JP6432328B2 - High strength titanium plate and manufacturing method thereof - Google Patents

High strength titanium plate and manufacturing method thereof Download PDF

Info

Publication number
JP6432328B2
JP6432328B2 JP2014250900A JP2014250900A JP6432328B2 JP 6432328 B2 JP6432328 B2 JP 6432328B2 JP 2014250900 A JP2014250900 A JP 2014250900A JP 2014250900 A JP2014250900 A JP 2014250900A JP 6432328 B2 JP6432328 B2 JP 6432328B2
Authority
JP
Japan
Prior art keywords
phase
annealing
strength
titanium plate
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014250900A
Other languages
Japanese (ja)
Other versions
JP2016113640A (en
Inventor
英人 瀬戸
英人 瀬戸
哲 川上
哲 川上
高橋 一浩
一浩 高橋
藤井 秀樹
秀樹 藤井
想祐 西脇
想祐 西脇
孝志 柴田
孝志 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014250900A priority Critical patent/JP6432328B2/en
Publication of JP2016113640A publication Critical patent/JP2016113640A/en
Application granted granted Critical
Publication of JP6432328B2 publication Critical patent/JP6432328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、優れた延性を示すTi−Fe−O系高強度チタン板およびその製造方法に関する。   The present invention relates to a Ti—Fe—O-based high-strength titanium plate exhibiting excellent ductility and a method for producing the same.

Ti−6Al−4Vに代表される高強度α+β型チタン合金は、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性などの諸特性を有することから、宇宙・航空機産業を中心に広く使用されてきた。   High-strength α + β-type titanium alloys represented by Ti-6Al-4V have various characteristics such as weldability, superplasticity, and diffusion bondability in addition to light weight, high strength, and high corrosion resistance. Has been widely used in the center.

近年では、これらの特性をさらに活用すべく、ゴルフ用品をはじめとしたスポーツ用品にも多用されるようになってきており、さらに、自動車エンジン部品、土木建築用素材、各種工具類、深海やエネルギー開発用途などいわゆる民生品分野への適用拡大も検討されている。   In recent years, in order to make further use of these characteristics, it has come to be widely used in sports equipment such as golf equipment. Furthermore, automobile engine parts, civil engineering materials, various tools, deep sea and energy. Expansion of application to the so-called consumer products field such as development applications is also being considered.

しかし、α+β型チタン合金の著しく高い製造コストが、その適用拡大を妨げており、これら民生品分野への適用拡大のためには、安価なチタン合金の開発が求められていた。   However, the remarkably high production cost of α + β type titanium alloy has hindered the expansion of its application, and in order to expand the application to the field of consumer products, development of an inexpensive titanium alloy has been required.

これら高強度α+β型チタン合金の製造コストが高い理由としては、(1)Vなどの高価なβ相安定化元素を使用していること、(2)α相安定化元素および固溶強化元素として使用しているAlが、熱間での変形抵抗を著しく高めるため、加工しにくくなるとともに熱間加工性を損ねるため、割れなどの欠陥を生じ易くなること、の2点を挙げることができる。   The reason for the high production cost of these high strength α + β type titanium alloys is that (1) an expensive β phase stabilizing element such as V is used, and (2) the α phase stabilizing element and the solid solution strengthening element. Since Al which is used remarkably increases the deformation resistance in the hot state, it becomes difficult to work and the hot workability is deteriorated, so that defects such as cracks are likely to occur.

一方、チタン合金の高強度および優れた延性を両立させるため、特許文献1および2には、酸素やFeを添加して、熱間変形抵抗を増加させず室温強度を増加させたチタン合金が提案されている。また、特許文献3には、酸素やFeを含有するものの酸素の含有量を抑えたチタン合金が提案されている。   On the other hand, in order to achieve both high strength and excellent ductility of titanium alloy, Patent Documents 1 and 2 propose a titanium alloy in which room temperature strength is increased without increasing hot deformation resistance by adding oxygen or Fe. Has been. Patent Document 3 proposes a titanium alloy that contains oxygen or Fe but has a reduced oxygen content.

特許第3481428号公報Japanese Patent No. 3481428 特許第3749589号公報Japanese Patent No. 3749589 特開2008−240026号公報JP 2008-240026 A

近年では、低コスト化を実現するとともに、更に高い延性を有する高強度チタン合金が求められている。   In recent years, there has been a demand for a high-strength titanium alloy that achieves cost reduction and has higher ductility.

しかし、特許文献1および2では、高強度・高延性の面内異方性を低減するために種々の製造条件が検討されているものの、高強度・高延性の各特性値自体を高めるものではない。このため、高強度と高延性とを高いレベルで両立できるような組織は得られていなかった。これらの文献に記載の検討結果によれば、延性が不十分であり近年の要求に対応するためには更なる改善が必要である。   However, in Patent Documents 1 and 2, although various production conditions have been studied in order to reduce the in-plane anisotropy of high strength and high ductility, it is not possible to increase the characteristic values themselves of high strength and high ductility. Absent. For this reason, a structure capable of achieving both high strength and high ductility at a high level has not been obtained. According to the examination results described in these documents, the ductility is insufficient and further improvement is necessary to meet the recent demand.

特許文献3に記載の発明では、α安定化元素である酸素の含有量を低減することによりα相の軟化によるチタン合金材の延性を高めることができる、とされている。同文献には仕上げ焼鈍の前に焼鈍を1回以上行うことが記載されているものの、酸素の含有量が少ないために強度が500MPaに満たない。   In the invention described in Patent Document 3, the ductility of the titanium alloy material due to softening of the α phase can be increased by reducing the content of oxygen which is an α stabilizing element. Although the document describes that annealing is performed at least once before the finish annealing, the strength is less than 500 MPa because the oxygen content is small.

また、特許文献1および2には強度を高めるために酸素を0.2質量%以上含有するチタン合金が開示されているが、特許文献3には延性を高めるために酸素濃度を0.1質量%以下に抑えることが開示されている。つまり、技術思想が相反するこれらの技術を組み合わせることも困難である。   Patent Documents 1 and 2 disclose a titanium alloy containing 0.2% by mass or more of oxygen in order to increase the strength. However, Patent Document 3 discloses an oxygen concentration of 0.1% by mass in order to increase ductility. % Or less is disclosed. In other words, it is also difficult to combine these technologies that have conflicting technical ideas.

このように、従来の技術では、近年の要求を満足するような高い延性を有する高強度チタン板は得られず、更なる検討が必要である。
そこで、本発明は、優れた延性を有する高強度チタン板を提供することを課題とする。
Thus, with the conventional technology, a high-strength titanium plate having high ductility that satisfies recent requirements cannot be obtained, and further studies are required.
Therefore, an object of the present invention is to provide a high-strength titanium plate having excellent ductility.

