the above elements, basically, Al and inevitable impurities may be used. Usually, elements other than the above elements added to the aluminum alloy are allowed as long as they do not significantly affect the characteristics as inevitable impurities.
 <アルミニウム合金押出材の組織>
 アルミニウム合金押出材において、高温で亜結晶粒径の粗大化を抑制し、優れた強度及び耐クリープ性を実現するためには、高温で転位が容易に移動しないよう、亜結晶粒界上に晶出物が細かく存在している必要がある。そこで、アルミニウム合金押出材の断面において、金属間化合物の粒径を円相当径で20μm以下(好ましくは10μm以下)とし、粒径が円相当径で0.3~20μmの金属間化合物の密度を5×10個/mm以上とする。
<Structure of extruded aluminum alloy>
In an aluminum alloy extruded material, in order to suppress the coarsening of the sub-crystal grain size at high temperature and to realize excellent strength and creep resistance, the crystal on the sub-grain boundary is prevented so that dislocation does not move easily at high temperature. There must be a small amount of artifacts. Therefore, in the cross section of the aluminum alloy extruded material, the particle diameter of the intermetallic compound is 20 μm or less (preferably 10 μm or less) in terms of the equivalent circle diameter, and the density of the intermetallic compound having the equivalent particle diameter of 0.3 to 20 μm 5 × 10 3 pieces / mm 2 or more.
 アルミニウム合金押出材の断面において、金属間化合物の粒径が円相当径で20μmを超える場合には、破壊時の起点となり、強度が低下する。アルミニウム合金押出材の断面において、粒径が円相当径で0.3~20μmの金属間化合物の密度が5×10個/mm未満の場合には、粒界上の析出物が疎になり、粒界すべりが抑制されず、耐熱性が低下する。 In the cross section of the aluminum alloy extruded material, when the particle diameter of the intermetallic compound exceeds 20 μm in the equivalent circle diameter, it becomes a starting point at the time of fracture, and the strength is reduced. In the cross section of the aluminum alloy extruded material, when the density of the intermetallic compound having a grain equivalent diameter of 0.3 to 20 μm is less than 5 × 10 3 pieces / mm 2 , the precipitates on the grain boundaries are sparse. That is, the grain boundary sliding is not suppressed and the heat resistance is lowered.
 アルミニウム合金押出材の高温での強度(特にLT方向の強度)を向上させるために、アルミニウム合金押出材の断面において、亜結晶粒の平均粒径を円相当径で20μm以下とする。アルミニウム合金押出材の断面において、亜結晶粒の平均粒径が円相当径で20μmを超える場合には、高温での強度(特にLT方向の強度)を向上させる効果が小さくなる。 In order to improve the strength of the aluminum alloy extruded material at a high temperature (particularly the strength in the LT direction), the average grain size of the sub-crystal grains is set to 20 μm or less in terms of the equivalent circle diameter in the cross section of the aluminum alloy extruded material. In the cross section of the aluminum alloy extruded material, when the average grain size of the sub-crystal grains exceeds 20 μm in the equivalent circle diameter, the effect of improving the strength at high temperature (particularly the strength in the LT direction) is reduced.
 ここで、アルミニウム合金押出材の断面とは、アルミニウム合金押出材における所定方向の断面である。断面の方向は、何ら限定されるものではなく、例えば、押出方向に平行な断面、押出方向に直交する方向の断面等であってもよい。上述の金属間化合物の粒径(円相当径)、粒径(円相当径)が0.3~20μmの金属間化合物の密度、及び亜結晶粒の平均粒径(円相当径)は、アルミニウム合金押出材における所定方向の断面であって、表層部分(例えば表面から深さ方向に2~5mmの範囲)を除いた任意の領域を光学顕微鏡等で観察することにより求めることができる。 Here, the cross section of the aluminum alloy extruded material is a cross section in a predetermined direction of the aluminum alloy extruded material. The direction of the cross section is not limited at all, and may be a cross section parallel to the extrusion direction, a cross section perpendicular to the extrusion direction, or the like. The particle size (equivalent circle diameter) of the above-mentioned intermetallic compound, the density of the intermetallic compound having a particle diameter (equivalent circle diameter) of 0.3 to 20 μm, and the average grain size (equivalent circle diameter) of the subcrystalline grains are aluminum. This can be determined by observing an arbitrary region of the extruded alloy material in a predetermined direction, excluding a surface layer portion (for example, a range of 2 to 5 mm in the depth direction from the surface) with an optical microscope or the like.
 <アルミニウム合金押出材の製造方法>
 アルミニウム合金押出材を製造するに当たっては、まず、上記化学組成を有するアルミニウム合金を常法により溶解し、造塊されたアルミニウム合金の鋳塊を400~500℃で均質化処理する。均質化処理の温度が400℃未満の場合には、組織の均質化が不十分となる。均質化処理の温度が500℃を超える場合には、元素が偏析している部分で共晶融解が生じる。
<Method for producing aluminum alloy extruded material>
In producing the aluminum alloy extruded material, first, an aluminum alloy having the above chemical composition is melted by a conventional method, and the ingot of the ingot aluminum alloy is homogenized at 400 to 500 ° C. When the temperature of the homogenization treatment is less than 400 ° C., the tissue is not sufficiently homogenized. When the temperature of the homogenization treatment exceeds 500 ° C., eutectic melting occurs in the portion where the elements are segregated.
 次いで、均質化処理後のアルミニウム合金の鋳塊を、0.01℃/s以上の平均冷却速度で均質化処理の温度から200℃以下の所定の温度まで冷却する。ここで、平均冷却速度は、均質化処理の温度をA℃、鋳塊をA℃から200℃まで冷却するのに要する時間をB秒とした場合、(A℃-200℃)/B秒で表される。平均冷却速度が0.01℃/s未満(0.01℃/sより遅い)場合には、冷却中にS相(AlCuMg)及び/又はFe-Ni系化合物が粗大に成長してしまう。 Next, the ingot of the aluminum alloy after the homogenization treatment is cooled from the temperature of the homogenization treatment to a predetermined temperature of 200 ° C. or less at an average cooling rate of 0.01 ° C./s or more. Here, the average cooling rate is (A ° C.−200 ° C.) / B seconds, where the temperature of the homogenization treatment is A ° C. and the time required for cooling the ingot from A ° C. to 200 ° C. is B seconds. expressed. When the average cooling rate is less than 0.01 ° C./s (slower than 0.01 ° C./s), the S phase (Al 2 CuMg) and / or the Fe—Ni compound grows coarsely during cooling. .
