JP5083816B2 - Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material - Google Patents

Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material Download PDF

Info

Publication number
JP5083816B2
JP5083816B2 JP2007290424A JP2007290424A JP5083816B2 JP 5083816 B2 JP5083816 B2 JP 5083816B2 JP 2007290424 A JP2007290424 A JP 2007290424A JP 2007290424 A JP2007290424 A JP 2007290424A JP 5083816 B2 JP5083816 B2 JP 5083816B2
Authority
JP
Japan
Prior art keywords
less
warm
temperature
extruded material
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007290424A
Other languages
Japanese (ja)
Other versions
JP2009114514A (en
Inventor
正 箕田
康博 中井
勝也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2007290424A priority Critical patent/JP5083816B2/en
Publication of JP2009114514A publication Critical patent/JP2009114514A/en
Application granted granted Critical
Publication of JP5083816B2 publication Critical patent/JP5083816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、温間加工性に優れたAl−Zn−Mg−Cu系合金押出材およびその製造方法、ならびに該押出材から得られるアルミニウム合金温間加工材に関する。   The present invention relates to an Al—Zn—Mg—Cu alloy extruded material excellent in warm workability, a method for producing the same, and an aluminum alloy warm worked material obtained from the extruded material.

Al−Zn−Mg−Cu合金は高強度を有することから、軽量性が強く要求される輸送機器の分野で広く用いられている。特に自動二輪車においては、軽量化のニーズが高いことから、フレームなどの構造部材にAl−Zn−Mg−Cu合金材が多く使用されている。   Since Al—Zn—Mg—Cu alloys have high strength, they are widely used in the field of transportation equipment that is strongly required to be lightweight. Particularly in motorcycles, since there is a high need for weight reduction, Al-Zn-Mg-Cu alloy materials are often used for structural members such as frames.

従来、Al−Zn−Mg−Cu合金材を塑性加工して使用する場合には、O調質で塑性加工を行い、溶体化処理、焼入れ、時効処理の工程によりT6あるいはT7調質として使用されている。しかし、塑性加工を行ってから溶体化処理を行うと、高温で変形が発生したり、焼入れ時にひずみが生じたりするため、焼入れ後にひずみ矯正が必要になることが多く、製造コスト上昇の原因となっていた。   Conventionally, when an Al-Zn-Mg-Cu alloy material is used after being plastically processed, it is plastically processed with O tempering and used as T6 or T7 tempering through the steps of solution treatment, quenching, and aging treatment. ing. However, if solution treatment is performed after plastic working, deformation occurs at high temperatures or distortion occurs during quenching, so strain correction is often required after quenching, which causes an increase in manufacturing costs. It was.

そのため、製造工程の削減とコスト低減を目的として、軟化処理を行わずに溶体化処理後のT4調質で塑性加工を行う工程が提案され、特に塑性加工前に復元処理を行って材料強度を低下させ、安定した加工性を確保することが検討されている。   For this reason, for the purpose of reducing the manufacturing process and reducing the cost, a process of performing plastic working with T4 tempering after solution treatment without softening treatment has been proposed. In particular, the material strength is improved by performing restoration processing before plastic working. It has been studied to reduce and secure stable workability.

例えば、耐応力腐食割れ性に優れた自動二輪車のフロントフォークアウターチューブ材を得るために、Al−Zn−Mg−Cu合金押出管を溶体化処理および焼入れし、室温で100時間以上の時間自然時効させたのち、150〜250℃の温度で30秒〜10分間熱処理し、該熱処理において少なくとも100℃から熱処理温度までの昇温時間を1℃/秒以上とし、最後に人工時効処理を行う手法が提案されている(特許文献1参照)。   For example, in order to obtain a motorcycle front fork outer tube material having excellent stress corrosion cracking resistance, an Al-Zn-Mg-Cu alloy extruded tube is subjected to solution treatment and quenching, and natural aging is performed for 100 hours or more at room temperature. After that, a heat treatment is performed at a temperature of 150 to 250 ° C. for 30 seconds to 10 minutes, and in this heat treatment, the temperature rise time from at least 100 ° C. to the heat treatment temperature is set to 1 ° C./second or more, and finally an artificial aging treatment is performed. It has been proposed (see Patent Document 1).

また、高力アルミニウム合金の成形方法として、成形直前に150〜350℃で復元処理を行うプロセスが提案されている(特許文献2参照)。さらに、拡管加工性に優れた高力アルミニウム合金管とするために、T4調質材をさらに105〜250℃の温度で30秒〜180分間熱処理することが提案されている(特許文献3参照)。
特許第3638188号公報 特開平7−305151号公報 特開2007−119853号公報
Further, as a method for forming a high-strength aluminum alloy, a process of performing a restoration process at 150 to 350 ° C. immediately before forming has been proposed (see Patent Document 2). Furthermore, in order to obtain a high-strength aluminum alloy tube excellent in tube expansion workability, it has been proposed to further heat-treat the T4 tempered material at a temperature of 105 to 250 ° C. for 30 seconds to 180 minutes (see Patent Document 3). .
Japanese Patent No. 3638188 Japanese Patent Laid-Open No. 7-305151 JP 2007-119853 A

しかしながら、上記提案の手法はいずれも、復元処理後の加工を常温で行うことを前提としているため、強加工を行う場合には加工性が不十分となるという問題があり、そのため、さらに成形加工性を向上させることが望まれている。   However, all of the proposed methods are based on the premise that the processing after restoration processing is performed at room temperature. Therefore, there is a problem that workability becomes insufficient when performing strong processing. It is desired to improve the performance.

発明者らは、Al−Zn−Mg−Cu合金押出材を、溶体化処理、焼入れ後、自然時効し、次いで塑性加工、人工時効処理する工程において、自然時効後の塑性加工性を向上させるための手法についての検討過程において、焼入れ後に特定の温度域で熱処理を行い、さらに特定の温度域で温間の塑性加工を行うことにより、塑性加工後の人工時効処理で得られる強度を損なうことなく、塑性加工性を向上させることができることを見出した。   In order to improve the plastic workability after natural aging in the process of solution aging, quenching, natural aging, and then plastic working and artificial aging treatment of the extruded material of Al-Zn-Mg-Cu alloy. In the process of studying the above method, heat treatment is performed in a specific temperature range after quenching, and further, warm plastic processing is performed in a specific temperature range, so that the strength obtained by artificial aging treatment after plastic processing is not impaired. The present inventors have found that plastic workability can be improved.

本発明は、上記の知見に基づいてさらに実験、検討を重ねた結果としてなされたものであり、その目的は、焼入れ後に特定の温度域で熱処理を行うことにより、温間加工により高い塑性加工性を得ることを可能とし、塑性加工後の人工時効処理で得られる強度が損なわれることもない温間加工性に優れたAl−Zn−Mg−Cu合金押出材およびその製造方法、ならびに該押出材を用いた温間加工材を提供することにある。   The present invention was made as a result of repeated experiments and examinations based on the above knowledge, and the purpose of the present invention is to perform heat treatment in a specific temperature range after quenching, thereby achieving high plastic workability by warm working. Al-Zn-Mg-Cu alloy extrudate excellent in warm workability without damaging the strength obtained by artificial aging treatment after plastic working, its production method, and the extrudate The object is to provide a warm-working material using the above.

上記の目的を解決するための請求項1による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、Zn:5.0〜7.5%、Mg:1.6〜3.3%、Cu:1.1〜2.5%を含有し、さらにCr:0.30%以下、Mn:0.60%以下、Zr:0.30%以下のうちの1種以上、およびTi:0.06%以下、B:0.005%以下のうちの1種以上を含有し、さらに不純物としてのFeおよびSiをそれぞれ0.25%以下に制限し、残部Alおよび不可避的不純物からなるW調質またはT4調質のアルミニウム合金押出材であって、表面から深さ200μm以上の内部は亜結晶粒からなる繊維状組織で構成され、さらに集合組織の主方位がBrass方位であり、ODF(Crystallite Orientation Distribution Function;結晶方位分布関数)で表現されるBrass方位への集積度がランダム方位の10倍以上であることを特徴とする。   The Al—Zn—Mg—Cu alloy extrudate excellent in warm workability according to claim 1 for solving the above object is Zn: 5.0-7.5%, Mg: 1.6-3. 3%, Cu: 1.1 to 2.5%, Cr: 0.30% or less, Mn: 0.60% or less, Zr: 0.30% or less, and Ti : Containing at least one of 0.06% or less, B: 0.005% or less, further limiting Fe and Si as impurities to 0.25% or less respectively, and comprising the balance Al and unavoidable impurities An aluminum alloy extruded material of W tempering or T4 tempering, the inside of the depth of 200 μm or more from the surface is composed of a fibrous structure consisting of sub-crystal grains, and the main direction of the texture is the Brass direction, ODF (Crystallite Orientation istribution Function; integration to Brass orientation represented by the crystal orientation distribution function) is equal to or is at least 10 times the random orientation.

請求項2による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、請求項1に記載の押出材において、さらにDSC(Differential Scanning Calorimetry;示差走査熱量計)による熱分析で、吸熱ピークと発熱ピークが100〜200℃の範囲内に現れることを特徴とする。   The Al—Zn—Mg—Cu alloy extrudate excellent in warm workability according to claim 2 is a heat analysis by DSC (Differential Scanning Calorimetry) in the extrudate according to claim 1, An endothermic peak and an exothermic peak appear in the range of 100 to 200 ° C.

請求項3による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、請求項1または2に記載の押出材において、さらに溶体化処理および焼入れ後、40℃以下で30日以内の自然時効により得られたW調質またはT4調質におけるビッカース硬さが190以下であり、その後さらに180℃で1分間の熱処理を行った時のビッカース硬さが100以上180以下であることを特徴とする。   The extruded material of Al-Zn-Mg-Cu alloy having excellent warm workability according to claim 3 is the extruded material according to claim 1 or 2, further after solution treatment and quenching, within 30 days at 40 ° C or less. The Vickers hardness in the W tempering or T4 tempering obtained by natural aging is 190 or less, and then the Vickers hardness when further subjected to heat treatment at 180 ° C. for 1 minute is 100 or more and 180 or less. Features.

請求項4による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、請求項1〜3のいずれかに記載の押出材において、さらに常温での単軸引張試験で得られる公称ひずみ5%〜10%の範囲のn値(加工硬化指数)が0.15以上であることを特徴とする。   The Al—Zn—Mg—Cu alloy extruded material excellent in warm workability according to claim 4 is a nominal obtained by a uniaxial tensile test at room temperature in the extruded material according to claim 1. The n value (work hardening index) in the range of 5% to 10% strain is 0.15 or more.

請求項5による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、請求項1〜4のいずれかにおいて、前記押出材が管形状の押出材であって、自然時効のままで拡管加工を行った場合の限界拡管率をR、180℃で1分間の熱処理を行ってから常温で拡管加工を行った場合の限界拡管率をRとしたとき、R/Rが1.1以上であることを特徴とする。 The Al—Zn—Mg—Cu alloy extruded material excellent in warm workability according to claim 5 is the extruded material according to any one of claims 1 to 4, wherein the extruded material is a tubular shaped extruded material, and remains naturally aged. in case the limit pipe expansion ratio when the limit pipe expansion ratio in the case of performing the tube expanding process was pipe expanding at room temperature after heat treatment of R 0, 180 ° C. for 1 minute was defined as R 1, R 1 / R 0 Is 1.1 or more.