従来のチタン合金のように、Alを含有させて強度を高めると、延性が低下し靭性が損なわれてしまう。α相安定化元素である酸素やAlは固溶強化には効果的であるものの、強化能が高いためにすべり変形や双晶変形が起こりにくい。さらに、熱間変形抵抗が高いため、鍛造や圧延などで割れが生じやすい。本発明者らは、前述のように低コスト化と高強度化が可能な酸素をある程度含有させた上でFe含有量にも着目し、これらの元素と組織との関係を考慮しつつ鋭意検討を行った。この結果、以下の知見が得られた。   When Al is contained and the strength is increased as in a conventional titanium alloy, the ductility is lowered and the toughness is impaired. Oxygen and Al, which are α-phase stabilizing elements, are effective for solid solution strengthening, but slip deformation and twin deformation are unlikely to occur due to their high strengthening ability. Furthermore, since the hot deformation resistance is high, cracking is likely to occur during forging or rolling. As described above, the inventors of the present invention focus on the Fe content after incorporating oxygen that can be reduced in cost and increased in strength to some extent, and intensively studying the relationship between these elements and the structure. Went. As a result, the following knowledge was obtained.

(1)酸素はAlと同様にすべり変形や双晶変形を抑制する効果があるが、含有量が0.25〜0.4質量%であれば、大きく延性を損なわず熱間変形抵抗も大きくならないため、鍛造などで割れが生じにくい。さらにFe含有量が0.8〜1.5質量%とすることで結晶粒を細粒化・整粒化でき良好な延性が得られる。   (1) Oxygen has the effect of suppressing slip deformation and twin deformation as in the case of Al. However, if the content is 0.25 to 0.4% by mass, the ductility is not greatly impaired and the hot deformation resistance is also large. Therefore, cracks are difficult to occur during forging. Furthermore, when the Fe content is 0.8 to 1.5 mass%, the crystal grains can be refined and sized, and good ductility can be obtained.

(2)α相を再結晶した等軸組織にしてβ相を微細に多く分散させることにより、良好な延性・成形性が得られる。   (2) A good ductility and formability can be obtained by finely dispersing the β phase in an equiaxed structure obtained by recrystallizing the α phase.

(3)α相を再結晶した等軸組織にする理由は以下の通りである。等軸組織であれば結晶粒の変形が均一で加工硬化しやすく、良好な延性および強度が得られる。一方、針状組織では結晶粒の形状が影響して、不均一変形が生じ加工硬化しにくいため、良好な延性および強度が得られない。   (3) The reason why the α phase is recrystallized is as follows. With an equiaxed structure, the deformation of crystal grains is uniform and work hardening is easy, and good ductility and strength are obtained. On the other hand, in the needle-like structure, the shape of the crystal grains has an influence, and nonuniform deformation occurs and work hardening is difficult. Therefore, good ductility and strength cannot be obtained.

(4)β相を微細に多く分散させる理由は以下の通りである。α相とβ相は硬度差があり、塑性変形するとα相とβ相の粒界面に応力が集中し、塑性不安定になるとこの界面にボイドが発生する。これが成形加工の割れの起点となりうるため、できるだけα相とβ相の界面を多くして材料内の応力を分散させる必要があり、すなわちβ相を微細に多く分散させることが重要である。このため、優れた強度と延性を得るためには、β相の粒径と個数を制御する必要がある。
本発明者らは、β相の粒径と個数を制御するために検討を重ね、以下の知見を得た。
(4) The reason why a large amount of β phase is dispersed is as follows. The α phase and the β phase have a difference in hardness. When plastic deformation occurs, stress concentrates at the grain interface between the α phase and β phase, and when the plastic instability occurs, voids are generated at this interface. Since this can be a starting point for cracks in the forming process, it is necessary to disperse the stress in the material by increasing the interface between the α phase and the β phase as much as possible, that is, it is important to disperse the β phase in a minute amount. Therefore, in order to obtain excellent strength and ductility, it is necessary to control the particle size and number of β phases.
The inventors have repeatedly studied to control the particle size and number of β phases, and obtained the following knowledge.

(5)β相が微細に多く分散した組織とするには、β相安定化元素であるFe含有量を前述の範囲に調整した上で、仕上げ焼鈍までに熱延コイルを750℃〜850℃の温度域で30〜300秒間保持する中間焼鈍を2回以上行わなければならない。焼鈍によって、十分なFeの固溶量を有するβ相を残留させ多量にチタン材料内に分散させるためである。   (5) In order to obtain a structure in which a large amount of β-phase is dispersed, the content of Fe, which is a β-phase stabilizing element, is adjusted to the above range, and the hot-rolled coil is 750 ° C to 850 ° C before finish annealing. In this temperature range, the intermediate annealing for 30 to 300 seconds must be performed twice or more. This is because the β phase having a sufficient solid solution amount of Fe remains by annealing and a large amount is dispersed in the titanium material.

(6)中間焼鈍後の適度な再結晶を起こして、β相中のFe固溶量を維持しつつ十分な延性を得るため、仕上げ焼鈍温度は720〜850℃、焼鈍時間は30〜200secとする。
以上のようにβ相量、β相粒径およびβ相個数は、Fe含有量(mass%)、焼鈍温度T(℃)、焼鈍時間t(秒)に影響を受けるが、これら影響因子との関係が不明瞭であった。この関係性は、β相の分布を制御して強度と延性のバランスを優れたものにするため、明確にされることが非常に重要である。そこで、本発明者らは以下の検討を行った。β相量はFe含有量と焼鈍温度に、粒径と個数はFe含有量、焼鈍温度および焼鈍時間に強く依存する。また、粒径とともに個数が変動する。そこで、特に粒径と影響因子との関係に着目した。そして、本発明者らは、鋭意回帰分析を行った結果、以下の知見も得た。
(6) In order to cause adequate recrystallization after intermediate annealing and obtain sufficient ductility while maintaining the amount of Fe solid solution in the β phase, the final annealing temperature is 720 to 850 ° C., and the annealing time is 30 to 200 sec. To do.
As described above, the β-phase amount, β-phase particle size, and β-phase number are affected by the Fe content (mass%), the annealing temperature T (° C.), and the annealing time t (seconds). The relationship was unclear. It is very important that this relationship be clarified in order to control the β-phase distribution to provide an excellent balance between strength and ductility. Therefore, the present inventors conducted the following investigation. The amount of β phase strongly depends on the Fe content and annealing temperature, and the particle size and number strongly depend on the Fe content, annealing temperature and annealing time. Further, the number varies with the particle diameter. Therefore, we focused on the relationship between particle size and influencing factors. And the present inventors also obtained the following knowledge, as a result of conducting earnest regression analysis.