 例えば、粗大な化合物が形成されている状態で450℃以下の押出加工を行うと、押出加工により導入された転位が粗大な化合物近傍で消失してしまい、亜結晶粒径が粗大になる。特に、Fe-Ni系化合物は、押出加工後の工程である溶体化処理において溶入化されにくいため、最終製品まで残ってしまう。粗大な化合物は、クリープ特性を低下させてしまうため、均質化処理時に粗大にならないよう、冷却速度の制御が必要となる。そこで、均質化処理後の平均冷却速度を0.01℃/s以上とすることにより、微細なFe-Ni系及びCu-Mg系化合物が生じ、後の工程である引張矯正及び時効処理で均一かつ微細な析出物が生じることで、優れた耐熱性を有するアルミニウム合金押出材が得られる。なお、ここでの「粗大な化合物」とは、例えば、押出加工後にも粒径(円相当径)が20μm以上の大きさで残存しうる化合物のことをいう。 For example, when an extrusion process at 450 ° C. or less is performed in a state where a coarse compound is formed, the dislocation introduced by the extrusion process disappears in the vicinity of the coarse compound, and the subcrystal grain size becomes coarse. In particular, the Fe—Ni-based compound is difficult to be infiltrated in the solution treatment, which is a process after extrusion, and therefore remains in the final product. Since a coarse compound deteriorates creep characteristics, it is necessary to control the cooling rate so as not to become coarse during the homogenization treatment. Therefore, by setting the average cooling rate after homogenization to 0.01 ° C / s or more, fine Fe-Ni and Cu-Mg compounds are produced, and uniform in the subsequent steps of tensile straightening and aging treatment. Moreover, an aluminum alloy extruded material having excellent heat resistance can be obtained by producing fine precipitates. Here, the “coarse compound” means, for example, a compound that can remain in a particle size (equivalent circle diameter) of 20 μm or more even after extrusion.
 次いで、冷却後のアルミニウム合金の鋳塊を310~450℃で押出加工し、中間押出材を得る。押出加工の際に鋳塊を再加熱するが、加熱炉では昇温に時間を要し、晶出物が粗大化するため、インダクションヒータ(誘導加熱)等で昇温後、すぐに押出加工を行うことが好ましい。押出加工の温度が310℃未満の場合には、押出加工時に材料の変形抵抗が高くなり、押出速度が遅くなるため、生産性が低下する。押出加工の温度が450℃を超える場合には、押出加工時に動的回復が生じ、微細な亜結晶粒が得られなくなる。 Next, the aluminum alloy ingot after cooling is extruded at 310 to 450 ° C. to obtain an intermediate extruded material. The ingot is reheated at the time of extrusion, but it takes time to raise the temperature in the heating furnace, and the crystallized material becomes coarse. Therefore, the extrusion process is performed immediately after the temperature rises with an induction heater (induction heating). Preferably it is done. When the temperature of the extrusion process is less than 310 ° C., the deformation resistance of the material becomes high during the extrusion process, and the extrusion speed becomes slow, so the productivity is lowered. When the temperature of the extrusion process exceeds 450 ° C., dynamic recovery occurs during the extrusion process, and fine subcrystal grains cannot be obtained.
 次いで、押出加工により得られた中間押出材に対して溶体化処理及び焼入れを行う。溶体化処理の温度は、共晶融解開始温度より3~10℃低い温度域が好ましい。溶体化処理の温度が上記温度域よりも高い場合には、炉内温度のばらつきによって材料が共晶融解しやすくなることがある。溶体化処理の温度が上記温度域よりも低い場合には、組織中の溶体化が不十分となり、十分な強度が得られないことがある。 Next, solution treatment and quenching are performed on the intermediate extruded material obtained by the extrusion process. The temperature of the solution treatment is preferably a temperature range that is 3 to 10 ° C. lower than the eutectic melting start temperature. When the temperature of the solution treatment is higher than the above temperature range, the material may be easily eutectic melted due to variations in the furnace temperature. When the temperature of the solution treatment is lower than the above temperature range, solution formation in the structure becomes insufficient, and sufficient strength may not be obtained.
 次いで、溶体化処理及び焼入れを行った後、48時間以内に、中間押出材に対して2~4%の引張矯正を行う。引張矯正では、残留応力を除去し、耐力を向上させる。また、転位が導入されるため、その後の時効処理時の化合物の析出を微細にすることが可能になり、高温においても微細な亜結晶粒を維持することができる。特に、亜結晶粒界上に化合物を微細に析出させることで転位の移動が抑制され、優れた高温クリープ特性が得られる。 Next, after the solution treatment and quenching, the intermediate extrudate is subjected to 2-4% tension correction within 48 hours. In tension straightening, residual stress is removed and yield strength is improved. In addition, since dislocations are introduced, it becomes possible to make the precipitation of the compound during the subsequent aging treatment fine, and fine subcrystal grains can be maintained even at high temperatures. In particular, by allowing the compound to precipitate finely on the subgrain boundaries, the movement of dislocations is suppressed, and excellent high-temperature creep characteristics can be obtained.
 溶体化処理及び焼入れを行った後、引張矯正を行うまでの時間が48時間を超える場合には、残留応力が残っている部分での析出促進が顕著になる。微細析出物近傍に転位が導入されやすいため、部分的に析出が促進されると、引張矯正によって導入される転位も部分的になり、その後均一な亜結晶粒が維持できない。引張矯正量(引張矯正時の歪量)が2%未満の場合には、上述した引張矯正の効果が小さくなる。引張矯正量が4%を超える場合には、導入される転位が多くなりすぎ、析出が促進されるため、高温クリープ特性が低下する。 When the time from the solution treatment and quenching to the tensile straightening exceeds 48 hours, the acceleration of precipitation in the portion where the residual stress remains becomes remarkable. Since dislocations are easily introduced in the vicinity of fine precipitates, when precipitation is partially promoted, dislocations introduced by tensile straightening also become partial, and thereafter uniform subcrystal grains cannot be maintained. When the tensile straightening amount (the amount of strain during tensile straightening) is less than 2%, the effect of the above-described tensile straightening becomes small. When the tensile straightening amount exceeds 4%, too many dislocations are introduced and precipitation is promoted, so that the high temperature creep property is deteriorated.
