JP2000273598A - Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability - Google Patents

Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability

Info

Publication number
JP2000273598A
JP2000273598A JP8054099A JP8054099A JP2000273598A JP 2000273598 A JP2000273598 A JP 2000273598A JP 8054099 A JP8054099 A JP 8054099A JP 8054099 A JP8054099 A JP 8054099A JP 2000273598 A JP2000273598 A JP 2000273598A
Authority
JP
Japan
Prior art keywords
alloy
annealing
elongation
temperature
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8054099A
Other languages
Japanese (ja)
Inventor
Hideto Oyama
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8054099A priority Critical patent/JP2000273598A/en
Publication of JP2000273598A publication Critical patent/JP2000273598A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of adopting a coil rolling process enabling continuous production and applicable to an Al-containing α+β Ti alloy and further capable of providing a Ti alloy combining excellent workability with strength by means of subsequent annealing. SOLUTION: At the time of annealing a coil cold rolled sheet of Al-containing α+β Ti alloy, annealing is performed while selecting the heating temperature at annealing among the temperatures avoiding the temperature region where a brittle hexagonal crystal appears, within the temperature range between the temperature at which work hardening at cold rolling is relaxed and Tβ. By this procedure, the elongation of the coil cold rolled Ti alloy sheet in T- direction can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高強度で且つ加工性
に優れたコイル冷延Ti合金板の製法に関し、特にコイ
ル冷延後の焼鈍条件を適正に制御することによって、加
工性に優れた高強度コイル冷延Ti合金板を製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled Ti alloy sheet having high strength and excellent workability. In particular, the present invention provides excellent workability by appropriately controlling the annealing conditions after coil cold-rolling. The present invention relates to a method for manufacturing a high-strength coil cold-rolled Ti alloy sheet.

【0002】[0002]

【従来の技術】Ti合金は、軽量で且つ強度、靭性、耐
食性に優れたものであることから、近年、航空宇宙産業
や化学工業等の分野で広く使用されている。しかしなが
らTi合金は元々加工性の悪い材料であり、それゆえ成
形加工のためのコストが他の材料に比較して著しく高く
つくという大きな欠点がある。例えば代表的なα+β型
チタン合金であるTi−6Al−4V合金は難加工材で
あって冷間加工性が悪く、コイル冷延による板材の製造
は実質的に不可能とされている。
2. Description of the Related Art Ti alloys are widely used in the fields of aerospace industry and chemical industry in recent years because they are lightweight and have excellent strength, toughness and corrosion resistance. However, Ti alloys are inherently poor workable materials, and therefore have a major drawback that the cost for forming is significantly higher than other materials. For example, Ti-6Al-4V alloy, which is a typical α + β type titanium alloy, is a difficult-to-work material and has poor cold workability, and it is said that it is practically impossible to manufacture a sheet material by coil cold rolling.

【0003】そこでTi−6Al−4V合金を板状に加
工する際には、パック圧延と呼ばれる手法が採用されて
いる。即ちパック圧延とは、熱間圧延によって得たTi
−6Al−4V合金板を層状に重ね合わせて軟鋼製の箱
に入れ、所定の温度より下がらない様に保温しつつ熱間
圧延により薄板を製造する方法であるが、この方法で
は、パックを製造するための軟鋼製カバーやパック溶接
が必要になる他、チタン合金板の拡散接合を阻止するた
めの離型剤の塗布など、冷間圧延に比べて作業が極めて
煩雑で多大な費用を要する上に、熱間圧延に適した温度
域が限られているため加工上の制約も多い。
[0003] When a Ti-6Al-4V alloy is processed into a plate shape, a technique called pack rolling is adopted. That is, pack rolling refers to Ti obtained by hot rolling.
This is a method in which -6Al-4V alloy sheets are stacked in layers and placed in a mild steel box, and a thin sheet is manufactured by hot rolling while keeping the temperature below a predetermined temperature. In this method, a pack is manufactured. In addition to the need for mild steel cover and pack welding, the application of a release agent to prevent diffusion bonding of titanium alloy sheets is extremely complicated and requires a lot of cost compared to cold rolling. In addition, since the temperature range suitable for hot rolling is limited, there are many restrictions on working.

【0004】これに対し特開平3−274238号公報
や同3−166350号公報には、Ti母材中のAl,
VおよびMoの含有量を規定し、且つ、Fe,Ni,C
o,Crから選ばれる少なくとも一種の合金元素を適量
含有させることによって、上記Ti−6Al−4V合金
並みの強度を有すると共に、超塑性加工性や熱間加工性
においてもTi−6Al−4V合金よりも優れたチタン
合金が得られると記述されている。
On the other hand, JP-A-3-274238 and JP-A-3-166350 disclose Al, Ti in a Ti base material.
The content of V and Mo is specified, and Fe, Ni, C
By containing an appropriate amount of at least one alloying element selected from o and Cr, the alloy has the same strength as the Ti-6Al-4V alloy, and also has a superplastic workability and a hot workability higher than those of the Ti-6Al-4V alloy. It is described that an excellent titanium alloy can be obtained.

【0005】更に特開平7−54081号公報や同7−
54083号公報には、Al含有量を1.0〜4.5%
レベルに低減すると共に、V含有量を1.5〜4.5
%、Mo含有量を0.1〜2.5%に規定し、或いは更
に少量のFeやNiを含有させることによって、高強度
を維持しつつ冷間加工性を高めたTi合金が開示されて
いる。
Further, Japanese Patent Application Laid-Open No. 7-54081 and
No. 54083 discloses an Al content of 1.0 to 4.5%.
And the V content is 1.5-4.5.
%, The content of Mo is defined as 0.1 to 2.5%, or further contains a small amount of Fe or Ni, thereby maintaining a high strength and improving the cold workability of a Ti alloy. I have.

【0006】このTi合金は、冷間加工性と高強度を兼
ね備え且つ溶接性までも改善されている点で優れたもの
といえる。しかしながら最近における需要者の要求は一
段と厳しくなっており、一層の改善が望まれる。
[0006] This Ti alloy is excellent in that it has both cold workability and high strength, and also has improved weldability. However, the demands of consumers have become more severe in recent years, and further improvement is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたもので、特にAlを含むα+β型
Ti合金を対象とし、連続生産の可能なコイル圧延法を
採用することができ、その後の焼鈍により優れた加工性
と強度を兼ね備えたTi合金を得ることのできる方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances. In particular, the present invention is directed to an α + β type Ti alloy containing Al and adopting a coil rolling method capable of continuous production. An object of the present invention is to provide a method capable of obtaining a Ti alloy having both excellent workability and strength by subsequent annealing.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の製法は、Alを含むコイル冷延α+β
型Ti合金板を焼鈍するに当たり、該焼鈍時の加熱温度
を、コイル冷延時の加工硬化を緩和する温度以上で且つ
Tβ以下の温度範囲のうち、脆弱な六方晶が出現する温
度域を可及的に回避する温度の中から選択して焼鈍する
ことにより、コイル冷延Ti合金板のT方向伸びを向上
させるところに要旨を有している。
Means for Solving the Problems The manufacturing method of the present invention which can solve the above-mentioned problems is achieved by a cold-rolled α + β coil containing Al.
In annealing the type Ti alloy sheet, the heating temperature at the time of annealing should be set to a temperature range in which a brittle hexagonal crystal appears in a temperature range not less than a temperature at which work hardening during coil rolling is relaxed and not more than Tβ. The gist lies in that the elongation in the T direction of the coil cold-rolled Ti alloy sheet is improved by annealing from a temperature to be avoided.

