JP3481428B2 - Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy - Google Patents

Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy

Info

Publication number
JP3481428B2
JP3481428B2 JP21632697A JP21632697A JP3481428B2 JP 3481428 B2 JP3481428 B2 JP 3481428B2 JP 21632697 A JP21632697 A JP 21632697A JP 21632697 A JP21632697 A JP 21632697A JP 3481428 B2 JP3481428 B2 JP 3481428B2
Authority
JP
Japan
Prior art keywords
rolling
plate
slab
titanium alloy
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21632697A
Other languages
Japanese (ja)
Other versions
JPH1161297A (en
Inventor
秀樹 藤井
勲 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21632697A priority Critical patent/JP3481428B2/en
Publication of JPH1161297A publication Critical patent/JPH1161297A/en
Application granted granted Critical
Publication of JP3481428B2 publication Critical patent/JP3481428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄、酸素、窒素を
主要合金元素として含有する、Ti−Fe−O−N系の
高強度チタン合金板の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a Ti—Fe—O—N based high strength titanium alloy sheet containing iron, oxygen and nitrogen as main alloying elements.

【0002】[0002]

【従来の技術】Ti−6Al−4Vに代表される高強度
α+β型チタン合金は軽量、高強度、高耐食性に加え、
溶接性、超塑性、拡散接合性などの利用加工諸特性を有
することから、航空機産業を中心に多用されてきた。こ
れらの特性を、さらに活用すべく、近年では、ゴルフ用
品をはじめとしたスポーツ用品にも使用されるようにな
ってきており、自動車部品、土木建築用素材、各種工具
類、深海やエネルギー開発用途など、いわゆる民生品分
野への適用拡大も進行中である。しかし、α+β型チタ
ン合金の著しく高い製造コストがその進行速度を遅くし
ており、これら民生品分野への適用拡大を推進するに
は、安価なチタン合金の開発が求められている。
2. Description of the Related Art High strength α + β type titanium alloys represented by Ti-6Al-4V are lightweight, high strength and high corrosion resistance.
Since it has various processing characteristics such as weldability, superplasticity, and diffusion bondability, it has been widely used mainly in the aircraft industry. In order to further utilize these characteristics, in recent years, it has come to be used for sports equipment such as golf equipment, automobile parts, civil engineering building materials, various tools, deep sea and energy development applications. The expansion of application to the so-called consumer products field is also underway. However, the remarkably high production cost of α + β type titanium alloys slows down the progress speed thereof, and development of inexpensive titanium alloys is required to promote expansion of application to these consumer products fields.

【0003】これら高強度α+β型チタン合金の製造コ
ストが高い理由としては、i)Vなどの高価なβ相安定
化元素を使用していること、ii)α相安定化元素および
固溶強化元素として使用しているAlが、熱間での変形
抵抗を著しく高め、熱間加工性を損ねるため、加工しに
くく、また割れなどの欠陥を生じ易い、の2点を挙げる
ことができる。特に、 iii)は、主要製品である板を製
造する際の大きな高コスト要因であり、圧延途中で再加
熱を必要としたり、板端部に割れを生じ材料歩留まりが
低下するなどの問題点があった。
The reasons for the high production cost of these high strength α + β type titanium alloys are that i) the use of expensive β phase stabilizing elements such as V, ii) α phase stabilizing elements and solid solution strengthening elements The Al used as is significantly increased in deformation resistance during hot work and impairs hot workability, which makes it difficult to work and easily causes defects such as cracks. In particular, iii) is a large cost factor when manufacturing the plate, which is the main product, and there are problems such as the need for reheating during rolling and the cracking of the plate edge to reduce the material yield. there were.

【0004】このような状況下で、近年、低コストチタ
ン合金が種々提案されており、中でも、Ti−Fe−O
−N系高強度チタン合金は、安価なFeをβ相安定化元
素として採用し、さらに、熱間加工性を低下させるAl
に替わって安価でかつ熱間での加工性を損なわない酸素
や窒素をα相安定化元素として採用していることから、
従来のα+β型チタン合金に比べて、相当な低コスト化
が期待されている。
Under these circumstances, various low-cost titanium alloys have been proposed in recent years, and among them, Ti-Fe-O has been proposed.
-N-based high-strength titanium alloy employs inexpensive Fe as a β-phase stabilizing element, and further, Al that reduces hot workability.
Instead of, it uses oxygen and nitrogen as α-phase stabilizing elements that are inexpensive and do not impair hot workability.
Compared with the conventional α + β type titanium alloy, it is expected that the cost will be considerably reduced.

【0005】ところが、このTi−Fe−O−N系チタ
ン合金は、通常の一方向圧延により板を製造すると、極
端な板面内材質異方性が生じ、板の長さ方向の特性は優
れるも、幅方向の、特に延性が極端に乏しくなってしま
うという問題点があった。そのため、面内異方性が小さ
く、板の長さ方向および幅方向ともに高強度・高延性の
Ti−Fe−O−N系高強度チタン合金板の誕生が強く
望まれていた。
However, when this Ti-Fe-O-N-based titanium alloy is manufactured by ordinary unidirectional rolling, extreme in-plane material anisotropy occurs and the characteristics of the plate in the longitudinal direction are excellent. However, there is a problem that ductility in the width direction is extremely poor. Therefore, the birth of a Ti-Fe-O-N-based high strength titanium alloy plate having small in-plane anisotropy and high strength and ductility in both the length direction and the width direction of the plate has been strongly desired.

【0006】[0006]

【発明が解決しようとする課題】このような面内異方性
は、既存のα型やα+β型チタン合金では、特公昭62
−24498号公報に開示されているように、クロス圧
延を繰り返し行うことにより軽減させることができるこ
とが知られている。しかし、この方法は、インゴットを
ブレイクダウンし、異方向への圧延と焼鈍からなる工程
を繰り返し実施する必要があるなど複雑な工程であり、
高コストとなってしまう。すなわち、この方法をTi−
Fe−O−N系チタン合金に適用すると、折角の低コス
トという合金の特徴を台無しにしてしまうという問題点
があった。
Such in-plane anisotropy is present in Japanese Examined Patent Publication No. Sho 62 in the existing α type and α + β type titanium alloys.
It is known that it can be reduced by repeatedly performing cross rolling, as disclosed in Japanese Patent Publication No. 24498. However, this method is a complicated process such as breaking down the ingot, and repeating the process of rolling in different directions and annealing,
High cost. That is, Ti-
When applied to a Fe-O-N type titanium alloy, there is a problem in that the characteristic of the alloy, that is, the low cost of bending is ruined.

