JP5064356B2 - Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate - Google Patents

Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate Download PDF

Info

Publication number
JP5064356B2
JP5064356B2 JP2008296851A JP2008296851A JP5064356B2 JP 5064356 B2 JP5064356 B2 JP 5064356B2 JP 2008296851 A JP2008296851 A JP 2008296851A JP 2008296851 A JP2008296851 A JP 2008296851A JP 5064356 B2 JP5064356 B2 JP 5064356B2
Authority
JP
Japan
Prior art keywords
phase
titanium alloy
alloy plate
grain size
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008296851A
Other languages
Japanese (ja)
Other versions
JP2010121186A (en
Inventor
健 工藤
義男 逸見
誠 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Osaka Titanium Technologies Co Ltd
Original Assignee
Kobe Steel Ltd
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Osaka Titanium Technologies Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2008296851A priority Critical patent/JP5064356B2/en
Publication of JP2010121186A publication Critical patent/JP2010121186A/en
Application granted granted Critical
Publication of JP5064356B2 publication Critical patent/JP5064356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、強度と成形性に優れたチタン合金板と、そのチタン合金板の製造方法に関するものである。   The present invention relates to a titanium alloy plate excellent in strength and formability and a method for producing the titanium alloy plate.

Ti−6Al−4Vに代表される高強度α+β型チタン合金は、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性などの利用加工諸特性を有することから、航空機産業を中心に多用されてきた。これらの特性を更に活用すべく、近年では、ゴルフ用品をはじめとしたスポーツ用品にも使用されるようになってきており、自動車部品、土木建築用素材、各種工具類などの民生品分野や、深海やエネルギー開発用途などへの適用拡大も進んでいる。しかし、α+β型チタン合金の著しく高い製造コストがその適用拡大の妨げとなっており、これら民生品分野等への更なる適用拡大を促進するには、上記した諸特性を阻害することなく、且つ安価なチタン合金が開発されることであり、その開発が待ち望まれている。   High strength α + β type titanium alloys represented by Ti-6Al-4V have various processing characteristics such as weldability, superplasticity and diffusion bonding properties in addition to lightweight, high strength and high corrosion resistance. Has been heavily used in the center. In order to further utilize these characteristics, in recent years it has come to be used for sports equipment such as golf equipment, such as consumer products such as automobile parts, civil engineering materials, various tools, Application to deep seas and energy development applications is also expanding. However, the remarkably high production cost of α + β type titanium alloy has hindered its application expansion, and in order to promote further application expansion to the field of consumer products, etc., without impairing the above-mentioned characteristics and An inexpensive titanium alloy is to be developed, and its development is awaited.

これら高強度α+β型チタン合金の製造コストが高くなる理由としては次の2点を挙げることができる。Vなどの高価なβ相安定化元素を使用していること。α相安定化元素として使用しているAlが、熱間での変形抵抗を著しく高め、熱間加工性を損ねるため、加工しにくく、また割れなどの欠陥を生じやすいということ。以上の2点である。   The following two points can be cited as the reasons why the production cost of these high-strength α + β-type titanium alloys increases. Expensive β-phase stabilizing elements such as V are used. Al used as an α-phase stabilizing element remarkably increases hot deformation resistance and impairs hot workability, so that it is difficult to work and easily causes defects such as cracks. These are the above two points.

特に、Alの添加は、主要製品である合金板を製造する際に製造コストが高くなる大きな要因となっており、圧延途中で再加熱を必要としたり、合金板の端部に割れを生じて材料歩留まりが低下したりするといった問題が発生する要因となっていた。   In particular, the addition of Al is a major factor that increases the manufacturing cost when manufacturing the main product alloy plate, and requires reheating during rolling, or cracks at the end of the alloy plate. This has been a cause of problems such as a decrease in material yield.

このような状況下で、近年、低コストチタン合金が種々提案されている。それらの中でも、Ti−Fe−O−N系高強度チタン合金は、β相安定化元素として、安価なFeを採用し、α相安定化元素として、熱間加工性を低下させるAlに替えて、熱間での加工性を損なわず且つ安価な酸素(O)や窒素(N)を採用していることから、従来のα+β型チタン合金に比べて、相当な低コスト化が期待されている。   Under such circumstances, various low-cost titanium alloys have been proposed in recent years. Among them, Ti-Fe-O-N-based high-strength titanium alloys adopt inexpensive Fe as the β-phase stabilizing element, and replace Al as the α-phase stabilizing element, which reduces hot workability. Because of the use of cheap oxygen (O) and nitrogen (N) without impairing hot workability, considerable cost reduction is expected compared to conventional α + β type titanium alloys. .

しかしながら、このTi−Fe−O−N系高強度チタン合金は、通常の一方向圧延により板を製造した場合、極端な板面内材質異方性が生じ、板の圧延方向すなわち長さ方向の特性は優れるものの、その幅方向の延性が極端に乏しくなってしまうという問題を兼ね備えていた。   However, when this Ti—Fe—O—N-based high-strength titanium alloy is produced by normal unidirectional rolling, extreme in-plane material anisotropy occurs, and the rolling direction of the plate, that is, the lengthwise direction, Although it has excellent characteristics, it also has the problem that the ductility in the width direction becomes extremely poor.