【0009】上記本発明に適用されα+β型Ti合金の
化学組成は特に制限されないが、元々の熱延材としてコ
イル冷延の可能な加工性を有し、且つその後の冷延と適
正温度域の焼鈍の組み合わせによって優れた加工性と高
強度を兼ね備えたTi合金を得る上で特に好ましいの
は、Al当量が3〜6.5%であり、且つ全率固溶型β
安定化元素の少なくとも1種をMo当量で2.0〜4.
5%と、共析型β安定化元素の少なくとも1種をFe当
量で0.3〜2%を含み、或いは更に他の元素として
C:0.01〜0.15%、更にはSiを0.1〜1.
5%含有するTi合金である。
Although the chemical composition of the α + β type Ti alloy applied to the present invention is not particularly limited, it has a workability capable of cold rolling as an original hot rolled material, and has a suitable temperature range in the subsequent cold rolling. In order to obtain a Ti alloy having both excellent workability and high strength by a combination of annealing, it is particularly preferable that the Al equivalent is 3 to 6.5% and the solid solution β
At least one stabilizing element has a Mo equivalent of 2.0 to 4.
5% and at least one of the eutectoid β-stabilizing elements contains 0.3 to 2% by Fe equivalent, or 0.01 to 0.15% of C as another element, and 0 to 0% of Si. .
It is a Ti alloy containing 5%.

【0010】そして上記の様な合金組成のTi合金を用
いて上記焼鈍を行なえば、焼鈍後の引張強さが900M
Pa以上で且つ4%以上の伸び率を示し、しかも[L方
向(コイル圧延方向)伸び率]/[T方向(コイル圧延
方向に対して直交方向)伸び率]が0.4〜1.0のT
i合金板を容易に得ることができる。
If the above annealing is performed using a Ti alloy having the above alloy composition, the tensile strength after annealing is 900 M
It shows an elongation percentage of not less than Pa and not less than 4%, and the [elongation percentage in L direction (coil rolling direction)] / [elongation percentage in T direction (direction perpendicular to coil rolling direction)] is 0.4 to 1.0. T
An i-alloy plate can be easily obtained.

【0011】[0011]

【発明の実施の形態】本発明は、上記の様にα+β相を
含む含Alコイル冷延Ti合金板を焼鈍するに際に、該
焼鈍時の加熱温度を、コイル冷延時の加工硬化を緩和す
る温度以上で且つTβ以下の温度範囲のうち、脆弱な六
方晶が出現する温度域を可及的に回避する温度の中から
選択して焼鈍するところに特徴を有しており、こうした
焼鈍条件を選定することによって、特にコイル冷延工程
で極端な延性低下を生じるT方向(コイル冷延方向に対
して直交方向)伸びを向上させ、高強度を維持しつつ加
工性を高めることに成功したものであり、以下、実験の
経緯を追って本発明の構成と作用効果を詳細に説明して
いく。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in the present invention, when an Al-containing cold-rolled Ti alloy sheet containing an α + β phase is annealed, the heating temperature during the annealing is reduced by reducing the work hardening during the cold rolling of the coil. The annealing temperature is selected from a temperature range in which a fragile hexagonal crystal appears as much as possible in a temperature range not lower than Tb and not higher than Tβ. By improving the elongation in the T direction (in the direction perpendicular to the cold rolling direction of the coil), which causes an extreme decrease in ductility in the coil cold rolling step, the workability was improved while maintaining high strength. The configuration, operation, and effect of the present invention will be described in detail below in the course of experiments.

【0012】本発明者らは、先に本発明者らによって開
発したコイル冷延の可能なα+β型Ti合金であるTi
−2Mo−1.6V−4.5Al合金を対象として、コ
イル冷延後の焼鈍条件が、当該Ti合金のL方向(コイ
ル圧延と同一方向)およびT方向の延性と強度に及ぼす
影響を明らかにすべく鋭意研究を進めてきた。
The present inventors have developed an α + β-type Ti alloy which is a cold-rollable α + β-type Ti alloy developed by the present inventors.
Influence of annealing conditions after coil cold rolling on ductility and strength in the L direction (same direction as coil rolling) and T direction of the Ti alloy for -2Mo-1.6V-4.5Al alloy I've been working hard to do this.

【0013】その結果、後記図1,2に示す如く、耐力
や引張強さについては焼鈍温度による顕著な影響は現わ
れないが、特にコイル冷延による延性低下が最も問題と
なるT方向伸びは焼鈍温度によって特異な傾向を示すこ
とが確認された。即ち上記合金系においては、ある焼鈍
温度(図1では850℃付近、図2では800℃付近)
でT方向伸びは最小値を示し、その前後の焼鈍温度域で
は何れも上昇傾向を示す。
As a result, as shown in FIGS. 1 and 2 described below, the proof stress and tensile strength are not significantly affected by the annealing temperature. It was confirmed that the temperature showed a specific tendency. That is, in the above alloy system, a certain annealing temperature (around 850 ° C. in FIG. 1 and around 800 ° C. in FIG. 2).
, The elongation in the T direction shows a minimum value, and shows an increasing tendency in the annealing temperature range before and after that.

【0014】そして上記の様な特異な傾向を示す理由を
更に追求した結果、次の様な事実が明らかになってき
た。
As a result of further pursuing the reasons for the above-mentioned peculiar tendency, the following facts have become clear.

【0015】即ち一般にコイル冷延後の焼鈍は、コイル
冷延で生じた加工硬化を加熱による再結晶によって緩和
し、主として冷延により大幅に低下したT方向の延性を
回復させるための処理として行われるもので、こうした
再結晶による延性改善効果は、焼鈍温度が高いほど向上
すると考えられている。
That is, annealing after coil cold rolling is generally performed as a process for relaxing work hardening generated by coil cold rolling by recrystallization by heating and recovering ductility in the T direction, which has been largely reduced by cold rolling. It is considered that the ductility improvement effect by such recrystallization increases as the annealing temperature increases.

【0016】ちなみに図3に示した一点鎖線は、一般に
認識されている焼鈍温度と延性の関係を示した概念図で
あり、冷延後の焼鈍温度が650℃程度以下の低温域で
はT方向延性の改善効果は殆ど認められないが、焼鈍温
度を700℃程度以上に高めると若干の延性回復が認め
られ、その後は焼鈍温度を高めるにつれて延性の回復は
進行し、更に焼鈍温度をβトランザス(Tβ)以上に高
めると再結晶が起こって異方性が解消され、延性は著し
く改善されると考えられている。
Incidentally, the dashed line shown in FIG. 3 is a conceptual diagram showing the relationship between the annealing temperature and the ductility generally recognized. In the low temperature region where the annealing temperature after cold rolling is about 650 ° C. or less, the ductility in the T direction is reduced. Almost no improvement effect was observed, but when the annealing temperature was increased to about 700 ° C. or more, a slight recovery of ductility was observed. Thereafter, as the annealing temperature was increased, the recovery of ductility progressed. It is considered that, when the content is increased above, recrystallization occurs, anisotropy is eliminated, and ductility is remarkably improved.