【0007】本発明は、このような問題点に鑑み、低コ
ストというTi−Fe−O−N系高強度合金の特徴を最
大限に発揮させ、面内異方性が小さく、板の長さ方向お
よび幅方向のいずれの方向においても、高強度・高延性
であるような実用的な板製品を提供しようとするもので
あり、さらに、この製品の製造方法を提供することを目
的としている。
In view of these problems, the present invention makes the most of the features of the Ti-Fe-O-N high strength alloy, which is low cost, has a small in-plane anisotropy, and has a plate length. It is an object of the present invention to provide a practical plate product having high strength and high ductility in both the width direction and the width direction, and further to provide a method for manufacturing the product.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、発明者はTi−Fe−O−N系高強度合金の異方性
の原因を鋭意検討した結果、初期圧延方向と直交する方
向に適度な圧下率で一度だけ圧延することにより、複雑
なクロス圧延を繰り返さなくとも、強度および延性の面
内異方性が著しく減少するという知見を得るに至り、本
発明を完成させたもので、本発明は、下記の構成を要旨
とする。 (質量%で、Fe:0.8〜2.3%、N :0.
05%以下を含有し、残部が実質的にTiからなり、
素等量値:Q=[%O]+2.77[%N]+0.1
%Fe]が、0.35〜1.00の範囲にあるチタン
合金の鋳塊またはスラブを、当該合金のβ変態点以下の
温度域に加熱し、分塊圧延を行い、分塊後のスラブを、
β変態点以下の温度域に加熱し、幅出し圧延、長さ方向
圧延を順次行った後に焼鈍して、チタン合金板を製造す
る方法において、分塊圧延方向と幅出し圧延方向が同一
方向で、それと直交する方向が、長さ圧延方向であり、
長さ方向圧延の圧下率に対する、分塊圧延および幅出し
圧延の総圧下率の比が、0.70〜1.43の範囲であ
り、分塊圧延、幅出し圧延、長さ方向圧延の総圧下率が
80%以上であり、さらに、圧延後の板を600℃〜β
変態点未満の温度にて10分以上焼鈍し、板の長さ方向
および幅方向の引張強さが、いずれも700MPa以上
で、かつ、板幅方向の引張強さに対する、板長さ方向の
引張強さの比が、0.95〜1.05倍であり、さら
に、長さ方向および幅方向の引張伸びが、いずれも15
%以上であるチタン合金板を得ることを特徴とする面内
異方性の小さいTi−Fe−O−N系高強度チタン合金
板の製造方法。 (質量%で、Fe:0.8〜2.3%、N :0.
05%以下を含有し、残部が実質的にTiからなり、
素等量値:Q=[%O]+2.77[%N]+0.1
%Fe]が、0.68〜1.00の範囲にあるチタン
合金の鋳塊またはスラブを、当該合金のβ変態点以下の
温度域に加熱し、分塊圧延を行い、分塊後のスラブを、
β変態点以下の温度域に加熱し、幅出し圧延、長さ方向
圧延を順次行った後に焼鈍して、チタン合金板を製造す
る方法において、分塊圧延方向と幅出し圧延方向が同一
方向で、それと直交する方向が、長さ圧延方向であり、
長さ 方向圧延の圧下率に対する、分塊圧延および幅出し
圧延の総圧下率の比が、0.70〜1.43の範囲であ
り、分塊圧延、幅出し圧延、長さ方向圧延の総圧下率が
80%以上であり、さらに、圧延後の板を600℃〜β
変態点未満の温度にて10分以上焼鈍し、板の長さ方向
および幅方向の引張強さが、いずれも900MPa以上
で、かつ、板幅方向の引張強さに対する、板長さ方向の
引張強さの比が、0.95〜1.05倍であり、さら
に、長さ方向および幅方向の引張伸びが、いずれも15
%以上であるチタン合金板を得ることを特徴とする面内
異方性の小さいTi−Fe−O−N系高強度チタン合金
板の製造方法。
In order to achieve the above object, the inventor diligently studied the cause of the anisotropy of a Ti--Fe--O--N type high strength alloy, and as a result, a direction orthogonal to the initial rolling direction was obtained. By rolling only once with an appropriate reduction ratio, it was found that the in-plane anisotropy of strength and ductility is significantly reduced without repeating complicated cross rolling, and the present invention has been completed. The present invention has the following structures. ( 1 ) % by mass , Fe: 0.8 to 2.3%, N: 0.
Containing less than 05%, the balance consisting essentially of Ti , and oxygen equivalent value: Q = [ % O 2 ] +2.77 [ % N 2 ] +0.1
A titanium alloy ingot or slab whose [ % Fe ] is in the range of 0.35 to 1.00 is heated to a temperature range not higher than the β transformation point of the alloy, and slab rolling is performed. A slab
In the method for producing a titanium alloy sheet by heating in a temperature range below the β transformation point, tenter rolling and sequentially rolling in the length direction, and then annealing, the slab rolling direction and tenter rolling direction are the same direction. , The direction orthogonal to it is the length rolling direction,
Slabbing and tentering against the rolling reduction of lengthwise rolling
The ratio of total rolling reduction is 0.70 to 1.43, the total rolling reduction of slabbing, tenter rolling, and lengthwise rolling is 80% or more, and further the rolled sheet 600 ℃ ~ β
Temperature below the transformation point at annealed over 10 minutes, the length direction of the plate
And tensile strength in the width direction are both 700 MPa or more.
And in the plate length direction relative to the tensile strength in the plate width direction.
The ratio of tensile strength is 0.95 to 1.05 times,
In addition, the tensile elongations in the length direction and the width direction are both 15
Plane, characterized in that to obtain a titanium alloy plate is at least%
A method for producing a Ti-Fe-O-N-based high-strength titanium alloy plate having small anisotropy . ( 2 ) % by mass , Fe: 0.8 to 2.3%, N: 0.0.
Containing less than 05%, the balance consisting essentially of Ti , and oxygen equivalent value: Q = [ % O 2 ] +2.77 [ % N 2 ] +0.1
A titanium alloy ingot or slab whose [ % Fe ] is in the range of 0.68 to 1.00 is heated to a temperature range equal to or lower than the β transformation point of the alloy, and slabbing is performed. A slab
In the method for producing a titanium alloy sheet by heating in a temperature range below the β transformation point, tenter rolling and sequentially rolling in the length direction, and then annealing, the slab rolling direction and tenter rolling direction are the same direction. , The direction orthogonal to it is the length rolling direction,
For rolling reduction in the length direction rolling out slabbing and width
The ratio of total rolling reduction is 0.70 to 1.43, the total rolling reduction of slabbing, tenter rolling, and lengthwise rolling is 80% or more, and further the rolled sheet 600 ℃ ~ β
Temperature below the transformation point at annealed over 10 minutes, the length direction of the plate
And the tensile strength in the width direction is 900 MPa or more.
And in the plate length direction relative to the tensile strength in the plate width direction.
The ratio of tensile strength is 0.95 to 1.05 times,
In addition, the tensile elongations in the length direction and the width direction are both 15
Plane, characterized in that to obtain a titanium alloy plate is at least%
A method for producing a Ti-Fe-O-N-based high-strength titanium alloy plate having small anisotropy .

【0009】[0009]

【発明の実施の形態】一般に、Alを含有するα型やα
+β型チタン合金を熱間加工すると、強い集合組織が形
成することがよく知られている。なかでも、一方向に圧
延した場合には、トランスバース集合組織と呼ばれる集
合組織が形成し、板の長さ方向に比べて、板幅方向の強
度が高くなり、相反的にこの方向の延性が著しく低下す
る。一方、このトランスバース集合組織を有する板を、
最初の圧延方向と直交する方向に圧延すると、トランス
バース集合組織が減少し、ベーサル集合組織と称される
集合組織が強くなってくる。このベーサル集合組織が発
達してくると、板面内の異方性は減少する。
BEST MODE FOR CARRYING OUT THE INVENTION Generally, α type and α type containing Al
It is well known that when a + β type titanium alloy is hot worked, a strong texture is formed. Among them, when rolled in one direction, a texture called a transverse texture is formed, compared with the length direction of the plate, the strength in the plate width direction becomes high, and the ductility in this direction reciprocally Markedly reduced. On the other hand, a plate having this transverse texture is
Rolling in a direction orthogonal to the initial rolling direction reduces the transverse texture and strengthens the texture called basal texture. As this basal texture develops, the in-plane anisotropy decreases.

