JP3172848B2 - High Cr ferritic steel with excellent creep strength - Google Patents

High Cr ferritic steel with excellent creep strength

Info

Publication number
JP3172848B2
JP3172848B2 JP34486492A JP34486492A JP3172848B2 JP 3172848 B2 JP3172848 B2 JP 3172848B2 JP 34486492 A JP34486492 A JP 34486492A JP 34486492 A JP34486492 A JP 34486492A JP 3172848 B2 JP3172848 B2 JP 3172848B2
Authority
JP
Japan
Prior art keywords
creep rupture
strength
steel
amount
rupture strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34486492A
Other languages
Japanese (ja)
Other versions
JPH06192794A (en
Inventor
豊 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34486492A priority Critical patent/JP3172848B2/en
Publication of JPH06192794A publication Critical patent/JPH06192794A/en
Application granted granted Critical
Publication of JP3172848B2 publication Critical patent/JP3172848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、火力発電、化学プラン
ト等に用いられる高Cr耐熱鋼において、優れたクリー
プ強度を有する高Crフェライト鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high Cr heat resistant steel used for thermal power plants, chemical plants and the like, and relates to a high Cr ferritic steel having excellent creep strength.

【0002】[0002]

【従来の技術】9〜12%Crを含有する高Cr耐熱鋼
では、適用されるプラントの高温高圧化への対応から、
クリープ破断強度の改善が強く求められている。また、
プラントの安全性確保の点から、靭性の劣化抑制、溶接
性の向上も望まれている。このため、数多くの成分改良
が進められてきた。例えば、特開昭62−297436
号公報に開示される如く、従来のCr−Mo−V−Nb
系の基本成分に対し、WやBを添加する技術がある。ま
た、特開昭63−238244号公報で開示されたCo
添加、特開昭63−65059号公報でのCu、Ni添
加等の技術が開発されてきた。
2. Description of the Related Art In a high Cr heat resistant steel containing 9 to 12% Cr, in order to cope with high temperature and high pressure of an applied plant,
Improvement of creep rupture strength is strongly demanded. Also,
From the viewpoint of ensuring the safety of the plant, suppression of deterioration of toughness and improvement of weldability are also desired. For this reason, many component improvements have been promoted. For example, Japanese Patent Application Laid-Open No. 62-297436
As disclosed in Japanese Unexamined Patent Application Publication,
There is a technique of adding W or B to the basic components of the system. Further, Co disclosed in JP-A-63-238244 is disclosed.
In addition, techniques such as addition of Cu and Ni in JP-A-63-65059 have been developed.

【0003】これらは何れも合金元素の添加量を増加す
る方向の技術であり、クリープ破断強度が向上する反
面、合金コストの上昇、製造性の低下、靭性の低下、溶
接性の低下、を随伴することとなる。一方、少数ではあ
るが、成分組合せを適正化して、高価な合金元素の添加
量を抑制しようとする試みもある。特開平2−1335
46号公報では、Mn添加量を低下させることによりク
リープ破断強度を向上することが述べられている。
[0003] All of these techniques are directed to increasing the amount of alloying elements to be added, and while increasing the creep rupture strength, they are accompanied by an increase in alloy cost, a decrease in manufacturability, a decrease in toughness, and a decrease in weldability. Will be done. On the other hand, there is a small number of attempts to optimize the combination of components to suppress the amount of expensive alloy elements to be added. JP-A-2-1335
No. 46 discloses that the creep rupture strength is improved by reducing the amount of Mn added.

【0004】しかしながら、特開平2−133546号
公報ではクリープ破断強度が不十分なため、工業的に広
く利用されるに至っていない。
However, Japanese Unexamined Patent Publication (Kokai) No. 2-133546 has not been widely used industrially because of insufficient creep rupture strength.