この問題を解消するための改善案として一度だけ圧延方向に対して垂直方向に圧延を行い、その面内異方性を小さくすることで、長さ方向、幅方向ともに高強度・高延性のTi−Fe−O−N系高強度チタン合金を得られることが、特許文献1に開示されている。しかしながら、このようなクロス圧延を実機に適用することはコスト増を招くことになり、実質的な改善とはなっていない。従って、実機へ適用してもコスト増を招かず低コストで、面内異方性が小さい上に、高強度で成形性に優れたチタン合金板が開発されることが待ち望まれている。   As an improvement plan to solve this problem, rolling in the direction perpendicular to the rolling direction only once, and reducing the in-plane anisotropy, high strength and high ductility in both the length and width directions Patent Document 1 discloses that a —Fe—O—N high-strength titanium alloy can be obtained. However, applying such cross rolling to an actual machine causes an increase in cost, and is not a substantial improvement. Accordingly, there is a long-awaited development of a titanium alloy plate that is low in cost, low in-plane anisotropy, high strength and excellent formability even when applied to an actual machine.

特開平11−61297号公報Japanese Patent Laid-Open No. 11-61297

本発明は、上記従来の問題を解決せんとしてなされたもので、高強度で成形性に優れ、更には、安価なチタン合金板とそのチタン合金板の製造方法を提供することを課題とするものである。   The present invention has been made as a solution to the above-mentioned conventional problems, and it is an object of the present invention to provide a titanium alloy plate having high strength, excellent formability, and an inexpensive method for producing the titanium alloy plate. It is.

請求項1記載の発明は、金属組織が、β相の最大結晶粒径:15μm以下、α相の面積率:80〜97%、α相の平均結晶粒径:20μm以下であって、且つ、α相の結晶粒径の標準偏差÷α相の平均結晶粒径×100が、30%以下であることを特徴とする高強度で成形性に優れたチタン合金板である。   The invention according to claim 1 is characterized in that the metal structure has a maximum crystal grain size of β phase: 15 μm or less, an area ratio of α phase: 80 to 97%, an average crystal grain size of α phase: 20 μm or less, and The titanium alloy plate having high strength and excellent formability, wherein the standard deviation of the crystal grain size of the α phase ÷ the average crystal grain size of the α phase × 100 is 30% or less.

請求項2記載の発明は、β安定化元素を、0.8〜2.5質量%含有することを特徴とする請求項1記載の高強度で成形性に優れたチタン合金板である。   The invention described in claim 2 is the titanium alloy plate having high strength and excellent formability according to claim 1, characterized in that it contains 0.8-2.5 mass% of a β-stabilizing element.

請求項3記載の発明は、前記β安定化元素が、Feであることを特徴とする請求項2記載の高強度で成形性に優れたチタン合金板である。   The invention according to claim 3 is the titanium alloy plate having high strength and excellent formability according to claim 2, wherein the β-stabilizing element is Fe.

請求項4記載の発明は、チタン合金鋳塊を用いて、分塊圧延、熱間圧延、中間焼鈍、冷間圧延、最終焼鈍を順次実施して請求項1記載の金属組織を有するチタン合金板を製造するにあたり、前記最終焼鈍をβ変態点以下の温度で2度実施すると共に、2度目の温度を1度目の温度よりも高い温度として前記最終焼鈍を実施することを特徴とする高強度で成形性に優れたチタン合金板の製造方法である。   The invention according to claim 4 is a titanium alloy plate having a metallographic structure according to claim 1, in which a titanium alloy ingot is used to perform ingot rolling, hot rolling, intermediate annealing, cold rolling, and final annealing in order. In the manufacturing process, the final annealing is performed twice at a temperature equal to or lower than the β transformation point, and the final annealing is performed with the second temperature higher than the first temperature. This is a method for producing a titanium alloy plate excellent in formability.

本発明によると、高強度で成形性に優れ、更には、安価なチタン合金板を得ることができる。また、チタン合金本来の優れた耐久性はもとより、高い機械的強度に加えて、優れた成形性を有しているので、プレート式熱交換器の構成材、燃料電池のセパレーター、携帯電話機、モバイルパソコン、カメラのボディ、眼鏡フレーム等、高度な成形性が要求される用途に広く適用することができる。   According to the present invention, it is possible to obtain a titanium alloy plate that is high in strength and excellent in formability and that is inexpensive. In addition to the excellent durability inherent in titanium alloys, in addition to high mechanical strength, it has excellent formability, so it is a component of plate heat exchangers, fuel cell separators, mobile phones, mobiles It can be widely applied to uses that require high formability, such as personal computers, camera bodies, and spectacle frames.