【0010】本発明者は、Ti−Fe−O−N系高強度
チタン合金の集合組織に関して鋭意研究を重ねた結果、
次のような新知見を得た。すなわち、(a)この合金の
ように酸素、窒素を添加した合金系を圧延すると、Ti
−6Al−4Vなど既存のAl含有α+β型チタン合金
に比べて、トランスバース集合組織が著しく発達しやす
く、その結果、既存のAl含有α+β型チタン合金に比
べて、面内異方性が著しく強くなる、(b)逆に、Ti
−Fe−O−N系チタン合金のトランスバース集合組織
は、初期圧延方向と直交する方向に、適度な圧下率で一
度だけ圧延することにより、複雑なクロス圧延を繰り返
さなくとも、容易にベーサル集合組織に変換でき、しか
も、その集積度がTi−6Al−4Vなど既存のAl含
有α+β型チタン合金に比べて著しく高く、強度および
延性の面内異方性が著しく減少するという知見を得た。
The present inventor has conducted extensive studies on the texture of a Ti—Fe—O—N type high strength titanium alloy, and as a result,
The following new findings were obtained. That is, (a) when an alloy system to which oxygen and nitrogen are added like this alloy is rolled, Ti
Compared with existing Al-containing α + β type titanium alloys such as -6Al-4V, the transverse texture is significantly more likely to develop, and as a result, in-plane anisotropy is significantly stronger than existing Al-containing α + β type titanium alloys. (B) On the contrary, Ti
The transverse texture of the —Fe—O—N system titanium alloy can be easily basalized by repeating rolling once in a direction orthogonal to the initial rolling direction at an appropriate reduction rate without repeating complicated cross rolling. It was found that the structure can be converted into a structure and the degree of accumulation is significantly higher than that of the existing Al-containing α + β type titanium alloy such as Ti-6Al-4V, and the in-plane anisotropy of strength and ductility is significantly reduced.

【0011】本発明は、上記知見を基に成されたもの
で、Ti−Fe−O−N系合金の冶金的特徴を十分に活
用した発明である。さて、本発明の、低コストでかつ板
面内異方性が小さく、板の長さ方向および幅方向ともに
高強度・高延性であるような、実用的Ti−Fe−O−
N系チタン合金板は、前記(1)記載のような特徴があ
る。すなわち、質量%で、Fe:0.8〜2.3%、N
:0.05%以下を含有し、残部が実質的にTiであ
って、酸素等量値:Q=[%O]+2.77[%N]+
0.1[%Fe]が、0.35〜1.00の範囲にある
チタン合金板において、板の長さ方向および幅方向の引
張強さが、いずれも700MPa以上で、かつ、板幅方
向の引張強さに対する、板長さ方向の引張強さの比が、
0.95〜1.05倍であり、さらに、長さ方向および
幅方向の引張伸びが、いずれも15%以上であることを
特徴とする面内異方性の小さいTi−Fe−O−N系高
強度チタン合金板である。
The present invention is based on the above findings, and is an invention that makes full use of the metallurgical features of Ti-Fe-O-N alloys. Now, according to the present invention, a practical Ti-Fe-O- which is low in cost, has small in-plane anisotropy of the plate, and has high strength and high ductility in both the length direction and the width direction of the plate.
The N-based titanium alloy plate has the characteristics as described in (1) above. That is, in mass% , Fe: 0.8 to 2.3%, N
: 0.05% or less, the balance being substantially Ti, and oxygen equivalent value: Q = [ % O 2 ] +2.77 [ % N 2 ] +
In a titanium alloy plate in which 0.1 [ % Fe ] is in the range of 0.35 to 1.00, the tensile strengths in the length direction and the width direction of the plate are both 700 MPa or more, and the plate width is Person
The ratio of the tensile strength in the plate length direction to the tensile strength in the
Ti-Fe-O-N with small in - plane anisotropy, which is 0.95 to 1.05 times , and further has tensile elongations in the length direction and the width direction of 15% or more. System high strength titanium alloy plate.

【0012】引張強さが700MPa未満の強度レベル
は、たとえば、JIS 4種純チタンなどで達成されて
おり、高強度チタン合金のカバーする範疇ではない。ま
た、15%以上の引張伸びは、板の長さ方向および幅方
向の両方向において、確保されていないと、高強度合金
が使用されるような高荷重の加わる用途では不十分であ
る。また、板幅方向の引張強さに対する、板長さ方向の
引張強さの比が、0.95〜1.05倍でないと、曲げ
などの加工を行った際、不均一な変形がおこり形状が安
定しないなどの不都合が生ずる。以上のような強度・延
性の特徴を有するTi−Fe−O−N系チタン合金板
は、安価であると同時に、最終製品形状への加工、実際
の使用上の安定性という実用的観点から、きわめて有用
な製品である。
The strength level with a tensile strength of less than 700 MPa is achieved by, for example, JIS Class 4 pure titanium, and is not within the range covered by high strength titanium alloys. Further, if the tensile elongation of 15% or more is not ensured in both the length direction and the width direction of the plate, it is insufficient for a high load application such as using a high strength alloy. In addition, with respect to the tensile strength in the plate width direction,
If the ratio of tensile strength is not 0.95 to 1.05 times , unevenness may occur during processing such as bending and the shape may not be stable. The Ti-Fe-O-N-based titanium alloy plate having the characteristics of strength and ductility as described above is inexpensive, and at the same time, it is processed into the final product shape, from the practical viewpoint of stability in actual use, It is a very useful product.

【0013】なお、Ti−Fe−O−N系高強度チタン
合金において、Feの含有量を0.8〜2.3%に限定
したのは、下記の理由による。すなわち、Feはβ相を
生じせしめ組織微細化を促すので、強度・延性を高める
ために添加する元素であるが、凝固偏析しやすい元素で
あり、2.3%を超えるFeを含有する合金では、凝固
偏析が非常に顕著となり、その部分では延性が低下する
ため、本発明の効果が十分達成できない。また、0.8
%未満のFeしか含まない合金では、組織微細化効果が
不十分で、その結果、強度・延性も不十分になってしま
う。
In the Ti—Fe—O—N high strength titanium alloy, the Fe content is limited to 0.8 to 2.3% for the following reason. In other words, Fe is an element that is added to enhance strength and ductility because it causes a β phase to promote the refinement of the structure, but it is an element that easily solidifies and segregates, and in an alloy containing more than 2.3% Fe. However, the solidification segregation becomes very remarkable, and the ductility decreases at that portion, so that the effect of the present invention cannot be sufficiently achieved. Also, 0.8
In an alloy containing only Fe of less than 10%, the effect of refining the structure is insufficient, and as a result, the strength and ductility are also insufficient.

【0014】また、Q値を0.35〜1.00としたの
は次の理由による。すなわち、Q=[%O]+2.77
%N]+0.1[%Fe]は、合金の強度を示す指標
であり、合金元素である、Fe、O、Nの強度に寄与す
る程度が、O:N:Fe=1:2.77:0.1である
ことをもとに考案された式である。そして、Qが0.3
5〜1.00となるような合金は、700MPa〜12
00MPa程度の引張強さを有する高強度合金である。
すなわち、Qが0.35に満たないような合金では、強
度が低いため、また、Qが1.00を超えるような超高
強度合金は、元来延性が低く、板の長さ方向および幅方
向ともに、15%以上の引張伸びを確保することが困難
であるため、本発明の対象外である。
The reason for setting the Q value to 0.35 to 1.00 is as follows. That is, Q = [ % O ] +2.77
[ % N ] +0.1 [ % Fe ] is an index showing the strength of the alloy, and the degree of contribution to the strength of Fe, O, and N, which are alloying elements, is O: N: Fe = 1: 2. This is a formula devised based on the fact that it is 77: 0.1. And Q is 0.3
Alloys such as 5 to 1.00 are 700 MPa to 12
It is a high strength alloy having a tensile strength of about 00 MPa .
That is, alloys with a Q of less than 0.35 have low strength, and ultra-high-strength alloys with a Q of more than 1.00 originally have low ductility. Since it is difficult to secure a tensile elongation of 15% or more in both directions, it is outside the scope of the present invention.

【0015】また、Nの含有量を0.05%以下とした
のは、これを超えて添加すると、Tiとの化合物が析出
して、延性が低下するため、板の長さ方向および幅方向
ともに、15%以上の引張伸びを確保することが困難で
あるからである。この面内異方性が小さく、長さ方向お
よび幅方向ともに高強度・高延性の板は、前記()記
載の方法にて製造することができる。
Further, the content of N is set to 0.05% or less, because if it is added over this amount, a compound with Ti precipitates and ductility decreases, so that the length direction and the width direction of the plate are reduced. In both cases, it is difficult to secure a tensile elongation of 15% or more. The plate having a small in-plane anisotropy and high strength and high ductility in both the length direction and the width direction can be manufactured by the method described in ( 1 ) above.