請求項6による温間加工性に優れたAl−Zn−Mg−Cu合金押出材の製造方法は、請求項1〜5のいずれかに記載の押出材を製造する方法であって、Zn:5.0〜7.5%、Mg:1.6〜3.3%、Cu:1.1〜2.5%を含有し、さらにCr:0.30%以下、Mn:0.60%以下、Zr:0.30%以下のうちの1種以上、およびTi:0.06%以下、B:0.005%以下のうちの1種以上を含有し、さらに不純物としてのFeおよびSiをそれぞれ0.25%以下に制限し、残部Alおよび不可避的不純物からなる組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を均質化処理後、熱間押出を行い、さらに溶体化処理および焼入れを行い、焼入れ後5分以内に50℃以上100℃以下の温度で1分以上30分以下の熱処理を行うことを特徴とする。   The method for producing an extruded material of Al-Zn-Mg-Cu alloy excellent in warm workability according to claim 6 is a method for producing the extruded material according to any one of claims 1 to 5, wherein Zn: 5 0.0 to 7.5%, Mg: 1.6 to 3.3%, Cu: 1.1 to 2.5%, Cr: 0.30% or less, Mn: 0.60% or less, One or more of Zr: 0.30% or less, and Ti: 0.06% or less, B: 0.005% or less, and Fe and Si as impurities are each 0 .. Limiting to 25% or less, melting and casting an aluminum alloy having a composition comprising the balance Al and inevitable impurities, homogenizing the obtained ingot, performing hot extrusion, further solution treatment and quenching Within 5 minutes after quenching, at a temperature of 50 ° C. to 100 ° C. for 1 minute to 3 Min and performing the following heat treatment.

請求項7による温間加工性に優れたAl−Zn−Mg−Cu合金押出材の製造方法は、請求項6において、前記均質化処理を400℃以上500℃以下の温度で行った後、300℃以上400℃以下の温度で追加熱処理を行い、その後、熱間押出を行うことを特徴とする。   The method for producing an extruded material of Al—Zn—Mg—Cu alloy excellent in warm workability according to claim 7 is the method according to claim 6, wherein the homogenization treatment is performed at a temperature of 400 ° C. or more and 500 ° C. or less, and then 300 An additional heat treatment is performed at a temperature of not lower than 400 ° C. and not higher than 400 ° C., followed by hot extrusion.

請求項8によるアルミニウム合金温間加工材は、請求項1〜5のいずれかに記載の温間加工性に優れたAl−Zn−Mg−Cu合金押出材を用い、100℃以上200℃以下の温度で塑性加工を行い、さらに人工時効処理を行うことにより得られることを特徴とする。   The aluminum alloy warm work material according to claim 8 is an Al-Zn-Mg-Cu alloy extrudate excellent in warm workability according to any one of claims 1 to 5, and is 100 ° C or higher and 200 ° C or lower. It is characterized by being obtained by performing plastic working at temperature and further performing artificial aging treatment.

本発明によれば、高い塑性加工性を得るための温間加工方法により作製された温間加工材、ならびに該温間加工に好適なAl−Zn−Mg−Cu合金押出材およびその製造方法が提供される。当該温間加工材は、塑性加工後の人工時効処理において、十分に高い強度を得ることができる。   According to the present invention, there is provided a warm-worked material produced by a warm-working method for obtaining high plastic workability, an Al-Zn-Mg-Cu alloy extruded material suitable for the warm-working, and a method for producing the same. Provided. The warm-worked material can obtain a sufficiently high strength in the artificial aging treatment after plastic working.

本発明による温間加工性に優れたAl−Zn−Mg−Cu合金押出材の合金元素の意義および限定理由について説明すると、Znは強度を向上させるよう機能する元素であり、その好ましい含有範囲は5.0〜7.5%である。下限未満では強度が不十分になり、上限を超えて含有されると耐応力腐食割れ性(以下、耐SCC性)の低下を招く。Znのさらに好ましい含有範囲は5.5〜7.0%、最も好ましい含有範囲は5.9〜6.5%である。   Explaining the significance and reason for limitation of the alloy element of the Al-Zn-Mg-Cu alloy extrudate excellent in warm workability according to the present invention, Zn is an element that functions to improve the strength, and its preferred content range is 5.0-7.5%. If it is less than the lower limit, the strength becomes insufficient, and if it exceeds the upper limit, the stress corrosion cracking resistance (hereinafter referred to as SCC resistance) is lowered. The more preferable content range of Zn is 5.5 to 7.0%, and the most preferable content range is 5.9 to 6.5%.

Mgは強度を向上させるよう機能する元素であり、その好ましい含有範囲は1.6〜3.3%である。下限未満では強度が不十分になり、上限を超えて含有されると耐SCC性の低下を招く。Mgのさらに好ましい含有範囲は1.9〜3.0%、最も好ましい含有範囲は2.2〜2.7%である。   Mg is an element that functions to improve the strength, and its preferable content range is 1.6 to 3.3%. If it is less than the lower limit, the strength becomes insufficient, and if it exceeds the upper limit, the SCC resistance is lowered. The more preferable content range of Mg is 1.9 to 3.0%, and the most preferable content range is 2.2 to 2.7%.

Cuは強度を向上させるとともに、温間加工中に適度な強度を維持するよう機能する元素であり、その好ましい含有範囲は1.1〜2.5%である。下限未満ではDSCによる熱分析で100〜200℃の範囲内に発熱ピークが現れず、温間加工中の材料強度が低下し過ぎる。また、n値が下限未満となって、不均一変形を起こし易くなり、温間加工方法によっては加工しわが発生し、十分な温間加工性が得られないことがある。さらに、最終的に得られる強度も低くなる。上限を超えて含有されると、熱処理前後での限界拡管率の比R/Rが低くなり過ぎるとともに、温間加工中に強度が高くなり過ぎ、加工性の低下を招き、耐応力腐食割れ性が低下する。Cuのさらに好ましい含有範囲は1.3〜2.2%であり、最も好ましい含有範囲は1.6〜2.0%である。 Cu is an element that functions to improve strength and maintain moderate strength during warm working, and its preferred content range is 1.1 to 2.5%. If it is less than the lower limit, no exothermic peak appears in the range of 100 to 200 ° C. in DSC thermal analysis, and the material strength during warm working is too low. In addition, the n value is less than the lower limit, and non-uniform deformation is likely to occur. Depending on the warm working method, wrinkling may occur, and sufficient warm workability may not be obtained. Furthermore, the strength finally obtained is also reduced. If the content exceeds the upper limit, the ratio R 1 / R 0 of the critical tube expansion ratio before and after the heat treatment becomes too low, the strength becomes too high during warm working, causing deterioration of workability, and stress corrosion resistance. The crackability is reduced. The more preferable content range of Cu is 1.3 to 2.2%, and the most preferable content range is 1.6 to 2.0%.

Cr、Mn、Zrは選択的に含有される元素であり、これらの元素の1種以上を含有することにより、押出材の結晶組織を繊維状にし、耐SCC性を向上させるよう機能する。また、集合組織の主方位をBrass方位に制御することができる。好ましい含有範囲はCr:0.30%以下、Mn:0.60%以下、Zr:0.30%以下であり、いずれも上限を超えて含有されると粗大な金属間化合物を形成し、延性が低下するとともに温間加工性の低下を招く。さらに好ましい含有範囲は、Cr:0.05〜0.25%、Mn:0.05〜0.50%、Zr:0.05〜0.25%であり、最も好ましい含有範囲は、Cr:0.10〜0.23%、Mn:0.10〜0.40%、Zr:0.10〜0.20%である。   Cr, Mn, and Zr are elements that are selectively contained. By containing one or more of these elements, the crystal structure of the extruded material is made fibrous and functions to improve the SCC resistance. Further, the main direction of the texture can be controlled to the Brass direction. Preferable content ranges are Cr: 0.30% or less, Mn: 0.60% or less, Zr: 0.30% or less, and when any content exceeds the upper limit, a coarse intermetallic compound is formed, and ductility is achieved. As well as a decrease in warm workability. Further preferable content ranges are Cr: 0.05 to 0.25%, Mn: 0.05 to 0.50%, Zr: 0.05 to 0.25%, and the most preferable content range is Cr: 0. .10 to 0.23%, Mn: 0.10 to 0.40%, Zr: 0.10 to 0.20%.

TiおよびBはともに鋳造組織の微細化に寄与する元素であり、好ましい含有範囲はTi:0.06%以下、B:0.005%以下である。上限を超えて含有されると、粗大な金属間化合物を形成し、延性が低下するとともに、温間加工性の低下を招く。   Ti and B are both elements that contribute to the refinement of the cast structure, and preferable content ranges are Ti: 0.06% or less and B: 0.005% or less. If the content exceeds the upper limit, a coarse intermetallic compound is formed, ductility is lowered, and warm workability is lowered.

FeおよびSiは不純物として含有される元素であり、許容される含有範囲はFe:0.25%以下、Si:0.25%以下である。上限を超えて含有されると延性が低下するとともに、温間加工性が低下する。さらに好ましい許容可能な含有範囲はFe:0.20%以下、Si:0.20%以下であり、最も好ましい許容可能な含有範囲はFe:0.15%以下、Si:0.15%以下である。   Fe and Si are elements contained as impurities, and allowable ranges are Fe: 0.25% or less and Si: 0.25% or less. When it contains exceeding an upper limit, while ductility will fall, warm workability will fall. Further preferable allowable content ranges are Fe: 0.20% or less, Si: 0.20% or less, and most preferable allowable content ranges are Fe: 0.15% or less, Si: 0.15% or less. is there.

本発明による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、W調質またはT4調質において、表面から深さ200μm以上の内部が亜結晶粒からなる繊維状組織で構成され、さらに集合組織の主方位がBrass方位{110}<112>であり、ODFで表現されるBrass方位への集積度がランダム方位の10倍以上であることが好ましい。   The extruded Al—Zn—Mg—Cu alloy material having excellent warm workability according to the present invention is composed of a fibrous structure in which the inside of a depth of 200 μm or more from the surface is composed of sub-crystal grains in W tempering or T4 tempering. Furthermore, it is preferable that the main orientation of the texture is the Brass orientation {110} <112>, and the degree of accumulation in the Brass orientation expressed in ODF is 10 times or more of the random orientation.

