JP2010159488A - Method for molding 2,000 series aluminum alloy material, and formed product molded by the same - Google Patents

Method for molding 2,000 series aluminum alloy material, and formed product molded by the same Download PDF

Info

Publication number
JP2010159488A
JP2010159488A JP2009278141A JP2009278141A JP2010159488A JP 2010159488 A JP2010159488 A JP 2010159488A JP 2009278141 A JP2009278141 A JP 2009278141A JP 2009278141 A JP2009278141 A JP 2009278141A JP 2010159488 A JP2010159488 A JP 2010159488A
Authority
JP
Japan
Prior art keywords
aluminum alloy
molding
series aluminum
less
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009278141A
Other languages
Japanese (ja)
Inventor
Yasunori Nagai
康礼 長井
Mineo Asano
峰生 浅野
Masaki Kumagai
正樹 熊谷
Hidetoshi Uchida
秀俊 内田
Original Assignee
Sumitomo Light Metal Ind Ltd
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008312893 priority Critical
Application filed by Sumitomo Light Metal Ind Ltd, 住友軽金属工業株式会社 filed Critical Sumitomo Light Metal Ind Ltd
Priority to JP2009278141A priority patent/JP2010159488A/en
Publication of JP2010159488A publication Critical patent/JP2010159488A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding method in which a 2,000 series aluminum alloy material is easily and surely molded to obtain a formed product having high strength. <P>SOLUTION: The method for forming the 2,000 series aluminum alloy material includes: a stage where the 2,000 series aluminum alloy material having a composition containing, by mass, 1.0 to 10% Cu, ≤2.5% Mg, ≤1.5% Mn, ≤1.5% Si, ≤1.5% Fe, ≤1.0% Zn, ≤0.30% Cr, ≤0.30% Zr, ≤0.30% Ti, ≤2.5% Ni and ≤0.30% V, and the balance aluminum with inevitable impurities is subjected to solution treatment; a stage where the material is molded in a die; and a quenching stage which is applied to ≤250°C in the die. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、例えば自動車のボディシート、あるいは各種筺体等のように高強度が要求される成形加工品を成形するための2000系アルミニウム合金板材、また、バンパーやステハンビーム等の自動車部品、二輪フレームにように押出管又は押出形材に曲げや拡縮を加える成形加工品を成形するための2000系アルミニウム合金押出材などの材料の成形加工方法、及び該2000系アルミニウム合金材の成形加工方法により成形される成形加工品に関する。
なお、ここで、成形加工とは、プレス成形、ハイドロフォーミング(液圧成形)、バルジ成形、超塑性成形(熱間ブロー成形)等の、金型によって三次元に加工を行うもの全てを意味する。
The present invention relates to a 2000 series aluminum alloy plate material for forming a molded product requiring high strength such as a body sheet of an automobile or various housings, an automobile part such as a bumper or a stehan beam, and a two-wheel frame. As described above, a forming method of a material such as a 2000 series aluminum alloy extruded material for forming a molded product that applies bending or expansion / contraction to the extruded tube or the extruded shape material, and a forming process method of the 2000 series aluminum alloy material It relates to molded processed products.
Here, the molding process means all processes that are three-dimensionally processed by a mold, such as press molding, hydroforming (hydraulic molding), bulge molding, and superplastic molding (hot blow molding). .

近年、環境保護のための省エネルギー対策として、例えば自動車ではボディ、シート、並びに各種筺体等の部材において、従来の強度を確保しつつ軽量化の達成を図るため上記部材の素材を鋼板に替えて、例えば6000系アルミニウム合金板材を使用することが行われている(特許文献1参照)。   In recent years, as an energy-saving measure for environmental protection, for example, in automobiles, members such as bodies, sheets, and various housings, in order to achieve weight reduction while ensuring the conventional strength, the material of the above members is replaced with steel plates, For example, a 6000 series aluminum alloy sheet is used (see Patent Document 1).

しかしながら、上記部材の素材として使用される6000系アルミニウム合金板材は、溶体化処理及び焼入れ処理後の時効処理において室温(自然時効)では十分な強度が得られない。従って、必要な強度を確保するためにその後人為的に高い温度を加える熱処理、すなわち人工時効が必要となる。その結果、人工時効等の熱処理作業により製造作業の効率は低下し、製造コストの上昇を招くおそれがある。   However, the 6000 series aluminum alloy sheet used as the material of the above member cannot obtain sufficient strength at room temperature (natural aging) in the aging treatment after solution treatment and quenching treatment. Therefore, in order to secure the required strength, a heat treatment in which a high temperature is artificially applied thereafter, that is, artificial aging is required. As a result, the efficiency of the manufacturing operation is reduced by a heat treatment operation such as artificial aging, which may increase the manufacturing cost.

そこで、溶体化処理及び焼入れを行う工程後に、自然時効でも十分な強度が得られる2000系アルミニウム合金材を用いることが提案されている。   Thus, it has been proposed to use a 2000 series aluminum alloy material that can provide sufficient strength even with natural aging after the solution treatment and quenching steps.

ところが、上記2000系アルミニウム合金材を用いる場合、室温時効による強度の上昇は6000系アルミニウム合金材と比べて著しく大きい反面、冷間成形加工性は非常に乏しいものである。その結果、成形加工品の設計の自由度は制限されるとともに、成形加工品の歩留まりも低下するものである。
さらに、2000系アルミニウム合金材は6000系アルミニウム合金材に比べて焼入れ感受性が大きいため、溶体化処理を行う工程後の焼入れを行う工程での冷却速度が遅いと強度が低下するおそれがある。
However, when the 2000 series aluminum alloy material is used, the increase in strength due to room temperature aging is significantly larger than that of the 6000 series aluminum alloy material, but the cold forming processability is very poor. As a result, the degree of freedom in designing the molded product is limited, and the yield of the molded product is also reduced.
Further, since the 2000 series aluminum alloy material has a higher quenching sensitivity than the 6000 series aluminum alloy material, the strength may be lowered if the cooling rate in the quenching process after the solution treatment process is slow.

特開2000−96175号公報JP 2000-96175 A

そこで、本願発明は、冷間成形加工性が低く、焼入れ時の冷却がきわめて難しい2000系アルミニウム合金材において、塗装焼付けを行う工程後でも耐力が160MPa以上である高強度の成形加工品を得ることができるようにするものである。   Therefore, the present invention provides a high-strength molded product having a proof stress of 160 MPa or more even after the coating baking process in a 2000 series aluminum alloy material that has low cold forming processability and is extremely difficult to cool during quenching. Is to be able to.

第1の特徴として、
Cu:1.0質量%(以下、「%」という。)以上、10%以下、Mg:2.5%以下、Mn:1.5%以下、Si:1.5%以下、Fe:1.5%以下、Zn:1.0%以下、Cr:0.30%以下、Zr:0.30%以下、Ti:0.30%以下、Ni:2.5%以下、V:0.30%以下を含有し、残部がアルミニウム及び不可避的不純物からなる2000系アルミニウム合金材に対して、
溶体化処理を行う工程と、
金型内で成形加工を行う工程と、
該金型で室温まで急速に冷却する焼入れを行う工程を含むものである。
As the first feature,
Cu: 1.0% by mass (hereinafter referred to as “%”) or more, 10% or less, Mg: 2.5% or less, Mn: 1.5% or less, Si: 1.5% or less, Fe: 1. 5% or less, Zn: 1.0% or less, Cr: 0.30% or less, Zr: 0.30% or less, Ti: 0.30% or less, Ni: 2.5% or less, V: 0.30% For the 2000 series aluminum alloy material containing the following, the balance consisting of aluminum and inevitable impurities,
Performing a solution treatment; and
The process of molding in the mold,
It includes a step of quenching in which the mold is rapidly cooled to room temperature.

そのため、高強度の2000系アルミニウム合金材を簡易且つ確実に所定形状の成形加工品とすることができる。   Therefore, a high-strength 2000 series aluminum alloy material can be easily and reliably formed into a predetermined shape.