【0016】一般に、板の製造は、熱間ストリップ圧延
機のような連続圧延機を用いるか、厚板圧延機のような
リバース型圧延機を用いて行われる。このうち、熱間ス
トリップ圧延機を用いると、圧延方向が一定であるため
に、一方向への強圧延が避けられず、極端な板面内材質
異方性が生じてしまう、この結果、板の長さ方向の特性
は優れるも、板幅方向の延性が極端に乏しくなってしま
う。よって、この方法は適用できない。これに対し、リ
バース型圧延機で板を製造する場合、実際に複雑なクロ
ス圧延が繰り返し行われているように、圧延方向を途中
で変えることができる。したがって、この製造方法は、
後者のリバース型圧延機の使用が前提となる。
[0016] Generally, the sheet is manufactured by using a continuous rolling mill such as a hot strip rolling mill or a reverse type rolling mill such as a thick plate rolling mill. Of these, when a hot strip rolling mill is used, since the rolling direction is constant, strong rolling in one direction is unavoidable, resulting in extreme in-plane material anisotropy. Although it has excellent properties in the length direction, the ductility in the plate width direction becomes extremely poor. Therefore, this method cannot be applied. On the other hand, when a plate is manufactured by the reverse type rolling mill, the rolling direction can be changed on the way so that complicated cross rolling is actually repeated. Therefore, this manufacturing method
The use of the latter reverse type rolling mill is a prerequisite.

【0017】この製造方法は、Ti−Fe−O−N系高
強度チタン合金の鋳塊またはスラブを、当該合金のβ変
態点以下の温度域に加熱し、分塊圧延を行い、分塊後の
スラブを、β変態点以下の温度域に加熱し、幅出し圧
延、長さ方向圧延を順次行い板を製造する。ここで、
1)分塊圧延前の鋳塊またはスラブ加熱温度、分塊圧延
後の分塊スラブの加熱温度は、共に当該合金のβ変態点
以下であることが必要であり、2)分塊圧延方向と幅出
し圧延方向は同一方向で、長さ圧延方向はこれらと直交
する方向でなくてはならず、3)長さ方向圧延の圧下率
に対する、分塊圧延および幅出し圧延の総圧下率の比
は、0.70〜1.43の範囲でなくてはならない。ま
た、4)分塊圧延、幅出し圧延、長さ方向圧延の総圧下
率は80%以上でなくてはならない。その理由について
以下に説明する。
This manufacturing method uses a Ti--Fe--O--N system
Ingot or slab of high strength titanium alloy is
Heating to a temperature range below the freezing point, slab rolling, and
Heat the slab to a temperature range below the β transformation point and
The plate is manufactured by sequentially rolling and rolling in the length direction. here,
1) Ingot or slab heating temperature before slab rolling, slab rolling
The heating temperature of the subsequent agglomerate slab is the β transformation point of the alloy.
It is necessary to be the following, 2) lump rolling direction and width
The rolling direction is the same, and the length rolling direction is orthogonal to these.
It must be the direction to do 3)Rolling reduction of lengthwise rolling
To the ratio of total rolling reduction of slabbing and tenter rolling
Must be in the range 0.70 to 1.43. Well
4) Total reduction of slabbing, tenter rolling, and longitudinal rolling
The rate must be above 80%. About the reason
This will be described below.

【0018】この合金は、先に述べたように、一方向の
圧延できわめて強い面内異方性が発達するという特徴を
有しているが、これと直交する方向に圧延すると、複雑
なクロス圧延を繰り返さなくとも、容易に面内異方性を
低減できるという冶金的特徴をも有している。したがっ
て、製造工程途中で、一度だけ圧延方向を変更すればよ
いのであるが、二つの方向の圧延における圧下率の比を
1に近くしなければならない。言い換えると、ある方向
への圧延における圧下率と、これと直交する方向への圧
延における圧下率が、あまり大きく違わないようにする
必要がある。リバース型の圧延機を用いて板を製造する
場合、最後の長さ方向圧延の圧下率が高くなることは避
けられないので、その前の幅出し圧延と、さらに、これ
に先立つ分塊圧延の方向を等しくし、両者の総圧下率
を、長さ方向圧延の圧下率に近づけることにより、はじ
めて二つの方向への圧延における圧下率の比を1に近づ
けることができる。これが上記2)についての技術的説
明である。また、上記3)については、実際に、面内異
方性が消失するか、もしくは、軽微なものとなるのは、
長さ方向圧延の圧下率に対する、分塊圧延および幅出し
圧延の総圧下率の比が、0.70〜1.43の範囲の場
合であり、この範囲を逸脱すると、面内異方性が強くな
り、特に、板の長さ方向あるいは幅方向の延性が乏しく
なってしまう。このように、本発明においては、分塊圧
延の実施は必須工程であり、これを鍛造により代替する
ことはできない。ただし、分塊圧延に供する素材は、鋳
塊でも良いし、鍛造により製造したスラブでもよい。
As described above, this alloy has a feature that extremely strong in-plane anisotropy develops in rolling in one direction, but when rolling in a direction orthogonal to this, a complicated cross is produced. It also has a metallurgical feature that the in-plane anisotropy can be easily reduced without repeating rolling. Therefore, it is necessary to change the rolling direction only once during the manufacturing process, but the rolling reduction ratio in rolling in the two directions must be close to 1. In other words, it is necessary that the reduction rate in rolling in a certain direction and the reduction rate in rolling in a direction orthogonal to this direction do not differ significantly. When a plate is manufactured using a reverse type rolling mill, it is unavoidable that the rolling reduction of the last lengthwise rolling becomes high.Therefore, tenter rolling before that and further slab rolling prior to this By making the directions equal and bringing the total reduction rate of both to approach the reduction rate of the lengthwise rolling, the ratio of the reduction rates in rolling in the two directions can be brought close to 1 for the first time. This is the technical explanation of 2) above. Regarding the above 3), the fact that the in-plane anisotropy disappears or becomes slight is
Slabbing and tentering against the rolling reduction of lengthwise rolling
In the case where the ratio of the total rolling reduction ratio is in the range of 0.70 to 1.43, if the ratio deviates from this range, the in-plane anisotropy becomes strong, and in particular the ductility in the length direction or width direction of the plate. Becomes scarce. As described above, in the present invention, the slabbing is an essential step, and it cannot be replaced by forging. However, the material used for the slabbing may be an ingot or a slab manufactured by forging.

【0019】また、上記1)について技術的にみると、
β変態点以上の温度に加熱すると、組織が粗大化すると
ともに、圧延により生じた集合組織も消失し、長さ方
向、幅方向とも延性が低下してしまうので、分塊圧延以
降の工程は全てβ変態点以下で実施されなくてはならな
い。また、上記4)については、組織微細化も併せて達
成されないと、十分な延性が確保できないので、分塊圧
延以降の総圧下率は、80%以上の高い値でなくてはな
らず、これ未満では加工再結晶による十分な組織微細化
が達成されないので、延性不足となってしまう。
Technically, regarding the above 1),
When heated to a temperature above the β transformation point, the structure coarsens and the texture generated by rolling disappears, and ductility decreases in both the length direction and the width direction. It must be carried out below the β transformation point. Regarding 4), unless structural refinement is also achieved, sufficient ductility cannot be ensured. Therefore, the total rolling reduction after slabbing must be a high value of 80% or more. If it is less than the above range, sufficient microstructure refinement due to work recrystallization cannot be achieved, resulting in insufficient ductility.