【0005】[0005]

【発明が解決しようとする課題】本発明は、徒に合金元
素を多量添加することなく、優れたクリープ強度を得る
ことのできる高Crフェライト鋼を提供するを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high Cr ferritic steel which can obtain excellent creep strength without adding a large amount of alloying elements.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するため、クリープ破断強度への合金元素の効
果について種々調査研究した結果、MnとPが相乗効果
を示し、両者の積を一定値以下とすることによりクリー
プ破断強度を向上できることを見出した。本発明はこの
知見に基づきなされたものであり、重量%にて、C:
0.05〜0.15%、Si:0.01〜0.5%、M
n:0.02〜0.2%、Cr:8〜13%、W:0.
92〜3.2%、Mo:0.05〜0.34%、V:
0.05〜0.25%、Nb:0.005〜0.12
%、Al:0.005〜0.05%、S:0.005%
以下、P:0.0005〜0.01%、N:0.005
〜0.1%、を含み、Mn(%)×P(%)が0.00
1以下であり、残部Feおよび不可避的不純物からなる
優れたクリープ強度を有する高Crフェライト鋼を要旨
とする。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted various investigations and studies on the effect of alloying elements on creep rupture strength, and as a result, Mn and P show a synergistic effect. It has been found that the creep rupture strength can be improved by setting the product to a certain value or less. The present invention has been made based on this finding.
0.05-0.15%, Si: 0.01-0.5%, M
n: 0.02 to 0.2%, Cr: 8 to 13%, W: 0.
92 to 3.2%, Mo: 0.05 to 0.34 %, V:
0.05-0.25%, Nb: 0.005-0.12
%, Al: 0.005 to 0.05%, S: 0.005%
Hereinafter, P: 0.0005 to 0.01%, N: 0.005
0.1%, and Mn (%) × P (%) is 0.00
A high Cr ferritic steel having an excellent creep strength of not more than 1 and the balance of Fe and unavoidable impurities.

【0007】[0007]

【作用】以下、本発明についてさらに詳細に説明する。
0.10%C−0.1%Si−0.01〜0.2%Mn
−0.0001〜0.02%P−0.001%S−9%
Cr−0.2%Mo−1.2%W−0.18%V−0.
05%Nb−0.015%Al−0.055%Nを合金
成分とする真空溶解鋼塊を用い、1250℃で加熱の
後、25mm厚に熱間圧延した。1050℃で1時間の
加熱保持から空冷により焼ならしを行った後、760℃
で3時間の焼もどしを行った。この後、圧延方向に直角
(C方向)にクリープ破断試験片を採取し、600℃、
21kgf/mm2 の条件でクリープ破断試験を行い、
クリープ破断時間を求めた。図1にMn(%)×P
(%)がクリープ破断強度におよぼす影響を示す。
Hereinafter, the present invention will be described in more detail.
0.10% C-0.1% Si-0.01 ~ 0.2% Mn
-0.0001 to 0.02% P-0.001% S-9%
Cr-0.2% Mo-1.2% W-0.18% V-0.
Using a vacuum-melted steel ingot containing 05% Nb-0.015% Al-0.055% N as an alloy component, it was heated at 1250 ° C and hot-rolled to a thickness of 25 mm. After normalizing by air cooling from heating and holding at 1050 ° C. for 1 hour, 760 ° C.
And tempered for 3 hours. Thereafter, a creep rupture test specimen was taken at right angles to the rolling direction (C direction),
A creep rupture test was performed under the conditions of 21 kgf / mm 2 ,
The creep rupture time was determined. FIG. 1 shows Mn (%) × P
(%) Shows the effect on the creep rupture strength.

【0008】Mn(%)×P(%)が0.001まで
低下してもクリープ破断時間は余り変化しないが、0.
001以下に低下するとクリープ破断時間、即ちクリー
プ破断強度が顕著に向上することを発見した。これは次
のような理由による。Mnは極めて偏析し易い元素であ
る。一方、クリープ破断強度向上に有効なMo,W,
V,Nb等は、所謂フェライト生成元素であり、Mnの
非濃化部に濃縮する性質を有する。このため、Mnの偏
析により、Mo,W,V,Nb等の偏析が助長される。
従って、Mnの濃化部では、Mo,W,V,Nb等の濃
度が低下するばかりでなく、Mnの濃縮自体が炭窒化物
の安定性を阻害し、クリープ破断強度が低下する。逆に
Mnの非濃化部では、Mo,W,V,Nb等が濃化し、
δフェライトの生成を促進する。このため、クリープ破
断強度を改善する目的でMo,W,V,Nb等を多量添
加するとδフェライトが生成し、Mnの非濃化部でもク
リープ破断強度が低下する原因となる。
[0008] Mn (%) × P (% ) but does not change so much creep rupture time be lowered to 0.001 greater than 0.
It has been found that the creep rupture time, that is, the creep rupture strength is remarkably improved when the temperature is reduced to 001 or less . This is for the following reasons. Mn is an element that is extremely easily segregated. On the other hand, Mo, W, which are effective for improving creep rupture strength,
V, Nb, and the like are so-called ferrite forming elements and have a property of being concentrated in the non-concentrated portion of Mn. Therefore, segregation of Mn promotes segregation of Mo, W, V, Nb, and the like.
Therefore, in the Mn-enriched portion, not only the concentration of Mo, W, V, Nb, etc. decreases, but also the concentration of Mn itself inhibits the stability of the carbonitride, and the creep rupture strength decreases. Conversely, in the non-concentrated portion of Mn, Mo, W, V, Nb, etc. are concentrated,
Promotes the formation of δ ferrite. Therefore, when a large amount of Mo, W, V, Nb or the like is added for the purpose of improving the creep rupture strength, δ ferrite is generated, which causes the creep rupture strength to decrease even in a non-concentrated portion of Mn.