なお、成形加工を行う工程において使用する2000系アルミニウム合金板材において、Cuは強度の向上に貢献するものであり、その含有率は1%未満では強度が不足し、10%超では鋳塊割れが発生してしまう。そのため1%以上、10%以下が適当であり、特に1.5%以上、6.0%以下が最適である。MgはCuとの共存下で強度の向上に貢献するものであり、その含有率は高い程適当であるが、2.5%超となると製造コストの上昇に対する強度の向上が十分に得られない。そのため、その含有率は2.5%以下が適当であり、さらに1.0%以上、2.0%以下が最適である。Mnは結晶粒微細化により強度の向上に貢献するものであり、その含有率は1.5%超となると鋳塊割れが発生してしまう。そのため、その含有率は1.5%以下が適当であり、さらに0.2%以上、1.0%以下が最適である。Si及びFeは強度の向上に貢献するものであり、その含有率は1.5%超となると成形加工時の割れが発生してしまう。そのため、その含有率は1.5%以下であることが適当であり、さらに0.5%以下が最適である。また、その含有率が0.03%未満であると、高価な高純度アルミニウム地金を使用する必要があり、コストアップを招くため、0.03%以上が望ましい。Znはリサイクル性の向上に貢献するために添加するものであり、その含有率は1.0%超となると成形加工割れを発生してしまう。そのため、その含有率は1.0%以下が最適である。Cr,Zr及びTiは結晶粒微細化により強度の向上に貢献するものであり、その含有率は0.30%超となると鋳塊割れや熱間割れが発生しやすくなるとともに粗大な金属間化合物が生成しやすくなり成形加工性が劣化する。そのため、その含有率は0.30%以下が適当であり、さらに0.2%以下が最適である。Niは耐熱性の向上に貢献するものであって、耐熱性の向上において必要となる部分にのみ添加するものであり、その含有率は2.5%超となると製造コストが著しく上昇する。そのため、その含有率は2.5%以下が最適である。Vも耐熱性の向上に貢献するものであって、耐熱性の向上において必要となる部分にのみ添加するものであり、その含有率は0.30%超となると製造コストが著しく上昇する。そのため、その含有率は0.30%以下が最適である。
なお、本願発明において、成分範囲を規定している元素のうち、Cu以外は、「以下」のみの表記であるが、これは、0も含むものである。
In the 2000 series aluminum alloy sheet used in the forming process, Cu contributes to the improvement of the strength. If the content is less than 1%, the strength is insufficient, and if it exceeds 10%, ingot cracking occurs. Will occur. Therefore, 1% or more and 10% or less are appropriate, and particularly 1.5% or more and 6.0% or less are optimal. Mg contributes to improvement in strength in the presence of Cu, and the higher the content, the more suitable, but if it exceeds 2.5%, sufficient improvement in strength against an increase in production cost cannot be obtained. . Therefore, the content is suitably 2.5% or less, and more preferably 1.0% or more and 2.0% or less. Mn contributes to the improvement of strength by refining crystal grains, and if its content exceeds 1.5%, ingot cracking occurs. Therefore, the content is suitably 1.5% or less, and more preferably 0.2% or more and 1.0% or less. Si and Fe contribute to the improvement of strength, and if the content exceeds 1.5%, cracks during the molding process occur. Therefore, the content is suitably 1.5% or less, and more preferably 0.5% or less. Further, if the content is less than 0.03%, it is necessary to use an expensive high-purity aluminum ingot, which causes an increase in cost, so 0.03% or more is desirable. Zn is added in order to contribute to the improvement of recyclability, and if its content exceeds 1.0%, molding cracks will occur. Therefore, the content is optimally 1.0% or less. Cr, Zr and Ti contribute to improvement of strength by refining crystal grains. If the content exceeds 0.30%, ingot cracking and hot cracking are likely to occur, and coarse intermetallic compounds. Tends to form, and the moldability deteriorates. Therefore, the content is suitably 0.30% or less, and more preferably 0.2% or less. Ni contributes to improvement of heat resistance, and is added only to a portion necessary for improvement of heat resistance. When the content exceeds 2.5%, the manufacturing cost is remarkably increased. Therefore, the content is optimally 2.5% or less. V also contributes to the improvement of heat resistance, and is added only to the portion necessary for improving the heat resistance. If the content exceeds 0.30%, the production cost will increase remarkably. Therefore, the optimal content is 0.30% or less.
In the present invention, among the elements defining the component range, except for Cu, only “below” is described, but this also includes 0.

そして、成形加工を行う前に、溶体化処理を行う工程、金型内で成形加工を行う工程、成形加工中に250℃以下まで急速に冷却する焼入れを行う工程を含むものである。
また、後述の第2、第3の特徴と共通するのだが、250℃超えの状態で焼入れを完了してしまうと、焼入れ不十分となり、成形加工性が劣化するとともにその後の自然、人工時効で十分な強度を得ることが困難となる。
And before performing a shaping | molding process, the process of performing a solution treatment, the process of performing a shaping | molding process within a metal mold | die, and the process of quenching rapidly cooled to 250 degrees C or less during a shaping | molding process are included.
In addition, it is common to the second and third features to be described later. However, if the quenching is completed at a temperature exceeding 250 ° C., quenching becomes insufficient, the molding processability deteriorates, and natural and artificial aging thereafter. It becomes difficult to obtain sufficient strength.

第2の特徴として、
第1の特徴の化学成分を有する2000系アルミニウム合金材に対して、
溶体化処理を行う工程、250℃以下まで焼入れを行う工程、焼入れ後、120時間以内に金型内で成形加工を行う工程を含むものである。
なお、焼入れ後、成形加工までの時間が120時間を超えてしまうと、自然時効により強度が高くなりすぎ、成形加工が困難となる。そのため、12時間以内が望ましく、さらには2時間以内がより望ましい。
As the second feature,
For the 2000 series aluminum alloy material having the chemical component of the first feature,
It includes a step of performing a solution treatment, a step of quenching to 250 ° C. or less, and a step of molding in a mold within 120 hours after quenching.
In addition, if the time until quenching after quenching exceeds 120 hours, the strength becomes too high due to natural aging, and molding becomes difficult. Therefore, it is preferably within 12 hours, and more preferably within 2 hours.

第3の特徴として、
第1の特徴の化学成分を有する2000系アルミニウム合金材に対して、
溶体化処理を行う工程、加熱した金型内で成形加工を行う工程、該金型から離型して250℃以下まで焼入れを行う工程を含むものである。
この場合の焼入れは、該成形加工で用いる金型とは異なる金型で行う方法でもよいし、エアブローなどの強制空冷やミスト冷却でもよく、焼入れ効果が得られるあらゆる手段が好適に採用される。
As the third feature,
For the 2000 series aluminum alloy material having the chemical component of the first feature,
It includes a step of performing a solution treatment, a step of performing molding in a heated mold, and a step of releasing from the mold and quenching to 250 ° C. or lower.
Quenching in this case may be performed by a mold different from the mold used in the molding process, or may be forced air cooling such as air blow or mist cooling, and any means that can provide a quenching effect is suitably employed.