【0020】なお、上記説明した工程順序は、加熱温
度、圧下率、圧延方向などの規制はあるものの、リバー
ス圧延機を用いた一般的な金属板製造方法と同じであ
り、コスト増となる余分な工程は一切付加されていな
い。すなわち、寸法制約が大きく、かつ、コスト増とな
るクロス圧延の繰り返しなどの余分な工程は全く含まれ
ておらず、低コストというTi−Fe−O−N系チタン
合金の特徴は十分に維持されている。
The process sequence described above is the same as a general metal sheet manufacturing method using a reverse rolling mill, although there are restrictions on heating temperature, rolling reduction, rolling direction, etc. No additional steps are added. That is, there are no extra steps such as repeated cross rolling, which have large dimensional constraints and increase costs, and the low cost of the Ti-Fe-O-N titanium alloy is sufficiently maintained. ing.

【0021】次に、圧延を終了した板は、600℃〜β
変態点未満の温度にて10分以上の焼鈍を行う。これに
より、余分な加工歪みが除去され、板幅方向、長さ方向
ともに強度、延性に優れた製品が製造できる。ここで、
焼鈍条件を600℃〜β変態点未満としたのは、600
℃未満では拡散が不十分で、歪みの除去が完全ではな
く、高延性が達成されないためで、また、β変態点以上
の温度に加熱すると、組織が粗大化し、これも延性が低
下してしまうからである。また、焼鈍時間を10分以上
としたのは、如何なる板厚や板幅においても、これ未満
の時間では拡散が不十分で歪みの除去が完全ではなく、
高延性が達成されないためである。本発明では、焼鈍時
間の上限については特に規制しなかったが、これは、板
厚や板幅などの寸法によって適宜調節し、歪みが十分開
放された時点で終了すれば良く、従来技術に属するの
で、本発明はこれを特に制限するものではない。なお、
この焼鈍は、クリープ矯正などの熱間矯正処理と兼ねて
行うことも可能である。
Next, the rolled sheet has a temperature of 600 ° C. to β.
Annealing is performed for 10 minutes or more at a temperature below the transformation point. As a result, excess processing strain is removed, and a product having excellent strength and ductility in both the width direction and the length direction can be manufactured. here,
The reason why the annealing condition is 600 ° C. to less than the β transformation point is 600.
If the temperature is lower than ℃, the diffusion is insufficient, the strain is not completely removed, and high ductility cannot be achieved. Also, when heated to a temperature higher than the β transformation point, the structure becomes coarse, which also reduces ductility. Because. Further, the annealing time is set to 10 minutes or more because the diffusion is insufficient and the strain is not completely removed at any plate thickness or plate width, if the time is shorter than this.
This is because high ductility cannot be achieved. In the present invention, the upper limit of the annealing time was not particularly limited, but this may be appropriately adjusted according to the dimensions such as the plate thickness and the plate width, and may be completed when the strain is sufficiently released, and belongs to the prior art. Therefore, the present invention does not specifically limit this. In addition,
This annealing can also be performed in combination with hot straightening treatment such as creep straightening.

【0022】前記(2)記載のチタン合金は、特に、酸
素等量値Qが0.68〜1.00であるような、さらに
高強度のTi−Fe−O−N系高強度チタン合金におい
て、本発明を適用したものである。この範囲の酸素等量
値を有する合金は、Ti−Fe−O−N系チタン合金の
中でも、特に高強度であって、900MPa以上の引張
強さを有しているが、材質異方性が非常に強く現れやす
いため、本発明を適用した場合の効果が特に著しい。こ
のTi−Fe−O−N系高強度チタン合金も前記(
記載のように、Q値を0.68〜1.00にする以外
は、前記(1)と同様の圧延および焼鈍方法にて製造が
可能である。
The titanium alloy described in (2) above is particularly a Ti-Fe-O-N high strength titanium alloy having a higher strength such that the oxygen equivalent value Q is 0.68 to 1.00. The present invention is applied. An alloy having an oxygen equivalent value in this range has particularly high strength among Ti—Fe—O—N titanium alloys and has a tensile strength of 900 MPa or more, but the material anisotropy is The effect of applying the present invention is particularly remarkable because it is likely to appear very strongly. This Ti—Fe—O—N high strength titanium alloy also has the above ( 2 )
As described, it can be manufactured by the same rolling and annealing method as the above (1) except that the Q value is set to 0.68 to 1.00.

【0023】以上、本発明について詳しく説明したが、
本発明のTi−Fe−O−N系高強度チタン合金におい
ては、Fe、O、N以外に、耐食性向上の目的で添加さ
れる0.3量%以下の白金族元素や、Ni、Crなど
の不純物元素を、各々0.3量%以下であれば含有し
ていても特性への影響はない。
The present invention has been described in detail above.
In Ti-Fe-O-N-based high-strength titanium alloy of the present invention, Fe, O, in addition to N, purpose 0.3 or mass% or less of the platinum group elements are added in improving corrosion resistance, Ni, Cr an impurity element such as, no influence on the characteristics also contain long each 0.3 mass% or less.

【0024】[0024]

【実施例】以下に、実施例を用いて本発明をさらに詳し
く説明する。 <実施例1>電子ビーム溶解法により、250mm厚−
1000mm幅の、Ti−1.5%Fe−0.5%O−
0.04%N(Q=0.76、β変態点=960℃)鋳
塊を製造し、これから、種々の寸法のスラブを切断採取
し、表1に示した条件にて板に圧延し、750℃−1h
の焼鈍を行い空冷した。そして、この板の長さ方向およ
び板幅方向の引張試験片を切り出し、引張試験を行っ
た。試験結果を表2に示す。
EXAMPLES The present invention will be described in more detail below with reference to examples. <Example 1> 250 mm thick by electron beam melting method
Ti-1.5% Fe-0.5% O- with a width of 1000 mm
0.04% N (Q = 0.76, β transformation point = 960 ° C.) ingot was produced, from which slabs of various dimensions were cut and sampled, and rolled into a plate under the conditions shown in Table 1, 750 ° C-1h
Was annealed and air cooled. Then, tensile test pieces in the length direction and the plate width direction of this plate were cut out and subjected to a tensile test. The test results are shown in Table 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】さて、表1において、試験番号1は90m
mの厚さのスラブを分塊圧延、幅出し圧延なしで、直
接、長さ方向圧延(一方向圧延)に供した例である。表
2に示すように、板の長さ方向には、高強度・高延性が
達成されているが、板幅方向の延性はほとんどなく、引
張伸びでわずか3.2%で、引張強さに到達する前に試
験中に破断し、引張強さの測定ができなかった。試験番
号2は、分塊圧延を行わず(分塊圧延の圧下率=0
%)、幅出し圧延と長さ方向圧延のみを行った場合であ
る。この場合、分塊圧延と幅出し圧延の総圧下率(a)
と長さ方向圧延の圧下率(b)の比(a/b)が、本発
に記載の方法に規定された0.70〜1.43の範
囲よりも小さかったため、板幅方向の引張伸びが不十分
であり、また板の長さ方向の引張強さ(c)と板幅方向
の引張強さ(d)の比(c/d)も、本発明に記載さ
れた0.95〜1.05の範囲を逸脱しており、板面内
異方性が強くなってしまった。試験番号3は、分塊圧
延、幅出し圧延、長さ方向圧延を順に実施した例である
が、分塊圧延と長さ方向圧延の方向が同一方向であった
ため、本発明の効果が達成されず、板の長さ方向の強度
・延性は優れるも、面内異方性が強く、特に板幅方向の
延性が著しく乏しくなってしまった。試験番号5は、分
塊圧延の加熱温度が、β変態点以上で、本発明の方法
に規定された温度域をはずれたため、組織が粗大化し延
性が両方向とも乏しくなった。さらに、試験番号8は、
分塊圧延以降の総圧下率が本発明記載の方法に規定さ
れた80%未満であったため、十分な組織微細化が達成
されず、両方向とも延性が低くなってしまった。
In Table 1, test number 1 is 90 m.
This is an example in which a slab having a thickness of m is directly subjected to lengthwise rolling (unidirectional rolling) without slabbing and tentering rolling. As shown in Table 2, although high strength and high ductility are achieved in the length direction of the plate, there is almost no ductility in the width direction of the plate, and the tensile elongation is only 3.2%. Before reaching, it broke during the test and the tensile strength could not be measured. Test No. 2 did not perform slabbing (reduction rate of slabbing = 0
%), And tenter rolling and longitudinal rolling only. In this case, total rolling reduction (a) of slabbing and tenter rolling
Since the ratio (a / b) of the reduction ratio (b) in the rolling direction and the rolling direction in the lengthwise direction was smaller than the range of 0.70 to 1.43 specified in the method described in the second aspect of the invention, the tensile force in the width direction of the sheet was obtained. The elongation is insufficient, and the ratio (c / d) of the tensile strength (c) in the length direction of the plate and the tensile strength (d) in the width direction of the plate is 0.95 described in the first invention. It deviates from the range of 1.05 and the in-plane anisotropy of the plate becomes strong. Test No. 3 is an example in which slabbing rolling, tenter rolling, and lengthwise rolling were carried out in order, but the effect of the present invention was achieved because the directions of slabbing and lengthwise rolling were the same. However, although the strength and ductility of the plate in the length direction were excellent, the in-plane anisotropy was strong, and the ductility in the plate width direction was particularly poor. In Test No. 5, the heating temperature of the slabbing was not less than the β transformation point and was out of the temperature range specified by the method of the present invention 2 , so that the structure became coarse and the ductility became poor in both directions. In addition, test number 8
Since the total reduction ratio after the slabbing was less than 80% specified by the method described in the second aspect of the present invention, sufficient microstructure refinement was not achieved and ductility was lowered in both directions.