 次いで、引張矯正後の中間押出材に対して160~220℃で時効処理を行う。時効処理の温度が160℃未満の場合には、析出が十分に進行しない。時効処理の温度が220℃を超える場合には、析出物が粗大になり、十分な強度が得られない。 Next, an aging treatment is performed at 160 to 220 ° C. on the intermediate extruded material after tension correction. When the temperature of the aging treatment is less than 160 ° C., the precipitation does not proceed sufficiently. When the temperature of the aging treatment exceeds 220 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained.
 以上の工程を経て、上記化学組成を有し、上記組織のアルミニウム合金押出材が得られる。 Through the above steps, an aluminum alloy extruded material having the above chemical composition and the above structure is obtained.
 以下、本開示の実施例を比較例と対比しながら説明し、本開示の効果を実証する。これらの実施例は、本開示の一実施態様を示すものであり、本開示は何らこれらに限定されるものではない。 Hereinafter, examples of the present disclosure will be described in comparison with comparative examples to demonstrate the effects of the present disclosure. These examples show one embodiment of the present disclosure, and the present disclosure is not limited thereto.
 まず、表1に示す化学組成を有するアルミニウム合金(合金A1~A14、B1~B4)を連続鋳造により造塊し、直径90mmのビレット(押出用に調整された鋳塊)を得た。なお、表1において、化学成分の残部はAl及び不可避的不純物であり、その表記を省略した。また、化学成分の含有量が本開示の範囲外である場合には下線を付した。 First, aluminum alloys (alloys A1 to A14, B1 to B4) having the chemical composition shown in Table 1 were ingoted by continuous casting to obtain billets (ingots adjusted for extrusion) having a diameter of 90 mm. In Table 1, the balance of chemical components is Al and inevitable impurities, and the description thereof is omitted. Moreover, when the content of the chemical component is outside the scope of the present disclosure, it is underlined.
 得られたビレットを470℃、15時間の条件で均質化処理し、平均冷却速度0.012℃/sの条件で冷却した後、440℃の条件で熱間押出加工を行った。これにより、直径28mmの丸棒材(中間押出材)を得た。得られた丸棒材に対して、525℃、2時間の条件で溶体化処理を行い、焼入れを行った後、12時間経過したところで歪量2.4%の引張矯正を行い、190℃、18時間の条件で人工時効処理を行った。以上により、実施例1~14及び比較例15~18のアルミニウム合金押出材(以下、適宜、単に押出材という。)を作製した。 The obtained billet was homogenized at 470 ° C. for 15 hours, cooled at an average cooling rate of 0.012 ° C./s, and then hot extruded at 440 ° C. Thereby, a round bar (intermediate extruded material) having a diameter of 28 mm was obtained. The obtained round bar was subjected to a solution treatment under conditions of 525 ° C. for 2 hours, and after quenching, tensile correction was performed with a strain amount of 2.4% when 190 hours passed, Artificial aging treatment was performed under conditions of 18 hours. In this manner, aluminum alloy extruded materials of Examples 1 to 14 and Comparative Examples 15 to 18 (hereinafter simply referred to as extruded materials) were produced.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 作製した各押出材について、断面における金属間化合物の最大粒径(円相当径)、粒径(円相当径)が0.3~20μmの金属間化合物の密度、亜結晶粒の平均粒径(円相当径)を測定した。また、作製した各押出材について、引張試験により室温及び200℃での0.2%耐力(L方向、LT方向)を測定し、クリープラプチャー試験により耐クリープ性(LT方向)を評価した。以下、測定及び評価方法について説明する。 For each manufactured extruded material, the maximum particle size (equivalent circle diameter) of the intermetallic compound in the cross section, the density of the intermetallic compound having a particle diameter (equivalent circle diameter) of 0.3 to 20 μm, the average particle diameter of the subcrystalline grains ( The equivalent circle diameter) was measured. Moreover, about each produced extrusion material, the 0.2% yield strength (L direction and LT direction) in room temperature and 200 degreeC was measured by the tension test, and creep resistance (LT direction) was evaluated by the creep rupture test. Hereinafter, measurement and evaluation methods will be described.
 <金属間化合物の最大粒径(円相当径)及び密度>
 押出材の押出方向(L方向)の組織が観察できるように、押出材を押出方向(L方向)と平行な方向に、均等に2分割されるように(押出材の中心軸を含むように)切断し、その切断面を耐水研磨紙で研磨し、さらに研磨剤を塗布したバフで鏡面に仕上げた。次いで、押出材の切断面の中心部(切断面における長さ方向(押出方向)に直交する方向(幅方向)の中間位置に当たる部分)を光学顕微鏡にて200倍で観察した。これにより、金属間化合物の最大粒径(円相当径)、粒径(円相当径)が0.3~20μmの金属間化合物の密度を測定した。
<Maximum particle size (equivalent circle diameter) and density of intermetallic compound>
In order to observe the structure of the extruded material in the extrusion direction (L direction), the extruded material is equally divided into two in a direction parallel to the extrusion direction (L direction) (including the central axis of the extruded material). ) The cut surface was polished with water-resistant abrasive paper, and finished to a mirror surface with a buff coated with an abrasive. Next, the central portion of the cut surface of the extruded material (the portion corresponding to the intermediate position in the direction (width direction) perpendicular to the length direction (extrusion direction) in the cut surface) was observed with an optical microscope at 200 times. As a result, the maximum particle size (equivalent circle diameter) of the intermetallic compound and the density of the intermetallic compound having a particle size (equivalent circle diameter) of 0.3 to 20 μm were measured.