【0017】ところが、コイル冷延の可能な上記合金系
のα+β型Ti合金についてコイル冷延後の焼鈍温度と
伸び率の関係を実験によって調べたところ、図3の実線
A,Bで示す如く、L方向伸び(実線A)およびT方向
伸び(実線B)共に、焼鈍温度が約800℃程度までは
従来の認識と同様に温度の上昇につれて延性の回復が進
行して伸び率は向上していくが、それ以上に焼鈍温度を
高めると伸び率は一旦急激に低下した後、焼鈍温度を更
に高めると伸び率は再び急上昇するという特異な傾向を
示し、こうした特異な傾向は、Alを含むα+β型Ti
合金の場合に顕著に表れることが確認された。
However, when the relationship between the annealing temperature and the elongation rate after coil cold rolling of the alloy type α + β type Ti alloy capable of coil cold rolling was examined by experiments, as shown by solid lines A and B in FIG. In both the L-direction elongation (solid line A) and the T-direction elongation (solid line B), the ductility recovers as the temperature rises and the elongation rate increases up to an annealing temperature of about 800 ° C. as in the conventional recognition. However, when the annealing temperature is further increased, the elongation rate once drops sharply, and then when the annealing temperature is further increased, the elongation rate shows a peculiar tendency to rapidly rise again. Ti
It was confirmed that the phenomenon was remarkably exhibited in the case of an alloy.

【0018】しかもこの様な傾向は、図4に示す様なα
+β型Ti合金の状態図と当該Ti合金の組織変化によ
って説明できる。即ち図4は、α+β型Ti合金の状態
図に照らし合わせて、当該Ti合金における変態β相
(即ちα相)の延性の関係を示した説明図であり、β安
定化元素量の比較的少ないα相は、比較的延性に優れた
六方晶構造を有しているのに対し、β安定化元素量が増
大してくるにつれて、ある量を境にして脆弱な六方晶と
なり延性は急激に低下してくる。その後β安定化元素量
が更に増大すると、比較的延性の高い斜方晶となり、降
伏応力と引張強さは低下するが延性は再び上昇傾向を示
すようになる。即ちα+β型Ti合金では、β安定化元
素量の変化に伴う結晶構造の違いによっても延性は著し
く変わり、斜方晶が出現する直前に現われる脆弱な六方
晶が生じ難い合金組成に制御することが重要となる。
Moreover, such a tendency is caused by α as shown in FIG.
This can be explained by the phase diagram of the + β type Ti alloy and the structural change of the Ti alloy. That is, FIG. 4 is an explanatory diagram showing the relationship between the ductility of the transformed β phase (that is, the α phase) in the Ti + alloy in comparison with the phase diagram of the α + β type Ti alloy, in which the amount of the β stabilizing element is relatively small. The α phase has a relatively ductile hexagonal structure, but as the amount of β-stabilizing element increases, it becomes brittle hexagonal at a certain amount and the ductility decreases rapidly. Will come. Thereafter, when the amount of the β-stabilizing element further increases, it becomes an orthorhombic crystal having relatively high ductility, and the yield stress and the tensile strength are reduced, but the ductility again shows an increasing tendency. That is, in the α + β-type Ti alloy, the ductility remarkably changes due to the difference in the crystal structure accompanying the change in the amount of β-stabilizing element, and it is possible to control the alloy composition so that a brittle hexagonal crystal which appears immediately before the appearance of the orthorhombic crystal is hardly generated. It becomes important.

【0019】上記図3,4の傾向からも明らかな様に、
コイル冷延後におけるα+β型Ti合金の延性は、単に
加工硬化を緩和する再結晶のための焼鈍温度によって一
義的に決まってくるわけではなく、当該Ti合金の結晶
構造によっても顕著な影響を受ける。そしてこれらの複
合効果として、図3に示した如く再結晶のための焼鈍温
度を高めた場合でも、その時の変態β相が脆弱な六方晶
α主体となったときは延性が急激に低下し、また、当該
脆弱な六方晶構造が延性の高い斜方晶構造に変わった時
点以降は、再び焼鈍による再結晶の進行により延性が急
激に回復してくるものと考えられる。
As is clear from the trends shown in FIGS.
The ductility of the α + β-type Ti alloy after the cold rolling of the coil is not solely determined by the annealing temperature for recrystallization for relaxing work hardening, but is also significantly affected by the crystal structure of the Ti alloy. . As a combined effect of these, even when the annealing temperature for recrystallization is increased as shown in FIG. 3, when the transformed β phase at that time becomes mainly fragile hexagonal α, the ductility rapidly decreases, Further, after the brittle hexagonal structure is changed to a highly ductile orthorhombic structure, it is considered that ductility is rapidly recovered due to the progress of recrystallization by annealing again.

【0020】上記の様に本発明では、コイル圧延後の延
性が再結晶のための焼鈍温度によって一義的に決まるの
ではなく、当該Ti合金の結晶構造の違いによっても顕
著な影響を受けるという事実の確認に基づくもので、要
するにコイル冷延されたα+β型Ti合金を焼鈍するこ
とにより加工硬化を緩和して延性を高める際に、当該焼
鈍温度を、前記脆弱な六方晶の出現による脆化相生成域
を極力回避する様にコントロールすることにより、伸び
率を確実に高めて優れた加工性が得られる様にしたとこ
ろに特徴を有している。
As described above, in the present invention, the fact that the ductility after coil rolling is not uniquely determined by the annealing temperature for recrystallization but is significantly affected by the difference in the crystal structure of the Ti alloy. In short, when annealing the coil-rolled α + β-type Ti alloy to reduce work hardening and increase ductility, the annealing temperature is set to the brittle phase due to the appearance of the brittle hexagonal crystal. It is characterized in that by controlling the generation region as much as possible, the elongation is surely increased to obtain excellent workability.

【0021】このとき、例えば図4の領域Xで示す如
く、焼鈍加熱時におけるβ相の合金組成が脆弱な六方晶
を出現させる領域であっても、当該脆弱な六方晶の出現
温度域を徐冷(炉冷)してやれば、当該Ti合金の組織
変化はβトランザス(Tβ)に沿って変化することにな
り、脆弱な六方晶の出現が抑えられる。そして当該温度
域を回避して通常の冷却を行なえば、高延性の焼鈍材を
得ることが可能となる。
At this time, as shown in, for example, a region X in FIG. 4, even in a region where the alloy composition of the β phase shows a weak hexagonal crystal during annealing heating, the temperature range at which the weak hexagonal crystal appears is gradually reduced. When cooled (furnace cooled), the structural change of the Ti alloy changes along the β transus (Tβ), and the appearance of brittle hexagonal crystals is suppressed. If normal cooling is performed while avoiding the temperature range, a high-ductility annealed material can be obtained.

【0022】かくして上記の如く脆化域を回避して焼鈍
を行なったα+β型Ti合金は、引張強さが900MP
aレベル以上で且つ4%以上の伸び率を示し、しかもT
方向伸びの大幅な回復によって異方性、即ち(L方向伸
び率)/(T方向伸び率)は0.4〜1.0程度を示す
ものとなり、縦・横何れの方向にも優れた加工性を示す
焼鈍材を得ることが可能となる。
The α + β-type Ti alloy thus annealed while avoiding the embrittlement zone as described above has a tensile strength of 900MPa.
It shows an elongation of 4% or more at a level or higher, and T
The anisotropy, that is, (L-direction elongation) / (T-direction elongation) is about 0.4 to 1.0 due to the significant recovery of the elongation in the direction, and excellent processing in both the vertical and horizontal directions. It is possible to obtain an annealed material having good properties.