本発明者らは、高強度で成形性に優れたチタン合金板を、更には、低コストで得るために、鋭意、実験、研究を進めた結果、β相を分散させることで、従来のJISクラスのチタン合金板より高強度のチタン合金板を実現することができる一方、粗大なβ相が形成されると、成形時の破壊の起点となり、成形性が劣化することを確認した。   In order to obtain a titanium alloy plate having high strength and excellent formability at a low cost, the present inventors have intensively experimented and researched. As a result of dispersing the β phase, the conventional JIS has been obtained. While it was possible to realize a titanium alloy plate having a strength higher than that of a class titanium alloy plate, it was confirmed that when a coarse β phase was formed, it became a starting point of fracture during forming and the formability deteriorated.

その結果、β相の最大結晶粒径を適正サイズとしたうえで、α相の面積率と平均結晶粒径を適正範囲に規定し、更に、α相の平均結晶粒径に対するα相の結晶粒径の標準偏差の比率を適正な比率に制御することで、高強度で、優れた成形性を確保できることを見出し、本発明の完成に至った。   As a result, after setting the maximum crystal grain size of the β phase to an appropriate size, the area ratio of the α phase and the average crystal grain size are regulated within an appropriate range, and further, the α phase crystal grains with respect to the average crystal grain size of the α phase By controlling the ratio of the standard deviation of the diameter to an appropriate ratio, it has been found that high strength and excellent formability can be secured, and the present invention has been completed.

以下、本発明を実施形態に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

(β相の最大結晶粒径)
粗大なβ相が形成されると成形時の破壊の起点となり、成形性が劣化してしまう。成形性を劣化させないためには、β相の最大結晶粒径を15μm以下とする必要がある。好ましくは10μm以下、より好ましくは7μm以下である。尚、β相の最大結晶粒径の下限については特に規定しないが、好ましい下限は0.1μmである。
(Maximum grain size of β phase)
When a coarse β phase is formed, it becomes a starting point for destruction during molding, and the moldability deteriorates. In order not to deteriorate the moldability, the maximum crystal grain size of the β phase needs to be 15 μm or less. Preferably it is 10 micrometers or less, More preferably, it is 7 micrometers or less. The lower limit of the maximum crystal grain size of the β phase is not particularly specified, but a preferable lower limit is 0.1 μm.

(α相の面積率)
チタン合金におけるα相の結晶構造は六方最密充填構造(HCP)、β相の結晶構造は体心立方構造(BCC)である。よって、α相が減少するに伴い伸びの異方性が減少し、成形性が向上する。但し、α相が減少するに伴いα相の平均結晶粒径が大きくなるため、強度が低下してしまう。α相の面積率が97%を超えると、伸びの異方性が大きくなりすぎ、成形性が劣化してしまう。一方、α相の面積率が80%未満であると、β相の最大結晶粒径が大きくなりすぎ、成形性が劣化してしまう。従って、α相の面積率の上限は97%、下限は80%とする。好ましい上限は96%、下限は90%である。
(Area area ratio of α phase)
The crystal structure of the α phase in the titanium alloy is a hexagonal close-packed structure (HCP), and the crystal structure of the β phase is a body-centered cubic structure (BCC). Therefore, as the α phase decreases, the anisotropy of elongation decreases and the moldability improves. However, since the average crystal grain size of the α phase increases as the α phase decreases, the strength decreases. When the area ratio of the α phase exceeds 97%, the anisotropy of elongation becomes too large and the formability deteriorates. On the other hand, if the area ratio of the α phase is less than 80%, the maximum crystal grain size of the β phase becomes too large and the moldability deteriorates. Therefore, the upper limit of the area ratio of the α phase is 97%, and the lower limit is 80%. A preferable upper limit is 96%, and a lower limit is 90%.

(α相の平均結晶粒径)
α相の平均結晶粒径が、小さいほど結晶粒微細化効果により強度が大きくなる。従って、α相の平均結晶粒径の上限は、優れた強度を確保できる限界値の20μmとする。好ましい上限は15μmである。但し、α相の平均結晶粒径が1μm以下のチタン合金は、現行の量産工程では作製することは困難である。
(Average crystal grain size of α phase)
The smaller the average crystal grain size of the α phase, the greater the strength due to the effect of crystal grain refinement. Therefore, the upper limit of the average crystal grain size of the α phase is set to 20 μm, which is a limit value that can ensure excellent strength. A preferred upper limit is 15 μm. However, a titanium alloy having an α-phase average crystal grain size of 1 μm or less is difficult to produce in the current mass production process.

(α相の結晶粒径の標準偏差÷α相の平均結晶粒径×100)
α相の結晶粒径の標準偏差が、α相の平均結晶粒径の30%より大きくなると、α相の結晶粒径の平均値と比較して大きな結晶粒の数が多くなりすぎ、その結果、成形性が劣化してしまう。従って、α相の平均結晶粒径に対するα相の結晶粒径の標準偏差の割合(百分率)を30%以下とする。好ましい上限は20%、より好ましい上限は15%である。尚、その下限については小さければ小さいほど良いため特に規定しないが、現実的にはその下限は5%程度であると考えられる。
(Standard deviation of α phase crystal grain size ÷ average crystal grain size of α phase × 100)
When the standard deviation of the α-phase crystal grain size is larger than 30% of the average crystal grain size of the α-phase, the number of large crystal grains becomes too large compared to the average value of the α-phase crystal grain size. , The moldability will deteriorate. Therefore, the ratio (percentage) of the standard deviation of the crystal grain size of the α phase to the average crystal grain size of the α phase is set to 30% or less. A preferable upper limit is 20%, and a more preferable upper limit is 15%. The lower limit is not particularly specified because it is preferably as small as possible, but in reality, the lower limit is considered to be about 5%.