 <亜結晶粒の平均粒径(円相当径)>
 押出材の押出方向(L方向)の組織が観察できるように、押出材を押出方向(L方向)と平行な方向に、均等に2分割されるように(押出材の中心軸を含むように)切断し、その切断面を耐水研磨紙で研磨し、さらに研磨剤を塗布したバフで鏡面に仕上げた。その後、押出材の切断面に対して、ケラー液によりエッチングを施した。次いで、押出材の切断面の中心部(切断面における長さ方向(押出方向)に直交する方向(幅方向)の中間位置に当たる部分)を光学顕微鏡にて200倍で観察した。これにより、亜結晶粒の平均粒径(円相当径)を測定した。
<Average grain size of sub-crystal grains (equivalent circle diameter)>
In order to observe the structure of the extruded material in the extrusion direction (L direction), the extruded material is equally divided into two in a direction parallel to the extrusion direction (L direction) (including the central axis of the extruded material). ) The cut surface was polished with water-resistant abrasive paper, and finished to a mirror surface with a buff coated with an abrasive. Thereafter, the cut surface of the extruded material was etched with a Keller solution. Next, the central portion of the cut surface of the extruded material (the portion corresponding to the intermediate position in the direction (width direction) perpendicular to the length direction (extrusion direction) in the cut surface) was observed with an optical microscope at 200 times. Thereby, the average particle diameter (equivalent circle diameter) of the sub-crystal grains was measured.
 <0.2%耐力>
 室温での0.2%耐力については、各押出材を用いて試験片を作製した。具体的には、各押出材について、押出方向(L方向)が軸方向(長さ方向)となる試験片と押出方向に直交する方向(LT方向)が軸方向(長さ方向)となる試験片とを作製した。試験片は、平行部径5mm、標点距離15mm、肩部半径10mmとした。次いで、試験片を引張試験機にセットし、室温下で引張試験(JIS Z2241(2011年))を行った。なお、LT方向の引張試験においては、試験片の評価部の両端に共材を摩擦圧接し、試験片に必要な長さを確保した。この引張試験の結果より、室温での0.2%耐力(L方向、LT方向)を求めた。室温での0.2%耐力の評価については、従来(例えば上記特許文献2に開示された値)と比較し、室温での0.2%耐力の値が410MPa以上の場合には合格とした。
<0.2% yield strength>
About 0.2% yield strength at room temperature, the test piece was produced using each extrusion material. Specifically, for each extruded material, a test piece in which the extrusion direction (L direction) is the axial direction (length direction) and a test direction in which the direction orthogonal to the extrusion direction (LT direction) is the axial direction (length direction). A piece was made. The test piece had a parallel part diameter of 5 mm, a gauge distance of 15 mm, and a shoulder radius of 10 mm. Next, the test piece was set in a tensile tester, and a tensile test (JIS Z2241 (2011)) was performed at room temperature. Note that, in the tensile test in the LT direction, a common material was friction-welded to both ends of the evaluation portion of the test piece to ensure a necessary length for the test piece. From the result of this tensile test, the 0.2% yield strength (L direction, LT direction) at room temperature was determined. About the evaluation of 0.2% yield strength at room temperature, compared with the conventional (for example, the value disclosed in the above-mentioned Patent Document 2), if the value of 0.2% yield strength at room temperature is 410 MPa or more, it was accepted. .
 200℃での0.2%耐力については、各押出材を用いて上述した室温での0.2%耐力と同様の試験片を作製した。次いで、試験片を引張試験機にセットした状態で200℃まで加熱した。200℃に達してから10分間保持した後、引張試験(JIS Z2241(2011年))を行った。この引張試験の結果より、200℃での0.2%耐力(L方向、LT方向)を求めた。200℃での0.2%耐力の評価については、従来(例えば上記特許文献2に開示された値)と比較し、200℃での0.2%耐力の値が310MPa以上の場合には合格とした。 For the 0.2% yield strength at 200 ° C., a test piece similar to the 0.2% yield strength at room temperature described above was prepared using each extruded material. Subsequently, it heated to 200 degreeC in the state set to the tensile tester. After reaching 200 ° C. for 10 minutes, a tensile test (JIS Z2241 (2011)) was performed. From the result of this tensile test, 0.2% yield strength (L direction, LT direction) at 200 ° C. was determined. For the evaluation of 0.2% yield strength at 200 ° C., compared to the conventional case (for example, the value disclosed in Patent Document 2 above), when the value of 0.2% yield strength at 200 ° C. is 310 MPa or more, it passes. It was.
 <耐クリープ性>
 各押出材を用いて、上述した0.2%耐力の測定と同様に、押出方向に直交する方向(LT方向)が軸方向(長さ方向)となる試験片を作製した。次いで、試験片をクリープラプチャー試験機にセットした状態で200℃まで加熱した。200℃に達してから60分間保持した後、200℃下でクリープラプチャー試験を行った。クリープラプチャー試験では、試験片に対して200MPaの荷重を100時間負荷した。なお、負荷する荷重は、近年の高温特性が要求される値を基準として200MPaとした。耐クリープ性(LT方向)の評価については、200MPaの荷重を負荷して100時間で破断しなかった場合には合格とし、破断した場合には不合格とした。
<Creep resistance>
Using each extruded material, similarly to the measurement of the 0.2% yield strength described above, a test piece was produced in which the direction orthogonal to the extrusion direction (LT direction) was the axial direction (length direction). Subsequently, it heated to 200 degreeC in the state which set the test piece to the creep rupture tester. After reaching 200 ° C., it was held for 60 minutes, and then a creep rupture test was conducted at 200 ° C. In the creep rupture test, a 200 MPa load was applied to the test piece for 100 hours. The load to be applied was set to 200 MPa on the basis of a value requiring recent high temperature characteristics. Regarding the evaluation of creep resistance (LT direction), a load of 200 MPa was applied, and the test was accepted when it did not break in 100 hours, and rejected when broken.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 上記測定及び評価の結果を表2に示す。なお、表2において、各項目の数値が本開示の範囲外である場合には下線を付した。