【0009】Mnの偏析度はP添加の増量により相乗的
に上昇し、P量の増加はMnの偏析を通してクリープ破
断強度低下を招く。このため、Mn(%)×P(%)を
0.001以下に抑制することがクリープ破断強度向上
に極めて有効な手段となる。また、0.2%超のMn添
加ではMn(%)×P(%)を0.001以下とするこ
とが困難になるため、Mn量を0.2%以下とする。M
n量が0.02%未満では、MnSとしてのSの固定が
出来なくなるため、下限を0.02%とする。
The degree of segregation of Mn increases synergistically with an increase in the addition of P, and an increase in the amount of P causes a decrease in creep rupture strength through segregation of Mn. Therefore, suppressing Mn (%) × P (%) to 0.001 or less is an extremely effective means for improving creep rupture strength. Further, if Mn is added in excess of 0.2%, it is difficult to make Mn (%) × P (%) 0.001 or less, so the Mn content is made 0.2% or less. M
If the amount of n is less than 0.02%, S as MnS cannot be fixed, so the lower limit is made 0.02%.

【0010】Pについても、Mn(%)×P(%)を
0.001以下を達成するため、上限を0.01%とす
る。また、下限については可及的に低いことが望ましい
が、工業的な達成限界から下限を0.0005%とす
る。以下にその他の成分元素の限定理由について述べ
る。Cは常温および高温の強度を高めるのに有効な元素
であり、高Cr耐熱鋼として要求される強度レベルか
ら、少なくても0.05%を必要とする。しかし、C量
の増加とともに、鋼材の靭性が低下し、溶接性も悪くな
るため、上限を0.15%とする。
The upper limit of P is set to 0.01% in order to achieve Mn (%) × P (%) of 0.001 or less. Although the lower limit is desirably as low as possible, the lower limit is set to 0.0005% from the industrial achievement limit. The reasons for limiting the other component elements will be described below. C is an element effective for increasing the strength at room temperature and high temperature, and requires at least 0.05% from the strength level required for high Cr heat resistant steel. However, as the C content increases, the toughness of the steel material decreases, and the weldability also deteriorates. Therefore, the upper limit is set to 0.15%.

【0011】Siは脱酸および強度上昇のため0.01
%以上添加するが、添加量が多いと靭性を低下するため
上限を0.5%とする。Crは焼入れ性を増すととも
に、焼もどしおよび溶接後熱処理で炭窒化物を析出し、
高温強度を向上させる。またCrは密着性の良い酸化皮
膜を形成し、耐酸化性を向上させるため、8%以上添加
する。しかし、13%超の添加は不必要なため、上限を
13%とする。
Si is 0.01% for deoxidation and strength increase.
%, But if the amount of addition is large, the toughness is reduced, so the upper limit is made 0.5%. Cr increases hardenability, and precipitates carbonitride by tempering and post-weld heat treatment.
Improve high temperature strength. Cr is added in an amount of 8% or more to form an oxide film having good adhesion and improve oxidation resistance. However, since addition of more than 13% is unnecessary, the upper limit is set to 13%.