(成分組成)
β安定化元素としてのFeの含有量は、0.8〜2.5質量%であることが好ましい。Feの含有量が0.8質量%未満であると、必要最低限の強度が得られなくなる。一方、Feの含有量が2.5質量%を超えると、粗大なβ相が形成され、成形性が劣化してしまう。その下限は、1.0質量%であることがより好ましく、1.2質量%であることが更に好ましい。また、上限は、2.3質量%であることがより好ましく、2.1質量%であることが更に好ましい。尚、Fe以外のβ安定化元素も採用することは可能であるが、その場合もそれらの含有量は、0.8〜2.5質量%であることが好ましい。
(Component composition)
The content of Fe as a β-stabilizing element is preferably 0.8 to 2.5% by mass. When the Fe content is less than 0.8% by mass, the necessary minimum strength cannot be obtained. On the other hand, if the Fe content exceeds 2.5% by mass, a coarse β phase is formed and the formability deteriorates. The lower limit is more preferably 1.0% by mass, and still more preferably 1.2% by mass. The upper limit is more preferably 2.3% by mass, and still more preferably 2.1% by mass. In addition, although it is possible to employ | adopt (beta) stabilizing elements other than Fe, also in that case, it is preferable that those content is 0.8-2.5 mass%.

また、チタン合金中のα相を硬化させるα安定化元素として、Oを添加することが、安価であることもあって好ましい。α安定化元素であるOは材料の強度の増加に寄与するが、Oの含有量が多くなりすぎると、伸びが小さくなり、成形性が低下してしまう。従って、Oの含有量は、0.1質量%以下(0質量%を含まない)であることが好ましい。より好ましくは0.08質量%以下、更に好ましくは0.06質量%以下である。   In addition, it is preferable to add O as an α stabilizing element that hardens the α phase in the titanium alloy because it is inexpensive. O, which is an α-stabilizing element, contributes to an increase in the strength of the material. However, if the content of O is too large, the elongation becomes small and the moldability deteriorates. Therefore, the content of O is preferably 0.1% by mass or less (not including 0% by mass). More preferably, it is 0.08 mass% or less, More preferably, it is 0.06 mass% or less.

尚、本発明では、チタン合金の成分組成については特に規定しない。しかしながら、添加するβ安定化元素が不足すると、必要最低限の強度が得られない可能性がある。一方、添加するβ安定化元素が過剰であると、粗大なβ相が形成され、成形性が劣化するおそれがある。β安定化元素としては、Mo、V、Fe、Cr、Ta、Nb、Mn、Cu、Ni、Ca、Si、およびHの1種類以上を添加することができるが、β安定化元素としてFeを添加することが、安価なこともあって好ましい。   In the present invention, the component composition of the titanium alloy is not particularly specified. However, if the added β-stabilizing element is insufficient, the necessary minimum strength may not be obtained. On the other hand, if the β-stabilizing element to be added is excessive, a coarse β-phase is formed and the moldability may be deteriorated. As a β-stabilizing element, one or more of Mo, V, Fe, Cr, Ta, Nb, Mn, Cu, Ni, Ca, Si, and H can be added. It is preferable to add it because it is inexpensive.

(製造条件)
次に、本発明のチタン合金板の製造方法について説明する。通常のチタン合金板は、分塊圧延→熱間圧延→中間焼鈍→冷間圧延→最終焼鈍といった各工程間に、随時ブラスト、酸洗処理を入れて製造されるが、製造するチタン合金板の成分組成や各工程の設定条件によって、得られる物性や組織状態は変わるので、一連の製造工程として総合的に条件を選択して決定すべきであって、個々の工程毎に条件を厳密に設定することは必ずしも適切でない。
(Production conditions)
Next, the manufacturing method of the titanium alloy plate of this invention is demonstrated. Ordinary titanium alloy sheets are manufactured by performing blasting and pickling treatment at any time between each process such as lump rolling → hot rolling → intermediate annealing → cold rolling → final annealing. Depending on the component composition and the setting conditions of each process, the physical properties and structure obtained will change, so the conditions should be selected and determined comprehensively as a series of manufacturing processes, and the conditions are strictly set for each process It is not always appropriate to do.

しかしながら、本発明のチタン合金板を製造するための製造条件として、本発明者らが鋭意検討したところ、以下に示す条件を採用することで、本発明で意図する高強度で成形性に優れたチタン合金板を確実に製造することができることを確認した。   However, as a manufacturing condition for manufacturing the titanium alloy plate of the present invention, the present inventors diligently studied, and by adopting the following conditions, the high strength and excellent formability intended by the present invention were achieved. It was confirmed that the titanium alloy plate can be reliably manufactured.