(7)β相と影響因子が、式(1)および(2)で示される関係式において、−0.20≦A≦0.57、−0.20≦B≦0.55となるよう制御することが望ましい。これにより、高強度でも高延性が得られる知見を得た。すなわち、β相が微細に多数分散することでα/β相粒界への応力が分散しボイドが発生しにくくなり高延性となる。   (7) The β phase and the influencing factor are controlled to satisfy −0.20 ≦ A ≦ 0.57 and −0.20 ≦ B ≦ 0.55 in the relational expressions represented by the expressions (1) and (2). It is desirable to do. Thereby, the knowledge that high ductility was obtained even at high strength was obtained. That is, when a large number of β phases are finely dispersed, stress to the α / β phase grain boundaries is dispersed, voids are less likely to be generated, and high ductility is achieved.

A=0.98×[Fe]−1264÷(273+T)+0.05×t 0.25
(1)
B=0.98×[Fe]−1264÷(273+T)+0.05×t 0.25
(2)
A = 0.98 × [Fe] −1264 ÷ (273 + T 1 ) + 0.05 × t 1 0.25
(1)
B = 0.98 × [Fe] −1264 ÷ (273 + T 2 ) + 0.05 × t 2 0.25
(2)

式(1)および式(2)中、[Fe]は高強度チタン板のFeの濃度であり、TおよびTは各々中間焼鈍温度(℃)および仕上げ焼鈍温度(℃)であり、tおよびtは各々中間焼鈍時間(s)および仕上げ焼鈍時間(s)である。 In formulas (1) and (2), [Fe] is the Fe concentration of the high-strength titanium plate, T 1 and T 2 are the intermediate annealing temperature (° C.) and the finish annealing temperature (° C.), respectively, t 1 and t 2 are each intermediate annealing time (s) and finish annealing time (s).

上記の知見に基づき完成された本発明は以下の通りである。
(1)質量%で、Fe:0.8〜1.5%、O:0.25〜0.40%を含有し、残部がTiおよび不純物からなる化学組成を有し、再結晶した等軸α相とβ相からなる2相組織を有し、等軸α相の面積率が70〜85%であり、β相の平均結晶粒径が3μm以下であり、β相個数が圧延幅方向の断面において1μmの面積内に平均で0.02個以上存在していることを特徴とする高強度チタン板。
The present invention completed based on the above findings is as follows.
(1) In mass%, Fe: 0.8 to 1.5%, O: 0.25 to 0.40%, the remainder having a chemical composition consisting of Ti and impurities, and recrystallized equiaxed It has a two-phase structure consisting of an α phase and a β phase, the area ratio of the equiaxed α phase is 70 to 85%, the average crystal grain size of the β phase is 3 μm or less, and the number of β phases is in the rolling width direction A high-strength titanium plate having 0.02 or more on average in an area of 1 μm 2 in cross section.

(2)チタン材に対して熱間圧延を行った後、冷間圧延および中間焼鈍をこの順で2回以上行い、最後の中間焼鈍後に仕上げ冷間加工および仕上げ焼鈍をこの順で行う上記(1)に記載の高強度チタン板の製造方法であって、前記中間焼鈍の焼鈍温度域を750〜850℃とし、前記中間焼鈍の焼鈍時間を30〜300秒とし、前記仕上げ焼鈍の焼鈍温度を720〜850℃とし、前記仕上げ焼鈍の焼鈍時間を30〜200秒とすることを特徴とする高強度チタン板の製造方法。   (2) After hot rolling the titanium material, cold rolling and intermediate annealing are performed twice or more in this order, and finish cold working and finishing annealing are performed in this order after the last intermediate annealing ( 1) The method for producing a high-strength titanium plate according to 1), wherein the annealing temperature range of the intermediate annealing is set to 750 to 850 ° C., the annealing time of the intermediate annealing is set to 30 to 300 seconds, and the annealing temperature of the finish annealing is set to 720-850 degreeC, The annealing time of the said finish annealing shall be 30-200 second, The manufacturing method of the high strength titanium plate characterized by the above-mentioned.

(3)前記中間焼鈍の条件は式(1)中のAの値が−0.20〜0.57を満たし、前記仕上げ焼鈍の条件は式(2)中のBの値が−0.20〜0.55を満たすことを特徴とする上記(2)に記載の高強度チタン板の製造方法。   (3) As for the condition of the said intermediate annealing, the value of A in Formula (1) satisfy | fills -0.20-0.57, and the condition of the said finish annealing has the value of B in Formula (2) being -0.20. The method for producing a high-strength titanium plate according to the above (2), which satisfies -0.55.

A=0.98×[Fe]−1264÷(273+T)+0.05×t 0.25
(1)
B=0.98×[Fe]−1264÷(273+T)+0.05×t 0.25
(2)
A = 0.98 × [Fe] −1264 ÷ (273 + T 1 ) + 0.05 × t 1 0.25
(1)
B = 0.98 × [Fe] −1264 ÷ (273 + T 2 ) + 0.05 × t 2 0.25
(2)

式(1)および式(2)中、[Fe]は前記高強度チタン板のFeの含有量(質量%)であり、TおよびTは各々前記中間焼鈍の焼鈍温度(℃)および前記仕上げ焼鈍の焼鈍温度(℃)であり、tおよびtは各々前記中間焼鈍の焼鈍時間(s)および前記仕上げ焼鈍の焼鈍時間(s)である。 In Formula (1) and Formula (2), [Fe] is the Fe content (% by mass) of the high-strength titanium plate, and T 1 and T 2 are the annealing temperature (° C.) of the intermediate annealing and the above It is the annealing temperature (° C.) of finish annealing, and t 1 and t 2 are the annealing time (s) of the intermediate annealing and the annealing time (s) of the finishing annealing, respectively.

本発明によれば、優れた延性を有する高強度チタン板およびその製造方法を提供することができる。   According to the present invention, a high-strength titanium plate having excellent ductility and a method for producing the same can be provided.