第1、第2、第3の特徴の溶体化処理条件としては、450℃以上、融点未満の温度で行うことが望ましい。ここで450℃未満であると強度を十分得ることができない、より望ましい範囲は480℃以上である。
また、溶体化処理時間は、溶体化の効果が得られれば、溶体化処理温度に応じて適宜設定できる。例えば融点近くであれば1秒であっても溶体化の効果は得られるが、敢えて溶体化処理温度範囲全てを満足する時間を設定するとしたら、5秒以上、600秒以下が採用される。なお、5秒未満であると十分な強度が得にくく、600秒超えの場合は、製造コストが上昇してしまうものである。
ところで溶体化処理を複数回行った後に成形加工を行っても良い。例えば、1回目の溶体化処理を行った材料について室温まで冷却後に2回目の溶体化処理を行うことで2回目の保持時間が短時間でも必要強度、成形加工性が得られやすくなる。この場合、溶体化処理後の冷却は、第1の特徴の溶体化処理では成形加工中の冷却速度のみ規定し、第2の特徴の溶体化処理では成形加工前の冷却速度のみ規定し、第3の特徴の溶体化処理では成形加工後の冷却速度のみ規定すれば必要性能を得ることができる。
The solution treatment conditions of the first, second, and third characteristics are desirably performed at a temperature of 450 ° C. or higher and lower than the melting point. Here, if it is less than 450 ° C., the strength cannot be sufficiently obtained, and a more desirable range is 480 ° C. or more.
The solution treatment time can be appropriately set according to the solution treatment temperature as long as the effect of solution treatment is obtained. For example, if it is close to the melting point, the effect of solution treatment can be obtained even if it is 1 second, but if a time that satisfies the entire solution treatment temperature range is set, 5 seconds or more and 600 seconds or less are adopted. If it is less than 5 seconds, sufficient strength is difficult to obtain, and if it exceeds 600 seconds, the production cost increases.
By the way, you may perform a shaping | molding process, after performing a solution treatment in multiple times. For example, the material having undergone the first solution treatment is subjected to the second solution treatment after being cooled to room temperature, whereby the required strength and moldability can be easily obtained even if the second holding time is short. In this case, the cooling after the solution treatment is defined only for the cooling rate during the molding process in the solution treatment of the first characteristic, and only the cooling rate before the molding process is defined in the solution treatment of the second characteristic. In the solution treatment having the feature 3, the required performance can be obtained if only the cooling rate after the molding process is defined.

また、第3の特徴の金型の加熱において、加熱温度は400℃以上、該2000系アルミニウム合金材の融点未満の温度で行うことが望ましい。
なお400℃未満の場合、成形加工中の固溶元素の析出が起こり、成形加工性が劣化するとともに成形加工後の強度が低下してしまうものである。
In addition, in the heating of the mold having the third feature, it is desirable that the heating temperature is 400 ° C. or higher and lower than the melting point of the 2000 series aluminum alloy material.
When the temperature is lower than 400 ° C., precipitation of a solid solution element during the molding process occurs, and the moldability deteriorates and the strength after the molding process decreases.

さらに焼入れにおいて、400℃から250℃における冷却温度を20℃/秒以上の急速な冷却とすることが望ましい。なお、この温度範囲での冷却速度が20℃/秒未満であると、強度が低下するおそれがある。そのため40℃/秒以上であると、更に望ましい。   Further, in quenching, it is desirable that the cooling temperature from 400 ° C. to 250 ° C. is rapid cooling of 20 ° C./second or more. In addition, there exists a possibility that intensity | strength may fall that the cooling rate in this temperature range is less than 20 degree-C / sec. Therefore, it is more desirable that it is 40 ° C / second or more.

次に、該合金材の、溶体化処理に至るまでの望ましい製造方法について、以下に説明する。以下の製造方法は例として挙げるものであり、本願発明は以下の方法に限定されるものではない。
主として、鋳造、均質化処理、熱間加工、冷間加工の工程が採られる。
ここで、板材の場合は、熱間加工は熱間圧延、冷間加工は冷間圧延が一般に適用される。但し、必ずしも冷間圧延は必要ではない。
また、押出材の場合は、熱間加工は押出、冷間加工は抽伸が一般に適用される。但し、抽伸を省いた押出のままで溶体化処理されることも良く行われる。
DC鋳造法により造塊を行い、均質化熱処理は430℃以上、融点未満の温度で2時間以上、100時間以下の条件が好ましい。ここで、均質化熱処理の温度は430℃未満であると成形加工時に割れが発生し易い。また均質化熱処理の時間は2時間未満であると強度が不十分であり、100時間を超えると製造コストが著しく上昇するおそれがある。
Next, a desirable manufacturing method of the alloy material up to the solution treatment will be described below. The following manufacturing method is given as an example, and the present invention is not limited to the following method.
Mainly, casting, homogenization, hot working, and cold working processes are employed.
Here, in the case of a plate material, hot rolling is generally applied for hot working, and cold rolling is generally applied for cold working. However, cold rolling is not necessarily required.
In the case of an extruded material, extrusion is generally used for hot working and drawing is generally used for cold working. However, it is often performed that the solution treatment is performed with the extrusion without drawing.
The ingot is formed by a DC casting method, and the homogenization heat treatment is preferably performed at a temperature of 430 ° C. or higher and lower than the melting point for 2 hours or longer and 100 hours or shorter. Here, if the temperature of the homogenization heat treatment is less than 430 ° C., cracks are likely to occur during the molding process. If the time for the homogenization heat treatment is less than 2 hours, the strength is insufficient, and if it exceeds 100 hours, the production cost may be remarkably increased.

熱間加工は、その開始温度が400℃以上、融点未満であることが好ましい。なお、熱間加工の開始温度が400℃未満であると加工時間を多大に要することとなり製造コストが上昇するおそれがある。   The hot working preferably has a starting temperature of 400 ° C. or higher and lower than the melting point. Note that if the start temperature of hot working is less than 400 ° C., it takes a lot of working time, which may increase the manufacturing cost.

そして、熱間加工の後で冷間加工の前、あるいは、冷間加工の途中で中間焼鈍を行ってもよい。中間焼鈍を行う場合は中間焼鈍以降、中間焼鈍を行わない場合は熱間加工以降の冷間加工率は30〜70%が好ましい。なお、冷間加工率は高くなるほど結晶粒微細化の効果により強度が上昇するが、成形加工における耳割れが発生する等の歩留まりの低下による製造コストの上昇を招くおそれがある。そのため成形加工品における耳割れを防止するために最終冷間加工率は30〜70%が最適である。   Then, intermediate annealing may be performed after hot working and before cold working or in the middle of cold working. 30% to 70% of the cold working rate after hot working is preferable when intermediate annealing is performed after intermediate annealing, and when intermediate annealing is not performed. The higher the cold working rate, the higher the strength due to the effect of crystal grain refinement. However, there is a risk that the manufacturing cost will increase due to a decrease in yield such as the occurrence of ear cracks in the forming process. Therefore, the final cold working rate is optimally 30 to 70% in order to prevent the ear cracks in the molded product.

以上のごとく、第1、第2、第3の特徴である2000系アルミニウム合金材の成形加工方法により製造された成形品は、塗装焼付後の耐力が160MPa以上である高強度のものとすることができる。   As described above, the molded product manufactured by the method of forming the 2000 series aluminum alloy material, which is the first, second and third characteristics, shall have a high strength with a proof stress of 160 MPa or more after painting and baking. Can do.

第4の特徴は、第1、第2、第3の特徴を踏まえて、2000系アルミニウム合金材が圧延材であることにある。   The fourth feature is that the 2000 series aluminum alloy material is a rolled material based on the first, second, and third features.

さらにまた、第5の特徴は、第1、第2、第3の特徴を踏まえて、2000系アルミニウム合金材が押出材であることにある。   Furthermore, the fifth feature is that the 2000 series aluminum alloy material is an extruded material in consideration of the first, second and third features.

さらにまた、第6の特徴は、第1、第2、第3、第4、第5の特徴を踏まえて、2000系アルミニウム合金材の成形加工方法により成形される成形品であることにある。   Furthermore, the sixth feature is that the molded product is molded by a method of forming a 2000 series aluminum alloy material in consideration of the first, second, third, fourth, and fifth features.

本願発明は、例えば自動車のボディシート、あるいは各種筺体等の部材、並びにバンパーやステハンビーム等の自動車部品、二輪フレーム等において、2000系アルミニウム合金材を簡易且つ確実に成形し、適用することができ、必要となる強度を確保しつつ軽量化を達成することができるので、環境保護に対して省エネルギーという観点から多大に貢献することができる優れた効果を奏するものである。   The present invention can easily and reliably form and apply 2000 series aluminum alloy materials in automobile body seats, members such as various housings, automobile parts such as bumpers and stehan beams, and two-wheel frames. Since it is possible to achieve weight reduction while ensuring the required strength, it has an excellent effect that can greatly contribute to environmental protection from the viewpoint of energy saving.

以下において、本願発明の実施例について説明する。なお、この実施例は、本願発明の好ましい一実施態様を示すためのものであって、これにより本願発明が制限されるものではない。   Examples of the present invention will be described below. In addition, this Example is for showing one preferable embodiment of this invention, Comprising: This invention is not restrict | limited by this.