その条件は、1)冷間圧延後の最終焼鈍を2度実施する。2)2度の焼鈍の温度は、2度共にβ変態点以下の温度とすると共に、2度目の焼鈍温度を1度目の焼鈍温度よりも高い温度とする。3)1度目の焼鈍の後、室温に冷却しても良いし、室温に冷却せずにそのまま2度目の焼鈍を行っても良い。4)2度の焼鈍共に夫々の焼鈍温度で5分以下保持する。以上の各条件を適切に組み合わせて最終焼鈍を実施することで、本発明で意図する高強度で成形性に優れたチタン合金を確実に製造することができる。   The conditions are as follows: 1) Final annealing after cold rolling is performed twice. 2) The temperature of the second annealing is set to a temperature equal to or lower than the β transformation point in both times, and the second annealing temperature is set to a temperature higher than the first annealing temperature. 3) After the first annealing, it may be cooled to room temperature, or may be annealed as it is without cooling to room temperature. 4) Hold for 5 minutes or less at each annealing temperature in both annealings. By appropriately combining the above conditions and performing the final annealing, a titanium alloy having high strength and excellent formability intended in the present invention can be reliably produced.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

本実施例では、まず、CCIM(コールドクルーシブル誘導溶解法)により表1に示す各成分組成のチタン合金でなる鋳塊を鋳造した。鋳塊の大きさはφ100mmの円柱形で、10Kgである。この鋳塊を用いて分塊圧延し、以下、熱間圧延→中間焼鈍→冷間圧延→最終焼鈍という工程を経て厚み0.3mmのチタン合金板を製造した。   In this example, first, ingots made of titanium alloys having respective component compositions shown in Table 1 were cast by CCIM (cold crucible induction melting method). The size of the ingot is a cylindrical shape of φ100 mm and is 10 kg. This ingot was used for ingot rolling, and a titanium alloy plate having a thickness of 0.3 mm was manufactured through steps of hot rolling → intermediate annealing → cold rolling → final annealing.

最終焼鈍は、No.10を除いて2度実施し、1度目の焼鈍後に室温に冷却せずにそのまま2度目の焼鈍を行った。また、1度目の焼鈍、2度目の焼鈍共に、2分間保持した、尚、1度しか焼鈍を行わないNo.10のみ4分間の保持とした。夫々の焼鈍温度は表1に示す通りであり、No.11の1度目の焼鈍を除き、焼鈍温度はβ変態点以下の温度である。尚、本実施例で用いたチタン合金のβ変態点は、約830〜870℃である。   The final annealing is no. It was carried out twice except for 10, and after the first annealing, the second annealing was performed as it was without cooling to room temperature. In addition, both the first annealing and the second annealing were held for 2 minutes. Only 10 was held for 4 minutes. The respective annealing temperatures are as shown in Table 1. Except for the first annealing of No. 11, the annealing temperature is a temperature below the β transformation point. Note that the β transformation point of the titanium alloy used in this example is about 830 to 870 ° C.

製造した各チタン合金板の金属組織の観察・測定と、強度および成形性の評価を夫々下記の要領で行った。   Observation and measurement of the metal structure of each manufactured titanium alloy plate, and evaluation of strength and formability were performed as follows.

<β相の最大結晶粒径、α相の面積率、α相の平均結晶粒径、α相の結晶粒径の標準偏差÷α相の平均結晶粒径×100>
本実施例では、上記各パラメータの測定を、電界放出型走査顕微鏡(Field Emission Scanning Electron Microscope:FESEM)(日本電子社製、JSM5410)に、後方錯乱電子回析像(Electron Back Scattering(Scattered) Pattern:EBSP)システムを搭載した結晶方位解析法で行った。この測定方法を用いたのは、EBSP法は他の測定方法と比較して高分解能であり、高精度な測定ができるためである。まず、測定原理について説明する。
<Maximum crystal grain size of β phase, area ratio of α phase, average crystal grain size of α phase, standard deviation of crystal grain size of α phase ÷ average crystal grain size of α phase × 100>
In this example, the measurement of each of the above parameters was performed on a field emission scanning microscope (FESEM) (JSM5410, manufactured by JEOL Ltd.) using a back-scattered electron diffraction image (Electron Back Scattered (Scattered) Pattern). : EBSP) system mounted crystal orientation analysis method. This measurement method was used because the EBSP method has higher resolution than other measurement methods and can perform measurement with high accuracy. First, the measurement principle will be described.

EBSP法は、FESEMの鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込み、この画像を解析する。このプロセスが全測定点に対して自動的に行われるので、測定終了時には数万〜数十万点のデータを得ることができる。   In the EBSP method, an electron beam is irradiated onto a sample set in a lens barrel of FESEM to project EBSP on a screen. This is taken with a high-sensitivity camera, captured as an image into a computer, and the image is analyzed. Since this process is automatically performed for all measurement points, data of tens of thousands to hundreds of thousands of points can be obtained at the end of measurement.