 表2からわかるように、比較例15~18は、本開示の範囲外であるため、0.2%耐力及び耐クリープ性の少なくとも一方が不合格であった。
Table 2 shows the results of the measurement and evaluation. In Table 2, when the numerical value of each item is out of the scope of the present disclosure, it is underlined.
As can be seen from Table 2, since Comparative Examples 15 to 18 were outside the scope of the present disclosure, at least one of 0.2% yield strength and creep resistance was unacceptable.
 具体的には、比較例15は、Cu含有量が少ないため、室温での0.2%耐力(L方向、LT方向)が基準値(410MPa)を満たさず不合格であり、200℃での0.2%耐力(L方向、LT方向)が基準値(310MPa)を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。 Specifically, in Comparative Example 15, since the Cu content is small, the 0.2% yield strength (L direction, LT direction) at room temperature does not satisfy the standard value (410 MPa), and is rejected. The 0.2% proof stress (L direction, LT direction) did not satisfy the standard value (310 MPa) and was rejected, and the creep resistance (LT direction) was rejected.
 比較例16は、Ni含有量が少ないため、粒径0.3~20μmの金属間化合物の密度が低く、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。 In Comparative Example 16, since the Ni content is low, the density of the intermetallic compound having a particle size of 0.3 to 20 μm is low, and the 0.2% yield strength (L direction, LT direction) at 200 ° C. does not satisfy the standard value. It was rejected and the creep resistance (LT direction) was rejected.
 比較例17は、Fe含有量が少ないため、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。
 比較例18は、Zr含有量が少ないため、再結晶となり、室温での0.2%耐力(LT方向)及び200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。なお、表2における比較例18の亜結晶粒の平均粒径の欄に表記されている数値は、再結晶粒の平均粒径の数値である。
In Comparative Example 17, since the Fe content is small, the 0.2% yield strength (L direction, LT direction) at 200 ° C. does not satisfy the standard value, and the creep resistance (LT direction) is rejected. there were.
In Comparative Example 18, since the Zr content is small, recrystallization occurs, and the 0.2% yield strength (LT direction) at room temperature and the 0.2% yield strength (L direction, LT direction) at 200 ° C. satisfy the standard values. The creep resistance (LT direction) was unacceptable. In addition, the numerical value described in the column of the average particle diameter of the subcrystal grain of Comparative Example 18 in Table 2 is the numerical value of the average particle diameter of the recrystallized grain.
 一方、実施例1~14は、本開示の範囲内であるため、室温での0.2%耐力(L方向、LT方向)、200℃での0.2%耐力(L方向、LT方向)、及び耐クリープ性(LT方向)がすべて合格であった。すなわち、本開示のアルミニウム合金押出材が高温での強度及び耐クリープ性に優れていることがわかった。 On the other hand, since Examples 1 to 14 are within the scope of the present disclosure, 0.2% yield strength at room temperature (L direction, LT direction), 0.2% yield strength at 200 ° C. (L direction, LT direction) , And creep resistance (LT direction) were all passed. That is, it was found that the aluminum alloy extruded material of the present disclosure is excellent in strength and creep resistance at high temperatures.
 次に、アルミニウム合金(合金A14、化学組成は表1参照)を連続鋳造により造塊し、ビレット(直径356mm)を得た。得られたビレットを所定の条件で均質化処理し、所定の平均冷却速度で冷却した後、所定の条件で熱間押出加工を行った。これにより、直径58mmの丸棒材(中間押出材)を得た。得られた丸棒材に対して、525℃、2時間の条件で溶体化処理を行い、焼入れを行った後、所定の時間が経過したところで所定の歪量の引張矯正を行い、所定の条件で人工時効処理を行った。以上により、実施例21~23及び比較例24~31のアルミニウム合金押出材(以下、適宜、単に押出材という。)を作製した。 Next, an aluminum alloy (alloy A14, see Table 1 for the chemical composition) was ingoted by continuous casting to obtain a billet (diameter 356 mm). The obtained billet was homogenized under predetermined conditions, cooled at a predetermined average cooling rate, and then subjected to hot extrusion under predetermined conditions. Thereby, a round bar material (intermediate extruded material) having a diameter of 58 mm was obtained. The obtained round bar material is subjected to a solution treatment under conditions of 525 ° C. for 2 hours, and after quenching, a predetermined strain amount is subjected to tensile correction when a predetermined time has elapsed, and predetermined conditions are satisfied. The artificial aging treatment was performed. Thus, aluminum alloy extruded materials of Examples 21 to 23 and Comparative Examples 24 to 31 (hereinafter simply referred to as extruded materials) were produced.
 なお、均質化処理の温度及び時間、平均冷却速度、押出加工温度、溶体化処理及び焼入れ後引張矯正までの時間、引張矯正時の歪量、時効処理の温度及び時間については、表3に示した。表3において、製造方法の各工程の条件が本開示の範囲外である場合には下線を付した。 Table 3 shows the temperature and time of the homogenization treatment, the average cooling rate, the extrusion processing temperature, the time from solution treatment and quenching to tensile straightening, the amount of strain during tensile straightening, and the temperature and time of aging treatment. It was. In Table 3, when the conditions of each process of the manufacturing method are outside the scope of the present disclosure, they are underlined.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 作製した各押出材について、断面における金属間化合物の最大粒径(円相当径)、粒径(円相当径)が0.3~20μmの金属間化合物の密度、及び亜結晶粒の平均粒径(円相当径)を測定した。また、作製した各押出材について、引張試験により室温及び200℃での0.2%耐力(L方向、LT方向)を測定し、クリープラプチャー試験により耐クリープ性(LT方向)を評価した。これらの測定及び評価方法は上記と同様である。 For each of the produced extruded materials, the maximum particle diameter (equivalent circle diameter) of the intermetallic compound in the cross section, the density of the intermetallic compound having a particle diameter (equivalent circle diameter) of 0.3 to 20 μm, and the average particle diameter of the subcrystalline grains (Equivalent circle diameter) was measured. Moreover, about each produced extrusion material, the 0.2% yield strength (L direction and LT direction) in room temperature and 200 degreeC was measured by the tension test, and creep resistance (LT direction) was evaluated by the creep rupture test. These measurement and evaluation methods are the same as described above.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 上記測定及び評価の結果を表4に示す。なお、表4において、各項目の数値が本開示の範囲外である場合には下線を付した。