そこで、表1に示す成分を有するアルミニウム合金(E1乃至E16)による実施例について、同表記載の比較例(C1乃至C10)と比較しつつ、本願発明の効果について確認した。
Accordingly, the effects of the present invention were confirmed while comparing the examples of the aluminum alloys (E1 to E16) having the components shown in Table 1 with the comparative examples (C1 to C10) described in the table.

まず、成形加工を行うアルミニウム合金板材は、表1に示す成分を有するアルミニウム合金(E1乃至E16)を各々DC鋳造により造塊し、500℃で10時間均質化熱処理を行った。
次に、500℃まで加熱後に板厚3mmまで熱間圧延を行った。
そして、500℃で2時間の中間焼鈍を行うと共に、室温まで炉内冷却を行った後、板厚1mmまで冷間圧延を行った。
さらに、板厚1mm、板幅200mm、長さ250mmに切断して成形加工に供するアルミニウム合金板材とした。
First, the aluminum alloy sheet material to be formed was ingoted by DC casting of aluminum alloys (E1 to E16) having the components shown in Table 1, and subjected to homogenization heat treatment at 500 ° C. for 10 hours.
Next, after heating to 500 ° C., hot rolling was performed to a plate thickness of 3 mm.
And while performing the intermediate annealing for 2 hours at 500 degreeC, after performing the furnace cooling to room temperature, it cold-rolled to plate | board thickness 1mm.
Furthermore, it was set as the aluminum alloy board | plate material which cut | disconnects to board thickness 1mm, board width 200mm, and length 250mm and uses for a shaping | molding process.

なお、割れの発生の有無に関する成形加工性を検討するにあたり、上記アルミニウム合金板材の成形加工は以下のようにして行った。
まず第1の成形加工法として、予めアルミニウム合金板材に対して二硫化モリブデン系の離型剤を塗布した上で、該アルミニウム合金板材を上型と下型からなるアイロン方式の加熱装置で急速加熱(500℃)するとともに、溶体化処理のため300秒保持した後、50℃とした金型を構成する上型と下型との間に挟持固定してプレス成形と同時に、同じ金型内で急速に冷却し焼入れを行い、底面を有する断面コ字形状のプレス成形品を作製した。
次に第2の成形加工法としては、予めアルミニウム合金板材に対して、該アルミニウム合金板材を上型と下型からなるアイロン加熱装置で急速加熱(500℃)するとともに、溶体化処理のため300秒保持した後、急速(冷却速度40℃/秒)に50℃まで冷却して焼入れを行った後、焼入れ5分後に室温とした金型を構成する上型と下型との間に挟持固定しつつ低粘度潤滑油を用いてプレス成形して、底面を有する断面コ字形状のプレス成形品を作製した。
さらに、第3の成形加工法としては、予めアルミニウム合金板材に対して二硫化モリブデン系の離型剤を塗布した上で、該アルミニウム合金板材を上型と下型からなるアイロン加熱装置で急速加熱(500℃)するとともに、溶体化処理のため300秒保持した後、500℃とした金型を構成する上型と下型との間に挟持固定してプレス成形し一旦プレス成形品を取り出す。そして、該プレス成形品を室温である上型と下型からなる金型内に収め、急速に冷却(40℃/秒)して焼入れを行い、底面を有する断面コ字形状のプレス成形品を作製した。
In addition, in examining the forming workability regarding the presence or absence of the occurrence of cracks, the forming process of the aluminum alloy sheet was performed as follows.
First, as a first forming method, a molybdenum disulfide release agent is applied to an aluminum alloy sheet in advance, and then the aluminum alloy sheet is rapidly heated with an iron-type heating device composed of an upper mold and a lower mold. (500 ° C.) and after holding for 300 seconds for solution treatment, sandwiched and fixed between the upper mold and the lower mold constituting the mold set to 50 ° C. and simultaneously with press molding in the same mold The product was rapidly cooled and quenched to produce a U-shaped press-formed product having a bottom surface.
Next, as a second forming method, the aluminum alloy sheet is heated in advance (500 ° C.) with an iron heating device composed of an upper mold and a lower mold, and 300 for solution treatment. Hold for 2 seconds, then cool rapidly to 50 ° C. (cooling rate 40 ° C./second), quench, and then clamped between the upper and lower molds that make up the mold at room temperature 5 minutes after quenching While being press-molded using a low-viscosity lubricating oil, a U-shaped press-formed product having a bottom surface was produced.
Further, as a third forming method, a molybdenum disulfide release agent is applied in advance to an aluminum alloy sheet, and then the aluminum alloy sheet is rapidly heated with an iron heating device composed of an upper mold and a lower mold. (500 ° C.) After holding for 300 seconds for solution treatment, the mold is clamped and fixed between the upper mold and the lower mold constituting the mold set at 500 ° C., and the press-molded product is once taken out. Then, the press-molded product is placed in a mold composed of an upper mold and a lower mold at room temperature, rapidly cooled (40 ° C./sec) and quenched, and a U-shaped press-molded product having a bottom surface is obtained. Produced.

その上で、上記プレス成形品により成形加工性を検討すると共に、該プレス成形品の底面よりJIS Z2241,JIS5号試験片に準じて長方形の試験片を切り出し、該試験片についてプレス成形後、20℃で1週間室温時効後に180℃で10分間塗装焼付け硬化処理を行い、機械的性質を検討した。   In addition, the workability of the press-formed product was examined, and a rectangular test piece was cut out from the bottom surface of the press-formed product according to JIS Z2241, JIS No. 5 test piece. After aging at room temperature for 1 week at room temperature, the coating was baked and cured at 180 ° C. for 10 minutes to examine the mechanical properties.

第1の成形加工法の結果(表2)、実施例(E1乃至E16)は、プレス成形品において割れが発生することのない良好な成形加工性を示し、塗装焼付け処理前後においても160MPa以上の耐力を有する等の高強度の機械的性質を示すことが確認された。
The results of the first molding method (Table 2) and Examples (E1 to E16) show good moldability without cracking in the press-molded product, and are 160 MPa or more before and after the coating baking process. It was confirmed to show high strength mechanical properties such as having proof stress.

次に、上記アルミニウム合金板材を製造するにあたって行う均質化熱処理において、均質化熱処理温度及び均質化熱処理時間に対する成形加工性と機械的性質を検討した。そこで、均質化熱処理における実施例(E20乃至E28)及び比較例(C11乃至C16)の均質化熱処理温度及び均質化時間は、以下の表3の条件に設定した。
なお、均質化熱処理についての検討を行う試験片は実施例E1の成分を有するアルミニウム合金を用いて同様(均質化処理以外)に作製した。
Next, in the homogenization heat treatment performed in manufacturing the aluminum alloy sheet, the formability and mechanical properties with respect to the homogenization heat treatment temperature and the homogenization heat treatment time were examined. Therefore, the homogenization heat treatment temperature and the homogenization time of Examples (E20 to E28) and Comparative Examples (C11 to C16) in the homogenization heat treatment were set to the conditions shown in Table 3 below.
In addition, the test piece which examines about the homogenization heat processing was similarly produced using the aluminum alloy which has a component of Example E1 (other than the homogenization process).

第1の成形加工法の結果(表4)、実施例(E20乃至E28)は、プレス成形品において割れが発生することのない良好な成形加工性を示し、且つ塗装焼付け処理前後においても160MPa以上の耐力を有する等の高強度の機械的性質を示すことが確認された。
The results of the first molding method (Table 4) and the examples (E20 to E28) show good moldability without causing cracks in the press-molded product, and 160 MPa or more before and after the coating baking process. It was confirmed that it exhibits high-strength mechanical properties such as

次に、上記アルミニウム合金板材を製造するにあたって行う熱間圧延において、熱間圧延の開始温度に対する成形加工性と機械的性質を検討した。そこで、均質化熱処理における実施例(E29乃至E31)及び比較例(C17、C18)の均質化熱処理温度及び均質化時間は、以下の表5の条件に設定した。
なお、熱間圧延温度についての検討を行う試験片は実施例E1の成分を有するアルミニウム合金を用いて同様(熱間圧延温度以外)に作製した。
Next, in the hot rolling performed in manufacturing the aluminum alloy sheet, the formability and mechanical properties with respect to the hot rolling start temperature were examined. Therefore, the homogenization heat treatment temperature and the homogenization time of Examples (E29 to E31) and Comparative Examples (C17 and C18) in the homogenization heat treatment were set to the conditions shown in Table 5 below.
In addition, the test piece which examines about hot rolling temperature was produced similarly (other than hot rolling temperature) using the aluminum alloy which has a component of Example E1.