このように、EBSP法には、X線回析法や透過電子顕微鏡を用いた電子線回析法よりも、観察視野が広く、数百個以上の多数の結晶粒に対する、β相の最大結晶粒径、α相の面積率、α相の平均結晶粒径、α相の結晶粒径の標準偏差等に関する情報を、数時間以内で得ることができる利点がある。また、結晶粒毎の測定ではなく、指定した領域を一定間隔で走査して測定するために、測定領域全体を網羅した上記多数の測定ポイントに関する、上記各情報を得ることができる利点もある。尚、これらFESEMにEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)P66−70などに詳細に記載されている。   As described above, the EBSP method has a wider observation field than the X-ray diffraction method or the electron diffraction method using a transmission electron microscope, and the maximum crystal of the β phase with respect to a large number of crystal grains of several hundred or more. There is an advantage that information on the particle size, the area ratio of the α phase, the average crystal particle size of the α phase, the standard deviation of the crystal size of the α phase, and the like can be obtained within a few hours. In addition, since the specified region is scanned at a fixed interval instead of the measurement for each crystal grain, there is an advantage that each of the above-mentioned information regarding the above-described many measurement points covering the entire measurement region can be obtained. Details of the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs are described in Kobe Steel Technical Report / Vol. 52 no. 2 (Sep. 2002) P66-70 and the like.

チタン合金板のβ相の最大結晶粒径、α相の面積率、α相の平均結晶粒径、α相の結晶粒径の標準偏差を、この測定から得た。これらの測定については、前記したように、FESEMにEBSPシステムを搭載した結晶方位解析法を用いて、チタン合金板の表面に平行な面であり、且つ、板厚方向の1/4t部の集合組織を測定して行った。具体的には、チタン合金板の圧延面表面を機械研磨し、更にバフ研磨に次いで電解研磨を行い、表面を調整した試料を準備した。その後、日本電子社製FESEM(JEOL JSM 5410)を用いて、EBSPによる測定を行った。測定領域は300μm×300μmの領域であり、測定ステップ間隔0.5μmとした。EBSP測定・解析システムは、EBSP:TSL社製のOIM(Orientation Imaging Microscopy)を用いた。   The maximum crystal grain size of the β phase of the titanium alloy plate, the area ratio of the α phase, the average crystal grain size of the α phase, and the standard deviation of the crystal grain size of the α phase were obtained from this measurement. For these measurements, as described above, using the crystal orientation analysis method in which the EBSP system is mounted on the FESEM, the surface is parallel to the surface of the titanium alloy plate and is a set of 1/4 t portions in the plate thickness direction. This was done by measuring the tissue. Specifically, the surface of the rolled surface of the titanium alloy plate was mechanically polished, followed by buffing and then electrolytic polishing to prepare a sample whose surface was adjusted. Then, the measurement by EBSP was performed using FESEM (JEOL JSM 5410) by JEOL. The measurement area was an area of 300 μm × 300 μm, and the measurement step interval was 0.5 μm. As the EBSP measurement / analysis system, EBSP: OIM (Orientation Imaging Microscopy) manufactured by TSL was used.

このような測定手段により、測定範囲内のβ相の最大結晶粒径、α相の面積率、α相の平均結晶粒径、α相の結晶粒径の標準偏差を求めた。β相の最大結晶粒径は円相当径を採用した。また、α相の平均結晶粒径と平均結晶粒径の標準偏差は、以下に示す各数式から求めだした。すなわち、測定した結晶粒の数をn、夫々の測定した結晶粒径をxとしたときに、平均結晶粒径は、(Σx)/nという数式から、平均結晶粒径の標準偏差は、〔{nΣx−(Σx)}/n/(n−1)〕1/2という数式から求めた。 By such a measuring means, the maximum crystal grain size of β phase within the measurement range, the area ratio of α phase, the average crystal grain size of α phase, and the standard deviation of the crystal grain size of α phase were determined. The equivalent crystal diameter was adopted as the maximum crystal grain size of the β phase. Further, the average crystal grain size of the α phase and the standard deviation of the average crystal grain size were obtained from the following formulas. That is, when the number of measured crystal grains is n and each measured crystal grain size is x, the average crystal grain size is expressed by the formula (Σx) / n, and the standard deviation of the average crystal grain size is [ {NΣx 2 − (Σx) 2 } / n / (n−1)] 1/2 .

<引張強度の測定>
得られた各チタン合金板からJISZ2201に規定される13号試験片を作製し、この試験片について、圧延方向の引張強度(TS)を測定した。このとき、試験速度(引張試験での歪み速度)は、0.2%耐力までを0.25mm/min、それ以降を10mm/minとした。
<Measurement of tensile strength>
A No. 13 test piece defined in JISZ2201 was produced from each of the obtained titanium alloy plates, and the tensile strength (TS) in the rolling direction was measured for this test piece. At this time, the test speed (strain speed in the tensile test) was 0.25 mm / min up to 0.2% proof stress, and 10 mm / min thereafter.

この試験で得られた圧延方向の引張強度(TS)が、500MPa以上のものを高強度であると評価した。   When the tensile strength (TS) in the rolling direction obtained in this test was 500 MPa or more, it was evaluated as high strength.