【0023】そしてこうした傾向は、Alを含有する全
てのα+β型Ti合金に共通する現象であり、従って本
発明は全てのAl含有α+β型Ti合金に適用される
が、コイル冷延による生産性の向上(低コスト化)と伸
び−強度バランスを実用規模でより有効に活かす上で特
に好ましい合金組成は下記の通りである。
This tendency is a phenomenon common to all α + β-type Ti alloys containing Al. Therefore, the present invention is applied to all the α + β-type Ti alloys containing Al. Particularly preferred alloy compositions for more effectively utilizing the improvement (cost reduction) and the elongation-strength balance on a practical scale are as follows.

【0024】即ち本発明で使用されるα+β型Ti合金
の中でも特に好ましいのは、ベース組成として、Al当
量が3〜6.5%、より好ましくは3.5〜5.5%
で、且つMo,V,Ta,Nbの如き全率固溶型β安定化
元素の少なくとも1種をMo当量で2.0%以上、4.
5%以下、より好ましくは2.5%以上、3.5%以下
を含み、更に、Fe,Cr,Ni,Coの如き共析型β
安定化元素の少なくとも1種をFe当量で0.3%以
上、2%以下、より好ましくは0.4%以上、1.5%
以下を含有するα+β型Ti合金である。
That is, among the α + β-type Ti alloys used in the present invention, a particularly preferable base composition has an Al equivalent of 3 to 6.5%, more preferably 3.5 to 5.5%.
And at least one of the total solid solution type β-stabilizing elements such as Mo, V, Ta, and Nb is 2.0% or more in Mo equivalent.
5% or less, more preferably 2.5% or more and 3.5% or less, and eutectoid β such as Fe, Cr, Ni, and Co.
0.3% or more and 2% or less, more preferably 0.4% or more, 1.5% or more in Fe equivalent of at least one stabilizing element
An α + β-type Ti alloy containing:

【0025】上記においてAl当量、Mo当量、Fe当
量とは、下記式で示される量をいい、それらの好適範囲
を決めた理由は次の通りである。 Al当量=Al+1/3・Sn+1/6・Zr Mo当量=Mo+1/1.5・V+1/5・Ta+1/1.36・Nb Fe当量=Fe+1/2・Cr+1/2・Ni+1/1.5・Co+1/
1.5・Mn。
In the above, the Al equivalent, the Mo equivalent, and the Fe equivalent refer to the amounts represented by the following formulas, and the reason for determining their preferred ranges is as follows. Al equivalent = Al + 1/3 · Sn + 1/6 · Zr Mo equivalent = Mo + 1 / 1.5 · V + 1/5 · Ta + 1 / 1.36 · Nb Fe equivalent = Fe + 1/2 · Cr + 1/2 · Ni + 1 / 1.5 · Co + 1 /
1.5 · Mn.

【0026】Al当量:3〜6.5% Alは、α安定化元素として強度向上に寄与する元素で
あり、Al含有量が3%未満ではTi合金が強度不足と
なる。しかし、Al含有量が6.5%を超えると冷間加
工性が低下し、所定の厚さに圧延するまでの冷延および
焼鈍回数が増えるためコストの上昇につながる。強度と
加工性の兼ね合いを考慮してより好ましいAl含有量の
下限は3.5%、より好ましい上限は5.5%である。
尚本発明においては、SnやZrについてもAlと同様
の作用を発揮するところから、それらの元素を含有する
場合は、それら各元素を含めて、前式で示されるAl当
量として規定している。
Al equivalent: 3 to 6.5% Al is an element that contributes to strength improvement as an α-stabilizing element. If the Al content is less than 3%, the Ti alloy becomes insufficient in strength. However, when the Al content exceeds 6.5%, the cold workability decreases, and the number of cold rolling and annealing until rolling to a predetermined thickness increases, which leads to an increase in cost. Considering the balance between strength and workability, the lower limit of the more preferable Al content is 3.5%, and the more preferable upper limit is 5.5%.
In the present invention, since Sn and Zr also exert the same action as Al, when they contain these elements, they are defined as the Al equivalent represented by the above formula, including those elements. .

【0027】Mo当量:2.0〜4.5% Moは、β安定化元素であってβ相の体積比を増加させ
ると共に、β相に固溶して強度上昇に寄与する。また、
Ti母材中に固溶して微細な等軸晶組織を作り易くする
性質もあり、強度・延性バランス向上の観点からも極め
て有用な元素である。こうしたMoの作用を有効に発揮
させるには2.0%以上、より好ましくは2.5%以上
含有させるべきであるが、多過ぎるとTi合金の耐食性
が増大し、冷延後に行われる焼鈍時に生成する酸化スケ
ールおよびαケースと呼ばれる酸素が固溶した地金の除
去が困難にとなり、加工性を阻害するばかりでなくTi
合金全体の密度を増大し、Ti合金が本来有している高
比強度という特性を損なうので、4.5%以下、より好
ましくは3.5%以下に抑えるべきである。尚V,T
a,NbもこうしたMoと同様の効果を有しているの
で、これらの同効元素を含めて前式のMo当量で規定し
ている。
Mo equivalent: 2.0 to 4.5% Mo is a β-stabilizing element and increases the volume ratio of the β-phase, and forms a solid solution with the β-phase to contribute to an increase in strength. Also,
It also has the property of forming a fine equiaxed crystal structure by forming a solid solution in the Ti base material, and is an extremely useful element from the viewpoint of improving the balance between strength and ductility. The content of Mo should be 2.0% or more, more preferably 2.5% or more in order to effectively exert the action of Mo. However, if the content is too large, the corrosion resistance of the Ti alloy increases, and the annealing during the cold rolling is performed. It becomes difficult to remove the formed oxide scale and the base metal in which oxygen, which is called α-case, is dissolved, which not only impairs the workability but also reduces the Ti.
Since the density of the whole alloy is increased, and the characteristic of the high specific strength inherent in the Ti alloy is impaired, it should be suppressed to 4.5% or less, more preferably 3.5% or less. V, T
Since a and Nb also have the same effect as Mo, the Mo equivalent of the above formula is defined including these same elements.

【0028】Fe当量:0.3〜2% Feは加工時の変形抵抗を下げる効果があり、冷間加工
性に寄与する他、結晶粒界に析出して高温時の結晶粒の
粗大化を抑制し、Ti合金の脆化を防ぐ作用を有してお
り、こうした作用を有効に発揮させるには0.3%以
上、より好ましくは0.4%以上のFeを含有させるべ
きである。しかしながら、Fe含有量が多くなり過ぎる
と鋳塊製造時の偏析が顕著になって品質安定性を阻害す
る原因になるので、2%以下、より好ましくは1.5%
以下に抑えるべきである。尚Cr,Ni,Co,Mnも
こうしたFeと同様の効果を有しているので、これらの
同効元素を含めて前式のFe当量で規定している。
Fe equivalent: 0.3 to 2% Fe has an effect of lowering the deformation resistance at the time of working, and contributes to cold workability. In addition, Fe precipitates at the crystal grain boundaries to increase the crystal grains at high temperatures. It has the effect of suppressing and preventing the embrittlement of the Ti alloy. To effectively exhibit such an effect, Fe should be contained at 0.3% or more, more preferably 0.4% or more. However, if the Fe content is too large, segregation during the production of ingots becomes conspicuous, causing quality stability to be impaired. Therefore, 2% or less, more preferably 1.5%
It should be kept below. Since Cr, Ni, Co, and Mn also have the same effect as Fe, they are defined by the Fe equivalent of the above formula including these same effective elements.