第3の成形加工法の結果(表6)、実施例(E29乃至E31)は、プレス成形品において割れが発生することのない良好な成形加工性を示し、且つ塗装焼付け処理前後においても160MPa以上の耐力を有する高強度の機械的性質を示すことが確認された。なお、C18に関しては熱間圧延のコストが著しく高くなるため不適当である。
The results of the third forming method (Table 6) and Examples (E29 to E31) show good forming workability without causing cracks in the press-formed product, and 160 MPa or more before and after the coating baking process. It was confirmed to exhibit high-strength mechanical properties having a yield strength of. C18 is not suitable because the cost of hot rolling is significantly increased.

次に、上記アルミニウム合金板材を製造するにあたって行う溶体化処理において、溶体化処理温度及び溶体化処理時間に対する成形加工性と機械的性質を検討した。そこで溶体化処理における実施例(E32乃至E40)と比較例(C19乃至C24)の溶体化処理温度及び溶体化処理時間は、以下の表7の条件に設定した。
なお、溶体化処理についての検討を行う試験片は実施例E1の成分を有するアルミニウム合金を用いて同様(溶体化処理条件以外)に作製した。
Next, in the solution treatment performed in manufacturing the aluminum alloy sheet, the formability and mechanical properties with respect to the solution treatment temperature and the solution treatment time were examined. Therefore, the solution treatment temperature and solution treatment time of the examples (E32 to E40) and the comparative examples (C19 to C24) in the solution treatment were set to the conditions shown in Table 7 below.
In addition, the test piece which considers about a solution treatment was produced similarly (except solution treatment conditions) using the aluminum alloy which has a component of Example E1.

第3の成形加工法の結果(表8)、実施例(E32乃至E40)は、プレス成形品において割れが発生することのない良好な成形加工性を示し、且つ塗装焼付け処理前後においても160MPa以上の耐力を有する等の高強度の機械的性質を示すことが確認された。
The results of the third forming method (Table 8) and Examples (E32 to E40) show good forming workability without causing cracks in the press-formed product, and 160 MPa or more before and after the paint baking process. It was confirmed that it exhibits high-strength mechanical properties such as

次に、上記アルミニウム合金板材を製造するにあたって行う溶体化処理後の冷却において、溶体化処理温度と溶体化処理時間に対する成形加工性と機械的性質を検討した。そこで、溶体化処理後の冷却における実施例(E41乃至E44)と比較例(C25、C26)の冷却条件、型温(℃)及び冷却速度条件(℃/秒)は、以下の表9の条件に設定した。
なお、溶体化処理後の冷却についての検討を行う試験片は実施例E1の成分を有するアルミニウム合金を用いて同様(冷却条件以外)に作製した。
Next, in the cooling after the solution treatment performed in manufacturing the aluminum alloy sheet, the formability and mechanical properties with respect to the solution treatment temperature and the solution treatment time were examined. Therefore, the cooling conditions, mold temperature (° C.) and cooling rate conditions (° C./second) of the examples (E41 to E44) and the comparative examples (C25, C26) in cooling after the solution treatment are the conditions shown in Table 9 below. Set to.
In addition, the test piece which considers about the cooling after solution treatment was similarly produced using the aluminum alloy which has a component of Example E1 (other than cooling conditions).

第2の成形加工法の結果(表10)、実施例(E41乃至E44)は、プレス成形品において割れが発生することのない良好な成形加工性を示し、且つ塗装焼付け処理前後においても160MPa以上の耐力を有する等の高強度の機械的性質を示すことが確認された。
The results of the second forming method (Table 10) and Examples (E41 to E44) show good forming workability without causing cracks in the press-formed product, and 160 MPa or more before and after the coating baking process. It was confirmed that it exhibits high-strength mechanical properties such as

次に、成形加工性方法の影響を検証するためにE1、E4の化学成分を有するアルミニウム合金板で成形加工性及び機械的性質を検討した。
これらの合金をDC鋳造により造塊し、E1は490℃で12時間、E4は540℃で10時間の均質化熱処理を行った。次に、均質化処理温度から熱間圧延を行い、板厚6mmとした。そして、400℃で1時間の中間焼鈍を行った後、板厚2mmまで冷間圧延を行った。さらに、板厚2mm、板幅200mm、長さ250mmに切断してプレス成形に供するアルミニウム合金板材とした。
Next, in order to verify the influence of the forming processability method, the forming processability and mechanical properties were examined using aluminum alloy plates having chemical components E1 and E4.
These alloys were agglomerated by DC casting, and subjected to homogenization heat treatment at E1 at 490 ° C. for 12 hours and E4 at 540 ° C. for 10 hours. Next, hot rolling was performed from the homogenization temperature to a plate thickness of 6 mm. And after performing the intermediate annealing for 1 hour at 400 degreeC, it cold-rolled to plate | board thickness 2mm. Furthermore, it was cut into a plate thickness of 2 mm, a plate width of 200 mm, and a length of 250 mm to obtain an aluminum alloy plate material used for press forming.

第1〜第3の成形加工方法の結果(成分E1は表13、成分E4は表14)、いずれもプレス成形品において割れが発生することのない良好な成形加工性を示し、且つ塗装焼付け処理前後においても160MPa以上の耐力を有する等の高強度の機械的性質を示すことが確認された。
As a result of the first to third molding methods (component E1 is Table 13 and component E4 is Table 14), all show good moldability without causing cracks in the press-formed product, and paint baking treatment It was confirmed that high strength mechanical properties such as having a proof stress of 160 MPa or more were exhibited before and after.

次に第1および第3の成形加工方法の条件を検証するためにE1の化学成分を有するアルミニウム合金をDC鋳造により造塊し、490℃で12時間の均質化熱処理を行った。次に、均質化処理温度からそのまま熱間圧延を行い、板厚6mmとした後、板厚2mmまで冷間圧延を行った。さらに、板厚2mm、板幅200mm、長さ250mmに切断してプレス成形に供するアルミニウム合金板材とした。
このアルミニウム合金板材に対して予め離型剤を塗布した上で、表13の条件で該アルミニウム合金板材を加熱装置で加熱によって溶体化処理した後、
第1の成形加工方法に関しては同一金型内にてプレス成形と表13の条件で冷却(冷却速度は400〜250℃で測定)を行うことによって、成形、焼入れを実施し、底面を有する断面コ字形状のプレス成形品を作製した。
第3の成形加工方法に関しては450℃の金型内にてプレス成形を行い、離型後に表13の条件で冷却(冷却速度は400〜250℃で測定)を行うことによって、成形、焼入れを実施し、底面を有する断面コ字形状のプレス成形品を作製した。尚、E55の条件は予め490℃で120sの溶体化処理を行い、水冷(1000℃/s)した材料を再溶体化処理した条件である。
Next, in order to verify the conditions of the first and third forming methods, an aluminum alloy having the chemical component of E1 was ingoted by DC casting, and subjected to a homogenization heat treatment at 490 ° C. for 12 hours. Next, hot rolling was performed as it was from the homogenization treatment temperature to obtain a plate thickness of 6 mm, followed by cold rolling to a plate thickness of 2 mm. Furthermore, it was cut into a plate thickness of 2 mm, a plate width of 200 mm, and a length of 250 mm to obtain an aluminum alloy plate material used for press forming.
After previously applying a release agent to the aluminum alloy sheet, the aluminum alloy sheet was subjected to a solution treatment by heating with a heating device under the conditions shown in Table 13,
Regarding the first molding method, a cross section having a bottom surface, which is molded and quenched by press molding in the same mold and cooling under the conditions shown in Table 13 (cooling rate measured at 400 to 250 ° C.). A U-shaped press-molded product was produced.
Regarding the third molding method, press molding is performed in a 450 ° C. mold, and cooling is performed under the conditions shown in Table 13 after mold release (cooling rate is measured at 400 to 250 ° C.), thereby forming and quenching. This was carried out to produce a U-shaped press-formed product having a bottom surface. The condition of E55 is a condition in which a solution treatment for 120 s is performed at 490 ° C. in advance, and a water-cooled (1000 ° C./s) material is re-solution treated.