以下の説明では、特に記載がない限り、「%」は「質量%」を表す。
1.高強度チタン板
1.1 化学組成
(1)Fe:0.8〜1.5%
Feは、チタン材料中に、0.8〜1.5%含有される。チタン材料において、Feはβ相安定化元素であり、一部はα相に固溶するものの、多くはβ相に固溶することが知られている。つまり、Feの量が多くなるとβ相の量が増加し、これに伴ってα相の粒成長を抑制でき細粒の組織が得られる。Fe含有量が0.8%未満であると十分な強度が得られないためである。好ましくは0.9%以上である。Fe含有量が1.5%を超えるとβ相の安定度が高くなり、室温に冷却してもα相に変態せずβ相として残留し、熱延、焼鈍などの加熱工程を経ていくごとに残留β相が粗大化する恐れがある。また、耐食性が低下する恐れがある。好ましくは1.4%以下である。さらに、Feは溶解・凝固時に偏析しやすい。コイルでの均質性の観点から、より好ましくは1.2%以下がよい。
In the following description, “%” represents “mass%” unless otherwise specified.
1. High-strength titanium plate 1.1 Chemical composition (1) Fe: 0.8-1.5%
Fe is contained in the titanium material in an amount of 0.8 to 1.5%. In titanium materials, Fe is a β-phase stabilizing element, and some of them are known to dissolve in the β phase, although some of them dissolve in the α phase. That is, as the amount of Fe increases, the amount of β phase increases, and accordingly, the growth of α phase grains can be suppressed and a fine grain structure can be obtained. This is because sufficient strength cannot be obtained when the Fe content is less than 0.8%. Preferably it is 0.9% or more. When the Fe content exceeds 1.5%, the stability of the β phase increases, and even after cooling to room temperature, it remains as the β phase without being transformed into the α phase, and passes through heating processes such as hot rolling and annealing. In addition, the residual β phase may be coarsened. Moreover, there exists a possibility that corrosion resistance may fall. Preferably it is 1.4% or less. Furthermore, Fe tends to segregate during dissolution and solidification. From the viewpoint of homogeneity in the coil, 1.2% or less is more preferable.

(2)O:0.25〜0.40%
酸素は、チタン材料中に、0.25〜0.40%含有される。酸素はチタン材料全般に強度を増加させるために有効な元素である。酸素含有量が0.25%未満であると、チタン板を用いて製造する製品に十分な強度を付与させることが困難となるおそれがある。好ましくは0.28%以上、より好ましくは0.32%以上である。酸素含有量が0.40%を超えると、強度が大きくなりすぎてしまい延性が低いチタン板となってしまうためである。好ましくは0.39%以下、より好ましくは0.38%以下である。
残部はTiおよび不純物である。
(2) O: 0.25 to 0.40%
Oxygen is contained in the titanium material by 0.25 to 0.40%. Oxygen is an effective element for increasing the strength of all titanium materials. If the oxygen content is less than 0.25%, it may be difficult to impart sufficient strength to a product produced using a titanium plate. Preferably it is 0.28% or more, more preferably 0.32% or more. This is because if the oxygen content exceeds 0.40%, the strength becomes too high and the titanium plate has a low ductility. Preferably it is 0.39% or less, More preferably, it is 0.38% or less.
The balance is Ti and impurities.

1.2 チタン金属組織
(1)再結晶した等軸α相とβ相からなる2相組織
本発明のチタン板は等軸α相とβ相の2相によって構成される。針状α相は結晶粒の回転が難しく変形しにくいため延性を低下させる。等軸α相のアスペクト比(長軸/短軸)は延性を高める観点から1〜2であることが望ましい。また、アスペクト比が1〜2である等軸α相の面積率は、十分な延性を得るため70〜85%であることが望ましい。より好ましくは72〜80%である。また、α相を再結晶した等軸組織にしてβ相を微細に多く分散させることにより、良好な延性・成形性が得られるため、等軸α相とβ相との面積率の比は7:3〜17:3であることが好ましい。
1.2 Titanium metal structure (1) Two-phase structure composed of recrystallized equiaxed α-phase and β-phase The titanium plate of the present invention is composed of two phases of equiaxed α-phase and β-phase. The acicular α phase reduces the ductility because the crystal grains are difficult to rotate and are not easily deformed. The aspect ratio (major axis / minor axis) of the equiaxed α phase is preferably 1 to 2 from the viewpoint of enhancing ductility. The area ratio of the equiaxed α phase having an aspect ratio of 1 to 2 is desirably 70 to 85% in order to obtain sufficient ductility. More preferably, it is 72 to 80%. Further, since a good ductility and formability can be obtained by finely dispersing the β phase in an equiaxed structure obtained by recrystallizing the α phase, the ratio of the area ratio of the equiaxed α phase to the β phase is 7 : It is preferable that it is 3-17: 3.

(2)β相の平均結晶粒径:3μm以下、β相個数:圧延幅方向の断面において1μmの面積内に平均で0.02個以上
本発明のチタン板は硬度差が異なるα相とβ相で構成されている。このため、塑性変形ではα相とβ相の界面に応力が集中する。β相平均結晶粒径が3μm以下、β相個数が圧延幅方向の断面において1μmの面積内に平均で0.02個以上としたのは、β相が3μmを超えβ相個数が圧延幅方向の断面において1μmの面積内に平均で0.02個未満となると、α相とβ相の界面が少なくなり、応力集中がより生じやすくなるため延性が低下する。好ましくはβ相粒径が2.8μm以下、β相個数が平均で0.03個以上、より好ましくはβ相粒径が2.7μm以下、β相個数が平均で0.04個以上である。なお、「平均」としたのは、400μm×400μmの視野で3箇所のβ相個数を観察し、個数の合計を視野の合計で除した値であるためである。
(2) β-phase average crystal grain size: 3 μm or less, β-phase number: 0.02 or more on average within an area of 1 μm 2 in the cross section in the rolling width direction It is composed of β phase. For this reason, stress concentrates at the interface between the α phase and the β phase in plastic deformation. The β-phase average crystal grain size is 3 μm or less, and the number of β-phases is 0.02 or more on average within an area of 1 μm 2 in the cross section in the rolling width direction. When the average cross section in the direction cross section is less than 0.02 within an area of 1 μm 2 , the interface between the α phase and the β phase is reduced, stress concentration is more likely to occur, and ductility is lowered. Preferably, the β phase particle size is 2.8 μm or less, the average number of β phases is 0.03 or more, more preferably the β phase particle size is 2.7 μm or less, and the β phase number is 0.04 or more on average. . Note that the “average” is a value obtained by observing the number of β phases at three locations in a field of view of 400 μm × 400 μm and dividing the total number by the total number of fields.

2.高強度チタン板の製造方法
2.1 純チタンインゴットの熱間圧延
本発明では、熱間加工までの工程は一般的なチタン板の製造方法により製造することができる。例えば、スポンジチタン等からチタンインゴットを製造し、このインゴットを鍛造でスラブ形状にし、これを熱間圧延により熱延板に加工した。その後、熱延板にショットブラスト、酸洗による脱スケールを行い、冷間圧延に供するチタン材を製造する。これらの条件は特に限定されず、一般的な条件であればよい。
2. 2. Manufacturing Method of High Strength Titanium Plate 2.1 Hot Rolling of Pure Titanium Ingot In the present invention, the steps up to hot working can be manufactured by a general manufacturing method of a titanium plate. For example, a titanium ingot was manufactured from sponge titanium or the like, the ingot was forged into a slab shape, and this was processed into a hot-rolled sheet by hot rolling. Thereafter, descaling is performed on the hot-rolled sheet by shot blasting and pickling to produce a titanium material used for cold rolling. These conditions are not particularly limited, and may be general conditions.