【0012】Wは高温強度、特にクリープ破断強度を増
す効果を有する元素であり、0.92%以上添加する。
しかし、3.2%超を添加するとδフェライトの生成等
によりクリープ破断強度が却って低下し、また靱性にも
悪影響を与えるため、上限を3.2%とする。MoはW
との複合添加により高温強度、特にクリープ破断強度が
増すために添加する。しかし、添加量が0.05%未満
では効果が認められず、0.34%超では複合添加効果
が飽和する傾向を示すため、添加範囲を0.05〜0.
34%とする。
W is an element having the effect of increasing high-temperature strength, particularly creep rupture strength, and is added in an amount of 0.92% or more .
However, if more than 3.2% is added, the creep rupture strength is rather lowered due to the formation of δ ferrite and the toughness is also adversely affected, so the upper limit is made 3.2%. Mo is W
Is added in order to increase the high temperature strength, particularly the creep rupture strength, by the complex addition of However, if the addition amount is less than 0.05%, no effect is observed, and if it exceeds 0.34% , the combined addition effect tends to be saturated, so the addition range is 0.05 to 0.1% .
34% .

【0013】Vはそれ自体炭窒化物を形成し、強度を上
昇するとともに、Crの炭窒化物に固溶し、Cr炭窒化
物をさらに安定化する効果がある。しかし、0.05%
未満では効果が認められず、0.25%超では効果が飽
和し、添加量に応じた効果が得られないため、0.05
〜0.25%とする。Nbは焼もどしあるいは溶接後熱
処理時に安定な炭窒化物を形成し、またVの炭窒化物と
複合析出し、鋼のクリープ破断強度を向上させる効果を
有する。このため、0.005%以上を添加するが、
0.12%超では添加量に見合った効果が得られないた
め、経済的な理由で0.12%以下に抑制する。
V itself forms a carbonitride, increases the strength, and has the effect of dissolving in Cr carbonitride to further stabilize the Cr carbonitride. However, 0.05%
When the amount is less than 0.25%, the effect is not saturated. When the amount exceeds 0.25%, the effect is saturated and the effect according to the added amount cannot be obtained.
To 0.25%. Nb forms a stable carbonitride at the time of tempering or post-weld heat treatment, and has an effect of improving the creep rupture strength of steel by complex precipitation with V carbonitride. For this reason, 0.005% or more is added,
If the content exceeds 0.12%, the effect corresponding to the added amount cannot be obtained, so that the content is suppressed to 0.12% or less for economic reasons.

【0014】Alは鋼の脱酸に不可欠な元素であり、こ
の目的から0.005%以上を添加する。しかし、Al
添加量が高くなるとクリープ破断強度を害するため添加
量の上限を0.05%とする。SはMnS介在物を形成
し、クリープ破断強度を低下させる。このため、低い程
鋼の特性に望ましく、0.005%以下に限定する。
Al is an element indispensable for deoxidation of steel, and for this purpose, 0.005% or more is added. However, Al
When the amount of addition increases, the creep rupture strength is impaired, so the upper limit of the amount of addition is set to 0.05%. S forms MnS inclusions and lowers the creep rupture strength. For this reason, the lower the better, the better the properties of the steel, and it is limited to 0.005% or less.

【0015】NはCと同様、鋼の強度を上昇させるが、
通常の溶製方法では0.1%超の添加で鋼塊内に気孔を
形成する。気孔が圧延によっても未圧着であると、延性
および靭性を低下させるため、添加量を0.1%以下と
する。次に、素材の製造条件について述べる。前記のよ
うな化学成分を有する鋼は転炉、電気炉で溶製した後、
必要に応じて取鍋精錬や真空脱ガス処理を施して得ら
れ、通常鋳型あるいは一方向凝固鋳型で造塊した後、分
塊でスラブとされる。スラブあるいはビレットは連続鋳
造法により溶鋼から直接製造しても良い。分塊での均熱
・圧下はいかなるものであっても構わない。即ち、スラ
ブを冷却した後均熱してもよく、分塊のまま熱片で均熱
炉に装入しても良い。1000〜1300℃で均熱の
後、圧延または鍛造によりスラブあるいはビレットとす
る。これらの寸法は製品寸法の2倍以上が好ましい。
N, like C, increases the strength of steel,
In a usual smelting method, pores are formed in a steel ingot by adding more than 0.1%. If the pores are not pressed even after rolling, the ductility and the toughness are reduced, so the addition amount is set to 0.1% or less. Next, the manufacturing conditions of the material will be described. Steel having the above chemical composition is melted in a converter and an electric furnace,
It is obtained by performing ladle refining and vacuum degassing as needed, and is usually formed into a slab by lumping with a mold or a one-way solidification mold. The slab or billet may be manufactured directly from molten steel by a continuous casting method. The soaking / rolling in the lumps may be any. That is, the slab may be cooled and then soaked, or may be charged into a soaking furnace with a hot piece as a lump. After soaking at 1000 to 1300 ° C, a slab or a billet is formed by rolling or forging. These dimensions are preferably at least twice the product dimensions.