第1および第3の成形加工法の結果(第1の成形加工法は表14、第3の成形加工法は表15)、実施例(E55乃至E62)は、プレス成形品において割れが発生することのない良好な成形加工性を示し、且つ塗装焼付け処理前後においても160MPa以上の耐力を有する等の高強度の機械的性質を示すことが確認された。
ところが、比較例(C28乃至C33)は、溶体化処理温度が高すぎるため局部融解によるプレス割れや溶体化処理が低温または短時間すぎることによって溶質元素の固溶不足による延性の低下によってプレス割れが生じた。
As a result of the first and third molding methods (Table 14 for the first molding method and Table 15 for the third molding method), the examples (E55 to E62) are cracked in the press-formed product. It was confirmed that the material exhibited good molding processability and high mechanical properties such as having a proof stress of 160 MPa or more before and after the coating baking process.
However, in the comparative examples (C28 to C33), since the solution treatment temperature is too high, the press cracking due to local melting or the solution treatment is performed at a low temperature or for a short time, resulting in a decrease in ductility due to insufficient solid solution of the solute element. occured.

次に第2の成形加工方法の室温時効時間の影響を検証するためにE1の化学成分を有するアルミニウム合金をDC鋳造により造塊し、490℃で12時間の均質化熱処理を行った。次に、均質化処理温度からそのまま熱間圧延を行い、板厚6mmとした後、板厚2mmまで冷間圧延を行った。さらに、板厚2mm、板幅200mm、長さ250mmに切断してプレス成形に供するアルミニウム合金板材とした。
該アルミニウム合金板材を加熱装置で490℃−90sの加熱によって溶体化処理した後、急速(400〜250℃の冷却速度50℃/秒)に室温まで冷却して焼入れを行った後、焼入れ後の時間を変化させ、金型を構成する上型と下型との間に挟持固定しつつ低粘度潤滑油を用いてプレス成形して、底面を有する断面コ字形状のパンチ半径:R(mm)を変えた金型でプレス成形品を作製した。
Next, in order to verify the influence of the room temperature aging time of the second forming method, an aluminum alloy having a chemical component of E1 was ingoted by DC casting and subjected to homogenization heat treatment at 490 ° C. for 12 hours. Next, hot rolling was performed as it was from the homogenization treatment temperature to obtain a plate thickness of 6 mm, followed by cold rolling to a plate thickness of 2 mm. Furthermore, it was cut into a plate thickness of 2 mm, a plate width of 200 mm, and a length of 250 mm to obtain an aluminum alloy plate material used for press forming.
The aluminum alloy sheet was subjected to a solution treatment by heating at 490 ° C. to 90 s with a heating device, and then rapidly cooled (cooling rate of 400 to 250 ° C. at 50 ° C./second) to room temperature, and then quenched. The punch radius of the cross-sectional U-shape having a bottom surface: R (mm) by changing the time and press-molding using a low-viscosity lubricant while being clamped and fixed between the upper mold and the lower mold constituting the mold A press-molded product was produced using a mold having different dies.

その結果、実施例(E63乃至67)は、パンチプレス半径によるが、成形品において割れが発生することのない成形加工性を示した。
ところが、比較例(C34)は、室温時効時間が長すぎたためパンチプレス半径が15mmでも成形品において割れが発生した。
As a result, the examples (E63 to 67) exhibited molding processability without causing cracks in the molded product, although depending on the punch press radius.
However, in Comparative Example (C34), cracking occurred in the molded product even when the punch press radius was 15 mm because the room temperature aging time was too long.

次に、第1、第2および第3の成形加工方法について押出し形材を用いて成形加工性を検討した。E1の化学成分を有するアルミニウム合金をDC鋳造により造塊し、490℃で10時間の均質化熱処理を行った。次に熱間押出しにより、板厚2.5mmで一辺40mmのL字型の押出し形材を作製し、長さ400mmに切断してプレス成形による曲げ加工性を行った。400mmの押出し形材の両端50mmを曲げ角度30°曲げ半径15mmで行い、曲げ部の割れの有無および中央部の機械的性質を調査した。
該アルミニウム合金形材を加熱装置で表17の条件で溶体化処理した後、
第1の成形加工方法に関しては同一金型内にてプレス成形と表17の条件で冷却(冷却速度は400〜250℃で測定)を行うことによって、成形、焼入れを実施し、プレス成形品を作製した。
第2の成形加工方法に関しては表17の条件で冷却(冷却速度は400〜250℃で測定)を行った後、室温で10分後にプレス成形することによってプレス成形品を作製した。
第3の成形加工方法に関しては450℃の金型内にてプレス成形を行い、離型後に表17の条件で冷却(冷却速度は400〜250℃で測定)を行うことによって、成形、焼入れを実施し、プレス成形品を作製した。
Next, the moldability of the first, second, and third molding methods was examined using extruded shapes. An aluminum alloy having a chemical component of E1 was ingoted by DC casting and subjected to homogenization heat treatment at 490 ° C. for 10 hours. Next, an L-shaped extruded material having a plate thickness of 2.5 mm and a side of 40 mm was produced by hot extrusion, cut into a length of 400 mm, and subjected to bending workability by press molding. Both ends of a 400 mm extruded profile were 50 mm at a bending angle of 30 ° and a bending radius of 15 mm, and the presence or absence of cracks in the bent portion and the mechanical properties of the central portion were investigated.
After the aluminum alloy profile was subjected to solution treatment with a heating device under the conditions shown in Table 17,
Regarding the first molding method, press molding and cooling under the conditions shown in Table 17 (cooling rate measured at 400 to 250 ° C.) are performed in the same mold to perform molding and quenching. Produced.
Regarding the 2nd shaping | molding processing method, after cooling on the conditions of Table 17 (cooling rate is measured at 400-250 degreeC), the press molding product was produced by press-molding 10 minutes after room temperature.
Regarding the third molding method, press molding is performed in a mold at 450 ° C., and cooling is performed under the conditions shown in Table 17 after mold release (cooling rate is measured at 400 to 250 ° C.), thereby forming and quenching. Implemented and produced a press-formed product.

第1、第2および第3の成形加工法の結果(第1の成形加工法は表18、第2の成形加工法は表19、第3の成形加工法は表20)、実施例(E68乃至E73)は、プレス成形品において割れが発生することのない良好な成形加工性を示し、且つ塗装焼付け処理前後においても160MPa以上の耐力を有する等の高強度の機械的性質を示すことが確認された。
ところが、比較例(C35乃至C40)は、溶体化処理温度が高すぎるため局部融解によるプレス割れや溶体化処理が低温すぎることによって溶質元素の固溶不足による延性の低下によってプレス割れが生じた。
Results of the first, second, and third molding methods (Table 18 for the first molding method, Table 19 for the second molding method, and Table 20 for the third molding method), Example (E68) To E73) show good moldability without causing cracks in press-molded products, and show high-strength mechanical properties such as having a proof stress of 160 MPa or more before and after the coating baking process. It was done.
However, in the comparative examples (C35 to C40), since the solution treatment temperature was too high, press cracks occurred due to a decrease in ductility due to lack of solid solution of solute elements due to press cracking due to local melting and solution treatment being too low.

本願発明は、自動車のフェンダーやバンパー等のように軽量且つ強度が要求される部材に簡易且つ確実に軽量で且つ強度の高いアルミニウム合金材を成形することができるようになるので、鋼材に換えて軽量で、且つ高強度を要するあらゆる部材に適用することができる。   The present invention can easily and reliably form a lightweight and high-strength aluminum alloy material on a member that requires light weight and strength such as an automobile fender or bumper. It can be applied to any member that is lightweight and requires high strength.

Claims (9)

Cu:1.0質量%(以下、「%」という。)以上、10%以下、Mg:2.5%以下、Mn:1.5%以下、Si:1.5%以下、Fe:1.5%以下、Zn:1.0%以下、Cr:0.30%以下、Zr:0.30%以下、Ti:0.30%以下、Ni:2.5%以下、V:0.30%以下を含有し、残部がアルミニウム及び不可避的不純物からなる2000系アルミニウム合金材に対して、
溶体化処理を行う工程と、
金型内で成形加工を行う工程と、
該金型で250℃以下まで焼入れ工程を含むことを特徴とする2000系アルミニウム合金材の成形加工方法。
Cu: 1.0% by mass (hereinafter referred to as “%”) or more, 10% or less, Mg: 2.5% or less, Mn: 1.5% or less, Si: 1.5% or less, Fe: 1. 5% or less, Zn: 1.0% or less, Cr: 0.30% or less, Zr: 0.30% or less, Ti: 0.30% or less, Ni: 2.5% or less, V: 0.30% For the 2000 series aluminum alloy material containing the following, the balance consisting of aluminum and inevitable impurities,
Performing a solution treatment; and
The process of molding in the mold,
A method for forming a 2000 series aluminum alloy material, comprising a quenching step up to 250 ° C. or less with the mold.
上記請求項1記載の化学成分を有する2000系アルミニウム合金材の成形加工方法であって、
該2000系アルミニウム合金材に対して、
溶体化処理を行う工程と、
250℃以下まで焼入れを行う工程と、
該焼入れを行った後、120時間以内に金型内で成形加工を行う工程を含むことを特徴とする2000系アルミニウム合金材の成形加工方法。
A method for forming a 2000 series aluminum alloy material having the chemical component according to claim 1,
For the 2000 series aluminum alloy material,
Performing a solution treatment; and
A step of quenching to 250 ° C. or less;
A method of forming a 2000 series aluminum alloy material, comprising the step of forming in a mold within 120 hours after the quenching.
上記請求項1記載の化学成分を有する2000系アルミニウム合金材の成形加工方法であって、
該2000系アルミニウム合金材に対して、
溶体化処理を行う工程と、
加熱をした金型内で成形加工を行う工程と、
該金型から離型して250℃以下まで焼入れを行う工程を含むことを特徴とする2000系アルミニウム合金材の成形加工方法。
A method for forming a 2000 series aluminum alloy material having the chemical component according to claim 1,
For the 2000 series aluminum alloy material,
Performing a solution treatment; and
A step of performing molding in a heated mold;
A method for forming a 2000 series aluminum alloy material, comprising a step of releasing from the mold and quenching to 250 ° C. or less.
上記請求項1及び請求項2記載の溶体化処理において、450℃以上、融点未満の温度で溶体化処理を行うことを特徴とする2000系アルミニウム合金材の成形加工方法。   3. A method for forming a 2000 series aluminum alloy material according to claim 1, wherein the solution treatment is performed at a temperature of 450 ° C. or higher and lower than the melting point. 上記請求項3記載の溶体化処理及び金型の加熱において、450℃以上、融点未満の温度で溶体化処理を行うと共に、400℃以上、融点未満の温度で金型の加熱を行うことを特徴とする2000系アルミニウム合金材の成形加工方法。   In the solution treatment and the heating of the mold according to claim 3, the solution treatment is performed at a temperature of 450 ° C. or higher and lower than the melting point, and the mold is heated at a temperature of 400 ° C. or higher and lower than the melting point. A forming method of 2000 series aluminum alloy material. 上記焼入れにおいて、400℃から250℃における冷却温度を20℃/秒以上とすることを特徴とする請求項1乃至請求項5のいずれかに記載の2000系アルミニウム合金材の成形加工方法。   The method for forming a 2000 series aluminum alloy material according to any one of claims 1 to 5, wherein in the quenching, a cooling temperature from 400 ° C to 250 ° C is set to 20 ° C / second or more. 上記2000系アルミニウム合金材が、圧延材であることを特徴とする請求項1乃至請求項6のいずれかに記載の2000系アルミニウム合金材の成形加工方法。   The method for forming a 2000 series aluminum alloy material according to any one of claims 1 to 6, wherein the 2000 series aluminum alloy material is a rolled material. 上記2000系アルミニウム合金材が、押出材であることを特徴とする請求項1乃至請求項6のいずれかに記載の2000系アルミニウム合金材の成形加工方法。   The method for forming a 2000 series aluminum alloy material according to any one of claims 1 to 6, wherein the 2000 series aluminum alloy material is an extruded material. 上記請求項1乃至請求項8のいずれかに記載の2000系アルミニウム合金材の成形加工方法により成形される成形加工品。   A molded product formed by the method of forming a 2000 series aluminum alloy material according to any one of claims 1 to 8.
JP2009278141A 2008-12-09 2009-12-08 Method for molding 2,000 series aluminum alloy material, and formed product molded by the same Pending JP2010159488A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008312893 2008-12-09
JP2009278141A JP2010159488A (en) 2008-12-09 2009-12-08 Method for molding 2,000 series aluminum alloy material, and formed product molded by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278141A JP2010159488A (en) 2008-12-09 2009-12-08 Method for molding 2,000 series aluminum alloy material, and formed product molded by the same

Publications (1)

Publication Number Publication Date
JP2010159488A true JP2010159488A (en) 2010-07-22

Family

ID=42576864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278141A Pending JP2010159488A (en) 2008-12-09 2009-12-08 Method for molding 2,000 series aluminum alloy material, and formed product molded by the same

Country Status (1)

Country Link
JP (1) JP2010159488A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063868A (en) * 2009-09-18 2011-03-31 Mazda Motor Corp Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component
CN103060620A (en) * 2011-10-24 2013-04-24 贵州华科铝材料工程技术研究有限公司 Carbonyl compound M(CO)6 modified high-performance aluminum alloy material and preparation method thereof
CN103060641A (en) * 2011-10-24 2013-04-24 贵州华科铝材料工程技术研究有限公司 Carbonyl compound Ni(CO)4 modified high-performance aluminum alloy material and preparation method thereof
CN103131917A (en) * 2011-12-05 2013-06-05 贵州华科铝材料工程技术研究有限公司 High-strength aluminum alloy metamorphosing through carbonyl W (CO) 6 and preparation method thereof
CN103131920A (en) * 2011-12-05 2013-06-05 贵州华科铝材料工程技术研究有限公司 High-strength aluminum alloy metamorphosing through carbonyl V (CO) 6 and preparation method thereof
JP2013160418A (en) * 2012-02-03 2013-08-19 Hamamatsu Heat Tec Kk Rapid heat treatment device
JP2014087836A (en) * 2012-10-31 2014-05-15 Aisin Takaoka Ltd Method and apparatus for die-quenching aluminum alloy material
JP2014087837A (en) * 2012-10-31 2014-05-15 Aisin Takaoka Ltd Die quench device and die quench method of aluminum alloy material
CN104046866A (en) * 2014-03-28 2014-09-17 安徽硕力实业有限公司 Preparation method of high-electrical conductivity high-strength rare earth aluminum alloy transporting material
JP2014189844A (en) * 2013-03-27 2014-10-06 Uacj Corp Aluminum alloy and method of producing the same
JP2015101756A (en) * 2013-11-25 2015-06-04 トヨタ自動車株式会社 Method for producing aluminum alloy material
CN105506423A (en) * 2015-08-25 2016-04-20 国网山东省电力公司临沂供电公司 Electronic safety belt clamp
GB2536193A (en) * 2014-10-31 2016-09-14 Imp Innovations Ltd A method for forming a part from aluminium alloy
JP2017503086A (en) * 2013-12-13 2017-01-26 リオ ティント アルカン インターナショナル リミテッドRio Tinto Alcan International Limited Aluminum casting alloy with improved high temperature performance
CN106367645A (en) * 2015-05-13 2017-02-01 江苏思维福特机械科技股份有限公司 Aluminum alloy for high-precision main shaft seat
JP2017043802A (en) * 2015-08-25 2017-03-02 株式会社Uacj Aluminum alloy extrusion material and manufacturing method therefor
CN106811638A (en) * 2016-11-28 2017-06-09 佛山市尚好门窗有限责任公司 A kind of anticorrosion aluminium material
CN107419148A (en) * 2017-05-05 2017-12-01 安徽彩晶光电有限公司 Al-alloy for liquid crystal television bracket
CN107937779A (en) * 2017-12-18 2018-04-20 东北轻合金有限责任公司 A kind of high-performance aluminium alloy slab and preparation method thereof
US20180312944A1 (en) * 2015-09-03 2018-11-01 Constellium Issoire Extruded product made from al-cu-mg alloy with improved compromise between mechanical resistance and toughness
CN109136692A (en) * 2018-10-18 2019-01-04 河北钢研德凯科技有限公司 Cast aluminium alloy gold and preparation method thereof
CN109487131A (en) * 2018-11-16 2019-03-19 广西柳州银海铝业股份有限公司 5052 alloy door-plate aluminum alloy base material production methods
CN110273116A (en) * 2019-07-02 2019-09-24 常州大学 A kind of process improving 2618 aluminum alloy solution effects
CN112853238A (en) * 2020-12-31 2021-05-28 沈阳鼓风机集团股份有限公司 Heat treatment method of heat-resistant aluminum alloy for impeller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182256A (en) * 1986-02-07 1987-08-10 Furukawa Alum Co Ltd Manufacture of aluminum alloy superior in formability
JPH06248400A (en) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd Method for forging aluminum alloy
JP2005213529A (en) * 2004-01-27 2005-08-11 Mitsubishi Heavy Ind Ltd Method for manufacturing plastic working member, aluminum alloy plastic working member, and scroll member for compressor
WO2008059242A2 (en) * 2006-11-14 2008-05-22 The University Of Birmingham Process for forming metal alloy sheet components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182256A (en) * 1986-02-07 1987-08-10 Furukawa Alum Co Ltd Manufacture of aluminum alloy superior in formability
JPH06248400A (en) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd Method for forging aluminum alloy
JP2005213529A (en) * 2004-01-27 2005-08-11 Mitsubishi Heavy Ind Ltd Method for manufacturing plastic working member, aluminum alloy plastic working member, and scroll member for compressor
WO2008059242A2 (en) * 2006-11-14 2008-05-22 The University Of Birmingham Process for forming metal alloy sheet components