【0029】本発明でベースTi合金の成分組成は上記
の通りであるが、より具体的な合金組成を例示すると、
Ti−(4〜5%)Al−(1.5〜3%)Mo−(1〜2%)V−(0.3
〜2.0%)Fe(特に、Ti−4.5%Al−2%Mo−1.6%V
−0.5%Fe)等が挙げられる。
In the present invention, the component composition of the base Ti alloy is as described above.
Ti- (4-5%) Al- (1.5-3%) Mo- (1-2%) V- (0.3
~ 2.0%) Fe (especially Ti-4.5% Al-2% Mo-1.6% V
-0.5% Fe).

【0030】なお、同じα+β型Ti合金であっても、
その成分組成によっては上記脆化温度域が若干変わって
くるので、本発明を実施するに当たっては、適用される
Ti合金の成分組成に応じて予め脆化温度域を確認して
おき、当該脆化温度域を外れる様に焼鈍温度を制御すれ
ばよく、それにより、高強度で且つT方向伸びの改善さ
れた焼鈍材を確実に得ることができる。
Incidentally, even with the same α + β type Ti alloy,
The embrittlement temperature range slightly changes depending on the composition of the component. Therefore, in practicing the present invention, the embrittlement temperature range is checked in advance according to the component composition of the Ti alloy to be applied. The annealing temperature may be controlled so as to be out of the temperature range, whereby an annealed material having high strength and improved elongation in the T direction can be reliably obtained.

【0031】また、上記ベース組成のα+β型Ti合金
中に、0.1〜1.5%のSiを含有させると、コイル
化に必要な延性を低下させることなくTi合金としての
強度特性と溶接熱影響部の特性(強度と延性)を更に高
めることができまた、0.01〜0.15%のCを積極
的に含有させると、優れた冷間加工性を害することなく
Ti合金としての強度と延性が更に改善されるので好ま
しい。
Further, when 0.1 to 1.5% of Si is contained in the α + β-type Ti alloy having the above base composition, the strength characteristics of the Ti alloy and the welding characteristics can be improved without reducing the ductility required for coiling. The properties (strength and ductility) of the heat-affected zone can be further enhanced. If C is positively contained in an amount of 0.01 to 0.15%, excellent cold workability is not impaired. It is preferable because strength and ductility are further improved.

【0032】即ちSiは、α+β型Ti合金の冷延性に
殆ど悪影響を及ぼす個となく強度特性を高める作用を発
揮し、しかも溶接熱影響部についても強度と延性を高め
る作用を発揮する。またCは、Ti合金母材の優れた延
性を維持しつつ強度を著しく高める作用を有しており、
Cを適量含有させることによって強度と延性の一段と高
められたα+β型Ti合金を得ることが可能となる。
That is, Si exerts an action of improving strength properties without any adverse effect on the cold rolling properties of the α + β type Ti alloy, and also exerts an action of increasing strength and ductility in the weld heat affected zone. C has the effect of significantly increasing the strength while maintaining excellent ductility of the Ti alloy base material,
By adding an appropriate amount of C, it is possible to obtain an α + β-type Ti alloy with further enhanced strength and ductility.

【0033】上記Siの作用をより効果的に発揮させる
には、0.1%以上、より好ましくは0.2%以上含有
させることが望ましいが、多過ぎると延性が低下してコ
イル冷延が困難になるので、1.5%以下、より好まし
くは1.0%以下に抑えるのがよい。また前記Cの作用
を効果的に発揮させるには、その含有量を0.01%以
上、より好ましくは0.02%以上で、0.15%以
下、より好ましくは0.12%以下の範囲から選択する
のがよく、0.01%未満ではCの上記効果が有効に活
かされず、また0.15%を超えると炭化物の析出硬化
によって冷延性が損なわれる。
In order to more effectively exert the above-mentioned effect of Si, it is desirable to contain 0.1% or more, more preferably 0.2% or more. Since it becomes difficult, the content is preferably suppressed to 1.5% or less, more preferably 1.0% or less. In order to effectively exert the effect of C, the content is 0.01% or more, more preferably 0.02% or more, and 0.15% or less, more preferably 0.12% or less. If it is less than 0.01%, the above effect of C cannot be effectively utilized, and if it exceeds 0.15%, the cold-rolling property is impaired by precipitation hardening of carbide.

【0034】また上記SiやCに加えて少量のO(酸素)
を含有させると、Ti合金母材の延性に殆ど悪影響を及
ぼすことなく強度を一段と高めることができるので好ま
しい。こうした酸素の効果はごく少量で発揮されるが、
その効果をより効果的に発揮させるには、0.07%程
度以上、より好ましくは0.1%程度以上含有させるの
がよい。ただし、酸素含有量が多くなり過ぎると冷間加
工性が低下する他、過度の強度上昇によって延性も低下
してくるので、酸素含有量は0.25%以下、より好ま
しくは0.18%以下に抑えるのがよい。
In addition to the above Si and C, a small amount of O (oxygen)
Is preferable because the strength can be further increased without substantially affecting the ductility of the Ti alloy base material. These effects of oxygen are manifested in very small amounts,
In order to exhibit the effect more effectively, the content is preferably about 0.07% or more, more preferably about 0.1% or more. However, if the oxygen content is too large, the cold workability is reduced, and the ductility is also reduced due to an excessive increase in strength. Therefore, the oxygen content is 0.25% or less, more preferably 0.18% or less. It is better to suppress.

【0035】本発明では、上記の様な観点からTi合金
の好ましい成分組成を示したが、Ti合金の代表的な含
有元素の好適含有率範囲を更に詳細に説明すると、次の
通りである。
In the present invention, the preferable composition of the Ti alloy has been described from the above viewpoints. The preferable range of the typical content of the elements contained in the Ti alloy will be described in more detail as follows.

【0036】本発明のTi合金には、更に他の不可避不
純物元素として上記以外の元素が微量混入してくること
があるが、上記本発明Ti合金の特性を阻害しない限り
それら元素の微量の含有は許容される。
In the Ti alloy of the present invention, trace elements other than the above may be mixed in as traces as other unavoidable impurity elements. Is acceptable.

【0037】上記成分組成を満たすα+β型Ti合金を
使用し、コイル冷延後の焼鈍条件を前述の要件を満たす
様に適正に制御することによって得られる焼鈍材はは、
前述の如く張強強度で900MPa以上、T方向伸び率
で4%以上を示し、且つ(L方向伸び率)/(T方向伸
び率)が0.4〜1.0という異方性の著しく改善され
たものとなり、T,Lいずれの方向においても、従来の
Ti−6Al−4V合金にはみられない優れた延性を有
しているので、冷間加工によって様々の形状、例えば薄
板、波板、パイプ状などに容易に加工することができ
る。
An annealed material obtained by using an α + β type Ti alloy satisfying the above component composition and appropriately controlling the annealing conditions after coil cold rolling so as to satisfy the above requirements is as follows:
As described above, the tensile strength is 900 MPa or more, the T-direction elongation is 4% or more, and the (L-direction elongation) / (T-direction elongation) is 0.4 to 1.0. In both the T and L directions, the alloy has excellent ductility not found in the conventional Ti-6Al-4V alloy, and thus has various shapes by cold working, for example, a thin plate, a corrugated plate, It can be easily processed into a pipe shape.