2.2 中間焼鈍
本発明の高強度チタン板で規定する組織とするには、仕上げ焼鈍までにチタン材を750℃〜850℃の温度域で30〜300秒保持する中間焼鈍を2回以上行わなければならない。焼鈍によって生成するβ相を残留させ多量にチタン材料内に分散させるためである。
2.2 Intermediate annealing In order to obtain the structure defined by the high-strength titanium plate of the present invention, intermediate annealing is performed twice or more in which the titanium material is held in the temperature range of 750 ° C. to 850 ° C. for 30 to 300 seconds until the final annealing. There must be. This is because the β phase generated by annealing remains and is dispersed in a large amount in the titanium material.

中間焼鈍回数が2回未満の場合、β相が少ないため、応力集中を分散することができない。   When the number of intermediate annealing is less than 2, since the β phase is small, the stress concentration cannot be dispersed.

中間焼鈍温度が750℃未満、保持時間が30秒未満では、β相の生成量が少ない。中間焼鈍温度が850℃超え、保持時間が300秒超えでは、β相が粒成長するためにα相とβ相の界面が減少し、また、β相自体の量が増大しβ相中のFe固溶量が少なくなりβ相が残留できず針状α相に変態するためである。さらに、焼鈍後の冷却速度は0.1℃/秒以上が望ましい。中間焼鈍で生成したβ相を室温においても残留させるためである。これより冷却速度が遅いとβ相がα相に変態するため、β相の量が少なくなる。この冷却速度は後述の仕上げ焼鈍においても同様である。   When the intermediate annealing temperature is less than 750 ° C. and the holding time is less than 30 seconds, the amount of β phase generated is small. When the intermediate annealing temperature exceeds 850 ° C. and the holding time exceeds 300 seconds, the β phase grows and the interface between the α phase and the β phase decreases, and the amount of the β phase itself increases and the Fe phase in the β phase increases. This is because the amount of solid solution decreases and the β phase cannot remain and transforms into a needle-like α phase. Furthermore, the cooling rate after annealing is preferably 0.1 ° C./second or more. This is because the β phase generated by the intermediate annealing remains at room temperature. If the cooling rate is slower than this, the β phase is transformed into the α phase, and the amount of the β phase is reduced. This cooling rate is the same in finish annealing described later.

また、「中間焼鈍を2回以上行う」とは、熱延後のチタン材に対して、冷間圧延および中間焼鈍をこの順で2回以上行うことを表す。つまり、本発明では、冷間圧延および中間焼鈍を各々2回以上行う必要がある。中間焼鈍の前に行う冷間圧延の圧化率は、特に規定しないが、各々50%以上であればよい。   Moreover, “intermediate annealing is performed twice or more” means that cold rolling and intermediate annealing are performed twice or more in this order on the titanium material after hot rolling. That is, in this invention, it is necessary to perform cold rolling and intermediate annealing twice or more each. The pressing ratio of cold rolling performed before the intermediate annealing is not particularly specified, but may be 50% or more for each.

2.3 仕上げ焼鈍
本発明では、再結晶した等軸α相を得るため、仕上げ焼鈍温度は720〜850℃、焼鈍時間は30〜200秒とする。仕上げ焼鈍温度が720℃未満の場合、数分という短時間では再結晶が起こりにくく、十分な延性が得られない。なお、720℃未満であっても長時間焼鈍すれば再結晶するが平衡状態に到達してしまう。平衡状態では温度が低いほどβ相が少ないため、中間焼鈍でβ相を多く残留させても仕上げ焼鈍後のβ相個数が少なくなってしまう。したがって、焼鈍時間によらず、仕上げ焼鈍温度は720℃以上である必要がある。好ましくは725℃以上である。一方、850℃を超えると、焼鈍で生成したβ相は、Feの固溶量が少ないため、室温に冷却すると残留せず、延性を低下させる針状のα相に変態してしまう。
2.3 Finish annealing In the present invention, in order to obtain a recrystallized equiaxed α-phase, the finish annealing temperature is set to 720 to 850 ° C., and the annealing time is set to 30 to 200 seconds. When the final annealing temperature is less than 720 ° C., recrystallization hardly occurs in a short time of several minutes, and sufficient ductility cannot be obtained. In addition, even if it is less than 720 degreeC, if it anneals for a long time, it will recrystallize, but will reach an equilibrium state. In the equilibrium state, the lower the temperature, the fewer β phases. Therefore, even if a large amount of β phases remain in the intermediate annealing, the number of β phases after finish annealing decreases. Therefore, the finish annealing temperature needs to be 720 ° C. or higher regardless of the annealing time. Preferably it is 725 ° C or more. On the other hand, when the temperature exceeds 850 ° C., the β phase generated by annealing has a small amount of Fe solid solution, so that it does not remain when cooled to room temperature and transforms into a needle-like α phase that reduces ductility.

焼鈍時間を30〜200秒としたのは、30秒より短時間では再結晶が起こりにくく、十分な延性が得られない。200秒より長時間では、β相が粒成長・粗大化し、β相の個数が少なくなって、α相とβ相の界面の応力が分散しないため延性が低下する。   When the annealing time is set to 30 to 200 seconds, recrystallization hardly occurs in a time shorter than 30 seconds, and sufficient ductility cannot be obtained. If the time is longer than 200 seconds, the β phase grows and coarsens, the number of β phases decreases, and the stress at the interface between the α phase and the β phase does not disperse, resulting in a decrease in ductility.

2.4 Fe含有量、焼鈍温度および焼鈍時間との関係
式(1)および(2)で示される関係式において、−0.20≦A≦0.57、−0.20≦B≦0.55となるよう制御することが望ましい。高強度でも高延性が得られるためである。β相が微細に多数分散することでα/β相粒界への応力集中が分散しボイドが発生しにくくなり高延性となる。
2.4 Relationship with Fe Content, Annealing Temperature and Annealing Time In the relational expressions shown by the formulas (1) and (2), −0.20 ≦ A ≦ 0.57, −0.20 ≦ B ≦ 0. It is desirable to control to be 55. This is because high ductility can be obtained even at high strength. When a large number of β phases are finely dispersed, the stress concentration at the α / β phase grain boundaries is dispersed, voids are less likely to be generated, and high ductility is achieved.