 表4からわかるように、比較例24~31は、製造方法が本開示の範囲外であるため、0.2%耐力及び耐クリープ性の少なくとも一方が不合格であった。
The results of the measurement and evaluation are shown in Table 4. In Table 4, when the numerical value of each item is outside the scope of the present disclosure, it is underlined.
As can be seen from Table 4, in Comparative Examples 24-31, the production method was outside the scope of the present disclosure, so at least one of 0.2% yield strength and creep resistance was unacceptable.
 具体的には、比較例24は、引張矯正時の歪量が少なかったため、室温での0.2%耐力(LT方向)及び200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。 Specifically, since Comparative Example 24 had a small amount of strain at the time of tension correction, 0.2% yield strength (LT direction) at room temperature and 0.2% yield strength (L direction, LT direction) at 200 ° C. The reference value was not satisfied and the test was rejected, and the creep resistance (LT direction) was rejected.
 比較例25は、引張矯正時の歪量が多かったため、200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。 Since Comparative Example 25 had a large amount of strain at the time of tensile correction, the 0.2% yield strength (L direction, LT direction) at 200 ° C. did not satisfy the standard value and failed, and the creep resistance (LT direction) was low. It was a failure.
 比較例26は、均質化処理の温度が低かったため、粒径0.3~20μmの金属間化合物の密度が低く、200℃での0.2%耐力(LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。 In Comparative Example 26, since the temperature of the homogenization treatment was low, the density of the intermetallic compound having a particle size of 0.3 to 20 μm was low, and the 0.2% proof stress at 200 ° C. (LT direction) did not satisfy the standard value. It was acceptable and the creep resistance (LT direction) was unacceptable.
 比較例27は、均質化処理の温度が高かったため、室温での0.2%耐力(LT方向)及び200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。 In Comparative Example 27, since the temperature of the homogenization treatment was high, the 0.2% proof stress at room temperature (LT direction) and the 0.2% proof stress at 200 ° C. (L direction, LT direction) did not satisfy the standard values. It was acceptable and the creep resistance (LT direction) was unacceptable.
 比較例28は、平均冷却速度が遅かったため、粒径0.3~20μmの金属間化合物の密度が低く、亜結晶粒の平均粒径が大きく、室温での0.2%耐力(L方向、LT方向)及び200℃での0.2%耐力(L方向、LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。 In Comparative Example 28, since the average cooling rate was slow, the density of the intermetallic compound having a grain size of 0.3 to 20 μm was low, the average grain size of the sub-crystal grains was large, and the 0.2% proof stress (L direction, (LT direction) and 0.2% proof stress (L direction, LT direction) at 200 ° C. did not satisfy the standard values and failed, and creep resistance (LT direction) failed.
 比較例29は、押出加工温度が低かったため、押出ができなかった。そのため、押出材についての評価を行うことができなかった。
 比較例30は、押出加工温度が高かったため、亜結晶粒の平均粒径が大きくなり、200℃での0.2%耐力(LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。
Comparative Example 29 could not be extruded because the extrusion process temperature was low. For this reason, the extruded material could not be evaluated.
In Comparative Example 30, since the extrusion processing temperature was high, the average grain size of the sub-crystal grains was large, the 0.2% proof stress (LT direction) at 200 ° C. did not satisfy the standard value, and the creep resistance was not satisfied. (LT direction) was rejected.
 比較例31は、溶体化処理及び焼入れ後引張矯正までの時間が長かったため、亜結晶粒の平均粒径が大きくなり、室温での0.2%耐力(LT方向)及び200℃での0.2%耐力(LT方向)が基準値を満たさず不合格であり、耐クリープ性(LT方向)が不合格であった。 In Comparative Example 31, since the time from solution treatment and quenching to tensile correction was long, the average grain size of the subcrystalline grains was increased, 0.2% proof stress at room temperature (LT direction), and 0.2 at 200 ° C. The 2% yield strength (LT direction) did not satisfy the standard value and was rejected, and the creep resistance (LT direction) was rejected.
 一方、実施例21~23は、本開示の範囲内であるため、室温での0.2%耐力(L方向、LT方向)、200℃での0.2%耐力(L方向、LT方向)、及び耐クリープ性(LT方向)がすべて合格であった。すなわち、本開示のアルミニウム合金押出材の製造方法によって、高温での強度及び耐クリープ性に優れたアルミニウム合金押出材が得られることがわかった。 On the other hand, since Examples 21 to 23 are within the scope of the present disclosure, 0.2% yield strength at room temperature (L direction, LT direction), 0.2% yield strength at 200 ° C. (L direction, LT direction) , And creep resistance (LT direction) were all passed. That is, it was found that an aluminum alloy extruded material excellent in strength and creep resistance at high temperatures can be obtained by the method for producing an aluminum alloy extruded material of the present disclosure.