【0038】ちなみに、例えばTi−4.5%Al−2%M
o−1.6%V−0.5%Feのα+β型Ti合金よりなるコイ
ル冷延板を焼鈍する際の焼鈍温度と伸び率の関係は図4
に示す通りであり、脆弱な六方晶は850℃前後で現わ
れる。従って、この成分組成からなるコイル冷延Ti合
金を焼鈍する際には、該脆弱な六方晶となる温度域を外
した好ましくは760〜825℃、または875〜Tβ
の温度域に焼鈍温度を制御することが必要となる。
Incidentally, for example, Ti-4.5% Al-2% M
FIG. 4 shows the relationship between the annealing temperature and the elongation when the cold-rolled sheet made of α + β-type Ti alloy of o-1.6% V-0.5% Fe is annealed.
The brittle hexagonal crystal appears around 850 ° C. Therefore, when annealing a coil cold-rolled Ti alloy having this component composition, it is preferable to remove the temperature range where the brittle hexagonal crystal is formed, preferably from 760 to 825 ° C, or from 875 to Tβ
It is necessary to control the annealing temperature in the above temperature range.

【0039】そして、上記成分組成のTi合金よりなる
コイル冷延材に対して適性温度域の焼鈍条件を採用する
ことにより、張強強度で900MPa以上、T方向伸び
率で4%以上を示し、且つ(L方向伸び率)/(T方向
伸び率)が0.4〜1.0の焼鈍材を得ることができ
る。
By adopting annealing conditions in an appropriate temperature range for a cold-rolled coil made of a Ti alloy having the above component composition, a tensile strength of 900 MPa or more, a T-direction elongation of 4% or more, and An annealed material having (L-direction elongation) / (T-direction elongation) of 0.4 to 1.0 can be obtained.

【0040】なお、同じα+β型Ti合金であっても、
その成分組成によっては上記脆弱な六方晶生成温度域が
若干変わってくるので、本発明を実施するに当たって
は、適用されるTi合金の成分組成に応じて予め該温度
域を確認しておき、当該温度域を外れる様に焼鈍温度を
制御すればよく、それにより、高強度で且つT方向伸び
の改善された焼鈍材を確実に得ることができる。
Incidentally, even with the same α + β type Ti alloy,
The fragile hexagonal formation temperature range slightly changes depending on the composition of the component, and therefore, in practicing the present invention, the temperature range is checked in advance according to the composition of the Ti alloy to be applied. The annealing temperature may be controlled so as to be out of the temperature range, whereby an annealed material having high strength and improved elongation in the T direction can be reliably obtained.

【0041】この時、冷間加工物の種類によっては、上
記高い加工率で圧延しなければならないこともあるが、
この場合は圧延の途中で1回若しくは複数回の軟化焼鈍
処理を行い、加工硬化を緩和しながら任意の厚さにまで
冷間圧延を行えばよい。いずれにしても本発明のTi合
金は、従来のα+β型Ti合金に比べて高い伸び率を有
しているので、前述した様なパック圧延等を要すること
なくコイル圧延を行なうことができ、その後の焼鈍によ
って高強度を維持しつつ優れた加工性を発揮し得るもの
となる。
At this time, depending on the type of the cold-worked product, it may be necessary to perform rolling at the above-mentioned high working ratio,
In this case, one or a plurality of soft annealing treatments may be performed during rolling, and cold rolling may be performed to an arbitrary thickness while relaxing work hardening. In any case, the Ti alloy of the present invention has a higher elongation than the conventional α + β-type Ti alloy, so that coil rolling can be performed without the need for pack rolling as described above. By annealing, excellent workability can be exhibited while maintaining high strength.

【0042】かくして得られる本発明のTi合金は、そ
の優れた加工性を生かして板、棒、管など任意の形状に
加工することができ、また得られる加工物は、上記の様
に優れた強度と延性を兼備しており、更には溶接性が良
好で溶接熱影響部は高レベルの延性を示すので、最終製
品に加工するまでに溶接が行われる用途、例えば熱交換
器用のプレート材、Tiゴルフヘッド材料、溶接管、各
種線材、棒材、極細線材などとして幅広く有効に活用で
きる。
The Ti alloy of the present invention thus obtained can be processed into an arbitrary shape such as a plate, a rod, or a tube by utilizing its excellent workability. It has both strength and ductility, and further has good weldability and the weld heat affected zone shows a high level of ductility, so applications where welding is performed before processing into the final product, such as plate materials for heat exchangers, It can be widely and effectively used as Ti golf head materials, welded tubes, various wires, rods, ultrafine wires, and the like.

【0043】[0043]

【実施例】以下、実施例を挙げて本発明の構成と作用効
果をより具体的に説明するが、本発明はもとより下記実
施例によって制限を受ける訳ではなく、前・後記の趣旨
に適合し得る範囲で適当に変更して実施することも可能
であり、それらはいずれも本発明の技術的範囲に包含さ
れる。
EXAMPLES Hereinafter, the structure and operation and effect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and the present invention is applicable to the above and following points. The present invention can be appropriately modified and implemented within the scope of the invention, and all of them are included in the technical scope of the present invention.

【0044】実験例1 Ti-2%Mo-1.6%V-0.5%Fe-4.5%Al-0.3Si-0.03%CのTi合金
鋳塊(80mmt×200mmw×300mmL)をインダ
クトスカル溶解で製造し、次にβ温度域(約1100
℃)に加熱してから厚さ40mmの板に分塊圧延した
後、β温度域(約1100℃)加熱で30分間保持して
から空冷する。次いでβ変態点以下のα+β域(900
〜920℃)で熱間圧延し、厚さ4.5mmの熱延板を
製造した。
Experimental Example 1 Inductoskull melting of a Ti alloy ingot (80 mm t × 200 mm w × 300 mm L ) of Ti-2% Mo-1.6% V-0.5% Fe-4.5% Al-0.3Si-0.03% C And then in the β temperature range (about 1100
° C), and then subjected to slab rolling to a plate having a thickness of 40 mm, and then held in a β temperature range (about 1100 ° C) for 30 minutes, followed by air cooling. Next, the α + β region below the β transformation point (900
To 920 ° C.) to produce a hot-rolled sheet having a thickness of 4.5 mm.