【0028】以上の比較例に対し、本発明の実施例であ
る、試験番号4、6、7はいずれも、板の長さ方向と幅
方向の両方向の引張強さが900MPa以上でかつその
比が0.95以上1.05以下であり、板の長さ方向と
幅方向の両方向の引張伸びが15%以上であり、面内異
方性が小さく、両方向ともに高強度・高延性のTi−F
e−O−N系高強度チタン合金板が得られている。 <実施例2>真空アーク二回溶解法にてTi−1.5%
Fe−0.5%O−0.04%N鋳塊を製造し、100
0℃加熱鍛造により、250mm厚−1000mm幅の
スラブとし、850℃に加熱し、分塊圧延を行い90m
m厚−1000mm幅とした。これを、900mm長さ
に細分切断し、表3に示した条件にて圧延および焼鈍を
行った。このときの圧延方向は、スラブの圧延方向と幅
出し圧延の方向が等しく、長さ方向圧延はこれと直交す
るように行った。すなわち、スラブの幅、長さ方向は、
製品板の長さ、幅方向に各々対応する。そして、この板
の長さ方向および板幅方向から引張試験片を切り出し、
引張試験を行った。試験結果を表4に示す。
In contrast to the above comparative examples, all of the test numbers 4, 6 and 7 of the present invention have tensile strengths of 900 MPa or more in both the length direction and the width direction of the plate and their ratios. Is 0.95 or more and 1.05 or less, the tensile elongation in both the length direction and the width direction of the plate is 15% or more, the in-plane anisotropy is small, and high strength and high ductility Ti-in both directions is obtained. F
An e-ON type high strength titanium alloy plate has been obtained. <Example 2> Ti-1.5% by the vacuum arc twice melting method
Fe-0.5% O-0.04% N ingot is manufactured and
It is made into a slab with a thickness of 250 mm and a width of 1000 mm by forging at 0 ° C., heated to 850 ° C., and slab-rolled to 90 m.
m thickness-1000 mm width. This was subdivided into pieces each having a length of 900 mm, and rolled and annealed under the conditions shown in Table 3. At this time, the rolling direction was the same as the slab rolling direction and the tenter rolling direction, and the lengthwise rolling was performed so as to be orthogonal thereto. That is, the width and length direction of the slab are
It corresponds to the length and width of the product plate. Then, cut out a tensile test piece from the length direction and the plate width direction of this plate,
A tensile test was conducted. The test results are shown in Table 4.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】さて、表3において、試験番号10、1
1、12、13、16、18はいずれも本発明の実施例
であり、表4に示すように、いずれも板の長さ方向と幅
方向の両方向の引張強さが900MPa以上でかつその
比が0.95以上1.05以下であり、板の長さ方向と
幅方向の両方向の引張伸びが15%以上であり、面内異
方性が小さく、両方向ともに高強度・高延性のTi−F
e−O−N系高強度チタン合金板が得られている。試験
番号16は焼鈍とクリープ矯正を兼ねて実施した例であ
るが、この場合も優れた特性の板が得られている。試験
番号12では、幅出し圧延の圧下率は1%としたが、こ
れは板の形状を整えるために行ったものであり、実質的
に幅出し圧延は行っていない。
Now, in Table 3, test numbers 10 and 1
1, 12, 13, 16 and 18 are all examples of the present invention, and as shown in Table 4, all have a tensile strength of 900 MPa or more in both the length direction and the width direction of the plate and the ratio thereof. Is 0.95 or more and 1.05 or less, the tensile elongation in both the length direction and the width direction of the plate is 15% or more, the in-plane anisotropy is small, and high strength and high ductility Ti-in both directions is obtained. F
An e-ON type high strength titanium alloy plate has been obtained. Test No. 16 is an example of performing both annealing and creep correction, and in this case also, a plate having excellent characteristics was obtained. In Test No. 12, the rolling reduction of the tenter rolling was set to 1%, but this was performed to adjust the shape of the plate, and substantially tenter rolling was not performed.