<成形性(エリクセン値)の測定>
本実施例の試験では、成形性の評価にエリクセン試験を採用した。得られた各チタン合金板からJISZ2247に規定される2号試験片を作製し、この試験片について、JISZ2247の規定に準拠するエリクセン試験を実施し、エリクセン値を測定した。このとき、試験速度(エリクセン試験でのプレス速度すなわちプレス工具の変位速度)は、5mm/minとした。
<Measurement of formability (Ericsen value)>
In the test of this example, the Eriksen test was adopted for the evaluation of moldability. The No. 2 test piece prescribed | regulated to JISZ2247 was produced from each obtained titanium alloy board, the Eriksen test based on the prescription | regulation of JISZ2247 was implemented about this test piece, and the Eriksen value was measured. At this time, the test speed (press speed in the Eriksen test, that is, the displacement speed of the press tool) was set to 5 mm / min.

この試験で得られたエリクセン値が、8.0以上のものを成形性に優れると評価した。   Those having an Erichsen value of 8.0 or more obtained in this test were evaluated as having excellent moldability.

以上の試験結果を表1に示す。   The test results are shown in Table 1.

Figure 0005064356
Figure 0005064356

No.2は、Feの含有量が請求項3で定めた上限の2.50質量%のもの、No.3は、Feの含有量が請求項3で定めた下限の0.80質量%のもの、No.1はFeの含有量がその中間の1.80質量%のものであり、最終焼鈍の条件は夫々満足している。   No. No. 2 has an upper limit of 2.50% by mass as defined in claim 3, and No. 2 No. 3 is the lower limit of 0.80% by mass as defined in claim 3, and No. 3 No. 1 has an intermediate Fe content of 1.80% by mass, and the final annealing conditions are satisfied.

これに対し、No.4〜7は、焼鈍温度を略上下限としたものであり、No.4は1度目の焼鈍温度を略上限としたもの、No.5は、1度目の焼鈍温度を略下限としたもの、No.6は、2度目の焼鈍温度を略上限としたもの、No.7は、2度目の焼鈍温度を略下限としたものである。   In contrast, no. Nos. 4 to 7 have annealing temperatures approximately upper and lower limits. No. 4 has the first annealing temperature as a substantially upper limit. No. 5 has the first annealing temperature as a substantially lower limit. No. 6 has the second annealing temperature as a substantially upper limit, 7 has the second annealing temperature as a substantially lower limit.

これらNo.1〜7は、本発明の発明例であって、β相の最大結晶粒径、α相の面積率、α相の平均結晶粒径、α相の結晶粒径の標準偏差÷α相の平均結晶粒径×100は、本発明で規定する要件を全て満たすものであり、試験で得られた圧延方向の引張強度(TS)は、全て500MPa以上、エリクセン値は、全て8.0以上である。すなわち、本発明で規定する要件を満たすチタン合金板は、高強度で且つ成形性に優れたものであることが分かる。   These No. 1 to 7 are invention examples of the present invention, and the maximum crystal grain size of β phase, the area ratio of α phase, the average crystal grain size of α phase, the standard deviation of the crystal grain size of α phase ÷ the average of α phase The crystal grain size x 100 satisfies all the requirements stipulated in the present invention. The tensile strength (TS) in the rolling direction obtained in the test is all 500 MPa or more, and the Erichsen values are all 8.0 or more. . That is, it can be seen that a titanium alloy plate that satisfies the requirements defined in the present invention has high strength and excellent formability.

一方、No.8〜11は比較例であって、No.8は、Feの含有量が請求項3で定めた下限未満の0.70質量%のもの、No.9は、Feの含有量が請求項3で定めた上限を超える2.60質量%のもの、No.10は、最終焼鈍を1度しか行わなかったもの。No.11は、1度目の焼鈍温度がβ変態点を超えるものである。   On the other hand, no. Nos. 8 to 11 are comparative examples. No. 8 has a Fe content of 0.70% by mass less than the lower limit defined in claim 3, No. 8; No. 9 is 2.60% by mass with the Fe content exceeding the upper limit defined in claim 3; No. 10 was the final annealing only once. No. 11 is the one where the first annealing temperature exceeds the β transformation point.

No.11は、本発明で規定する要件のうち、β相の最大結晶粒径が大きすぎ、No.は、α相の面積率が大きすぎる。その結果、試験で得られた圧延方向の引張強度(TS)が、500MPaに達しないか、エリクセン値が、8.0に達しなかった。すなわち、本発明で規定する要件から外れるチタン合金板は、高強度で且つ成形性に優れたものとはいえないことが分かる。 No. Among the requirements defined in the present invention, Nos. 9 to 11 indicate that the maximum crystal grain size of the β phase is too large. In No. 8 , the area ratio of the α phase is too large. As a result, the tensile strength (TS) in the rolling direction obtained in the test did not reach 500 MPa, or the Erichsen value did not reach 8.0. That is, it can be seen that a titanium alloy plate that deviates from the requirements defined in the present invention cannot be said to have high strength and excellent formability.