【0045】次いで、760℃で30分焼鈍した後、シ
ョットブラスト処理および酸洗処理を行なって冷延素材
とした。これを更に[40%冷延+760℃×5分焼
鈍]×2回の処理に付し、40%冷延を行なってから、
表1に示す条件で焼鈍を行ない、各焼鈍材を酸洗して表
面の酸化層を除去した後、0.2%耐力、引張強さおよ
びT,L方向伸び率を測定した。結果を表1および図1
に示す。
Next, after annealing at 760 ° C. for 30 minutes, shot blasting and pickling were performed to obtain a cold-rolled material. This is further subjected to [40% cold rolling + 760 ° C. × 5 minute annealing] × 2 treatments, and after performing 40% cold rolling,
Annealing was performed under the conditions shown in Table 1, and each annealed material was pickled to remove an oxide layer on the surface, and then 0.2% proof stress, tensile strength and T, L direction elongation were measured. The results are shown in Table 1 and FIG.
Shown in

【0046】[0046]

【表1】 表1および図1からも明らかな様に、本例で用いた成分
系のα+β型Ti合金では、850℃前後の焼鈍温度域
で脆弱な六方晶の生成により圧延直交方向(T方向)伸
びが著しく低くなることを確認でき、該焼鈍温度域を外
して750〜830℃、あるいは900〜950℃の温
度範囲で焼鈍を行なえば、高い引張強さと0.2%耐力
を維持しつつ優れた伸び率を備えた焼鈍材が得られるこ
とが分かる。
[Table 1] As is clear from Table 1 and FIG. 1, in the component type α + β-type Ti alloy used in the present example, the brittle hexagonal crystal is formed in the annealing temperature range around 850 ° C., so that the elongation in the direction perpendicular to the rolling direction (T direction) is increased. It can be confirmed that the temperature is remarkably low. If the annealing is performed in a temperature range of 750 to 830 ° C. or 900 to 950 ° C. excluding the annealing temperature range, excellent elongation is maintained while maintaining high tensile strength and 0.2% proof stress. It can be seen that an annealed material having a high modulus can be obtained.

【0047】実験例2 Ti-3.5%Mo-0.5%Fe-4.5%Al-0.3SiのTi合金鋳塊(80m
t×200mmw×300mmL)をインダクトスカル
溶解で製造し、次にβ温度域(約1100℃)に加熱し
てから厚さ40mmの板に分塊圧延した後、β温度域
(約1100℃)加熱で30分間保持してから空冷す
る。次いでβ変態点以下のα+β域(900〜920
℃)で熱間圧延し、厚さ4.5mmの熱延板を製造し
た。
Experimental Example 2 Ti alloy ingot of Ti-3.5% Mo-0.5% Fe-4.5% Al-0.3Si (80 m
The m t × 200mm w × 300mm L ) was prepared in-duct skull melting, after slabbing the thick plate 40mm from then heated to beta temperature range (about 1100 ° C.), beta temperature range (about (1100 ° C.) Hold for 30 minutes by heating and then cool with air. Next, the α + β region below the β transformation point (900 to 920)
° C) to produce a hot-rolled sheet having a thickness of 4.5 mm.

【0048】次いで、760℃で30分焼鈍した後、シ
ョットブラスト処理および酸洗処理を行なって冷延素材
とした。これを更に[40%冷延+760℃×5分焼
鈍]×2回の処理に付し、40%冷延を行なってから、
表1に示す条件で焼鈍を行ない、各焼鈍材を酸洗して表
面の酸化層を除去した後、0.2%耐力、引張強さおよ
びT,L方向伸び率を測定した。結果を表2および図2
に示す。
Next, after annealing at 760 ° C. for 30 minutes, shot blasting and pickling were performed to obtain a cold-rolled material. This is further subjected to [40% cold rolling + 760 ° C. × 5 minute annealing] × 2 treatments, and after performing 40% cold rolling,
Annealing was performed under the conditions shown in Table 1, and each annealed material was pickled to remove an oxide layer on the surface, and then 0.2% proof stress, tensile strength and T, L direction elongation were measured. The results are shown in Table 2 and FIG.
Shown in

【0049】[0049]

【表2】 表2および図2からも明らかな様に、本例で用いた成分
系のα+β型Ti合金では、800℃前後の焼鈍温度域
で脆弱な六方晶の生成により圧延直交方向(T方向)伸
びが著しく低くなることを確認でき、該焼鈍温度域を外
して760℃以下、あるいは820〜950℃以上の温
度範囲で焼鈍を行なえば、高い引張強さと0.2%耐力
を維持しつつ優れた伸び率を備えた焼鈍材を得ることが
できる。
[Table 2] As is clear from Table 2 and FIG. 2, in the α + β-type Ti alloy of the component system used in this example, the elongation in the direction perpendicular to the rolling direction (T direction) due to the formation of brittle hexagonal crystals in the annealing temperature range around 800 ° C. It can be confirmed that the temperature is remarkably lowered. If annealing is performed at a temperature of 760 ° C. or less or 820 to 950 ° C. or more excluding the annealing temperature range, excellent elongation is maintained while maintaining high tensile strength and 0.2% proof stress. An annealed material having a high rate can be obtained.

【0050】[0050]

【発明の効果】本発明は以上の様に構成されており、α
+β型Ti合金をベース組成とし、これに特定量のC、
或いは更に少量の酸素を含有させることによって、最も
汎用されているチタン合金であるTi-6Al-4V合金
に勝るとも劣らない強度を有すると共に、該合金に欠け
ていた冷間加工性を著しく改善し、コイル冷延が可能で
優れた強度と延性を兼ね備えたチタン合金を提供し得る
ことになった。
The present invention is constituted as described above, and α
+ Β type Ti alloy as a base composition, and a specific amount of C,
Alternatively, by further containing a small amount of oxygen, it has a strength not inferior to the most widely used titanium alloy, Ti-6Al-4V alloy, and significantly improves the cold workability lacking in the alloy. Thus, it has become possible to provide a titanium alloy capable of cold rolling of a coil and having both excellent strength and ductility.

【0051】従って本発明のチタン合金は、その特徴を
生かして様々の用途に広く活用できるが、特にその優れ
た強度と延性を活かし、且つその優れた冷延性を活用す
ることにより、例えば航空機用のボディ材などとして極
めて有効に利用できる。
Therefore, the titanium alloy of the present invention can be widely used for various applications by utilizing its characteristics. In particular, by utilizing its excellent strength and ductility and utilizing its excellent cold rolling property, it can be used for, for example, aircraft. It can be used very effectively as a body material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験例で得た焼鈍温度と強度および伸び率の関
係を示すグラフである
FIG. 1 is a graph showing the relationship between annealing temperature, strength, and elongation obtained in an experimental example.

【図2】他の実験例で得た焼鈍温度と強度および伸び率
の関係を示すグラフである
FIG. 2 is a graph showing the relationship between annealing temperature, strength, and elongation obtained in another experimental example.

【図3】本発明者らが確認した焼鈍温度と伸び率の関係
を示す概念図である。
FIG. 3 is a conceptual diagram showing a relationship between an annealing temperature and an elongation rate confirmed by the present inventors.