【0032】以上の実施例に対し、試験番号9、14、
15、17、19では、板の長さ方向と板幅方向の両方
向の伸びが小さくなる、あるいは、一方向の延性が小さ
く強度が高い面内異方性が現れてしまった。試験番号9
は、板圧延前のスラブ加熱温度が、β変態点以上で、本
発明の方法に規定された温度域をはずれたため、組織
が粗大化し延性が両方向とも乏しくなった。試験番号1
4は、分塊圧延と幅出し圧延の総圧下率(a)と長さ方
向圧延の圧下率(b)の比(a/b)が、本発明に記
載の方法に規定された0.70〜1.43の範囲よりも
大きく、長さ方向の引張伸びが不十分であり、また板の
長さ方向の引張強さ(c)と板幅方向の引張強さ(d)
の比(c/d)も、本発明に記載された0.95〜
1.05の範囲を逸脱しており、板面内異方性が強くな
ってしまった。試験番号15は焼鈍温度が、本発明
載の方法に規定された下限温度以下であったため、拡散
が不十分で歪みの除去が不十分となり両方向とも高延性
が達成されなかった。試験番号17は、焼鈍時間が、本
発明記載の方法に規定された下限時間以下であったた
め、拡散が不十分で歪みの除去が不十分となり両方向共
に高延性が達成されなかった。試験番号19は、焼鈍温
度が、本発明記載の方法に規定された上限温度以上の
β変態点以上であったため、組織が粗大化し、これも両
方向の延性が低下してしまった。 <実施例3> 真空アーク二回溶解法にて表5に示す組成、β変態点の
Ti−Fe−O−N系チタン合金を溶解し、1000℃
加熱鍛造により、250mm厚−1000mm幅のスラ
ブとし、β変態点以下の温度である850℃に加熱し、
分塊圧延を行い90mm厚−1000mm幅とした。こ
のスラブを、900mm長さに切断し、再度850℃に
加熱し、幅出し圧延、長さ方向圧延を行い6mm厚の板
を製造した。このときの圧延方向は、スラブの圧延方向
と幅出し圧延の方向が等しく、長さ方向圧延はこれと直
交するように行った。すなわち、スラブの幅、長さ方向
は、製品板の長さ、幅方向に各々対応する。また、この
ときの、分塊圧延および幅出し圧延の総圧下率(a)
と、長さ方向圧延の圧下率(b)の(a/b)は、
1.00であり、分塊圧延、幅出し圧延、長さ方向圧延
の総圧下率は 97.6%である。その後、圧延した板
は750℃−1hの焼鈍を行い空冷した。そして、この
板の長さ方向および板幅方向の引張試験片を切り出し、
引張試験を行った。試験結果を表5に併せて示す。
For the above examples, test numbers 9, 14,
15, 17, 19 both in the length direction and the width direction of the plate
Direction elongation is small, or ductility in one direction is small
In-plane anisotropy with high strength appeared. Exam number 9
Indicates that the slab heating temperature before sheet rolling is at or above the β transformation point,
inventionTwoSince the temperature is outside the temperature range specified in
Became coarse and the ductility became poor in both directions. Exam number 1
4 is the total rolling reduction (a) and length of slab rolling and tenter rolling
The ratio (a / b) of the reduction ratio (b) of the direction rolling is the present invention.TwoIn
Than the range of 0.70 to 1.43 specified in the method
Large, insufficient tensile elongation in the longitudinal direction, and
Tensile strength in the length direction (c) and tensile strength in the width direction (d)
The ratio (c / d) of1Described in 0.95
It deviates from the range of 1.05 and the in-plane anisotropy becomes strong.
I ended up. Test No. 15 has an annealing temperature of the present invention.TwoRecord
Since the temperature was lower than the lower limit temperature specified in the mounting method, diffusion
Is insufficient and strain removal is insufficient, resulting in high ductility in both directions.
Was not achieved. Test No. 17 shows that the annealing time is
inventionTwoIt was less than the lower limit time specified in the described method.
Therefore, the diffusion is insufficient and the strain is not removed sufficiently in both directions.
High ductility was not achieved. Test No. 19 is the annealing temperature
Degree of the inventionTwoAbove the maximum temperature specified in the described method
Since it was above the β transformation point, the structure became coarse and this also
The ductility of the direction has deteriorated. <Example 3> The composition shown in Table 5 and the β
Ti-Fe-O-N system titanium alloy is melted, 1000 ° C
By heat forging, the thickness of 250mm-1000mm width
And heat to 850 ° C, which is a temperature below the β transformation point,
Slab rolling was performed to obtain a thickness of 90 mm and a width of 1000 mm. This
Slab of 900mmCut to length and re-heat to 850 ° C
A plate with a thickness of 6 mm that is heated, tentering and lengthwise rolled
Was manufactured. The rolling direction at this time is the rolling direction of the slab.
The direction of tenter rolling is the same as that of tenter rolling.
I went to meet each other. That is, slab width and length direction
Corresponds to the length and width of the product plate, respectively. Also this
Total rolling reduction of slabbing and tenter rolling(A)
And the rolling reduction of the longitudinal rolling(B)ratio(A / b)Is
1.00, slab rolling, tenter rolling, longitudinal rolling
The total rolling reduction is 97.6%. Then rolled plate
Was annealed at 750 ° C. for 1 hour and air-cooled. And this
Cut out tensile test pieces in the length and width directions of the plate,
A tensile test was conducted. The test results are also shown in Table 5.

【0033】[0033]

【表5】 [Table 5]

【0034】さて、表5において、試験番号21、2
3、26、27、29、30は、本発明の実施例であ
り、いずれも板の長さ方向と幅方向の両方向の引張強さ
が700MPa以上でかつその比が0.95以上1.0
5以下であり、板の長さ方向と幅方向の両方向の引張伸
びが15%以上であり、面内異方性が小さく、両方向と
もに高強度・高延性のTi−Fe−O−N系高強度チタ
ン合金板が得られている。試験番号29および30は、
耐食性向上のためあるいは不純物として、PdやNiを
0.3%以下含んでいるが、本発明の効果は十分に達成
されている。
Now, in Table 5, test numbers 21 and 2
Nos. 3, 26, 27, 29, and 30 are examples of the present invention, and all have tensile strengths of 700 MPa or more in both the length direction and the width direction of the plate and a ratio of 0.95 or more and 1.0 or more.
5 or less, the tensile elongation in both the length direction and the width direction of the plate is 15% or more, the in-plane anisotropy is small, and the Ti-Fe-O-N-based high strength in both directions is high. A strong titanium alloy plate has been obtained. Test numbers 29 and 30 are
Pd and Ni are contained by 0.3% or less for improving corrosion resistance or as impurities, but the effect of the present invention is sufficiently achieved.

【0035】一方、試験番号20は、Feの含有量が
0.8%未満であったため、組織微細化効果が不十分
で、その結果、酸素等量値に見合うだけの高強度(引張
強さで900MPa以上)および高延性(引張伸びで1
5%以上)が達成されなかった。試験番号22は、酸素
等量値が本発明が対象としている0.35に満たないた
め、強度が低く(引張強度で700MPa以下)、本発
明の適用対象外である。試験番号24は、窒素が0.0
5%を越えて添加されたため、Tiと窒素の化合物が析
出し、延性が低下してしまった。試験番号25は、Fe
の含有量が、2.3%を超えたため、凝固偏析が発生
し、その部分で延性が低下した。試験番号28は、酸素
等量値が1.00を越えたため、板幅方向および長さ方
向ともに、延性が低下してしまった。
On the other hand, in Test No. 20, since the Fe content was less than 0.8%, the structure refining effect was insufficient, and as a result, high strength (tensile strength) commensurate with the oxygen equivalent value was obtained. 900 MPa or more) and high ductility (tensile elongation 1
5% or more) was not achieved. Test No. 22 has a low strength (700 MPa or less in tensile strength) because the oxygen equivalent value is less than 0.35 which is the target of the present invention, and is not applicable to the present invention. Test No. 24 has a nitrogen content of 0.0
Since it was added in excess of 5%, a compound of Ti and nitrogen was precipitated and ductility was lowered. Test number 25 is Fe
Content of more than 2.3%, solidification segregation occurred, and the ductility decreased in that portion. In Test No. 28, the oxygen equivalent value exceeded 1.00, so the ductility decreased in both the width direction and the length direction.

【0036】[0036]

【発明の効果】以上説明したように、本発明により、面
内異方性が小さく、板の幅方向および長さ方向の両方向
において、高強度・高延性の、実用的なTi−Fe−O
−N系チタン合金板を、また、これを製造する方法を提
供でき、低コストというTi−Fe−O−N系高強度合
金の特徴を最大限に発揮させることができる。したがっ
て、本発明は、極めて工業的価値の高い発明であるとい
える。
As described above, according to the present invention, a practical Ti-Fe-O having a small in-plane anisotropy and a high strength and a high ductility in both the width direction and the length direction of the plate.
It is possible to provide a —N titanium alloy plate and a method for producing the same, and to maximize the characteristics of the Ti—Fe—O—N high strength alloy, which is low cost. Therefore, it can be said that the present invention has an extremely high industrial value.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 684 C22F 1/00 684C 691 691B 691C 694 694A (58)調査した分野(Int.Cl.7,DB名) C22F 1/00 - 3/02 C22C 14/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22F 1/00 684 C22F 1/00 684C 691 691B 691C 694 694A (58) Fields investigated (Int.Cl. 7 , DB name) C22F 1/00-3/02 C22C 14/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、Fe:0.8〜2.3%、N
:0.05%以下を含有し、残部が実質的にTiから
なり、酸素等量値:Q=[%O]+2.77[%N]+
0.1[%Fe]が、0.35〜1.00の範囲にある
チタン合金の鋳塊またはスラブを、当該合金のβ変態点
以下の温度域に加熱し、分塊圧延を行い、分塊後のスラ
ブを、β変態点以下の温度域に加熱し、幅出し圧延、長
さ方向圧延を順次行った後に焼鈍して、チタン合金板を
製造する方法において、分塊圧延方向と幅出し圧延方向
が同一方向で、それと直交する方向が、長さ圧延方向で
あり、長さ方向圧延の圧下率に対する、分塊圧延および
幅出し圧延の総圧下率の比が、0.70〜1.43の範
囲であり、分塊圧延、幅出し圧延、長さ方向圧延の総圧
下率が80%以上であり、さらに、圧延後の板を600
℃〜β変態点未満の温度にて10分以上焼鈍し、板の長
さ方向および幅方向の引張強さが、いずれも700MP
a以上で、かつ、板幅方向の引張強さに対する、板長さ
方向の引張強さの比が、0.95〜1.05倍であり、
さらに、長さ方向および幅方向の引張伸びが、いずれも
15%以上であるチタン合金板を得ることを特徴とする
面内異方性の小さいTi−Fe−O−N系高強度チタン
合金板の製造方法。
1. In mass% , Fe: 0.8 to 2.3%, N
: 0.05% or less, the balance being substantially of Ti
, Oxygen equivalent value: Q = [ % O ] +2.77 [ % N ] +
A titanium alloy ingot or slab having a content of 0.1 [ % Fe ] in the range of 0.35 to 1.00 is heated to a temperature range below the β transformation point of the alloy, slab rolling is performed, and The slab after agglomeration is heated to a temperature range below the β-transformation point, and subjected to tenter rolling and lengthwise rolling in order and then annealed, in the method for producing a titanium alloy sheet, in the slab rolling direction and tentering. The rolling direction is the same direction, and the direction orthogonal to it is the length rolling direction.
The ratio of the total rolling reduction of the tenter rolling is in the range of 0.70 to 1.43, the total rolling reduction of the slab rolling , tenter rolling, and length rolling is 80% or more, and further, after rolling. Plate of 600
annealed at a temperature below ~β transformation point or more 10 minutes, the length of the plate
Tensile strength in both depth and width directions is 700MP
Plate length that is a or more and the tensile strength in the plate width direction
The ratio of tensile strength in the direction is 0.95 to 1.05 times,
Furthermore, the tensile elongation in the length direction and the width direction are both
Characterized by obtaining a titanium alloy plate of 15% or more
A method for producing a Ti-Fe-O-N-based high strength titanium alloy plate having a small in - plane anisotropy .
【請求項2】 質量%で、Fe:0.8〜2.3%、N
:0.05%以下を含有し、残部が実質的にTiから
なり、酸素等量値:Q=[%O]+2.77[%N]+
0.1[%Fe]が、0.68〜1.00の範囲にある
チタン合金の鋳塊またはスラブを、当該合金のβ変態点
以下の温度域に加熱し、分塊圧延を行い、分塊後のスラ
ブを、β変態点以下の温度域に加熱し、幅出し圧延、長
さ方向圧延を順次行った後に焼鈍して、チタン合金板を
製造する方法において、分塊圧延方向と幅出し圧延方向
が同一方向で、それと直交する方向が、長さ圧延方向で
あり、長さ方向圧延の圧下率に対する、分塊圧延および
幅出し圧延の総圧下率の比が、0.70〜1.43の範
囲であり、分塊圧延、幅出し圧延、長さ方向圧延の総圧
下率が80%以上であり、さらに、圧延後の板を600
℃〜β変態点未満の温度にて10分以上焼鈍し、板の長
さ方向および幅方向の引張強さが、いずれも900MP
a以上で、かつ、板幅方向の引張強さに対する、板長さ
方向の引張強さの比が、0.95〜1.05倍であり、
さらに、長さ方向および幅方向の引 張伸びが、いずれも
15%以上であるチタン合金板を得ることを特徴とする
面内異方性の小さいTi−Fe−O−N系高強度チタン
合金板の製造方法。
2. Fe: 0.8 to 2.3%, N in mass%
: 0.05% or less, the balance being substantially of Ti
, Oxygen equivalent value: Q = [ % O ] +2.77 [ % N ] +
A titanium alloy ingot or slab in which 0.1 [ % Fe ] is in the range of 0.68 to 1.00 is heated to a temperature range equal to or lower than the β transformation point of the alloy, slab rolling is performed, and The slab after agglomeration is heated to a temperature range below the β-transformation point, and subjected to tenter rolling and lengthwise rolling in order and then annealed, in the method for producing a titanium alloy sheet, in the slab rolling direction and tentering. The rolling direction is the same direction, and the direction orthogonal to it is the length rolling direction.
The ratio of the total rolling reduction of the tenter rolling is in the range of 0.70 to 1.43, the total rolling reduction of the slab rolling , tenter rolling, and length rolling is 80% or more, and further, after rolling. Plate of 600
annealed at a temperature below ~β transformation point or more 10 minutes, the length of the plate
Tensile strength in both depth and width directions is 900MP
Plate length that is a or more and the tensile strength in the plate width direction
The ratio of tensile strength in the direction is 0.95 to 1.05 times,
Furthermore, tensile elongation in the longitudinal and transverse directions are both
Characterized by obtaining a titanium alloy plate of 15% or more
A method for producing a Ti-Fe-O-N-based high strength titanium alloy plate having a small in - plane anisotropy .
JP21632697A 1997-08-11 1997-08-11 Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy Expired - Lifetime JP3481428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21632697A JP3481428B2 (en) 1997-08-11 1997-08-11 Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21632697A JP3481428B2 (en) 1997-08-11 1997-08-11 Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy

Publications (2)

Publication Number Publication Date
JPH1161297A JPH1161297A (en) 1999-03-05
JP3481428B2 true JP3481428B2 (en) 2003-12-22

Family

ID=16686785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21632697A Expired - Lifetime JP3481428B2 (en) 1997-08-11 1997-08-11 Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy

Country Status (1)

Country Link
JP (1) JP3481428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106906380A (en) * 2017-04-10 2017-06-30 河北酷甩科技有限公司 3C product titanium alloy material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4257581B2 (en) 2002-09-20 2009-04-22 株式会社豊田中央研究所 Titanium alloy and manufacturing method thereof
JP5183911B2 (en) * 2006-11-21 2013-04-17 株式会社神戸製鋼所 Titanium alloy plate excellent in bendability and stretchability and manufacturing method thereof
JP5088876B2 (en) * 2008-01-29 2012-12-05 株式会社神戸製鋼所 Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP5064356B2 (en) * 2008-11-20 2012-10-31 株式会社神戸製鋼所 Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106906380A (en) * 2017-04-10 2017-06-30 河北酷甩科技有限公司 3C product titanium alloy material

Also Published As

Publication number Publication date
JPH1161297A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US9797029B2 (en) Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same
EP0610006A1 (en) Superplastic aluminum alloy and process for producing same
EP0683242B1 (en) Method for making titanium alloy products
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
US4559090A (en) Using a corrosion proof austenitic iron chromium nickel nitrogen alloy for high load components
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2536673B2 (en) Heat treatment method for titanium alloy material for cold working
JP3873313B2 (en) Method for producing high-strength titanium alloy
JPH01252747A (en) High strength titanium material having excellent ductility and its manufacture
EP1772528B1 (en) Titanium alloy and method of manufacturing titanium alloy material
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
CN109913758B (en) Ferritic stainless steel plate with good high-temperature strength and forming performance and preparation method thereof
CN109468492B (en) Titanium alloy plate with high impact toughness and processing technology thereof
JP3749589B2 (en) Hot-rolled strip, hot-rolled sheet or hot-rolled strip made of Ti-Fe-O-N-based titanium alloy and method for producing them
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
EP3266887A1 (en) Thin titanium sheet and manufacturing method therefor
JP3410241B2 (en) Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability
JPH029647B2 (en)
JPH11117019A (en) Production of heat resistant parts
JPH11117020A (en) Production of heat resistant parts
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JP3536139B2 (en) Method for producing high strength low thermal expansion alloy wire
JP2000273598A (en) Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability
JP3172848B2 (en) High Cr ferritic steel with excellent creep strength
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term