表面から深さ200μm未満の範囲には再結晶粒が存在しても良いが、表面から深さ200μm以上の内部において再結晶粒が存在すると、温間で塑性加工を行った時に加工割れを発生する場合があり、温間加工性の低下を招く。また、集合組織の主方位がBrass方位以外の場合や、Brass方位への集積度がランダム方位の10倍未満の場合も、温間で塑性加工を行った時に加工割れを発生する場合があり、温間加工性の低下を招く。さらに好ましいBrass方位への集積度はランダム方位の20倍以上である。   Recrystallized grains may exist within a depth of less than 200 μm from the surface, but if there are recrystallized grains inside the surface at a depth of 200 μm or more from the surface, processing cracks will occur when plastic working is warm. May cause a decrease in warm workability. In addition, when the main orientation of the texture is other than the Brass orientation, or when the degree of accumulation in the Brass orientation is less than 10 times the random orientation, processing cracks may occur when performing plastic working warmly, It causes a decrease in warm workability. Furthermore, the preferable integration degree in the Brass orientation is 20 times or more of the random orientation.

ODFの測定は、X線回折法により肉厚中心部で行われる。平板形状の場合には、板厚方向に対して垂直な面を切削し、耐水研磨紙で研磨した後、エッチングにより残留応力や付着物などを除去してODF測定用試験片が作製される。パイプ形状の場合には、外内径を切削した後、苛性ソーダで外内径を溶解することで肉厚中心部から100μmの厚さの試験片を採取し、弾性変形で平らにしてODF測定用試験片が作製される。丸棒の場合には、内径0mmで肉厚が半径に等しいパイプとみなして、前述のパイプ材と同様の方法でODF測定用試験片が作製される。   The measurement of ODF is performed at the center of the thickness by the X-ray diffraction method. In the case of a flat plate shape, a surface perpendicular to the plate thickness direction is cut and polished with water-resistant abrasive paper, and then residual stress and deposits are removed by etching to produce a test piece for ODF measurement. In the case of a pipe shape, after cutting the outer inner diameter, a test piece having a thickness of 100 μm is collected from the center of the wall thickness by dissolving the outer inner diameter with caustic soda, and flattened by elastic deformation to obtain a test piece for ODF measurement. Is produced. In the case of a round bar, it is regarded as a pipe having an inner diameter of 0 mm and a wall thickness equal to that of the radius, and an ODF measurement test piece is produced by the same method as that for the pipe material described above.

また、本発明による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、DSCによる熱分析で、吸熱ピークと発熱ピークが100〜200℃の範囲内に現れることが好ましい。7000系アルミニウム合金は、焼入れ後の自然時効によりGPゾーンが形成されるため、焼入れ直後以外のW調質あるいはT4調質の場合には、100〜200℃の範囲内に吸熱ピークが現れGPゾーンの分解が起こる。焼入れ直後では吸熱ピークは現れない。このようなGPゾーンの分解が起こると、強度が低下し加工性が向上する。一方、100〜200℃の範囲内に発熱ピークが現れると、温間加工中にη'相の析出が起こり強度が上昇する。従って、100〜200℃の範囲内に吸熱ピークと発熱ピークが現れると、温間加工中にGPゾーンの分解とη'相の析出が同時に起こる。GPゾーンの分解により温間加工性が向上するとともに、η'相の析出により被加工材の強度が適度に上昇し、温間加工中の材料強度が低下し過ぎず、不均一変形を起こし難くなり、十分な温間加工性が得られる。吸熱ピーク、あるいは発熱ピークが現れない場合には、温間加工性が低下する。なお、DSCによる熱分析は昇温速度10〜20℃/minで行われる。   Moreover, it is preferable that the Al-Zn-Mg-Cu alloy extruded material excellent in warm workability according to the present invention has an endothermic peak and an exothermic peak in a range of 100 to 200 ° C by thermal analysis by DSC. Since 7000 series aluminum alloy forms GP zone by natural aging after quenching, in the case of W tempering or T4 tempering other than just after quenching, an endothermic peak appears in the range of 100 to 200 ° C. Decomposition occurs. An endothermic peak does not appear immediately after quenching. When such decomposition of the GP zone occurs, the strength is lowered and the workability is improved. On the other hand, when an exothermic peak appears in the range of 100 to 200 ° C., precipitation of η ′ phase occurs during warm working and the strength increases. Therefore, when an endothermic peak and an exothermic peak appear in the range of 100 to 200 ° C., decomposition of the GP zone and precipitation of the η ′ phase occur simultaneously during warm working. Decomposition of the GP zone improves warm workability, and the η 'phase precipitates moderately increases the strength of the work material, so that the material strength during warm work does not decrease too much and is less likely to cause non-uniform deformation. Thus, sufficient warm workability can be obtained. When no endothermic peak or exothermic peak appears, warm workability is reduced. In addition, the thermal analysis by DSC is performed at a temperature increase rate of 10 to 20 ° C./min.

さらに、本発明による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、溶体化処理および焼入れ後、40℃以下で30日以内の自然時効を行った場合におけるビッカース硬さが190以下(0を含まず)であり、その後さらに180℃で1分間の熱処理を行った時のビッカース硬さが100以上180以下であることが好ましい。40℃以下で30日以内の自然時効後のビッカース硬さが上限を超えると、温間加工で加工割れが発生し易くなる。   Furthermore, the Al—Zn—Mg—Cu alloy extruded material excellent in warm workability according to the present invention has a Vickers hardness when subjected to natural aging within 40 days at 40 ° C. or lower after solution treatment and quenching. It is 190 or less (excluding 0), and it is preferable that the Vickers hardness when the heat treatment is further performed at 180 ° C. for 1 minute is 100 or more and 180 or less. If the Vickers hardness after natural aging within 30 days at 40 ° C. or lower exceeds the upper limit, processing cracks are likely to occur during warm working.

また、180℃で1分間の熱処理を行った時のビッカース硬さが下限未満の場合には、温間加工中の材料強度が低下しすぎ、不均一変形を起こし易くなり、温間加工性が低下し、上限を超えると温間加工で加工割れが発生し易くなる。熱処理前のビッカース硬さのさらに好ましい範囲は100以上180以下であり、熱処理後のビッカース硬さのさらに好ましい範囲は100以上170以下である。   In addition, when the Vickers hardness when the heat treatment is performed at 180 ° C. for 1 minute is less than the lower limit, the material strength during the warm working is too low, and non-uniform deformation is easily caused, and the warm workability is improved. If the upper limit is exceeded, processing cracks are likely to occur during warm working. A more preferable range of the Vickers hardness before the heat treatment is 100 or more and 180 or less, and a further preferable range of the Vickers hardness after the heat treatment is 100 or more and 170 or less.

本発明による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、常温での単軸引張試験で得られる公称ひずみ5〜10%の範囲のn値が0.15以上であることが好ましい。温間でのn値は、常温でのn値に比例する。そのため、常温でのn値が高いほど、温間加工中の加工硬化が起こり易くなり、局部変形が抑制され、温間加工性が向上する。n値が下限未満の場合には温間加工中に局部変形が起こり易くなり、温間加工性の低下を招く。   The Al-Zn-Mg-Cu alloy extruded material excellent in warm workability according to the present invention has an n value of 0.15 or more in a range of nominal strain of 5 to 10% obtained by a uniaxial tensile test at room temperature. It is preferable. The warm n value is proportional to the normal temperature n value. For this reason, the higher the n value at room temperature, the easier the work hardening during warm working occurs, the local deformation is suppressed, and the warm workability is improved. When the n value is less than the lower limit, local deformation is likely to occur during warm working, which causes a decrease in warm workability.

本発明による温間加工性に優れたAl−Zn−Mg−Cu合金押出材は、管形状の場合には、自然時効のままで拡管加工を行った場合の限界拡管率をR、180℃で1分間の熱処理を行ってから常温で拡管加工を行った場合の限界拡管率をRとしたとき、R/Rが1.1以上であることが好ましい。限界拡管率Rは、拡管加工前の管の外周長をL、割れの発生する限界での管の外周長をLとしたとき、R=L/Lにより計算される。R/Rが下限未満の場合には、温間加工におけるGPゾーンの分解が不十分になり、温間加工性の低下を招く。 In the case of an Al-Zn-Mg-Cu alloy extruded material having excellent warm workability according to the present invention, when the tube shape is used, the limit tube expansion ratio when the tube expansion processing is performed with natural aging is R 0 , 180 ° C. When the limiting tube expansion rate is R 1 when the tube expansion is performed at room temperature after performing heat treatment for 1 minute, it is preferable that R 1 / R 0 is 1.1 or more. The limit tube expansion ratio R is calculated by R = L 1 / L 0 where L 0 is the outer circumferential length of the tube before the tube expansion processing and L 1 is the outer circumferential length of the tube at the limit where cracking occurs. When R 1 / R 0 is less than the lower limit, the decomposition of the GP zone in the warm working becomes insufficient, resulting in a decrease in warm workability.

次に、本発明による温間加工性に優れたAl−Zn−Mg−Cu合金押出材の製造方法について説明する。まず、所定の組成を有するAl−Zn−Mg−Cu合金を溶解し、半連続鋳造法により造塊する。得られた鋳塊を均質化処理して、押出用ビレットとする。   Next, the manufacturing method of the Al-Zn-Mg-Cu alloy extrudate excellent in warm workability according to the present invention will be described. First, an Al—Zn—Mg—Cu alloy having a predetermined composition is melted and ingot-formed by a semi-continuous casting method. The obtained ingot is homogenized to form a billet for extrusion.

均質化処理温度は400℃以上500℃以下が望ましく、均質化処理時間は1時間以上20時間以下が望ましい。これらの処理条件はAl−Zn−Mg−Cu合金に適用される一般的な処理条件である。また、均質化処理後、300℃以上400℃以下の温度で追加熱処理を行なうのが好ましく、この追加熱処理と、その後行われる熱間押出とを組み合わせることにより、集合組織の主方位をBrass方位に制御することができ、ODFで表現されるBrass方位の集積度を高め、ランダム方位の10倍以上にすることができる。なお、追加熱処理は、押出用ビレットを均質化処理後、均質化処理温度から追加熱処理温度に冷却することにより行ってもよく、押出用ビレットを均質化処理後、一旦追加熱処理未満の温度、例えば室温まで冷却し、再加熱することにより行ってもよい。   The homogenization treatment temperature is desirably 400 ° C. or more and 500 ° C. or less, and the homogenization treatment time is desirably 1 hour or more and 20 hours or less. These processing conditions are general processing conditions applied to the Al—Zn—Mg—Cu alloy. Further, after the homogenization treatment, it is preferable to perform additional heat treatment at a temperature of 300 ° C. or more and 400 ° C. or less. By combining this additional heat treatment and subsequent hot extrusion, the main orientation of the texture is changed to the Brass orientation. The degree of integration of the Brass azimuth expressed in ODF can be increased, and can be made 10 times or more of the random azimuth. The additional heat treatment may be performed by cooling the extrusion billet from the homogenization temperature to the additional heat treatment temperature after the homogenization treatment. After the homogenization treatment of the extrusion billet, the temperature once lower than the additional heat treatment, for example, You may carry out by cooling to room temperature and reheating.

次いで、押出に先立ってビレットを加熱するが、その加熱温度は前記均質化処理後の追加熱処理の温度に対して±50℃以内の温度とするのが望ましい。押出は、通常、ビレットを均質化処理温度あるいは追加熱処理温度から一旦冷却し、一般的には室温まで冷却し、押出温度に再加熱することにより行われるが、ビレットを均質化処理温あるいは追加熱処理温度から押出温度に冷却することにより行ってもよい。ビレットの加熱方法は特に限定しないが、大気炉または誘導加熱炉が好適に使用される。所定の温度に加熱されたビレットは所定の形状に熱間押出される。押出法としては直接押出法でもよいが、間接押出法がより望ましい。ビレットを上記の温度範囲に加熱し、間接押出法で熱間押出を行うことにより、集合組織の主方位をBrass方位に制御することができ、ODFで表現されるBrass方位の集積度をより高くすることができる。熱間押出後、室温まで冷却された後、所定の長さに切断される。押出後、必要に応じて軟化処理および冷間加工が行われる。   Next, the billet is heated prior to extrusion, and the heating temperature is preferably within ± 50 ° C. with respect to the temperature of the additional heat treatment after the homogenization treatment. Extrusion is usually performed by once cooling the billet from the homogenization temperature or additional heat treatment temperature, generally cooling to room temperature, and reheating to the extrusion temperature. You may carry out by cooling from temperature to extrusion temperature. Although the billet heating method is not particularly limited, an atmospheric furnace or an induction furnace is preferably used. The billet heated to a predetermined temperature is hot extruded into a predetermined shape. As the extrusion method, a direct extrusion method may be used, but an indirect extrusion method is more preferable. By heating the billet to the above temperature range and performing hot extrusion by the indirect extrusion method, the main orientation of the texture can be controlled to the Brass orientation, and the integration degree of the Brass orientation expressed by ODF is higher. can do. After hot extrusion, it is cooled to room temperature and then cut into a predetermined length. After extrusion, softening and cold working are performed as necessary.

押出材あるいは冷間加工材については溶体化処理が行われる。溶体化処理温度は400℃以上500℃以下が望ましい。保持時間は形状によって異なるが、肉厚中心部まで目標温度に達していれば良い。溶体化処理後には焼入れが行われる。冷却溶媒として、水、油またはポバール、ポリエチレングリコール、ポリアルキレングリコールなどの水溶液が使用される。   The extruded material or the cold worked material is subjected to a solution treatment. The solution treatment temperature is desirably 400 ° C. or higher and 500 ° C. or lower. The holding time varies depending on the shape, but it is sufficient that the target temperature is reached up to the center of the thickness. Quenching is performed after the solution treatment. As a cooling solvent, an aqueous solution of water, oil or poval, polyethylene glycol, polyalkylene glycol or the like is used.

本発明においては、溶体化処理および焼入れを行った後、焼入れ後5分以内に50℃以上100℃以下の温度で1分以上30分以下の熱処理を行うことが好ましい。この熱処理を行うことにより、40℃以下で30日以内の自然時効により得られるW調質またはT4調質におけるビッカース硬さを190以下にすることができ、さらに優れた温間加工性が得られる。熱処理条件が上記の条件を外れた場合には、温間加工後の人工時効処理で得られる強度が低下するおそれがある。   In the present invention, after solution treatment and quenching, it is preferable to perform a heat treatment for 1 minute to 30 minutes at a temperature of 50 ° C. to 100 ° C. within 5 minutes after quenching. By performing this heat treatment, the Vickers hardness in W tempering or T4 tempering obtained by natural aging within 30 days at 40 ° C. or lower can be reduced to 190 or lower, and further excellent warm workability can be obtained. . If the heat treatment conditions are outside the above conditions, the strength obtained by the artificial aging treatment after warm working may be reduced.

本発明で得られるW材、あるいはT4調質材の塑性加工は、100℃以上200℃以下の温間加工が好ましい。被加工材は熱処理によって所定の温度まで加熱してから塑性加工を行っても良いし、常温の被加工材を冷間加工による発熱で100℃以上200℃以下の温度にしても良い。塑性加工の種類は特に限定されないが、圧延、スエジング、スピニングなどが例として挙げられる。   The plastic working of the W material or T4 tempered material obtained in the present invention is preferably warm working at 100 ° C. or higher and 200 ° C. or lower. The workpiece may be subjected to plastic working after being heated to a predetermined temperature by heat treatment, or the workpiece at normal temperature may be heated to 100 ° C. or more and 200 ° C. or less by heat generated by cold working. The type of plastic working is not particularly limited, and examples thereof include rolling, swaging, and spinning.

加工温度が100℃未満の場合、あるいは加工温度が200℃を超える場合には、いずれも割れが発生し易くなる。さらに好ましい温間加工の温度範囲は120℃〜200℃であり、最も好ましい温間加工の温度範囲は140℃〜200℃である。なお、温間加工後、割れが発生しない範囲で、さらに常温の塑性加工を行うこともできる。   When the processing temperature is less than 100 ° C. or when the processing temperature exceeds 200 ° C., any cracks are likely to occur. A more preferred temperature range for warm working is 120 ° C. to 200 ° C., and a most preferred temperature range for warm working is 140 ° C. to 200 ° C. In addition, after warm processing, plastic processing at normal temperature can also be performed within a range where cracks do not occur.

温間加工後の被加工材には人工時効処理が施される。人工時効処理条件は狙いとする調質、あるいは強度によって異なるため、一概に定義できないが、一般には100℃以上200℃以下の温度で1時間〜50時間程度の処理を行うのが好ましい。   Artificial aging treatment is applied to the workpiece after warm processing. Artificial aging treatment conditions vary depending on the targeted tempering or strength, and thus cannot be defined unconditionally. In general, however, it is preferable to perform treatment at a temperature of 100 ° C. or more and 200 ° C. or less for about 1 to 50 hours.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。なお、これらの実施例は、本発明の一実施形態を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. In addition, these Examples show one Embodiment of this invention, and this invention is not limited to these.

実施例1
表1に示す合金A〜Jの組成を有する直径150mmのアルミニウム合金鋳塊を常法に従って作製し、得られた鋳塊について450℃で10時間の均質化処理を行い、さらに炉内で380℃まで冷却してから、380℃で10時間の追加熱処理を行った後、常温まで冷却して押出用ビレットとし、これらの押出用ビレットを誘導加熱炉で380℃に加熱し、熱間押出により厚さ6mm、幅100mmの板状押出材を作製した。
Example 1
A 150 mm diameter aluminum alloy ingot having a composition of alloys A to J shown in Table 1 was prepared according to a conventional method, and the obtained ingot was subjected to homogenization treatment at 450 ° C. for 10 hours, and further in a furnace at 380 ° C. After cooling to 380 ° C. for 10 hours, it was cooled to room temperature to form billets for extrusion. These billets for extrusion were heated to 380 ° C. in an induction heating furnace and thickened by hot extrusion. A plate-like extruded material having a thickness of 6 mm and a width of 100 mm was produced.

得られたアルミニウム合金押出材を460℃の温度に加熱保持した空気炉に装入し、60分間の保持を行うことにより溶体化処理した。次いで、常温の水道水で焼入れ処理した後、さらに70℃で10分間の熱処理を行い、常温まで冷却し、40℃で30日間の自然時効を行うことによりT4調質材とし、試験材1〜10を得た。   The obtained aluminum alloy extruded material was placed in an air furnace heated and held at a temperature of 460 ° C., and subjected to a solution treatment by holding for 60 minutes. Next, after quenching with normal temperature tap water, further heat treatment at 70 ° C. for 10 minutes, cooling to normal temperature, and natural aging at 40 ° C. for 30 days to obtain a T4 tempered material, 10 was obtained.

試験材1〜10について、それぞれ後述の方法に従って、ミクロ組織観察、ODF測定、熱分析試験、ビッカース硬さ試験、n値測定をそれぞれ行った。さらに、各試験材を180℃に加熱保持したオイルバスに装入し、1分間の保持を行った後、常温まで冷却を行い、直ちに後述のビッカース硬さ試験を行った。   For each of the test materials 1 to 10, a microstructure observation, an ODF measurement, a thermal analysis test, a Vickers hardness test, and an n-value measurement were performed according to the methods described later. Further, each test material was placed in an oil bath heated and held at 180 ° C., held for 1 minute, cooled to room temperature, and immediately subjected to a Vickers hardness test described later.

また、各試験材を180℃に加熱保持したオイルバスに装入し、1分間の保持を行った後、材料表面にオイルバスのオイルを付着させたまま、180℃の温度で1パス当たり15〜20%の加工度で連続して圧延を繰り返し行い、割れの発生しない限界圧延率を測定した。このとき、ロール径350mmの圧延機を用い、ロール回転数を1回転/秒とした。   Each test material was placed in an oil bath heated and maintained at 180 ° C., held for 1 minute, and then the oil bath oil was adhered to the surface of the material, and the temperature of 180 ° C. was 15 per pass. The rolling was continuously repeated at a workability of ˜20%, and the limit rolling rate at which no cracks occurred was measured. At this time, a roll with a roll diameter of 350 mm was used, and the roll rotation speed was set to 1 rotation / second.

さらに、各試験材を180℃に加熱保持したオイルバスに装入し、1分間の保持を行った後、180℃の温度で断面減少率30%の圧延を行い、常温まで冷却した後、120℃で6時間の人工時効処理を行い、後述の引張試験および応力腐食割れ試験を行った。試験結果を表2に示す。   Further, each test material was placed in an oil bath heated and held at 180 ° C., held for 1 minute, then rolled at a temperature of 180 ° C. with a cross-section reduction rate of 30%, cooled to room temperature, and then 120 An artificial aging treatment for 6 hours was performed at 0 ° C., and a tensile test and a stress corrosion cracking test described later were performed. The test results are shown in Table 2.

ミクロ組織観察:板状試験材の幅中央部から長さ10mm、幅10mmのミクロ組織観察用試験片を切断、採取し、幅方向に垂直な面が観察面になるよう、熱硬化樹脂に樹脂埋めを行い、耐水研磨紙で粗研磨を行った後、アルミナ粉末で仕上げ研磨を行い、ケラー氏液でエッチングを行い、ミクロ組織観察用試料を得る。各試料について、光学顕微鏡にて100倍の組織写真を撮影し、表面から200μm以上内部において、再結晶粒の有無を調査する。   Microstructural observation: A test specimen for microstructural observation having a length of 10 mm and a width of 10 mm is cut and collected from the center of the width of the plate-shaped test material, and the thermosetting resin is resin so that the plane perpendicular to the width direction becomes the observation plane. After filling and rough polishing with water-resistant polishing paper, finish polishing with alumina powder and etching with Keller's solution to obtain a sample for microstructure observation. About each sample, a 100 times as many structure | tissue photograph is image | photographed with an optical microscope, and the presence or absence of a recrystallized grain is investigated inside 200 micrometers or more from the surface.