Claims (2)

  1.  アルミニウム合金押出材であって、
     質量%で、Cu:2.5~3.3%、Mg:1.3~2.5%、Ni:0.50~1.3%、Fe:0.50~1.5%、Mn:0.50%未満、Si:0.15~0.40%、Zr:0.06~0.20%、Ti:0.05%未満を含有し、残部がAl及び不可避的不純物からなる化学組成を有し、
     断面において、金属間化合物の粒径が円相当径で20μm以下であり、粒径が円相当径で0.3~20μmの金属間化合物の密度が5×10個/mm以上であり、かつ、亜結晶粒の平均粒径が円相当径で20μm以下である、アルミニウム合金押出材。
    An aluminum alloy extrusion,
    In mass%, Cu: 2.5 to 3.3%, Mg: 1.3 to 2.5%, Ni: 0.50 to 1.3%, Fe: 0.50 to 1.5%, Mn: Chemical composition comprising less than 0.50%, Si: 0.15 to 0.40%, Zr: 0.06 to 0.20%, Ti: less than 0.05%, the balance being Al and inevitable impurities Have
    In the cross section, the particle diameter of the intermetallic compound is 20 μm or less in terms of the equivalent circle diameter, and the density of the intermetallic compound having a particle diameter of 0.3 to 20 μm in terms of the equivalent circle diameter is 5 × 10 3 pieces / mm 2 or more, And the aluminum alloy extrusion material whose average particle diameter of a subcrystal grain is 20 micrometers or less in a circle equivalent diameter.
  2.  請求項1に記載のアルミニウム合金押出材の製造方法であって、
     前記化学組成を有するアルミニウム合金の鋳塊を400~500℃で均質化処理し、
     次いで、前記鋳塊を0.01℃/s以上の平均冷却速度で前記均質化処理の温度から200℃以下の温度まで冷却し、
     次いで、前記鋳塊を310~450℃で押出加工し、
     次いで、前記押出加工により得られた中間押出材に対して溶体化処理及び焼入れを行い、
     次いで、前記溶体化処理及び焼入れを行った後、48時間以内に、前記中間押出材に対して2~4%歪の引張矯正を行い、
     次いで、前記中間押出材に対して160~220℃で時効処理を行う、アルミニウム合金押出材の製造方法。
    It is a manufacturing method of the aluminum alloy extrusion material according to claim 1,
    The aluminum alloy ingot having the chemical composition is homogenized at 400 to 500 ° C.,
    Next, the ingot is cooled from the homogenization treatment temperature to a temperature of 200 ° C. or less at an average cooling rate of 0.01 ° C./s or more,
    Next, the ingot is extruded at 310 to 450 ° C.,
    Next, a solution treatment and quenching are performed on the intermediate extruded material obtained by the extrusion process,
    Next, after the solution treatment and quenching, within 48 hours, the intermediate extruded material is subjected to tensile correction with a strain of 2 to 4%,
    Next, a method for producing an aluminum alloy extruded material, wherein the intermediate extruded material is subjected to an aging treatment at 160 to 220 ° C.
PCT/JP2016/072198 2015-08-25 2016-07-28 Aluminum alloy extruded material and method for producing same WO2017033663A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/754,161 US20180237889A1 (en) 2015-08-25 2016-07-28 Aluminum alloy extruded material and method of manufacturing the same
CN201680032729.4A CN107636181B (en) 2015-08-25 2016-07-28 Aluminium alloy extruded product and its manufacturing method
DE112016003841.0T DE112016003841T5 (en) 2015-08-25 2016-07-28 Extruded aluminum alloy material and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-165985 2015-08-25
JP2015165985A JP6348466B2 (en) 2015-08-25 2015-08-25 Aluminum alloy extruded material and method for producing the same