AおよびBがこの範囲より小さいとき、Fe含有量が少なくβ相粒径は小さいがβ相量が少なくβ相を多量に分散できない。このため、α/β相粒界に応力集中してボイドが発生しやすくなり、良好な延性が得られない。一方、AおよびBがこの範囲より大きいと、β相粒径が大きくなりすぎてしまい、β相個数が少なくβ相を多量に分散できないため、上記と同様良好な延性が得られない。   When A and B are smaller than this range, the Fe content is small and the β phase particle size is small, but the β phase amount is small and the β phase cannot be dispersed in a large amount. For this reason, stress concentrates on the α / β phase grain boundary and voids are easily generated, and good ductility cannot be obtained. On the other hand, if A and B are larger than this range, the β phase particle size becomes too large and the number of β phases is so small that the β phase cannot be dispersed in a large amount, so that good ductility cannot be obtained as described above.

以上から、Fe含有量、焼鈍温度および焼鈍時間を各々式(1)、(2)に代入してAとBが上記の範囲となるようにすることで、β相粒径およびβ相個数を微細に多く分散させることができ、良好な強度と延性が得られる。なお、Aの範囲が好ましくは−0.20〜0.45、より好ましくは−0.20〜0.40であり、Bの範囲が好ましくは−0.20〜0.50、より好ましくは−0.20〜0.45である。好ましくい範囲の組み合わせはAが−0.36〜0.57、Bが−0.38〜0.55であり、より好ましくはAが−0.30〜0.45、Bが−0.30〜0.50であり、さらに好ましくはAが−0.20〜0.40、Bが−0.20〜0.45である。   From the above, by substituting the Fe content, annealing temperature, and annealing time into the formulas (1) and (2), respectively, so that A and B are in the above ranges, the β phase particle size and the number of β phases are A large amount can be finely dispersed, and good strength and ductility can be obtained. The range of A is preferably -0.20 to 0.45, more preferably -0.20 to 0.40, and the range of B is preferably -0.20 to 0.50, more preferably- 0.20 to 0.45. A preferable range of combinations is that A is -0.36 to 0.57 and B is -0.38 to 0.55, more preferably A is -0.30 to 0.45, and B is -0.30. It is -0.50, More preferably, A is -0.20-0.40 and B is -0.20-0.45.

中間焼鈍:
A=0.98×[Fe]−1264÷(273+T)+0.05×t 0.25
(1)
仕上げ焼鈍:
B=0.98×[Fe]−1264÷(273+T)+0.05×t 0.25
(2)
Intermediate annealing:
A = 0.98 × [Fe] −1264 ÷ (273 + T 1 ) + 0.05 × t 1 0.25
(1)
Finish annealing:
B = 0.98 × [Fe] −1264 ÷ (273 + T 2 ) + 0.05 × t 2 0.25
(2)

式(1)および式(2)中、[Fe]は高強度チタン板のFeの濃度であり、TおよびTは各々中間焼鈍温度(℃)および仕上げ焼鈍温度(℃)であり、tおよびtは各々中間焼鈍時間(s)および仕上げ焼鈍時間(s)である。
その後、硝ふっ酸などで完全にスケールを除去し、冷却してチタン材を得る。
In formulas (1) and (2), [Fe] is the Fe concentration of the high-strength titanium plate, T 1 and T 2 are the intermediate annealing temperature (° C.) and the finish annealing temperature (° C.), respectively, t 1 and t 2 are each intermediate annealing time (s) and finish annealing time (s).
Thereafter, the scale is completely removed with nitric hydrofluoric acid or the like and cooled to obtain a titanium material.

真空アーク溶解で、表3および4に示すように、酸素含有量およびFe含有量の異なる種々のチタンインゴットを製造し、鍛造、熱延、表面切削を行い、中間焼鈍および冷間圧延を1〜3回行い、仕上げ焼鈍、冷延、酸洗により、板厚が0.9mmのチタン板を得た。得られたチタン板のFe含有量、酸素含有量、等軸α相面積率、β相面積率、β相個数、β相粒径、引張強度、伸びを測定した。   As shown in Tables 3 and 4, by vacuum arc melting, various titanium ingots having different oxygen contents and Fe contents are manufactured, forged, hot-rolled and surface-cut, and subjected to intermediate annealing and cold rolling. This was performed three times, and a titanium plate having a thickness of 0.9 mm was obtained by finish annealing, cold rolling, and pickling. The obtained titanium plate was measured for Fe content, oxygen content, equiaxed α-phase area ratio, β-phase area ratio, β-phase number, β-phase particle size, tensile strength, and elongation.

具体的な冷延条件、仕上げ焼鈍、酸洗条件を表1に示す。また、具体的な各評価方法を表2に示す。なお、各焼鈍後の冷却速度は0.1〜20℃/秒である。また、各焼鈍の前に行う冷延鋼板の圧下率は50%以上とした。   Specific cold rolling conditions, finish annealing, and pickling conditions are shown in Table 1. Table 2 shows specific evaluation methods. In addition, the cooling rate after each annealing is 0.1-20 degree-C / sec. Moreover, the rolling reduction of the cold rolled steel sheet performed before each annealing was 50% or more.

Figure 0006432328
Figure 0006432328

Figure 0006432328
Figure 0006432328

本実施例では、引張強度が900MPa以上であり、引張強度×伸び≧23,000MPa・%を合格とした。試験片TD面の任意の1mm×1mmの範囲を3μmピッチで後方散乱電子回折像EBSD(Electron Backscatter Diffraction Patern)を用いた結晶方位解析方法によって測定して付属の解析ソフトにて以下を求めた。また、400μm×400μmの視野で3箇所のβ相の粒径および個数を光学顕微鏡で観察した。個数は、3箇所の個数の合計を視野の合計面積で除した値を個数の平均値とした。また、同箇所で観察されるα相のアスペクト比(長軸/短軸)を求め、アスペクト比が1〜2であるα相を再結晶した等軸α相とみなし、面積率を調査した。β相の面積率は、α相(等軸および針状)を除く面積をβ相が占有するものとみなし、100からα相の面積率を差し引いて求めた。   In this example, the tensile strength was 900 MPa or more, and the tensile strength × elongation ≧ 23,000 MPa ·% was regarded as acceptable. An arbitrary range of 1 mm × 1 mm on the test piece TD surface was measured by a crystal orientation analysis method using a backscattered electron diffraction image EBSD (Electron Backscatter Diffraction Pattern) at a pitch of 3 μm, and the following was obtained using the attached analysis software. In addition, the particle size and the number of β-phases at three locations were observed with an optical microscope in a field of view of 400 μm × 400 μm. For the number, the value obtained by dividing the total number of three places by the total area of the field of view was taken as the average number. In addition, the aspect ratio (major axis / minor axis) of the α phase observed at the same location was determined, and the α phase having an aspect ratio of 1 to 2 was regarded as the recrystallized equiaxed α phase, and the area ratio was investigated. The area ratio of the β phase was determined by subtracting the area ratio of the α phase from 100, assuming that the area excluding the α phase (equal axis and needle-like) is occupied by the β phase.