ODF測定:板状試験材の幅中央部から長さ20mm、幅20mmの試験片を切断、採取し、厚さ方向に垂直な面が測定面になるよう面削を行った後、耐水研磨紙で厚さが3mm(元板厚の1/2)になるまで1200番まで研磨を行い、硝酸、塩酸、フッ酸を混合したマクロ腐食液で10秒間の腐食を行い、X線回折用試験片を作製する。各試験片について、X線反射法で極点図を作成し、球面調和関数による級数展開法で三次元方位解析を行い、主方位を調査するとともに、Brass方位({110}<112>)の方位密度をランダム比で測定する。なお、級数展開次数は22次とする。   ODF measurement: A test piece having a length of 20 mm and a width of 20 mm is cut and collected from the center of the width of the plate-shaped test material, and after chamfering so that the surface perpendicular to the thickness direction becomes the measurement surface, water-resistant abrasive paper Polish to No. 1200 until the thickness becomes 3 mm (1/2 of the original plate thickness), perform corrosion for 10 seconds with a macro corrosive liquid mixed with nitric acid, hydrochloric acid and hydrofluoric acid, and test specimen for X-ray diffraction Is made. For each specimen, create a pole figure by the X-ray reflection method, perform a three-dimensional orientation analysis by a series expansion method using a spherical harmonic function, investigate the main orientation, and the direction of the Brass orientation ({110} <112>) The density is measured with a random ratio. The series expansion order is assumed to be 22nd.

熱分析試験:板状試験材の幅中央部、かつ肉厚中心部から厚さ1mm、直径5mmの円盤状試験片を、板状試験材の厚さ方向と円盤状試験材の厚さ方向が一致する方向で切断、採取し、熱流速型の示差走査熱量計(DSC)を用いて常温から250℃まで20℃/分の昇温速度で加熱を行い、熱量変化を測定する。このとき、リファレンスとして純度99.999%の純アルミニウムを用いる。そして、熱分析結果から100〜200℃の範囲内での吸熱ピークおよび発熱ピークの有無を調査する。   Thermal analysis test: A disk-shaped test piece having a thickness of 1 mm and a diameter of 5 mm from the center of the width of the plate-shaped test material and a thickness of 5 mm, and the thickness direction of the plate-shaped test material and the thickness direction of the disk-shaped test material are Cutting and sampling are performed in the matching direction, and heating is performed from room temperature to 250 ° C. at a heating rate of 20 ° C./min using a heat flow rate type differential scanning calorimeter (DSC), and the change in the amount of heat is measured. At this time, pure aluminum having a purity of 99.999% is used as a reference. And the presence or absence of the endothermic peak and exothermic peak in the range of 100-200 degreeC is investigated from a thermal analysis result.

ビッカース硬さ試験:板状試験材の幅中央部、かつ肉厚中心部から長さ20mm、幅20mmの試験片を切断、採取し、厚さ方向に垂直な面が測定面になるよう耐水研磨紙で0.5mmの深さまで研磨を行い、1200番で仕上げ研磨を行う。研磨面を測定面として、荷重98NでJIS Z 2244に従ってビッカース硬さ測定を行う。なお、180℃で1分間の熱処理後の硬さ測定においては、熱処理前に研磨を行っておき、熱処理後5分以内にビッカース硬さ測定を行う。   Vickers hardness test: A test piece having a length of 20 mm and a width of 20 mm is cut and sampled from the central portion of the plate-like test material and the thickness center portion, and water-resistant polishing is performed so that the surface perpendicular to the thickness direction becomes the measurement surface. Polish to a depth of 0.5 mm with paper, and finish with No. 1200. Using the polished surface as a measurement surface, Vickers hardness measurement is performed according to JIS Z 2244 with a load of 98N. In addition, in the hardness measurement after heat processing for 1 minute at 180 degreeC, grinding | polishing is performed before heat processing and a Vickers hardness measurement is performed within 5 minutes after heat processing.

n値測定:JIS Z 2201に示された5号試験片を板状試験材の幅中央部から成形する。JIS Z 2241に従って、常温で10mm/分のクロスヘッド速度で引張試験を行い、公称ひずみ5%と10%での公称応力を測定し、JIS Z 2253に従ってn値を計算する。   n-value measurement: No. 5 test piece shown in JIS Z 2201 is molded from the center of the width of the plate-shaped test material. According to JIS Z 2241, a tensile test is performed at a crosshead speed of 10 mm / min at normal temperature, the nominal stresses at nominal strains of 5% and 10% are measured, and the n value is calculated according to JIS Z 2253.

引張試験:JIS Z 2201に示された5号試験片を板状試験材の幅中央部から成形する。JIS Z 2241に従って、常温で10mm/分のクロスヘッド速度で引張試験を行い、引張強さ、耐力、伸びを測定する。   Tensile test: No. 5 test piece shown in JIS Z 2201 is molded from the center of the width of the plate-shaped test material. According to JIS Z 2241, a tensile test is performed at a normal temperature and a crosshead speed of 10 mm / min, and tensile strength, proof stress, and elongation are measured.

応力腐食割れ試験:引張方向が押出材の幅方向に一致するよう、平行部の幅3mm、平行部長さ15mmの引張試験片を成形し、耐力の70%の引張応力を負荷して、25℃の温度で3.5%NaCl水溶液中で10分、大気中で50分のサイクルを最長500時間繰り返し、破断の生じる時間を測定する。   Stress corrosion cracking test: A tensile test piece having a parallel part width of 3 mm and a parallel part length of 15 mm was formed so that the tensile direction coincided with the width direction of the extruded material, and a tensile stress of 70% of the proof stress was applied, and 25 ° C. A cycle of 10 minutes in a 3.5% NaCl aqueous solution at a temperature of 50 minutes and 50 minutes in the air is repeated for a maximum of 500 hours, and the time at which breakage occurs is measured.

Figure 0005083816
Figure 0005083816

Figure 0005083816
Figure 0005083816

表2にみられるように、本発明に従う試験材1〜10は、何れも表面から深さ200μm以上内部には再結晶組織が存在せず、集合組織の主方位がBrass方位であり、ODFによるBrass方位への集積度がランダム方位の10倍以上であり、DSCによる熱分析で100〜200℃の間に吸熱ピークと発熱ピークがあり、40℃で30日間の自然時効を行った時のビッカース硬さは190以下、180℃で1分間の熱処理を行った後のビッカース硬さは100以上180以下の範囲であった。また、公称ひずみ5%〜10%の範囲におけるn値が0.15以上であるとともに、70%以上の高い限界圧延率を示しており、引張性質、耐応力腐食割れ性ともに優れている。   As can be seen in Table 2, none of the test materials 1 to 10 according to the present invention has a recrystallized structure in the depth of 200 μm or more from the surface, the main direction of the texture is the Brass direction, and ODF Vickers when the degree of integration in the Brass orientation is more than 10 times that of the random orientation, and there is an endothermic peak and an exothermic peak between 100 and 200 ° C. in thermal analysis by DSC, and natural aging is performed at 40 ° C. for 30 days. The hardness was 190 or less and the Vickers hardness after heat treatment at 180 ° C. for 1 minute was in the range of 100 to 180. In addition, the n value in the range of nominal strain of 5% to 10% is 0.15 or more, and a high critical rolling ratio of 70% or more is exhibited, and both tensile properties and stress corrosion cracking resistance are excellent.

実施例2
表1に示す合金A〜Jの組成を有する直径320mmのアルミニウム合金鋳塊を常法に従って作製し、得られた鋳塊について450℃で10時間の均質化処理を行い、さらに炉内で380℃まで冷却してから、380℃で10時間の追加熱処理を行った後、常温まで冷却し、外径300mm、内径50mmに切削して押出用ビレットとし、これらの押出用ビレットを誘導加熱炉で380℃に加熱し、間接押出法により押出管(外径65mm、内径50mm)を作製した。
Example 2
An aluminum alloy ingot having a composition of alloys A to J shown in Table 1 having a diameter of 320 mm was produced according to a conventional method, and the obtained ingot was subjected to homogenization treatment at 450 ° C. for 10 hours, and further in a furnace at 380 ° C. After performing additional heat treatment at 380 ° C. for 10 hours, cooling to room temperature, cutting to an outer diameter of 300 mm and an inner diameter of 50 mm to form extrusion billets, these extrusion billets were 380 in an induction heating furnace. Heated to ° C., an extruded tube (outer diameter 65 mm, inner diameter 50 mm) was produced by the indirect extrusion method.

作製されたアルミニウム合金押出管を460℃の温度に加熱保持した空気炉に装入し、60分間の保持を行うことにより溶体化処理した。次いで、常温の水道水で焼入れ処理した後、さらに70℃で10分間の熱処理を行い、常温まで冷却し、40℃で30日間の自然時効を行うことによりT4調質材とし、試験材11〜20を得た。   The produced aluminum alloy extruded tube was placed in an air furnace heated and held at a temperature of 460 ° C., and subjected to a solution treatment by holding for 60 minutes. Next, after quenching with normal temperature tap water, further heat treatment at 70 ° C. for 10 minutes, cooling to normal temperature, and natural aging at 40 ° C. for 30 days to obtain a T4 tempered material, 20 was obtained.

試験材1〜10について、それぞれ後述の方法に従って、ミクロ組織観察、ODF測定、熱分析試験、ビッカース硬さ試験、n値測定、拡管試験をそれぞれ行った。さらに、各試験材を180℃に加熱保持したオイルバスに装入し、1分間の保持を行った後、常温まで冷却を行い、ただちに後述のビッカース硬さ試験を行った。   For each of the test materials 1 to 10, a microstructure observation, an ODF measurement, a thermal analysis test, a Vickers hardness test, an n-value measurement, and a tube expansion test were performed according to the methods described later. Further, each test material was placed in an oil bath heated and held at 180 ° C., held for 1 minute, cooled to room temperature, and immediately subjected to a Vickers hardness test described later.

また、各試験材を180℃に加熱保持したオイルバスに装入し、1分間の保持を行った後、180℃の温度で外径60mm、内径50mmの形状に引抜き加工を行い、割れの発生有無を調査した。さらに、各試験材を180℃に加熱保持したオイルバスに装入し、1分間の保持を行った後、180℃の温度で外径62mm、内径50mmの形状に引抜加工を行い、常温まで冷却した後、120℃で6時間の人工時効処理を行い、後述の引張試験を行った。試験結果を表3に示す。   In addition, each test material was placed in an oil bath heated and held at 180 ° C., held for 1 minute, and then drawn into a shape having an outer diameter of 60 mm and an inner diameter of 50 mm at a temperature of 180 ° C., and cracks were generated. The presence or absence was investigated. Furthermore, each test material was placed in an oil bath heated and held at 180 ° C., held for 1 minute, then drawn into a shape with an outer diameter of 62 mm and an inner diameter of 50 mm at a temperature of 180 ° C., and cooled to room temperature. Then, an artificial aging treatment was performed at 120 ° C. for 6 hours, and a tensile test described later was performed. The test results are shown in Table 3.

ミクロ組織観察:管状試験材から長さ10mm、外周長10mmのミクロ組織観察用試験片を切断、採取し、円周方向に垂直な面が観察面になるよう、熱硬化樹脂に樹脂埋めを行い、耐水研磨紙で粗研磨を行った後、アルミナ粉末で仕上げ研磨を行い、ケラー氏液でエッチングを行い、ミクロ組織観察用試料を得る。各試料について、光学顕微鏡にて100倍の組織写真を撮影し、表面から200μm以上内部において、再結晶粒の有無を調査する。   Microstructural observation: A specimen for microstructural observation having a length of 10 mm and an outer peripheral length of 10 mm is cut and collected from a tubular test material, and the thermosetting resin is embedded in the resin so that the surface perpendicular to the circumferential direction becomes the observation surface. After rough polishing with water-resistant abrasive paper, finish polishing with alumina powder and etching with Keller's solution yield a sample for microstructure observation. About each sample, a 100 times as many structure | tissue photograph is image | photographed with an optical microscope, and the presence or absence of a recrystallized grain is investigated inside 200 micrometers or more from the surface.

ODF測定:管状試験材の外面と内面をそれぞれ3.7mmずつ旋盤で切削し、外径57.6mm、内径57.4mmに加工する。その後、長さ20mm、幅20mmの試験片を切断、採取し、苛性ソーダで厚さ0.1mmになるまで溶解し、さらに両面テープで20mm×20mmの平坦な治具に貼り付け、X線回折用試験片を作製する。各試験片について、X線反射法で極点図を作成し、球面調和関数による級数展開法で三次元方位解析を行い、主方位を調査するとともに、Brass方位({110}<112>)の方位密度をランダム比で測定する。なお、級数展開次数は22次とする。   ODF measurement: The outer surface and the inner surface of the tubular test material are each cut by a lathe by 3.7 mm and processed to an outer diameter of 57.6 mm and an inner diameter of 57.4 mm. Thereafter, a test piece having a length of 20 mm and a width of 20 mm is cut and collected, dissolved with caustic soda to a thickness of 0.1 mm, and further attached to a flat jig measuring 20 mm × 20 mm with double-sided tape for X-ray diffraction. A test piece is prepared. For each specimen, create a pole figure by the X-ray reflection method, perform a three-dimensional orientation analysis by a series expansion method using a spherical harmonic function, investigate the main orientation, and the direction of the Brass orientation ({110} <112>) The density is measured with a random ratio. The series expansion order is assumed to be 22nd.

熱分析試験:管状試験材から厚さ1mm、直径5mmの円盤状試験片を切断、採取し、熱流速型の示差走査熱量計(DSC)を用いて常温から250℃まで20℃/分の昇温速度で加熱を行い、熱量変化を測定する。このとき、リファレンスとして純度99.999%の純アルミニウムを用いる。そして、熱分析結果から100〜200℃の範囲内での吸熱ピークおよび発熱ピークの有無を調査する。   Thermal analysis test: A disk-shaped test piece having a thickness of 1 mm and a diameter of 5 mm was cut and collected from a tubular test material, and the temperature was increased from room temperature to 250 ° C. using a thermal flow rate type differential scanning calorimeter (DSC) at 20 ° C./min. Heat at a temperature rate and measure the change in heat. At this time, pure aluminum having a purity of 99.999% is used as a reference. And the presence or absence of the endothermic peak and exothermic peak in the range of 100-200 degreeC is investigated from a thermal analysis result.

ビッカース硬さ試験:管状試験材から長さ20mm、幅20mmの試験片を切断、採取し、押出方向に垂直な面が測定面になるよう耐水研磨紙で0.5mmの深さまで研磨を行い、1200番で仕上げ研磨を行う。研磨面を測定面として、荷重98NでJIS Z 2244に従ってビッカース硬さ測定を行う。なお、180℃で1分間の熱処理後の硬さ測定においては、熱処理前に研磨を行っておき、熱処理後5分以内にビッカース硬さ測定を行う。   Vickers hardness test: A test piece having a length of 20 mm and a width of 20 mm is cut and collected from a tubular test material, and polished to a depth of 0.5 mm with water-resistant abrasive paper so that the surface perpendicular to the extrusion direction becomes the measurement surface. Finish polishing with No. 1200. Using the polished surface as a measurement surface, Vickers hardness measurement is performed according to JIS Z 2244 with a load of 98N. In addition, in the hardness measurement after heat processing for 1 minute at 180 degreeC, grinding | polishing is performed before heat processing and a Vickers hardness measurement is performed within 5 minutes after heat processing.

n値測定:管状試験材から長さ300mmのJIS 12A号形状の引張試験片を成形する。JIS Z 2241に従って、常温で10mm/分のクロスヘッド速度で引張試験を行い、公称ひずみ5%と10%での公称応力を測定し、JIS Z 2253に従ってn値を計算する。   n-value measurement: A JIS 12A-shaped tensile test piece having a length of 300 mm is formed from a tubular test material. According to JIS Z 2241, a tensile test is performed at a crosshead speed of 10 mm / min at normal temperature, the nominal stresses at nominal strains of 5% and 10% are measured, and the n value is calculated according to JIS Z 2253.

拡管試験:管状試験材から押出長手方向に長さ300mmの試験片を切り出し、試験片の端面を旋盤により平坦になるよう切削する。かかる試験片の内面に高粘度潤滑油を塗布した後、同様の潤滑油を塗布した半角3°の円錐状の治具を試験片に押込み、端面が破断した時の外径D(mm)を測定し,試験前の外径D(mm)から次式により拡管率R(限界拡管率)を測定する。
R={(D−D)/D}×100(%)。このとき、試験速度(治具を押込む速度)は、1mm/sとする。
Tube expansion test: A test piece having a length of 300 mm is cut out from the tubular test material in the longitudinal direction of extrusion, and the end surface of the test piece is cut by a lathe to be flat. After applying a high-viscosity lubricating oil to the inner surface of the test piece, a conical jig having a half-angle of 3 ° coated with the same lubricating oil is pushed into the test piece, and the outer diameter D 1 (mm) when the end face is broken. And the expansion rate R (limit expansion rate) is measured from the outer diameter D 0 (mm) before the test according to the following equation.
R = {(D 1 −D 0 ) / D 0 } × 100 (%). At this time, the test speed (speed for pushing the jig) is set to 1 mm / s.

引張試験:JIS Z 2201に示された12A号形状の引張試験片を管状試験材の幅中央部から成形し、JIS Z 2241に従って、常温で10mm/分のクロスヘッド速度で引張試験を行い、引張強さ、耐力、伸びを測定する。   Tensile test: A 12A-shaped tensile test piece shown in JIS Z 2201 is molded from the center of the width of a tubular test material, and a tensile test is performed at a crosshead speed of 10 mm / min at room temperature in accordance with JIS Z 2241. Measure strength, yield strength and elongation.

Figure 0005083816
Figure 0005083816

表3にみられるように、本発明に従う試験材11〜20は、何れも表面から深さ200μm以上内部には再結晶組織が存在せず、集合組織の主方位がBrass方位であり、ODFによるBrass方位への集積度がランダム方位の10倍以上であり、DSCによる熱分析で100〜200℃の間に吸熱ピークと発熱ピークがあり、40℃で30日間の自然時効を行った時のビッカース硬さは190以下であり、180℃で1分間の熱処理を行った後のビッカース硬さは100以上180以下の範囲である。また、公称ひずみ5%〜10%の範囲におけるn値が0.15以上、限界拡管率の比、R/Rが1.1以上であるとともに、引抜加工で割れを生じることがなく、優れた引張性質を示した。 As seen in Table 3, none of the test materials 11 to 20 according to the present invention has a recrystallized structure in the depth of 200 μm or more from the surface, the main orientation of the texture is the Brass orientation, and ODF Vickers when the degree of integration in the Brass orientation is more than 10 times that of the random orientation, and there is an endothermic peak and an exothermic peak between 100 and 200 ° C. in thermal analysis by DSC, and natural aging at 40 ° C. for 30 days The hardness is 190 or less, and the Vickers hardness after heat treatment at 180 ° C. for 1 minute is in the range of 100 to 180. Further, n value is 0.15 or more in a range of nominal strain 5% to 10%, the ratio of the critical expansion ratio, together with R 1 / R 0 is 1.1 or more, without causing cracks in the drawing processing, Excellent tensile properties were shown.

比較例1
表4に示す合金K〜Vの組成を有する直径150mmのアルミニウム合金鋳塊を常法に従って作製し、得られた鋳塊について、実施例1と同一条件で均質化処理、熱間押出、溶体化処理、焼入れ、熱処理、自然時効を行い、厚さ6mm、幅100mmのT4調質の板状押出材21〜32を得た。
Comparative Example 1
An aluminum alloy ingot having a composition of alloys K to V shown in Table 4 having a diameter of 150 mm was produced according to a conventional method, and the obtained ingot was homogenized, hot-extruded, and solutionized under the same conditions as in Example 1. Treatment, quenching, heat treatment, and natural aging were performed to obtain T4 tempered plate-like extruded materials 21 to 32 having a thickness of 6 mm and a width of 100 mm.

試験材21〜32について、それぞれ実施例1と同一条件で、ミクロ組織観察、ODF測定、熱分析試験、ビッカース硬さ試験(180℃での熱処理前後)、n値測定、180℃での限界圧延率測定、180℃での温間圧延および人工時効処理後の引張試験、応力腐食割れ試験を行った。試験結果を表5に示す。   For test materials 21 to 32, under the same conditions as in Example 1, microstructure observation, ODF measurement, thermal analysis test, Vickers hardness test (before and after heat treatment at 180 ° C.), n value measurement, limit rolling at 180 ° C. Tensile test and stress corrosion cracking test after rate measurement, warm rolling at 180 ° C. and artificial aging treatment were performed. The test results are shown in Table 5.

Figure 0005083816
Figure 0005083816

Figure 0005083816
Figure 0005083816

表5に示すように、試験材21はZn量が下限未満のため、人工時効処理後の強度が低かった。試験材22はMg量が下限未満のため、人工時効処理後の強度が低かった。試験材23はCu量が下限未満のため、DSCによる熱分析で発熱ピークがみられず、熱処理後のビッカース硬さおよびn値が低過ぎ、温間加工性が低下するとともに、人工時効処理後の強度が劣っていた。   As shown in Table 5, since the test material 21 had a Zn content below the lower limit, the strength after the artificial aging treatment was low. Since the amount of Mg of the test material 22 was less than the lower limit, the strength after the artificial aging treatment was low. Since the amount of Cu in the test material 23 is less than the lower limit, no exothermic peak is observed in the thermal analysis by DSC, the Vickers hardness and n value after the heat treatment are too low, the warm workability is lowered, and after the artificial aging treatment The strength of was inferior.

試験材24はZn量が上限を超えて含有されたため、耐応力腐食割れ性が低下した。試験材25はMg量が上限を超えて含有されたため、耐応力腐食割れ性が低下した。試験材26はCu量が上限を超えて含有されたため、熱処理後のビッカース硬さが180を超えてしまい、温間加工性が低下するとともに、耐応力腐食割れ性が低下した。   Since the test material 24 contained Zn in excess of the upper limit, the stress corrosion cracking resistance was lowered. Since the test material 25 contained the Mg amount exceeding the upper limit, the stress corrosion cracking resistance was lowered. Since the test material 26 contained the Cu amount exceeding the upper limit, the Vickers hardness after the heat treatment exceeded 180, the warm workability was lowered, and the stress corrosion cracking resistance was lowered.