Publications (1)

Publication Number Publication Date
WO2017033663A1 true WO2017033663A1 (en) 2017-03-02

Family

ID=58099964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072198 WO2017033663A1 (en) 2015-08-25 2016-07-28 Aluminum alloy extruded material and method for producing same

Country Status (5)

Country Link
US (1) US20180237889A1 (en)
JP (1) JP6348466B2 (en)
CN (1) CN107636181B (en)
DE (1) DE112016003841T5 (en)
WO (1) WO2017033663A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523791A (en) * 2019-08-13 2019-12-03 韶关市欧莱高新材料有限公司 A kind of manufacturing method of aluminium copper pipe fitting

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441793B (en) * 2018-05-23 2021-01-15 山东南山铝业股份有限公司 Heat treatment method for forced setting of aluminum alloy and aviation aluminum alloy section
JP7131161B2 (en) * 2018-07-20 2022-09-06 日本軽金属株式会社 Extruded material for impeller and manufacturing method thereof
JP7126915B2 (en) * 2018-10-01 2022-08-29 株式会社Uacj Aluminum alloy extruded material and its manufacturing method
CN109811216A (en) * 2019-04-08 2019-05-28 广州市领格汽车零件制造有限公司 A kind of production technology of automobile heat-and corrosion-resistant aluminium alloy extrusions
JP2021025085A (en) * 2019-08-05 2021-02-22 株式会社神戸製鋼所 Al-Cu-Mg-BASED ALUMINUM ALLOY EXTRUSION MATERIAL EXCELLENT IN HIGH-TEMPERATURE FATIGUE CHARACTERISTICS
JP7469072B2 (en) * 2020-02-28 2024-04-16 株式会社神戸製鋼所 Aluminum alloy forgings and their manufacturing method
CN114277294B (en) * 2021-12-24 2023-04-07 东北轻合金有限责任公司 Preparation method of aluminum alloy bar with high temperature resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202121A (en) * 2007-02-22 2008-09-04 Honda Motor Co Ltd High-strength aluminum alloy superior in heat resistance, and manufacturing method therefor
JP2010018854A (en) * 2008-07-11 2010-01-28 Sumitomo Light Metal Ind Ltd Lightweight and high strength aluminum alloy excellent in heat resistance
JP2010159488A (en) * 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP2013014835A (en) * 2011-06-10 2013-01-24 Kobe Steel Ltd Aluminum alloy having excellent high-temperature characteristic
JP2014189844A (en) * 2013-03-27 2014-10-06 Uacj Corp Aluminum alloy and method of producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152237A (en) 1987-12-10 1989-06-14 Furukawa Alum Co Ltd Aluminum alloy material for engine member
JPH07242976A (en) 1994-03-01 1995-09-19 Nippon Steel Corp Aluminum alloy for elongation, excellent in heat resistance, and its production
JP5083816B2 (en) * 2007-11-08 2012-11-28 住友軽金属工業株式会社 Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material
CN102268621B (en) * 2011-09-09 2013-03-20 西南铝业(集团)有限责任公司 Production method of aluminium alloy bar
JP6057855B2 (en) * 2013-07-31 2017-01-11 株式会社神戸製鋼所 Aluminum alloy extruded material for cutting
JP5996048B2 (en) 2015-07-01 2016-09-21 株式会社平和 Game machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202121A (en) * 2007-02-22 2008-09-04 Honda Motor Co Ltd High-strength aluminum alloy superior in heat resistance, and manufacturing method therefor
JP2010018854A (en) * 2008-07-11 2010-01-28 Sumitomo Light Metal Ind Ltd Lightweight and high strength aluminum alloy excellent in heat resistance
JP2010159488A (en) * 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP2013014835A (en) * 2011-06-10 2013-01-24 Kobe Steel Ltd Aluminum alloy having excellent high-temperature characteristic
JP2014189844A (en) * 2013-03-27 2014-10-06 Uacj Corp Aluminum alloy and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523791A (en) * 2019-08-13 2019-12-03 韶关市欧莱高新材料有限公司 A kind of manufacturing method of aluminium copper pipe fitting

Also Published As

Publication number Publication date
US20180237889A1 (en) 2018-08-23
JP6348466B2 (en) 2018-06-27
JP2017043802A (en) 2017-03-02
DE112016003841T5 (en) 2018-05-17
CN107636181B (en) 2019-04-19
CN107636181A (en) 2018-01-26

Similar Documents

Publication Publication Date Title
JP6348466B2 (en) Aluminum alloy extruded material and method for producing the same
JP5561846B2 (en) High strength aluminum alloy material and manufacturing method thereof
US10526689B2 (en) Heat-resistant Ti alloy and process for producing the same
JP6057855B2 (en) Aluminum alloy extruded material for cutting
JP6990527B2 (en) Aluminum alloy material
JP6491452B2 (en) Aluminum alloy continuous cast material and method for producing the same
JPH0559477A (en) Aluminum alloy for forging
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
JP2011042861A (en) Aluminum alloy, heat resistant aluminum alloy material, and method for producing the same
JP5284935B2 (en) Heat-resistant aluminum alloy extruded material with excellent high-temperature strength and fatigue properties
JP2013142168A (en) Aluminum alloy excellent in creep resistance
JP2010018854A (en) Lightweight and high strength aluminum alloy excellent in heat resistance
CN109642275B (en) High-strength aluminum alloy, piston for internal combustion engine containing same, and method for producing piston for internal combustion engine
JP6718219B2 (en) Method for manufacturing heat resistant aluminum alloy material
JP6113371B2 (en) Aluminum alloy casting excellent in high-temperature strength and thermal conductivity, manufacturing method thereof, and aluminum alloy piston for internal combustion engine
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP2019108579A (en) Aluminum alloy material, and method for producing aluminum alloy product
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JP2013053361A (en) Aluminum alloy for flying body excellent in heat-resistant strength
JP2004002987A (en) Aluminum alloy material for forging superior in high-temperature property
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP2020090727A (en) Manufacturing method of heat resistant aluminum alloy material
JP2018024922A (en) Al ALLOY CASTING AND PRODUCTION METHOD THEREOF
JP4148801B2 (en) Wear-resistant Al-Si alloy having excellent machinability and casting method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15754161

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003841

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839010

Country of ref document: EP

Kind code of ref document: A1