【0016】スラブあるいはビレットは鋼に含有される
Nbの一部あるいは全部が固溶する温度で加熱されるこ
とが望ましい。したがって、1100℃以上の加熱温度
で加熱する。しかし、1280℃を超えると、オーステ
ナイト粒が粗大化しすぎ、圧延あるいは鍛造によっても
微細化できなくなることがあるため、1280℃以下が
好ましい。
The slab or billet is desirably heated at a temperature at which a part or all of Nb contained in the steel forms a solid solution. Therefore, heating is performed at a heating temperature of 1100 ° C. or more. However, if the temperature exceeds 1280 ° C., the austenite grains become too coarse, and it may not be possible to reduce the size by rolling or forging.

【0017】加熱されたスラブあるいはビレットは、複
数パスの圧延、鍛造、押出、引抜あるいは穴拡げにより
所定の形状寸法とされる。成形の終了後はマルテンサイ
ト変態温度である約300℃以下まで冷却するのが望ま
しい。冷却は空冷でもよく、水冷等の加速冷却を採用し
てもよい。冷却した素材は焼もどしにより所定の強度に
調整する。本発明の高Cr耐熱鋼のAc1温度は概ね8
30〜850℃であり、焼もどしはこの温度以下とす
る。
The heated slab or billet is formed into a predetermined shape and size by rolling, forging, extruding, drawing or expanding holes in a plurality of passes. After completion of the molding, it is desirable to cool the material to a martensitic transformation temperature of about 300 ° C. or less. The cooling may be air cooling or accelerated cooling such as water cooling. The cooled material is adjusted to a predetermined strength by tempering. The Ac 1 temperature of the high Cr heat resistant steel of the present invention is approximately 8
The temperature is 30 to 850 ° C, and the tempering is performed at this temperature or lower.

【0018】[0018]

【実施例】表1に示す化学成分を有する鋼を用い、表2
に示す条件で熱処理を施し、同表中に示す形状の製品と
した。得られた製品からサンプルを切り出し、引張強さ
を求めるとともに、クリープ破断試験を実施した。結果
を併せて表2に示す。
EXAMPLE A steel having the chemical composition shown in Table 1 was used, and Table 2 was used.
The product was heat-treated under the conditions shown in Table 3 to obtain products having the shapes shown in the same table. A sample was cut out from the obtained product, a tensile strength was determined, and a creep rupture test was performed. The results are shown in Table 2.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】鋼材1A〜9AのAシリーズは本発明によ
るものであり、引張強さが70〜75kgf/mm2
加工性および靭性の確保に適切な値であり、650℃−
10、000時間のクリープ破断強度も9kgf/mm
2 を超えており、優れた値を示している。これに対し、
鋼材2Bおよび8BではP含有量が本発明範囲を超えて
おり、鋼材5BではMn量が本発明範囲より高く、Mn
(%)×P(%)が0.001を超えており、引張強さ
が70〜75kgf/mm2 と妥当な値であるにも拘ら
ず、650℃−10、000時間のクリープ破断強度が
9kgf/mm2 未満と低く、クリープ破断強度が劣
る。
The A series of steel materials 1A to 9A is according to the present invention and has a tensile strength of 70 to 75 kgf / mm 2 , which is an appropriate value for ensuring workability and toughness.
The creep rupture strength for 10,000 hours is also 9 kgf / mm.
It exceeds 2 and shows an excellent value. In contrast,
In the steel materials 2B and 8B, the P content exceeds the range of the present invention. In the steel material 5B, the Mn content is higher than the range of the present invention.
(%) × P (%) exceeds 0.001 and the creep rupture strength at 650 ° C.-10,000 hours is high even though the tensile strength is a reasonable value of 70 to 75 kgf / mm 2. It is as low as less than 9 kgf / mm 2 and the creep rupture strength is inferior.