これらの結果を表3および表4に示す。表3および4中、「式(1)−1」とは、1回目の中間焼鈍(中間焼鈍1)条件における式(1)のAの値である。「式(1)−2」、「式(1)−3」は、各々2回目、3回目の中間焼鈍(中間焼鈍2、中間焼鈍3)条件における式(1)のAの値である。   These results are shown in Tables 3 and 4. In Tables 3 and 4, “Expression (1) -1” is the value of A in Expression (1) under the first intermediate annealing (intermediate annealing 1) conditions. “Formula (1) -2” and “Formula (1) -3” are the values of A in Formula (1) under the second and third intermediate annealing (intermediate annealing 2, intermediate annealing 3) conditions, respectively.

Figure 0006432328
Figure 0006432328

Figure 0006432328
Figure 0006432328

本発明の条件をすべて満たす発明例は、いずれも引張強度が900MPa以上であり、引張強度×伸びが23000(MPa・%)以上を示した。なお、No.11〜14、57および62を除いて、いずれも等軸α相の面積率が70〜85%であり、微細なβ相が分散していることを確認した。   In all the inventive examples satisfying the conditions of the present invention, the tensile strength was 900 MPa or more, and the tensile strength × elongation was 23000 (MPa ·%) or more. In addition, No. Except for 11-14, 57 and 62, it was confirmed that the area ratio of the equiaxed α phase was 70 to 85%, and the fine β phase was dispersed.

一方、比較例であるNo.1〜8は、Fe含有量が少ないために引張強度が劣った。
No.9および10は、酸素含有量が少ないために引張強度が劣った。
On the other hand, No. which is a comparative example. Nos. 1 to 8 were inferior in tensile strength because of low Fe content.
No. 9 and 10 were inferior in tensile strength due to low oxygen content.

No.11〜14は、仕上げ焼鈍温度が低いため、等軸α相の面積率が70%未満と低く、伸びが低く、引張強度×伸びが劣った。   No. Since No. 11-14 had a low finish annealing temperature, the area ratio of the equiaxed α phase was as low as less than 70%, the elongation was low, and the tensile strength × elongation was inferior.

No.15、21、26は、中間焼鈍温度が低いためにβ相が十分に生成されず、β相個数が少なく、引張強度×伸びが劣った。   No. In 15, 21, and 26, the intermediate annealing temperature was low, so β phases were not sufficiently generated, the number of β phases was small, and tensile strength × elongation was inferior.

No.19、20、24、25、30、34、38、42、46、50および70は、中間焼鈍温度が高いためにβ相が針状α相に変態し、β相個数が少なく、引張強度×伸びが劣った。   No. 19, 20, 24, 25, 30, 34, 38, 42, 46, 50 and 70 have a high intermediate annealing temperature, so the β phase is transformed into an acicular α phase, the number of β phases is small, the tensile strength × The growth was inferior.

No.35〜37、39〜41は、仕上げ焼鈍温度が高いためにβ相が針状α相に変態し、β相個数が少なく、引張強度×伸びが劣った。   No. In 35 to 37 and 39 to 41, since the finish annealing temperature was high, the β phase was transformed into an acicular α phase, the number of β phases was small, and the tensile strength × elongation was inferior.

No.43〜45は、仕上げ焼鈍温度が低く長時間焼鈍しているために平衡状態に到達してしまい、β相個数が少なく、引張強度×伸びが劣った。   No. Nos. 43 to 45 reached an equilibrium state because the annealing temperature was low and annealed for a long time, the number of β phases was small, and the tensile strength × elongation was inferior.

No.47〜49は、中間焼鈍を1回しか行っていないためにβ相が残留せず、β相個数が少なく、引張強度×伸びが劣った。   No. In Nos. 47 to 49, since the intermediate annealing was performed only once, the β phase did not remain, the number of β phases was small, and the tensile strength × elongation was inferior.

No.51は、中間焼鈍時間が短いためにβ相の生成量が少なく、β相個数が少なく、引張強度×伸びが劣った。   No. No. 51 had a short intermediate annealing time, so the production amount of β phase was small, the number of β phases was small, and the tensile strength × elongation was inferior.

No.55および56は、中間焼鈍時間が長いためにβ相が針状α相に変態し、β個数が少なく、引張強度×伸びが劣った。   No. In 55 and 56, since the intermediate annealing time was long, the β phase was transformed into an acicular α phase, the β number was small, and the tensile strength × elongation was inferior.

No.57および62は、仕上げ焼鈍時間が短いため、等軸α相の面積率が70%より低く、伸びが低く、引張強度×伸びが劣った。   No. 57 and 62 had a short finish annealing time, so the area ratio of the equiaxed α phase was lower than 70%, the elongation was low, and the tensile strength × elongation was inferior.

No.60、61、65および66は、仕上げ焼鈍時間が長いためにβ相が粗大化しβ相個数が少なく、引張強度×伸びが劣った。   No. In Nos. 60, 61, 65 and 66, since the finish annealing time was long, the β phase was coarsened, the number of β phases was small, and the tensile strength × elongation was inferior.

No.71および72は、酸素含有量が多いために引張強度×伸びが劣った。
No.75および76は、Fe含有量が多いために引張強度×伸びが劣った。
No. 71 and 72 were inferior in tensile strength × elongation due to high oxygen content.
No. 75 and 76 were inferior in tensile strength × elongation due to high Fe content.

Claims (2)