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063868A (en) * 2009-09-18 2011-03-31 Mazda Motor Corp Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component
CN103060620A (en) * 2011-10-24 2013-04-24 贵州华科铝材料工程技术研究有限公司 Carbonyl compound M(CO)6 modified high-performance aluminum alloy material and preparation method thereof
CN103060641A (en) * 2011-10-24 2013-04-24 贵州华科铝材料工程技术研究有限公司 Carbonyl compound Ni(CO)4 modified high-performance aluminum alloy material and preparation method thereof
CN103131917A (en) * 2011-12-05 2013-06-05 贵州华科铝材料工程技术研究有限公司 High-strength aluminum alloy metamorphosing through carbonyl W (CO) 6 and preparation method thereof
CN103131920A (en) * 2011-12-05 2013-06-05 贵州华科铝材料工程技术研究有限公司 High-strength aluminum alloy metamorphosing through carbonyl V (CO) 6 and preparation method thereof
JP2013160418A (en) * 2012-02-03 2013-08-19 Hamamatsu Heat Tec Kk Rapid heat treatment device
JP2014087837A (en) * 2012-10-31 2014-05-15 Aisin Takaoka Ltd Die quench device and die quench method of aluminum alloy material
JP2014087836A (en) * 2012-10-31 2014-05-15 Aisin Takaoka Ltd Method and apparatus for die-quenching aluminum alloy material
JP2014189844A (en) * 2013-03-27 2014-10-06 Uacj Corp Aluminum alloy and method of producing the same
JP2015101756A (en) * 2013-11-25 2015-06-04 トヨタ自動車株式会社 Method for producing aluminum alloy material
JP2017503086A (en) * 2013-12-13 2017-01-26 リオ ティント アルカン インターナショナル リミテッドRio Tinto Alcan International Limited Aluminum casting alloy with improved high temperature performance
CN104046866A (en) * 2014-03-28 2014-09-17 安徽硕力实业有限公司 Preparation method of high-electrical conductivity high-strength rare earth aluminum alloy transporting material
CN104046866B (en) * 2014-03-28 2016-04-27 安徽硕力实业有限公司 A kind of preparation method of high connductivity high strength rare earth aluminium alloy transport material
GB2536193A (en) * 2014-10-31 2016-09-14 Imp Innovations Ltd A method for forming a part from aluminium alloy
CN106367645A (en) * 2015-05-13 2017-02-01 江苏思维福特机械科技股份有限公司 Aluminum alloy for high-precision main shaft seat
CN107636181A (en) * 2015-08-25 2018-01-26 株式会社Uacj Aluminium alloy extruded product and its manufacture method
JP2017043802A (en) * 2015-08-25 2017-03-02 株式会社Uacj Aluminum alloy extrusion material and manufacturing method therefor
WO2017033663A1 (en) * 2015-08-25 2017-03-02 株式会社Uacj Aluminum alloy extruded material and method for producing same
CN105506423A (en) * 2015-08-25 2016-04-20 国网山东省电力公司临沂供电公司 Electronic safety belt clamp
US20180312944A1 (en) * 2015-09-03 2018-11-01 Constellium Issoire Extruded product made from al-cu-mg alloy with improved compromise between mechanical resistance and toughness
CN106811638A (en) * 2016-11-28 2017-06-09 佛山市尚好门窗有限责任公司 A kind of anticorrosion aluminium material
CN107419148A (en) * 2017-05-05 2017-12-01 安徽彩晶光电有限公司 Al-alloy for liquid crystal television bracket
CN107937779A (en) * 2017-12-18 2018-04-20 东北轻合金有限责任公司 A kind of high-performance aluminium alloy slab and preparation method thereof
CN109136692A (en) * 2018-10-18 2019-01-04 河北钢研德凯科技有限公司 Cast aluminium alloy gold and preparation method thereof
CN109487131A (en) * 2018-11-16 2019-03-19 广西柳州银海铝业股份有限公司 5052 alloy door-plate aluminum alloy base material production methods
CN110273116A (en) * 2019-07-02 2019-09-24 常州大学 A kind of process improving 2618 aluminum alloy solution effects
CN112853238A (en) * 2020-12-31 2021-05-28 沈阳鼓风机集团股份有限公司 Heat treatment method of heat-resistant aluminum alloy for impeller

Similar Documents

Publication Publication Date Title
JP2010159488A (en) Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP2010159489A (en) Method for molding 7,000 series aluminum alloy material, and formed product molded by the same
US9828652B2 (en) Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
JP6458003B2 (en) Aluminum alloy material suitable for manufacturing automobile body panel and method for producing the same
JP2018513916A (en) High strength 6XXX aluminum alloy and manufacturing method thereof
JP2011252212A (en) Method for forming processing of 6000 series aluminum alloy material, and forming processed product
WO2014168147A1 (en) Aluminum alloy sheet for press forming, process for manufacturing same, and press-formed product thereof
WO2014132925A1 (en) Aluminum alloy having excellent characteristic after room temperature aging
JP6644376B2 (en) Method for producing extruded high-strength aluminum alloy with excellent formability
JP2012041567A (en) METHOD FOR MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY SHEET EXCELLENT IN HARDENABILITY IN COATING/BAKING AND MOLDABILITY
JP2005240083A (en) Method for molding aluminum alloy material
JP2007247000A (en) Method for manufacturing aluminum alloy sheet having superior ridging-mark resistance in forming step
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
JP6316747B2 (en) Aluminum alloy plate for blow molding and manufacturing method thereof
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP5839588B2 (en) Press forming method for automotive panel material
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
CN109794507B (en) Transverse vibration rolling process for high-performance aluminum alloy plate
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP2012025976A (en) METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE
JP2012152780A (en) Molding working method for aluminum alloy plate
JP4375786B2 (en) Aluminum alloy plate for can bodies with excellent secondary workability of can walls after paint baking
JP2017514014A (en) High formability medium-strength aluminum alloy for the manufacture of automotive semi-finished products or parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513