【図4】α+β型Ti合金の状態図に照らし合わせて、
当該Ti合金における変態β相(即ちα相)の延性の関
係を示した説明図である。
FIG. 4 shows a phase diagram of an α + β type Ti alloy.
FIG. 4 is an explanatory diagram showing a ductility relationship of a transformed β phase (that is, an α phase) in the Ti alloy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 680 C22F 1/00 680 685 685Z 686 686A 691 691B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 680 C22F 1/00 680 685 685Z 686 686A 691 691B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Alを含むコイル冷延α+β型Ti合金
板を焼鈍するに当たり、該焼鈍時の加熱温度を、コイル
冷延時の加工硬化を緩和する温度以上で且つTβ以下の
温度範囲のうち、脆弱な六方晶が出現する温度域を可及
的に回避する温度の中から選択して焼鈍することによ
り、コイル冷延Ti合金板のT方向伸びを向上させるこ
とを特徴とする加工性に優れた高強度コイル冷延Ti合
金板の製法。
When annealing a cold-rolled α + β-type Ti alloy sheet containing Al, the heating temperature at the time of annealing is set to a temperature within a range from a temperature at which work hardening at the time of coil rolling is eased to Tβ or less. Excellent workability characterized by improving the elongation in the T direction of the cold-rolled Ti alloy sheet by annealing from a temperature that avoids the temperature range where fragile hexagonal crystals appear as much as possible. Of high-strength coil cold-rolled Ti alloy sheet.
【請求項2】 Ti合金のAl当量が3〜6.5%(質
量%を意味する、以下同じ)であり、且つ全率固溶型β
安定化元素の少なくとも1種をMo当量で2.0〜4.
5%と、共析型β安定化元素をFe当量で0.3〜2%
含有するものである請求項1に記載の製法。
2. The Ti alloy has an Al equivalent of 3 to 6.5% (meaning mass%, the same applies hereinafter), and the solid solution β
At least one stabilizing element has a Mo equivalent of 2.0 to 4.
5% and the eutectoid β-stabilizing element is 0.3 to 2% by Fe equivalent.
2. The method according to claim 1, wherein the method comprises:
【請求項3】 Ti合金が、更に他の元素としてCを
0.01〜0.15%含有するものである請求項2に記
載の製法。
3. The method according to claim 2, wherein the Ti alloy further contains 0.01 to 0.15% of C as another element.
【請求項4】 Ti合金が、更に他の元素としてSiを
0.1〜1.5%含有するものである請求項2または3
のいずれかに記載の製法。
4. The Ti alloy according to claim 2, further comprising 0.1 to 1.5% of Si as another element.
The production method according to any one of the above.
【請求項5】 焼鈍後の引張強さが900MPa以上で
且つ4%以上の伸び率を示し、しかも[L方向(コイル
圧延方向)伸び率]/[T方向(コイル圧延方向に対し
て直交方向)伸び率]が0.4〜1.0であるTi合金
板を得る請求項1〜4のいずれかに記載の製法。
5. Tensile strength after annealing is 900 MPa or more and shows an elongation of 4% or more, and [Elongation in L direction (coil rolling direction)] / [T direction (in a direction perpendicular to the coil rolling direction). The method according to any one of claims 1 to 4, wherein a Ti alloy sheet having an elongation percentage of 0.4 to 1.0 is obtained.
JP8054099A 1999-03-24 1999-03-24 Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability Pending JP2000273598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8054099A JP2000273598A (en) 1999-03-24 1999-03-24 Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8054099A JP2000273598A (en) 1999-03-24 1999-03-24 Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability

Publications (1)

Publication Number Publication Date
JP2000273598A true JP2000273598A (en) 2000-10-03

Family

ID=13721196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8054099A Pending JP2000273598A (en) 1999-03-24 1999-03-24 Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability

Country Status (1)

Country Link
JP (1) JP2000273598A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149283A (en) * 2011-01-17 2012-08-09 Nippon Steel Corp METHOD FOR HOT ROLLING α+β TYPE TITANIUM ALLOY
WO2012108319A1 (en) 2011-02-10 2012-08-16 新日本製鐵株式会社 Abrasion-resistant titanium alloy member having excellent fatigue strength
US8562763B2 (en) 2004-04-09 2013-10-22 Nippon Steel & Sumitomo Metal Corporation High strength α+β type titanuim alloy
JP2015510035A (en) * 2012-01-12 2015-04-02 チタニウム メタルズ コーポレーション Titanium alloys with improved properties
CN106623424A (en) * 2016-12-07 2017-05-10 北京有色金属研究总院 Preparing method of multi-layer corrosion resistant lightweight aluminum titanium composite plate
KR101745999B1 (en) 2009-06-29 2017-06-12 보르그워너 인코퍼레이티드 Fatigue resistant cast titanium alloy articles
CN113249667A (en) * 2021-06-18 2021-08-13 北京煜鼎增材制造研究院有限公司 Heat treatment method for obtaining high-toughness high-damage-tolerance dual-phase titanium alloy
CN115449665A (en) * 2022-07-08 2022-12-09 重庆大学 Titanium alloy and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562763B2 (en) 2004-04-09 2013-10-22 Nippon Steel & Sumitomo Metal Corporation High strength α+β type titanuim alloy
KR101745999B1 (en) 2009-06-29 2017-06-12 보르그워너 인코퍼레이티드 Fatigue resistant cast titanium alloy articles
JP2012149283A (en) * 2011-01-17 2012-08-09 Nippon Steel Corp METHOD FOR HOT ROLLING α+β TYPE TITANIUM ALLOY
WO2012108319A1 (en) 2011-02-10 2012-08-16 新日本製鐵株式会社 Abrasion-resistant titanium alloy member having excellent fatigue strength
JP2015510035A (en) * 2012-01-12 2015-04-02 チタニウム メタルズ コーポレーション Titanium alloys with improved properties
US10119178B2 (en) 2012-01-12 2018-11-06 Titanium Metals Corporation Titanium alloy with improved properties
CN106623424A (en) * 2016-12-07 2017-05-10 北京有色金属研究总院 Preparing method of multi-layer corrosion resistant lightweight aluminum titanium composite plate
CN106623424B (en) * 2016-12-07 2018-06-15 北京有色金属研究总院 A kind of preparation method of multilayer corrosion-proof lightweight aluminium titanium composite panel
CN113249667A (en) * 2021-06-18 2021-08-13 北京煜鼎增材制造研究院有限公司 Heat treatment method for obtaining high-toughness high-damage-tolerance dual-phase titanium alloy
CN115449665A (en) * 2022-07-08 2022-12-09 重庆大学 Titanium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0969109B1 (en) Titanium alloy and process for production
US10913242B2 (en) Titanium material for hot rolling
US6726784B2 (en) α+β type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy
US20060062685A1 (en) Beta type titanium alloy and manufacturing method thereof
JP2536673B2 (en) Heat treatment method for titanium alloy material for cold working
JP3297027B2 (en) High strength and high ductility α + β type titanium alloy
TW202223116A (en) Method for manufacturing austenitic stainless steel strip
JP5491882B2 (en) High strength titanium plate with excellent cold rolling properties
JP2000273598A (en) Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
WO2007043687A9 (en) HIGH-STRENGTH Co-BASED ALLOY WITH ENHANCED WORKABILITY AND PROCESS FOR PRODUCING THE SAME
JP5408525B2 (en) Titanium alloy, titanium alloy member, and titanium alloy member manufacturing method
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JPH0254417B2 (en)
JP5503309B2 (en) Β-type titanium alloy with excellent fatigue strength
JP5421873B2 (en) High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
JP3297012B2 (en) High strength titanium alloy with excellent cold rollability
JP4204295B2 (en) Manufacturing method of aluminum alloy hot-rolled sheet for automobile undercarriage parts
JPH0794701B2 (en) Manufacturing method of aluminum alloy soft material for welded structure
JP2022178435A (en) titanium alloy
JP2022024243A (en) β TITANIUM ALLOY

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081014

Free format text: JAPANESE INTERMEDIATE CODE: A02