質量%で、Fe:0.8〜1.5%、O:0.25〜0.40%を含有し、残部がTiおよび不純物からなる化学組成を有し、
再結晶したアスペクト比が1〜2である等軸α相とβ相からなる2相組織を有し、等軸α相の面積率が70〜85%であり、β相の平均結晶粒径が3μm以下であり、β相個数が圧延幅方向の断面において1μmの面積内に平均で0.02個以上存在し、引張強度が900MPa以上であり、引張強度×伸び≧23,000MPa・%である、ことを特徴とする高強度チタン板。
In mass%, Fe: 0.8 to 1.5%, O: 0.25 to 0.40% is contained, the balance has a chemical composition consisting of Ti and impurities,
Recrystallized equiaxed α phase with an aspect ratio of 1 to 2 and a β phase with a two-phase structure, the area ratio of the equiaxed α phase is 70 to 85%, and the average crystal grain size of the β phase Is 3 μm or less, the number of β phases is 0.02 or more on average in the area of 1 μm 2 in the cross section in the rolling width direction , the tensile strength is 900 MPa or more, and tensile strength × elongation ≧ 23,000 MPa ·%. in it, a high strength titanium plate, characterized in that.
チタン材に対して熱間圧延を行った後、冷間圧延および中間焼鈍をこの順で2回以上行い、最後の中間焼鈍後に仕上げ冷間加工および仕上げ焼鈍をこの順で行う請求項1に記載の高強度チタン板の製造方法であって、
前記中間焼鈍の焼鈍温度域を750〜850℃とし、前記中間焼鈍の焼鈍時間を30〜300秒とし、かつ前記中間焼鈍の条件は式(1)中のAの値が−0.20〜0.57を満たし、前記仕上げ焼鈍の焼鈍温度を720〜850℃とし、前記仕上げ焼鈍の焼鈍時間を30〜200秒とし、かつ前記仕上げ焼鈍の条件は式(2)中のBの値が−0.20〜0.55を満たすことを特徴とする高強度チタン板の製造方法。
A=0.98×[Fe]−1264÷(273+T )+0.05×t 0.25
(1)
B=0.98×[Fe]−1264÷(273+T )+0.05×t 0.25
(2)
式(1)および式(2)中、[Fe]は前記高強度チタン板のFeの含有量(質量%)であり、T およびT は各々前記中間焼鈍の焼鈍温度(℃)および前記仕上げ焼鈍の焼鈍温度(℃)であり、t およびt は各々前記中間焼鈍の焼鈍時間(s)および前記仕上げ焼鈍の焼鈍時間(s)である。

The hot rolling is performed on the titanium material, and then the cold rolling and the intermediate annealing are performed twice or more in this order, and the finish cold working and the finishing annealing are performed in this order after the final intermediate annealing. A method for producing a high-strength titanium plate,
The annealing temperature range of the intermediate annealing is set to 750 to 850 ° C., the annealing time of the intermediate annealing is set to 30 to 300 seconds, and the condition of the intermediate annealing is such that the value of A in the formula (1) is −0.20 to 0 .57, an annealing temperature of the finish annealing is set to 720 to 850 ° C., an annealing time of the finish annealing is set to 30 to 200 seconds , and the condition of the finish annealing is such that the value of B in the formula (2) is − The manufacturing method of the high intensity | strength titanium plate characterized by satisfying 0.20-0.55 .
A = 0.98 × [Fe] −1264 ÷ (273 + T 1 ) + 0.05 × t 1 0.25
(1)
B = 0.98 × [Fe] −1264 ÷ (273 + T 2 ) + 0.05 × t 2 0.25
(2)
In Formula (1) and Formula (2), [Fe] is the Fe content (% by mass) of the high-strength titanium plate, and T 1 and T 2 are the annealing temperature (° C.) of the intermediate annealing and the above It is the annealing temperature (° C.) of finish annealing, and t 1 and t 2 are the annealing time (s) of the intermediate annealing and the annealing time (s) of the finishing annealing, respectively.

JP2014250900A 2014-12-11 2014-12-11 High strength titanium plate and manufacturing method thereof Active JP6432328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250900A JP6432328B2 (en) 2014-12-11 2014-12-11 High strength titanium plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250900A JP6432328B2 (en) 2014-12-11 2014-12-11 High strength titanium plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016113640A JP2016113640A (en) 2016-06-23
JP6432328B2 true JP6432328B2 (en) 2018-12-05

Family

ID=56140941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250900A Active JP6432328B2 (en) 2014-12-11 2014-12-11 High strength titanium plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6432328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620435B (en) * 2018-03-16 2019-06-04 洛阳双瑞精铸钛业有限公司 A method of rate must be expected by improving hot rolled plate using titanium or titanium alloy hot rolling material head
JP6885900B2 (en) * 2018-06-12 2021-06-16 勝義 近藤 Ti-Fe-based sintered alloy material and its manufacturing method
CN112593171B (en) * 2020-12-09 2021-08-24 四川大学 Fine-grained pure titanium with high toughness and excellent osseointegration performance and preparation method thereof
KR102589875B1 (en) * 2021-04-22 2023-10-13 한국재료연구원 Fine grained pure titanium and manufacturing method for the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JP5112723B2 (en) * 2007-03-26 2013-01-09 株式会社神戸製鋼所 Titanium alloy material excellent in strength and formability and manufacturing method thereof
JP5064356B2 (en) * 2008-11-20 2012-10-31 株式会社神戸製鋼所 Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
JP4666271B2 (en) * 2009-02-13 2011-04-06 住友金属工業株式会社 Titanium plate
EP2508643B1 (en) * 2009-12-02 2019-01-30 Nippon Steel & Sumitomo Metal Corporation Titanium alloy part and method of manufacturing same
US9624566B2 (en) * 2011-02-24 2017-04-18 Nippon Steel & Sumitomo Metal Corporation Alpha and beta titanium alloy sheet excellent in cold rollability and cold handling property and process for producing the same
JP5875965B2 (en) * 2012-06-07 2016-03-02 株式会社神戸製鋼所 Titanium plate and manufacturing method thereof
JP5725457B2 (en) * 2012-07-02 2015-05-27 日本発條株式会社 α + β type Ti alloy and method for producing the same

Also Published As

Publication number Publication date
JP2016113640A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
US10913242B2 (en) Titanium material for hot rolling
WO2012032610A1 (en) Titanium material
JP2012052219A (en) α-β TITANIUM ALLOY EXTRUDED MATERIAL EXCELLENT IN FATIGUE STRENGTH, AND METHOD FOR PRODUCING THE α-β TITANIUM ALLOY EXTRUDED MATERIAL
JP6540179B2 (en) Hot-worked titanium alloy bar and method of manufacturing the same
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP5477519B1 (en) Resource-saving titanium alloy member excellent in strength and toughness and manufacturing method thereof
JP6844706B2 (en) Titanium plate
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
JP5144269B2 (en) High-strength Co-based alloy with improved workability and method for producing the same
JP5088876B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
EP2801631B1 (en) Alpha+beta-type titanium alloy plate for welded pipe, method for producing same, and alpha+beta-type titanium-alloy welded pipe product
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
JP6581347B2 (en) Method for producing aluminum alloy plate
JP5408525B2 (en) Titanium alloy, titanium alloy member, and titanium alloy member manufacturing method
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
JP5668712B2 (en) A hard pure titanium plate excellent in impact resistance and a method for producing the same.
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP4715048B2 (en) Titanium alloy fastener material and manufacturing method thereof
EP3480326A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP2000273598A (en) Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability
JP5382518B2 (en) Titanium material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R151 Written notification of patent or utility model registration

Ref document number: 6432328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350