【0022】[0022]

【発明の効果】本発明による高Cr耐熱鋼は適切な引張
強さでありながら、優れたクリープ強度を有しており、
高温高圧で使用される火力発電や化学プラント用として
極めて有用なものであり、工業上価値が大きい。
The high Cr heat resistant steel according to the present invention has excellent creep strength while having appropriate tensile strength.
It is extremely useful for thermal power generation and chemical plants used at high temperature and high pressure, and has great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Mn(%)×P(%)とクリープ破断時間の関
係を示す図である。
FIG. 1 is a diagram showing the relationship between Mn (%) × P (%) and creep rupture time.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C22C 38/26 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00 302 C22C 38/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%にて、 C:0.05〜0.15%、 Si:0.01〜0.5%、 Mn:0.02〜0.2%、 Cr:8〜13%、 W:0.92〜3.2%、 Mo:0.05〜0.34%、 V:0.05〜0.25%、 Nb:0.005〜0.12%、 Al:0.005〜0.05%、 S:0.005%以下、 P:0.0005〜0.01%、 N:0.005〜0.1% を含み、Mn(%)×P(%)が0.001以下であ
り、残部Feおよび不可避的不純物からなる優れたクリ
ープ強度を有する高Crフェライト鋼。
C: 0.05 to 0.15%, Si: 0.01 to 0.5%, Mn: 0.02 to 0.2%, Cr: 8 to 13% by weight% W: 0.92 to 3.2%, Mo: 0.05 to 0.34 %, V: 0.05 to 0.25%, Nb: 0.005 to 0.12%, Al: 0.005 to 0.05%, S: 0.005% or less, P: 0.0005 to 0.01%, N: 0.005 to 0.1%, and Mn (%) × P (%) is 0.001. A high Cr ferritic steel having excellent creep strength consisting of the following, Fe and unavoidable impurities.
JP34486492A 1992-12-24 1992-12-24 High Cr ferritic steel with excellent creep strength Expired - Fee Related JP3172848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34486492A JP3172848B2 (en) 1992-12-24 1992-12-24 High Cr ferritic steel with excellent creep strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34486492A JP3172848B2 (en) 1992-12-24 1992-12-24 High Cr ferritic steel with excellent creep strength

Publications (2)

Publication Number Publication Date
JPH06192794A JPH06192794A (en) 1994-07-12
JP3172848B2 true JP3172848B2 (en) 2001-06-04

Family

ID=18372585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34486492A Expired - Fee Related JP3172848B2 (en) 1992-12-24 1992-12-24 High Cr ferritic steel with excellent creep strength

Country Status (1)

Country Link
JP (1) JP3172848B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563537B1 (en) * 2015-06-23 2015-10-28 주식회사시니프 Adjusting chair of the sheet for the people
KR102405617B1 (en) 2015-10-20 2022-06-09 주식회사 나조산업 Adjusting chair of the sheet for the people

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481289A (en) * 1990-07-23 1992-03-13 Fanuc Ltd Beam conduit device in laser robot
CN100439551C (en) * 2006-06-28 2008-12-03 宝山钢铁股份有限公司 High-grade highly carbon-dioxide resistant chloride ion corrosion oil annular tube steel and method for manufacturing the same
US20170292179A1 (en) * 2016-04-11 2017-10-12 Terrapower, Llc High temperature, radiation-resistant, ferritic-martensitic steels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563537B1 (en) * 2015-06-23 2015-10-28 주식회사시니프 Adjusting chair of the sheet for the people
KR102405617B1 (en) 2015-10-20 2022-06-09 주식회사 나조산업 Adjusting chair of the sheet for the people

Also Published As

Publication number Publication date
JPH06192794A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
US20070131314A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
EP3722448B1 (en) High-mn steel and method for manufacturing same
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP3172848B2 (en) High Cr ferritic steel with excellent creep strength
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JP2009228051A (en) Method for producing non-heattreated steel material
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3410241B2 (en) Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
JPH0551633A (en) Production of high si-containing austenitic stainless steel
JPH11117020A (en) Production of heat resistant parts
WO2022145063A1 (en) Steel material
JP3591486B2 (en) High Cr ferritic heat resistant steel
JPH11117019A (en) Production of heat resistant parts
US20110318220A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
JP2533935B2 (en) Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
JPH0717988B2 (en) Ferritic stainless steel with excellent toughness and corrosion resistance
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof
JP2687067B2 (en) Method for producing high Cr ferritic steel sheet having excellent creep strength and good workability
JP3266823B2 (en) Manufacturing method of maraging steel
JPH07809B2 (en) Manufacturing method of extra-thick steel plate for pressure vessel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

LAPS Cancellation because of no payment of annual fees