試験材27はCr、Mn、Zrがいずれも添加されなかったため、表面から深さ200μm以上の内部において再結晶粒が形成され、集合組織の主方位がBrassでなくなり、Brass方位への集積度が10未満となり、温間加工性が低下するとともに、強度および耐応力腐食割れ性が低下した。試験材28はCrが上限を超えて含有されたため、温間加工性が低下するとともに、伸びも低下した。   Since none of Cr, Mn, and Zr was added to the test material 27, recrystallized grains were formed in the interior of a depth of 200 μm or more from the surface, the main orientation of the texture was not Brass, and the degree of accumulation in the Brass orientation was high. It became less than 10, and while warm workability fell, intensity | strength and stress corrosion cracking resistance fell. Since the test material 28 contained Cr exceeding the upper limit, the warm workability was lowered and the elongation was also lowered.

試験材29はMnが上限を超えて添加されたため、温間加工性が低下するとともに、伸びも低下した。試験材30はZrが上限を超えて添加されたため、温間加工性が低下するとともに、伸びも低下した。試験材31はTiおよびBが上限を超えて含有されたため、温間加工性が低下するとともに、伸びも低下した。試験材32はFeおよびSiが上限を超えて含有されたため、温間加工性が低下するとともに、伸びも低下した。   Since the test material 29 was added with Mn exceeding the upper limit, the warm workability was lowered and the elongation was also lowered. Since the test material 30 was added with Zr exceeding the upper limit, the warm workability was lowered and the elongation was also lowered. Since the test material 31 contained Ti and B exceeding the upper limit, the warm workability was lowered and the elongation was also lowered. Since the test material 32 contained Fe and Si in excess of the upper limit, the warm workability was lowered and the elongation was also lowered.

比較例2
表1に示す合金Eについて、実施例1で作製された直径150mmのアルミニウム合金鋳塊について、実施例1と同一条件で均質化処理、熱間押出、溶体化処理、焼入れを行い、50℃以上、100℃以下で1分以上、30分以下の熱処理を行わずに、40℃で30日間の自然時効を行い、厚さ6mm、幅100mmのT4調質の板状押出材(試験材33)を得た。
Comparative Example 2
For the alloy E shown in Table 1, the aluminum alloy ingot having a diameter of 150 mm produced in Example 1 is subjected to homogenization treatment, hot extrusion, solution treatment, and quenching under the same conditions as in Example 1, and 50 ° C. or higher. , T4 tempered plate-like extruded material having a thickness of 6 mm and a width of 100 mm (test material 33), subjected to natural aging at 40 ° C. for 30 days without performing heat treatment at 100 ° C. or lower for 1 minute or more and 30 minutes or less Got.

試験材33について、実施例1と同一条件で、ミクロ組織観察、ODF測定、熱分析試験、ビッカース硬さ試験(180℃での熱処理前後)、n値測定、180℃での限界圧延率測定、180℃での温間圧延および人工時効処理後の引張試験、応力腐食割れ試験を行った。試験結果を表6に示す。   For test material 33, under the same conditions as in Example 1, microstructure observation, ODF measurement, thermal analysis test, Vickers hardness test (before and after heat treatment at 180 ° C.), n value measurement, limit rolling rate measurement at 180 ° C., A tensile test and a stress corrosion cracking test were performed after warm rolling at 180 ° C. and artificial aging treatment. The test results are shown in Table 6.

Figure 0005083816
Figure 0005083816

表6に示すように、試験材33は焼入れ後の熱処理を行わなかったため、自然時効後のビッカース硬さが上限を超えてしまい、温間加工性が低下した。   As shown in Table 6, since the test material 33 was not subjected to heat treatment after quenching, the Vickers hardness after natural aging exceeded the upper limit, and the warm workability was lowered.

比較例3
表4に示す合金Pについて、直径320mmのアルミニウム合金鋳塊を常法に従って作製し、得られた鋳塊について、実施例2と同一条件で均質化処理、切削加工、熱間押出、溶体化処理、焼入れ、熱処理、自然時効を行い、外径65mm、内径50mmのT4調質の管状押出材(試験材34)を得た。
Comparative Example 3
For alloy P shown in Table 4, an aluminum alloy ingot having a diameter of 320 mm was produced according to a conventional method, and the obtained ingot was homogenized, cut, hot extruded, and solution treated under the same conditions as in Example 2. Then, quenching, heat treatment and natural aging were performed to obtain a T4 tempered tubular extruded material (test material 34) having an outer diameter of 65 mm and an inner diameter of 50 mm.

試験材34について、実施例2と同一条件で、ミクロ組織観察、ODF測定、熱分析試験、ビッカース硬さ試験(180℃での熱処理前後)、n値測定、拡管試験、引抜試験、180℃での温間引抜加工および人工時効処理後の引張試験を行った。試験結果を表7に示す。   For the test material 34, under the same conditions as in Example 2, microstructure observation, ODF measurement, thermal analysis test, Vickers hardness test (before and after heat treatment at 180 ° C.), n value measurement, tube expansion test, pull-out test, at 180 ° C. Tensile tests after warm drawing and artificial aging were performed. The test results are shown in Table 7.

Figure 0005083816
Figure 0005083816

表7に示すように、試験材34は熱処理後のビッカース硬さが上限を超えてしまい、限界拡管率の比、R/Rが下限未満になったため、温間加工性が低下した。 As shown in Table 7, since the Vickers hardness after the heat treatment exceeded the upper limit and the ratio of the limit tube expansion ratio, R 1 / R 0 was less than the lower limit, the test material 34 was deteriorated in warm workability.

実施例3
表1に示す合金Aについて、実施例1で作製された直径150mmのアルミニウム合金鋳塊を、450℃で10時間均質化処理し、追加熱処理を行うことなく常温まで冷却して押出用ビレットとし、実施例1と同一条件で熱間押出、溶体化処理、焼入れ、熱処理、自然時効を行い、厚さ6mm、幅100mmのT4調質の板状押出材(試験材35)を得た。
Example 3
For the alloy A shown in Table 1, the 150 mm diameter aluminum alloy ingot produced in Example 1 was homogenized at 450 ° C. for 10 hours, cooled to room temperature without additional heat treatment, and made into an billet for extrusion. Hot extrusion, solution treatment, quenching, heat treatment and natural aging were performed under the same conditions as in Example 1 to obtain a T4 tempered plate-like extruded material (test material 35) having a thickness of 6 mm and a width of 100 mm.

試験材35について、実施例1と同一条件で、ミクロ組織観察、ODF測定、熱分析試験、ビッカース硬さ試験(180℃での熱処理前後)、n値測定、180℃での限界圧延率測定、180℃での温間圧延および人工時効後の引張試験、応力腐食割れ試験を行った。試験結果を表8に示す。   For test material 35, under the same conditions as in Example 1, microstructure observation, ODF measurement, thermal analysis test, Vickers hardness test (before and after heat treatment at 180 ° C.), n value measurement, limit rolling rate measurement at 180 ° C., A tensile test and a stress corrosion cracking test were performed after warm rolling at 180 ° C. and artificial aging. The test results are shown in Table 8.

Figure 0005083816
Figure 0005083816

表8に示すように、本発明に従う試験材35は、表面から深さ200μm以上内部には再結晶組織が存在せず、集合組織の主方位がBrass方位であり、ODFによるBrass方位への集積度がランダム方位の10倍以上であり、DSCによる熱分析で100〜200℃の間に吸熱ピークと発熱ピークがあり、40℃で30日間の自然時効を行った時のビッカース硬さは190以下、180℃で1分間の熱処理を行った後のビッカース硬さは100以上180以下の範囲である。また、公称ひずみ5%〜10%の範囲におけるn値が0.15以上であるとともに、70%以上の高い限界圧延率を示しており、引張性質、耐応力腐食割れ性ともに優れていた。   As shown in Table 8, the test material 35 according to the present invention has no recrystallized structure in the depth of 200 μm or more from the surface, the main orientation of the texture is the Brass orientation, and accumulation in the Brass orientation by ODF. The degree is more than 10 times the random orientation, DSC thermal analysis has an endothermic peak and an exothermic peak between 100-200 ° C, and the Vickers hardness is 190 or less when natural aging is performed at 40 ° C for 30 days The Vickers hardness after heat treatment at 180 ° C. for 1 minute is in the range of 100 to 180. Further, the n value in the range of nominal strains of 5% to 10% was 0.15 or more, and a high limit rolling rate of 70% or more was exhibited, and both tensile properties and stress corrosion cracking resistance were excellent.

Claims (8)

Zn:5.0〜7.5%(質量%、以下同じ)、Mg:1.6〜3.3%、Cu:1.1〜2.5%を含有し、さらにCr:0.30%以下(0%を含まず、以下同じ)、Mn:0.60%以下、Zr:0.30%以下のうちの1種以上、およびTi:0.06%以下、B:0.005%以下のうちの1種以上を含有し、さらに不純物としてのFeおよびSiをそれぞれ0.25%以下に制限し、残部Alおよび不可避的不純物からなるW調質またはT4調質のアルミニウム合金押出材であって、表面から深さ200μm以上の内部は亜結晶粒からなる繊維状組織で構成され、さらに集合組織の主方位がBrass方位であり、ODF(結晶方位分布関数)で表現されるBrass方位への集積度がランダム方位の10倍以上であることを特徴とする温間加工性に優れたAl−Zn−Mg−Cu合金押出材。 Zn: 5.0 to 7.5% (mass%, the same shall apply hereinafter), Mg: 1.6 to 3.3%, Cu: 1.1 to 2.5%, and Cr: 0.30% The following (not including 0%, the same applies hereinafter), Mn: 0.60% or less, Zr: one or more of 0.30% or less, and Ti: 0.06% or less, B: 0.005% or less It is a W or T4 tempered aluminum alloy extruded material that contains at least one of the above, further limits Fe and Si as impurities to 0.25% or less, and the balance Al and unavoidable impurities. The interior of the surface having a depth of 200 μm or more from the surface is composed of a fibrous structure composed of sub-crystal grains, and the main orientation of the texture is the Brass orientation, and the Brass orientation expressed by ODF (crystal orientation distribution function) The degree of integration is more than 10 times the random orientation. Warm working excellent in Al-Zn-Mg-Cu alloy extruded to. DSC(示差走査熱量計)による熱分析で、吸熱ピークと発熱ピークが100〜200℃の範囲内に現れることを特徴とする請求項1記載の温間加工性に優れたAl−Zn−Mg−Cu合金押出材。 The endothermic peak and the exothermic peak appear in the range of 100 to 200 ° C in thermal analysis by DSC (differential scanning calorimeter), and Al-Zn-Mg- excellent in warm workability according to claim 1 Cu alloy extruded material. 溶体化処理および焼入れ後、40℃以下で30日以内の自然時効により得られるW調質またはT4調質におけるビッカース硬さが190以下であり、その後さらに180℃で1分間の熱処理を行った時のビッカース硬さが100以上180以下であることを特徴とする請求項1または2記載の温間加工性に優れたAl−Zn−Mg−Cu合金押出材。 After solution heat treatment and quenching, when Vickers hardness in W tempering or T4 tempering obtained by natural aging within 30 days at 40 ° C. or less is 190 or less, and then heat treatment is further performed at 180 ° C. for 1 minute The Al-Zn-Mg-Cu alloy extrudate excellent in warm workability according to claim 1 or 2, wherein the Vickers hardness is 100 or more and 180 or less. 常温での単軸引張試験で得られる公称ひずみ5%〜10%の範囲のn値(加工硬化指数)が0.15以上であることを特徴とする請求項1〜3のいずれかに記載の温間加工性に優れたAl−Zn−Mg−Cu合金押出材。 The n value (work hardening index) in the range of nominal strain of 5% to 10% obtained by a uniaxial tensile test at room temperature is 0.15 or more. Al-Zn-Mg-Cu alloy extruded material with excellent warm workability. 管形状の押出材であって、自然時効のままで拡管加工を行った場合の限界拡管率をR、180℃で1分間の熱処理を行ってから常温で拡管加工を行った場合の限界拡管率をRとしたとき、R/Rが1.1以上であることを特徴とする請求項1〜4のいずれかに記載の温間加工性に優れたAl−Zn−Mg−Cu合金押出材。 Extruded material in the form of a tube, when the tube expansion is performed with natural aging, the limiting tube expansion rate is R 0 , the heat treatment for 1 minute at 180 ° C, and then the tube expansion is performed at room temperature. when the rate was R 1, R 1 / R 0 is excellent warm workability according to any one of the preceding claims, characterized in that 1.1 or more Al-Zn-Mg-Cu Alloy extruded material. Zn:5.0〜7.5%、Mg:1.6〜3.3%、Cu:1.1〜2.5%を含有し、さらにCr:0.30%以下、Mn:0.60%以下、Zr:0.30%以下のうちの1種以上、およびTi:0.06%以下、B:0.005%以下のうちの1種以上を含有し、さらに不純物としてのFeおよびSiをそれぞれ0.25%以下に制限し、残部Alおよび不可避的不純物からなる組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を均質化処理後、熱間押出を行い、さらに溶体化処理および焼入れを行い、焼入れ後5分以内に50℃以上100℃以下の温度で1分以上30分以下の熱処理を行うことを特徴とする請求項1〜5のいずれかに記載の温間加工性に優れたAl−Zn−Mg−Cu合金押出材の製造方法。 Zn: 5.0 to 7.5%, Mg: 1.6 to 3.3%, Cu: 1.1 to 2.5%, Cr: 0.30% or less, Mn: 0.60 % Or less, Zr: one or more of 0.30% or less, and Ti: 0.06% or less, B: one or more of 0.005% or less, and Fe and Si as impurities Each is limited to 0.25% or less, an aluminum alloy having a composition composed of the remaining Al and inevitable impurities is melted and cast, and the resulting ingot is subjected to homogenization treatment and then subjected to hot extrusion to further form a solution. The warm working according to any one of claims 1 to 5, wherein treatment and quenching are performed, and heat treatment is performed for 1 minute to 30 minutes at a temperature of 50 ° C to 100 ° C within 5 minutes after quenching. Of producing an extruded Al-Zn-Mg-Cu alloy having excellent properties. 前記均質化処理を400℃以上500℃以下の温度で行なった後、300℃以上400℃以下の温度で追加熱処理を行い、その後、熱間押出を行うことを特徴とする請求項6記載の温間加工性に優れたAl−Zn−Mg−Cu合金押出材の製造方法。 The temperature according to claim 6, wherein the homogenization treatment is performed at a temperature of 400 ° C or higher and 500 ° C or lower, an additional heat treatment is performed at a temperature of 300 ° C or higher and 400 ° C or lower, and then hot extrusion is performed. A method for producing an Al—Zn—Mg—Cu alloy extruded material excellent in inter-workability. 請求項1〜5のいずれかに記載の温間加工性に優れたAl−Zn−Mg−Cu合金押出材を用いて、100℃以上200℃以下の温度で塑性加工を行い、さらに人工時効処理を行うことにより得られることを特徴とするアルミニウム合金温間加工材。 Using the Al-Zn-Mg-Cu alloy extruded material excellent in warm workability according to any one of claims 1 to 5, plastic working is performed at a temperature of 100 ° C or higher and 200 ° C or lower, and further an artificial aging treatment An aluminum alloy warm-working material obtained by performing
JP2007290424A 2007-11-08 2007-11-08 Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material Active JP5083816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290424A JP5083816B2 (en) 2007-11-08 2007-11-08 Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290424A JP5083816B2 (en) 2007-11-08 2007-11-08 Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material

Publications (2)

Publication Number Publication Date
JP2009114514A JP2009114514A (en) 2009-05-28
JP5083816B2 true JP5083816B2 (en) 2012-11-28

Family

ID=40781973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290424A Active JP5083816B2 (en) 2007-11-08 2007-11-08 Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material

Country Status (1)

Country Link
JP (1) JP5083816B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107385291A (en) * 2017-06-22 2017-11-24 烟台南山学院 A kind of high-performance Al Zn Mg Cu Zr Ce Ti alloys and its preparation technology
US10221472B2 (en) 2014-03-06 2019-03-05 Uacj Corporation Structural aluminum alloy plate and method of producing the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520725B2 (en) * 2010-07-16 2014-06-11 株式会社Uacj Porthole extruded material for hot bulge forming and manufacturing method thereof
CN102409205B (en) * 2011-11-16 2013-11-13 中国船舶重工集团公司第七二五研究所 Zirconium microalloyed weldable aluminum-zinc-magnesium alloy with high purity, high-strength and corrosion resistance
JP5767624B2 (en) 2012-02-16 2015-08-19 株式会社神戸製鋼所 Aluminum alloy hollow extruded material for electromagnetic forming
CA2881789A1 (en) 2012-09-20 2014-03-27 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Aluminum alloy sheet for automobile part
JP5830006B2 (en) * 2012-12-27 2015-12-09 株式会社神戸製鋼所 Extruded aluminum alloy with excellent strength
JP6273158B2 (en) * 2013-03-14 2018-01-31 株式会社神戸製鋼所 Aluminum alloy plate for structural materials
CN104109784B (en) * 2014-04-30 2016-09-14 广西南南铝加工有限公司 A kind of superhigh intensity Al-Zn-Mg-Cu aluminum alloy big specification rectangle ingot and manufacture method thereof
CN104195480A (en) * 2014-09-08 2014-12-10 广西南南铝加工有限公司 Integral aging method of Al-Zn-Mg alloy profile
JP6348466B2 (en) * 2015-08-25 2018-06-27 株式会社Uacj Aluminum alloy extruded material and method for producing the same
EP3441491B1 (en) 2016-03-30 2021-12-01 Aisin Keikinzoku Co., Ltd. Manufacturing method for a high strength extruded aluminum alloy material
US10428412B2 (en) * 2016-11-04 2019-10-01 Ford Motor Company Artificial aging of strained sheet metal for strength uniformity
CN106399777B (en) * 2016-11-11 2018-03-09 佛山科学技术学院 A kind of high intensity high-hardenability ultra-high-strength aluminum alloy and preparation method thereof
JP2018178193A (en) * 2017-04-13 2018-11-15 昭和電工株式会社 Aluminum alloy-made processed product and manufacturing method therefor
JP6817266B2 (en) * 2018-10-03 2021-01-20 株式会社ジーテクト Aluminum alloy molding method
CN110042288B (en) * 2019-05-10 2021-02-26 西北铝业有限责任公司 Aluminum alloy U-shaped frame profile for aerospace and preparation method thereof
JP7244195B2 (en) 2019-07-11 2023-03-22 株式会社神戸製鋼所 Method for manufacturing 7000 series aluminum alloy member
JP7316951B2 (en) 2020-01-20 2023-07-28 株式会社神戸製鋼所 Method for manufacturing aluminum alloy member
CN114411072B (en) * 2021-12-28 2022-09-23 中南大学 Aluminum alloy material with gradient structure and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2517702B1 (en) * 1981-12-03 1985-11-15 Gerzat Metallurg
JPS6013047A (en) * 1983-06-30 1985-01-23 Showa Alum Corp High-strength aluminum alloy with superior cold workability
JP4208156B2 (en) * 1995-02-24 2009-01-14 住友軽金属工業株式会社 Manufacturing method of high strength aluminum alloy extruded material
JP4906313B2 (en) * 2005-10-28 2012-03-28 株式会社住軽テクノ High-strength aluminum alloy extruded tube excellent in tube expansion workability, its manufacturing method, and tube expansion material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221472B2 (en) 2014-03-06 2019-03-05 Uacj Corporation Structural aluminum alloy plate and method of producing the same
CN107385291A (en) * 2017-06-22 2017-11-24 烟台南山学院 A kind of high-performance Al Zn Mg Cu Zr Ce Ti alloys and its preparation technology
CN107385291B (en) * 2017-06-22 2019-01-29 烟台南山学院 A kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy and its preparation process

Also Published As

Publication number Publication date
JP2009114514A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5083816B2 (en) Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material
RU2451565C2 (en) High-strength flexure-tolerable material
JP4285916B2 (en) Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
WO2008072776A1 (en) High-strength aluminum-base alloy products and process for production thereof
WO2015146654A1 (en) Forged aluminum alloy material and method for producing same
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP2009299110A (en) HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
JP2010196112A (en) HIGH STRENGTH Al-Cu-Mg ALLOY EXTRUDED MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2010031314A (en) Titanium alloy sheet having high strength and excellent formability, and method for producing the same
CN107075620B (en) Aluminum alloy brazing sheet having high strength, high corrosion resistance, and high elongation of plateau material
JP5592600B2 (en) Bio-based Co-based alloy material for hot die forging and manufacturing method thereof
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
JP2009249647A (en) Magnesium alloy excellent in creep characteristics at high temperature, and manufacturing method therefor
JP2011231359A (en) High strength 6000-series aluminum alloy thick plate, and method for producing the same
JP5846684B2 (en) Method for producing aluminum alloy material excellent in bending workability
JP5088876B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
CN107429337B (en) The aluminium-alloy pipe and its manufacturing method of corrosion resistance and excellent in workability
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP2003105473A (en) Aluminum alloy sheet having excellent bendability and drawability and method for manufacturing the same
JP6045446B2 (en) Method for producing heat-treated Al-Mg-Si alloy with excellent appearance uniformity
JP2012172176A (en) Aluminum alloy hollow-shaped material excellent in fatigue strength, and manufacturing method of the same
JP7432315B2 (en) Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger
JP2017002373A (en) Titanium alloy forging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

R150 Certificate of patent or registration of utility model

Ref document number: 5083816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250