Claims (4)

金属組織が、
β相の最大結晶粒径:15μm以下、
α相の面積率:80〜97%、
α相の平均結晶粒径:20μm以下
であって、
且つ、α相の結晶粒径の標準偏差÷α相の平均結晶粒径×100が、30%以下であることを特徴とする高強度で成形性に優れたチタン合金板。
The metal structure is
Maximum crystal grain size of β phase: 15 μm or less,
α phase area ratio: 80-97%,
Average crystal grain size of α phase: 20 μm or less,
Further, a titanium alloy plate having high strength and excellent formability, wherein standard deviation of α phase crystal grain size ÷ average crystal grain size of α phase × 100 is 30% or less.
β安定化元素を、0.8〜2.5質量%含有することを特徴とする請求項1記載の高強度で成形性に優れたチタン合金板。   The titanium alloy plate having high strength and excellent formability according to claim 1, wherein the β-stabilizing element is contained in an amount of 0.8 to 2.5 mass%. 前記β安定化元素が、Feであることを特徴とする請求項2記載の高強度で成形性に優れたチタン合金板。   3. The titanium alloy plate having high strength and excellent formability according to claim 2, wherein the β-stabilizing element is Fe. チタン合金鋳塊を用いて、分塊圧延、熱間圧延、中間焼鈍、冷間圧延、最終焼鈍を順次実施して請求項1記載の金属組織を有するチタン合金板を製造するにあたり、
前記最終焼鈍をβ変態点以下の温度で2度実施すると共に、2度目の温度を1度目の温度よりも高い温度として前記最終焼鈍を実施することを特徴とする高強度で成形性に優れたチタン合金板の製造方法。
In producing a titanium alloy plate having a metallographic structure according to claim 1 by sequentially carrying out rolling, hot rolling, intermediate annealing, cold rolling, and final annealing using a titanium alloy ingot.
The final annealing is performed twice at a temperature equal to or lower than the β transformation point, and the final annealing is performed by setting the second temperature to be higher than the first temperature. A method for producing a titanium alloy plate.
JP2008296851A 2008-11-20 2008-11-20 Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate Expired - Fee Related JP5064356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296851A JP5064356B2 (en) 2008-11-20 2008-11-20 Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296851A JP5064356B2 (en) 2008-11-20 2008-11-20 Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate

Publications (2)

Publication Number Publication Date
JP2010121186A JP2010121186A (en) 2010-06-03
JP5064356B2 true JP5064356B2 (en) 2012-10-31

Family

ID=42322769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296851A Expired - Fee Related JP5064356B2 (en) 2008-11-20 2008-11-20 Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate

Country Status (1)

Country Link
JP (1) JP5064356B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624566B2 (en) 2011-02-24 2017-04-18 Nippon Steel & Sumitomo Metal Corporation Alpha and beta titanium alloy sheet excellent in cold rollability and cold handling property and process for producing the same
JP6187678B2 (en) 2014-04-10 2017-08-30 新日鐵住金株式会社 Α + β type titanium alloy cold-rolled annealed sheet having high strength and high Young's modulus and method for producing the same
JP6432328B2 (en) * 2014-12-11 2018-12-05 新日鐵住金株式会社 High strength titanium plate and manufacturing method thereof
JP6844706B2 (en) * 2017-08-31 2021-03-17 日本製鉄株式会社 Titanium plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JP3481428B2 (en) * 1997-08-11 2003-12-22 新日本製鐵株式会社 Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
JP2004315907A (en) * 2003-04-17 2004-11-11 Nippon Steel Corp Heat treatment equipment line and heat treatment method for titanium material
JP5183911B2 (en) * 2006-11-21 2013-04-17 株式会社神戸製鋼所 Titanium alloy plate excellent in bendability and stretchability and manufacturing method thereof
JP5112723B2 (en) * 2007-03-26 2013-01-09 株式会社神戸製鋼所 Titanium alloy material excellent in strength and formability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010121186A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5298368B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP5166921B2 (en) Titanium alloy plate with high strength and excellent formability
JP5592818B2 (en) Α-β type titanium alloy extruded material excellent in fatigue strength and method for producing the α-β type titanium alloy extruded material
US20150147225A1 (en) Beta-type titanium alloy having low elastic modulus and high strength
JP5161059B2 (en) Titanium alloy plate with high strength and excellent deep drawability and method for producing titanium alloy plate
JP4666271B2 (en) Titanium plate
EP3012337A1 (en) Hot-forged ti-al-based alloy and method for producing same
JP5027603B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
JP2012057200A (en) Titanium plate excelling in rigidity in rolling width direction, and method of manufacturing the same
JP2021500469A (en) Transformation-induced plastic high entropy alloy and its manufacturing method
JP5385038B2 (en) Titanium plate with high yield strength and excellent press formability
JP5399759B2 (en) Titanium alloy plate having high strength and excellent bending workability and press formability, and method for producing titanium alloy plate
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
JP5088876B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP5421873B2 (en) High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate
JP5444182B2 (en) Titanium plate with excellent formability
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP2013227618A (en) α+β TYPE TITANIUM ALLOY PLATE, AND METHOD OF MANUFACTURING THE SAME
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees