JP5875965B2 - Titanium plate and manufacturing method thereof - Google Patents

Titanium plate and manufacturing method thereof Download PDF

Info

Publication number
JP5875965B2
JP5875965B2 JP2012231862A JP2012231862A JP5875965B2 JP 5875965 B2 JP5875965 B2 JP 5875965B2 JP 2012231862 A JP2012231862 A JP 2012231862A JP 2012231862 A JP2012231862 A JP 2012231862A JP 5875965 B2 JP5875965 B2 JP 5875965B2
Authority
JP
Japan
Prior art keywords
rolling
titanium plate
titanium
phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012231862A
Other languages
Japanese (ja)
Other versions
JP2014012881A (en
Inventor
松本 克史
克史 松本
良規 伊藤
良規 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012231862A priority Critical patent/JP5875965B2/en
Priority to KR1020130064651A priority patent/KR20130137553A/en
Priority to CN201310220555.2A priority patent/CN103484805B/en
Publication of JP2014012881A publication Critical patent/JP2014012881A/en
Application granted granted Critical
Publication of JP5875965B2 publication Critical patent/JP5875965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、工業用純チタンからなるチタン板に関し、特に成形加工を施されてプレート式熱交換器用プレートとして使用されるチタン板およびその製造方法に関する。   The present invention relates to a titanium plate made of industrially pure titanium, and more particularly to a titanium plate that has been subjected to a forming process and is used as a plate for a plate heat exchanger and a method for manufacturing the same.

一般に、チタン板は、比強度および耐食性に優れているので、化学、電力、食品製造プラント等の熱交換器用部材、カメラボディ、厨房機器等の民生品や、オートバイ、自動車等の輸送機器部材、家電機器等の外装材に使用されている。チタン板は、前記用途の中でも、近年適用が進みつつあるプレート式熱交換器に使用される場合、高い熱交換効率が要求されるため、表面積を増やすべくプレス成形によって波状に加工されて適用されている。そのため、熱交換器用のチタン板は、深い波目を付けるために優れた成形性が必要とされている。   In general, titanium plates are excellent in specific strength and corrosion resistance, so heat exchanger members such as chemical, electric power and food production plants, consumer products such as camera bodies and kitchen equipment, transport equipment members such as motorcycles and automobiles, Used in exterior materials such as home appliances. Titanium plates are used in plate-type heat exchangers, which are being applied in recent years, among them, because high heat exchange efficiency is required. ing. Therefore, a titanium plate for a heat exchanger is required to have excellent formability in order to have a deep wave.

前記の各種用途に多用される純チタン板は、JIS H4600の規格で規定され、Fe,O等の不純物濃度や強度等によってJIS1種、2種、3種等の等級があり、等級が増す程、最低強度が高くなり、用途に応じてそれらの使い分けがなされている。従来は、高い成形性が求められる部材には、強度で劣るものの延性が高いことから、FeやOの濃度が低いJIS1種の純チタン板が用いられていた。しかし、近年は、熱交換器効率の向上に加えて、高強度化・軽量化の要求もますます増大している。その要求に応えるためには、より強度レベルの高いJIS2種(耐力215MPa以上)、あるいはJIS3種の適用が必要になるが、これらの純チタン板の強度レベルになると成形性が劣るため、熱交換器への適用が困難である。また、一般にチタン材料は、Fe,O等の不純物濃度を高くしたり、結晶粒微細化によって高強度化が図られるが、これらの方法では成形性が大きく低下する。   Pure titanium plates frequently used for various applications are defined in the JIS H4600 standard. There are grades of JIS type 1, type 2, type 3, etc., depending on the concentration and strength of impurities such as Fe and O, etc. The minimum strength is high, and they are used properly according to the application. Conventionally, a JIS type 1 pure titanium plate having a low concentration of Fe or O has been used for a member requiring high formability because of its high ductility although it is inferior in strength. However, in recent years, in addition to improving the efficiency of heat exchangers, there has been an increasing demand for higher strength and lighter weight. In order to meet these requirements, it is necessary to apply JIS type 2 (yield strength 215 MPa or higher) or JIS type 3 with a higher strength level. However, when the strength level of these pure titanium plates is reached, heat exchange is not possible. It is difficult to apply to a vessel. In general, titanium materials can be increased in strength by increasing the concentration of impurities such as Fe and O, or by refinement of crystal grains. However, these methods greatly reduce moldability.

金属材料が成形されるためには塑性変形される必要があり、そのためには転位のすべり変形もしくは双晶変形が必要となる。純チタンは、稠密六方晶(hcp構造)からなるα相の結晶粒組織を主体に構成される。チタンのα相で容易に活動するすべり系は、柱面すべり{10−10}<11−20>であり、その他、底面すべり{0001}<11−20>、錘面すべりがある。また、プレス成形時の変形では、{11−22}<11−23>の双晶が活動できる。しかしながら、純チタンは、bcc構造の鉄鋼材料やfcc構造のアルミニウムに比べて活動すべり系の数が少なく、また、複数のすべり系が容易に活動し難いとされ、塑性変形が難しい。このことから、成形性を向上させるためには、複数のすべり系/双晶系を活動させることが重要と考えられる。   In order to form a metal material, it is necessary to be plastically deformed. For that purpose, slip deformation or twin deformation of dislocations is required. Pure titanium is mainly composed of an α-phase crystal grain structure composed of a dense hexagonal crystal (hcp structure). A slip system that easily acts in the α phase of titanium is a column surface slip {10-10} <11-20>, and a bottom surface slip {0001} <11-20> and a weight surface slip. In addition, {11-22} <11-23> twins can be active during deformation during press molding. However, pure titanium has a smaller number of active slip systems than bcc-structured steel materials and fcc-structure aluminum, and it is difficult for a plurality of slip systems to easily operate, and plastic deformation is difficult. Therefore, it is considered important to activate a plurality of slip systems / twin systems in order to improve the formability.

そこで、次のような、成形性を向上させたチタン板の技術が提案されている。例えば特許文献1には、最終焼鈍後の集合組織(C軸の角度)および結晶粒径を規定(30μm以上)し、強度と成形性のバランスを向上させたチタン板が提案されている。また、特許文献2には、冷間圧延後に大気焼鈍で結晶粒径を所定の範囲の大きさとし、酸洗と圧下率0.2〜1.0%の軽圧下(スキンパス)圧延を施すことにより、プレス成形性を向上させたチタン板が提案されている。さらに、特許文献3には、最終焼鈍後に圧下率0.7〜5%のスキンパス圧延を施して、集合組織(C軸のずれ角度)を調整して、規定の蓄積ひずみ量とすることにより、プレス成形性を向上させたチタン板が提案されている。   Thus, the following titanium plate technology with improved formability has been proposed. For example, Patent Document 1 proposes a titanium plate in which the texture (C-axis angle) and the crystal grain size after final annealing are defined (30 μm or more), and the balance between strength and formability is improved. Further, in Patent Document 2, the crystal grain size is set to a predetermined range by atmospheric annealing after cold rolling, and pickling and rolling under a light reduction (skin pass) with a reduction rate of 0.2 to 1.0% are performed. Titanium plates with improved press formability have been proposed. Furthermore, in Patent Document 3, by performing skin pass rolling with a rolling reduction of 0.7 to 5% after the final annealing, adjusting the texture (shift angle of the C axis) to obtain a specified accumulated strain amount, Titanium plates with improved press formability have been proposed.

特許第4088183号公報Japanese Patent No. 4088183 特許第4584341号公報Japanese Patent No. 4584341 特開2011−026649号公報JP 2011-026649 A

しかしながら、前記の従来技術には、熱交換器に適用されるためには改善の余地がある。特許文献1にはスキンパス圧延を行うことが記載されていないため、圧延で調質された場合には特性が変化する。一方、特許文献2では、スキンパス圧延における圧下率が低く、強度が不十分である。また、特許文献3は、Fe,Oが比較的高濃度になると冷間圧延時に耳割れを生じ易く、生産性が低下する虞がある。   However, there is room for improvement in the prior art described above in order to be applied to a heat exchanger. Since Patent Document 1 does not describe performing skin pass rolling, characteristics change when tempered by rolling. On the other hand, in patent document 2, the rolling reduction in skin pass rolling is low, and the strength is insufficient. In Patent Document 3, when Fe and O are relatively high in concentration, ear cracks are likely to occur during cold rolling, and productivity may be reduced.

本発明は、前記問題点に鑑みてなされたものであり、JIS2種相当以上の耐力の高い強度と熱交換器に適用可能な高成形性とを兼ね備えたチタン板およびその製造方法を提供することが課題である。   The present invention has been made in view of the above-mentioned problems, and provides a titanium plate that has both high proof strength equivalent to JIS type 2 or higher and high formability applicable to a heat exchanger, and a method for producing the same. Is an issue.

本発明者らは鋭意研究の結果、チタン材の結晶粒組織における特定の方位関係を満たす、方位差60°〜70°の間に存在する双晶粒界の存在割合が強度と成形性のバランスの増大に寄与することを見出した。さらに、本発明者らは、方位差が82°〜87°の間に存在する双晶粒界が、前記の強度と成形性のバランスを向上させる効果を低下させることを実験的に見出した。   As a result of diligent research, the present inventors have found that the existence ratio of twin grain boundaries existing between orientation differences of 60 ° to 70 ° satisfying a specific orientation relationship in the grain structure of titanium material is a balance between strength and formability. It was found that it contributes to the increase of Furthermore, the present inventors have experimentally found that twin grain boundaries having a misorientation between 82 ° and 87 ° reduce the effect of improving the balance between strength and formability.

すなわち、本発明に係るチタン板は、α相の結晶粒組織を含有し、工業用純チタンからなり、前記α相の結晶粒界の方位差分布において、方位差60°〜70°の範囲の0.5°刻みにおける最大ピークが0.0114以上0.040以下の割合であることを特徴とする。さらに、本発明に係るチタン板は、前記α相の結晶粒界の方位差分布において、方位差82°〜87°の範囲の0.5°刻みにおける最大ピークが0.010未満の割合であることが好ましい。 That is, the titanium plate according to the present invention contains an α-phase grain structure, is made of industrial pure titanium, and has an orientation difference in the range of 60 ° to 70 ° in the orientation difference distribution of the α-phase grain boundaries . The maximum peak at 0.5 ° increments is a ratio of 0.0114 or more and 0.040 or less. Furthermore, in the titanium plate according to the present invention, in the orientation difference distribution of the α-phase grain boundaries, the maximum peak in 0.5 ° increments in the range of orientation difference of 82 ° to 87 ° is less than 0.010. It is preferable.

かかる構成のチタン板は、α相の結晶粒界に特定の方位差を多く含むことで、十分な強度を有しつつ、成形性が向上し、さらに別の特定の方位差を制限することで、強度と成形性のバランスが損なわれない。   The titanium plate having such a structure includes a large amount of specific orientation difference in the α phase crystal grain boundary, thereby improving the formability while having sufficient strength, and further restricting another specific orientation difference. The balance between strength and formability is not impaired.

さらに、本発明に係るチタン板は、前記α相の平均結晶粒径が10μm以上120μm以下であることが好ましい。
かかる構成により、チタン板は、前記のα相の結晶粒界の方位差分布を得易くなる。
Furthermore, the titanium plate according to the present invention preferably has an average crystal grain size of the α phase of 10 μm or more and 120 μm or less.
With this configuration, the titanium plate can easily obtain the orientation difference distribution of the α-phase grain boundaries.

また、本発明に係るチタン板は、Fe:0.020〜0.120質量%、O:0.030〜0.160質量%を含有し、残部がチタンおよび不可避的不純物からなることが好ましい。
かかる構成により、チタン板は、強度がいっそう向上する。
Moreover, it is preferable that the titanium plate which concerns on this invention contains Fe: 0.020-0.120 mass%, O: 0.030-0.160 mass%, and remainder consists of titanium and an unavoidable impurity.
With this configuration, the strength of the titanium plate is further improved.

本発明に係るチタン板は、成形加工を施されてプレート式熱交換器用プレートとして使用される。
かかる構成により、チタン板は深い波目を付けて表面積を多くして、熱交換効率に優れた熱交換器のプレートとすることができる。
The titanium plate according to the present invention is molded and used as a plate heat exchanger plate.
With this configuration, the titanium plate can have a deep corrugation, increase the surface area, and form a heat exchanger plate with excellent heat exchange efficiency.

本発明に係るチタン板の製造方法は、最終冷間圧延を圧下率50%以上88%以下で行った後に、α相結晶粒が平均粒径10μm以上120μmの範囲になるように、600〜890℃で焼鈍し、40℃/s以上で200℃以下まで冷却する最終焼鈍工程、前記最終焼鈍工程の後に、1パスの圧下率0.5%以上かつ総圧下率5%以下で圧延する軽圧下圧延工程と、を行うことを特徴とし、さらに、前記軽圧下圧延工程では、前記最終冷間圧延における圧延方向に平行に圧延することが好ましい。 The titanium plate manufacturing method according to the present invention is such that the final cold rolling is performed at a rolling reduction of 50% or more and 88% or less, and then the α-phase crystal grains are in the range of 10 μm to 120 μm in average grain size. ° C. in annealing, and final annealing step of cooling to below 200 ° C. at 40 ° C. / s or more, after the final annealing step, light rolling at 5% one-pass reduction rate of 0.5% or more and the total rolling reduction of and the reduction rolling process, characterized by performing, further wherein the soft reduction rolling step, it is preferable to roll parallel to the rolling direction in the final cold rolling.

かかる手順により、最終焼鈍で結晶粒を適度な大きさとすることで、その後の冷却時等に双晶変形が起き易く、さらに急速に冷却することによりひずみを十分に導入して、α相の結晶粒界に特定の方位差を多く含んだチタン板が得られる。さらに所定の圧延方向に、また適度な圧下率で圧延することで予ひずみを付与して、強度と成形性をいっそう向上させたチタン板が得られる。   By this procedure, the crystal grains are appropriately sized in the final annealing, so that twin deformation is likely to occur during subsequent cooling, etc., and strain is sufficiently introduced by further rapid cooling, so that α-phase crystals A titanium plate containing many specific orientation differences at the grain boundaries can be obtained. Furthermore, a pre-strain is imparted by rolling in a predetermined rolling direction and at an appropriate reduction rate, thereby obtaining a titanium plate having further improved strength and formability.

本発明に係るチタン板によれば、JIS2種相当以上の耐力の高い強度を有しつつ、プレート式熱交換器用プレートにプレス加工可能な高成形性を備えることができる。また、本発明に係るチタン板の製造方法によれば、前記効果を有するチタン板を安定して得ることができる。   According to the titanium plate according to the present invention, it is possible to provide high formability capable of press-working a plate for a heat exchanger plate while having a high proof strength equivalent to JIS type 2 or higher. Moreover, according to the manufacturing method of the titanium plate which concerns on this invention, the titanium plate which has the said effect can be obtained stably.

チタン板におけるTi六方晶の(0001)の配向度合いを説明するための概念図である。It is a conceptual diagram for demonstrating the degree of (0001) orientation of Ti hexagonal crystal in a titanium plate. 本発明に係る実施例および比較例の結晶粒間の方位差分布を表すグラフであり、(a)は試験材No.2,10の方位差60°〜70°における分布、(b)は試験材No.2,15の方位差82°〜87°における分布である。It is a graph showing the orientation difference distribution between the crystal grains of the Example which concerns on this invention, and a comparative example, (a) is test material No.2. 2 and 10 in the orientation difference of 60 ° to 70 °, (b) is the test material No. The distribution is an orientation difference of 2, 15 at 82 ° to 87 °. 実施例でプレス成形性の評価を行うために用いたプレス成形金型を示し、(a)は平面図、(b)は(a)のE−E線断面図である。The press molding die used in order to evaluate press formability in an example is shown, (a) is a top view and (b) is an EE line sectional view of (a).

以下、本発明の実施の形態について詳細に説明する。
〔チタン板〕
本発明に係るチタン板は、一般的な工業用純チタンが適用される、熱交換器用部材、輸送機器部材、家電機器等の外装材に用いることができ、特に強度と共に高い成形性が要求されるプレート式熱交換器用プレートに好適である。
Hereinafter, embodiments of the present invention will be described in detail.
[Titanium plate]
The titanium plate according to the present invention can be used for exterior materials such as heat exchanger members, transport equipment members, home appliances, etc. to which general industrial pure titanium is applied, and particularly requires high formability as well as strength. It is suitable for a plate type heat exchanger plate.

本発明に係るチタン板は、α相の結晶粒組織を含有し、例えばJIS H 4600に規定される1種の純チタンのような工業用純チタンからなり、α相の結晶粒界の方位差分布において、方位差60°〜70°の範囲における最大ピークが0.010以上0.040以下の割合である。   The titanium plate according to the present invention contains an α phase crystal grain structure, is made of, for example, industrial pure titanium such as one type of pure titanium specified in JIS H 4600, and has an orientation difference between α phase crystal grain boundaries. In the distribution, the maximum peak in the orientation difference range of 60 ° to 70 ° is a ratio of 0.010 to 0.040.

(α相の結晶粒界の方位差分布)
圧延プロセスによって製造される従来のチタン製品では、図1に示すように、C軸((0001)軸)が圧延面に垂直な方向(ND)に配向し、さらに圧延面法線から圧延幅方向(TD)へ両側にそれぞれ約30°〜40°に傾いた位置にそれぞれ分布しており、その方向に集積する傾向がある。したがって、チタン材は、同様な方向に方位が揃った結晶粒組織の集合であるため、結晶粒間の方位差が小さい(15°以内の)小傾角粒界が多く、それ以上の方位差となる結晶粒間は、C軸が圧延面法線から圧延幅方向へ両側にそれぞれ傾いた位置に集積していることに対応した方位差となる結晶粒間の割合が突出して比較的多く存在する組織からなり、その他の方位差となる結晶粒間は存在割合がほぼ均一に0.01(1%)未満である。小傾角粒界は、塑性変形の際に、転位の移動の抵抗とはなり難いため、耐力の増大には寄与し難い。小傾角粒界の存在割合は、O(酸素)含有量増大や結晶粒微細化によっては大きく変化しない。チタン材は、O含有量が増大すると、本質的にすべり系の活動が生じ難くなると考えられ、転位の移動自体に対する抵抗増大で耐力が増大するが、結果的に変形能が低下して、成形性が劣化する。また、チタン材は、結晶粒が微細化すると、小傾角粒界以外の大傾角粒界による転位の移動の抵抗力により、耐力が増大する。一方で、このようなチタン材は、粒径が小さいために粒内を転位が移動して粒界で止められるまでの移動距離が小さく、粒界に堆積する転位量が減少するため、隣り合う結晶粒の2次すべり系が効率的に活性化せず、均一な2次すべり系が働き難いため、均一な塑性変形が起こり難いと考えられる。さらに通常の大傾角粒界は、粒界エネルギーが高く粒界強度が低いため、ひずみが集中した際のクラック発生、破壊の起点になり易いと想定され、チタン材の成形性を劣化させる。
(Orientation difference distribution of α phase grain boundaries)
In a conventional titanium product manufactured by a rolling process, as shown in FIG. 1, the C axis ((0001) axis) is oriented in a direction (ND) perpendicular to the rolling surface, and further from the rolling surface normal to the rolling width direction. They are distributed at positions inclined at about 30 ° to 40 ° on both sides to (TD) and tend to accumulate in that direction. Therefore, since the titanium material is a collection of crystal grain structures whose orientations are aligned in the same direction, the orientation difference between crystal grains is small (within 15 °), and there are many small-angle grain boundaries. There is a relatively large proportion of crystal grains that are misorientated corresponding to the fact that the C-axis is accumulated at positions inclined on both sides in the rolling width direction from the rolling surface normal line. Between crystal grains that are composed of a structure and have other orientation differences, the existence ratio is almost uniformly less than 0.01 (1%). The small-angle grain boundary is unlikely to become resistance to dislocation movement during plastic deformation, and thus hardly contributes to an increase in yield strength. The existence ratio of the low-angle grain boundaries does not change greatly with an increase in O (oxygen) content or refinement of crystal grains. Titanium materials are considered to become less likely to cause slip-type activity when the O content increases, and the yield strength increases due to increased resistance to dislocation movement itself. Deteriorates. Further, when the crystal grain of the titanium material is refined, the yield strength increases due to the resistance of dislocation movement due to the large-angle grain boundary other than the small-angle grain boundary. On the other hand, since such a titanium material has a small particle size, the distance traveled until the dislocation moves within the grain and is stopped at the grain boundary is small, and the amount of dislocation deposited at the grain boundary is reduced, so that they are adjacent to each other. Since the secondary slip system of crystal grains is not activated efficiently and the uniform secondary slip system is difficult to work, it is considered that uniform plastic deformation hardly occurs. Furthermore, since a normal large-angle grain boundary has high grain boundary energy and low grain boundary strength, it is assumed that it tends to be a starting point of crack generation and fracture when strain is concentrated, and deteriorates the formability of the titanium material.

本発明に係るチタン板は、転位の移動の抵抗となる結晶粒界のうち、方位差が60°〜70°の範囲の関係を有する双晶粒界を他の方位差の粒界に対して高頻度にしたものとする。これにより、塑性変形時の転位の抵抗となると共に、隣り合う結晶粒の2次すべり系を効率的に活性化し、均一に2次すべり系が働き易くなることで、チタン板は塑性変形し易くなると考えられる。さらに、双晶粒界は粒界エネルギーが低く粒界強度が高いために、そのような粒界では粒界破断が起こり難くなり、チタン板は、強度の増大に対する延性の劣化が抑制され、強度と成形性のバランスが向上すると考えられる。但し、双晶粒界の頻度が高過ぎると、結晶粒径が小さくなることにつながり、微細粒で認められる、均一な塑性変形が起こり難い現象が顕著になり、却って成形性を劣化させることになるため、双晶粒界の頻度は以下の範囲とする。   In the titanium plate according to the present invention, among the crystal grain boundaries that are resistance to dislocation movement, the twin grain boundaries having a relationship in the range of 60 ° to 70 ° with respect to the grain boundaries of other orientation differences. It is assumed that the frequency is high. This provides resistance to dislocations during plastic deformation, and efficiently activates the secondary slip system of adjacent crystal grains, making the secondary slip system easier to work uniformly, making the titanium plate more susceptible to plastic deformation. It is considered to be. Furthermore, twin grain boundaries have low grain boundary energy and high grain boundary strength, making it difficult for grain boundaries to break at such grain boundaries. It is thought that the balance of moldability is improved. However, if the frequency of twin grain boundaries is too high, the crystal grain size becomes smaller, and the phenomenon that uniform plastic deformation hardly occurs, which is recognized in fine grains, becomes prominent, and on the contrary, the formability is deteriorated. Therefore, the frequency of twin grain boundaries is set to the following range.

α相の結晶粒界の方位差分布において、方位差60°〜70°の範囲における最大ピークが、0.010未満の割合では、双晶粒界の頻度が不足して強度向上効果が得られないため、0.010以上とし、0.012以上が好ましい。一方、前記範囲における最大ピークが0.040を超える割合になると、強度が過大となって延性が低下し、また結晶粒が微細化して均一な塑性変形が起こり難くなって、強度と成形性のバランスが低下するため、0.040以下とし、0.025以下が好ましい。このようなα相組織は、後記するように、チタン板の製造において、最終焼鈍時の冷却速度を制御すること、または最終焼鈍の後に予ひずみを付与することで得られる。   In the orientation difference distribution of the α phase grain boundaries, when the maximum peak in the orientation difference range of 60 ° to 70 ° is less than 0.010, the frequency of twin grain boundaries is insufficient and the effect of improving the strength is obtained. Therefore, it is set to 0.010 or more and preferably 0.012 or more. On the other hand, when the maximum peak in the above range exceeds 0.040, the strength becomes excessive and the ductility is lowered, and the crystal grains become finer and uniform plastic deformation hardly occurs. Since a balance falls, it is set to 0.040 or less, and 0.025 or less is preferable. As will be described later, such an α-phase structure can be obtained by controlling the cooling rate at the time of final annealing or by applying a pre-strain after the final annealing in the production of a titanium plate.

一方、同じく大傾角粒界であっても、方位差が82°〜87°の範囲の関係を有する双晶粒界は、前記の方位差が60°〜70°の範囲の関係を有する双晶粒界とは異なり、強度を低下させる。この理由は十分には明らかでないが、双晶の種類によって、隣り合う結晶粒の方位差が変化することにより、2次すべり系の活性化の程度が変化しているか、あるいは双晶粒界の頻度の増大による微細粒化が顕著に影響し易いと考えられる。具体的には、α相の結晶粒界の方位差分布において、方位差82〜87°の範囲における最大ピークが、0.010以上の割合では、強度と成形性のバランスの向上効果が十分に得られないため、0.010未満が好ましく、0.008以下がより好ましい。このようなα相組織は、後記するように、チタン板の製造において、最終焼鈍の後の予ひずみの付与の方向を制御することで得られる。   On the other hand, even if it is a large tilt grain boundary, a twin grain boundary having a relationship in the range of 82 ° to 87 ° is a twin crystal having a relationship in the range of the above orientation difference of 60 ° to 70 °. Unlike grain boundaries, it reduces strength. The reason for this is not sufficiently clear, but the degree of activation of the secondary slip system has changed due to the difference in orientation between adjacent grains depending on the type of twin, or It is considered that fine graining due to the increase in frequency tends to be significantly affected. Specifically, in the orientation difference distribution of the α phase grain boundaries, when the maximum peak in the orientation difference range of 82 to 87 ° is 0.010 or more, the effect of improving the balance between strength and formability is sufficient. Since it cannot be obtained, it is preferably less than 0.010, and more preferably 0.008 or less. Such an α-phase structure can be obtained by controlling the direction of prestraining after the final annealing in the production of a titanium plate, as will be described later.

α相の結晶粒界の方位差分布は、チタン板の圧延面に平行な面に、走査電子顕微鏡(SEM)で電子線を走査しながら電子後方散乱回折(Electron Backscatter Diffraction:EBSD)法にてEBSDパターンを測定、解析することで得られる。   The orientation difference distribution of the α phase grain boundaries is measured by an electron backscatter diffraction (EBSD) method while scanning an electron beam with a scanning electron microscope (SEM) on a plane parallel to the rolling surface of the titanium plate. It is obtained by measuring and analyzing the EBSD pattern.

本発明に係るチタン板は、α相の平均結晶粒径が10μm以上120μm以下であることが好ましい。また、本発明に係るチタン板は、Fe:0.020〜0.120質量%、O:0.030〜0.160質量%を含有し、残部がチタンおよび不可避的不純物からなることが好ましい。   The titanium plate according to the present invention preferably has an average crystal grain size of α phase of 10 μm or more and 120 μm or less. Moreover, it is preferable that the titanium plate which concerns on this invention contains Fe: 0.020-0.120 mass%, O: 0.030-0.160 mass%, and remainder consists of titanium and an unavoidable impurity.

(α相の平均結晶粒径:10μm以上120μm以下)
チタン板は、平均結晶粒径が10μm未満では、ひずみ導入時に双晶変形が起こり難くなり、方位差60〜70°の範囲における最大ピークが十分に得られない。したがって、本発明に係るチタン板は、α相の平均結晶粒径が10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましい。一方、チタン板は、α相の結晶粒径が大きくなると、肌荒れが発生し易くなる。したがって、本発明に係るチタン板は、α相の平均結晶粒径が120μm以下であることが好ましく、100μm以下であることがより好ましく、80μm以下であることがさらに好ましい。α相の結晶粒径は、円相当径であり、SEM等の公知の手段で測定して、平均を算出される。α相の結晶粒径は、チタン板のFe含有量の調整や、後記するように、製造において最終焼鈍条件等を制御することで得られる。
(Average crystal grain size of α phase: 10 μm or more and 120 μm or less)
If the average grain size of the titanium plate is less than 10 μm, twin deformation hardly occurs when strain is introduced, and the maximum peak in the range of 60 to 70 ° in orientation cannot be obtained sufficiently. Therefore, the titanium plate according to the present invention preferably has an α-phase average crystal grain size of 10 μm or more, more preferably 20 μm or more, and further preferably 30 μm or more. On the other hand, roughening of the titanium plate is likely to occur when the α-phase crystal grain size increases. Therefore, the titanium plate according to the present invention preferably has an α-phase average crystal grain size of 120 μm or less, more preferably 100 μm or less, and even more preferably 80 μm or less. The crystal grain size of the α phase is an equivalent circle diameter, and the average is calculated by measuring with a known means such as SEM. The crystal grain size of the α phase can be obtained by adjusting the Fe content of the titanium plate or by controlling the final annealing conditions in the production, as will be described later.

(Fe:0.020〜0.120質量%、O:0.030〜0.160質量%)
チタン板は、Fe,Oの含有量が少ないと強度が低下する。Fe,O不足による強度不足を補おうとすると、導入すべきひずみ量が大きくなり、結果として成形性が低下する。そのため、Fe含有量は0.020質量%以上が好ましく、0.025質量%以上がより好ましく、0.030質量%以上がさらに好ましい。また、O含有量は0.030質量%以上が好ましく、0.050質量%以上がより好ましく、0.070質量%以上がさらに好ましい。一方、Fe含有量が多くなると、インゴットの偏析が大きくなって生産性が低下する。また、β相の析出量が増大することによって結晶粒が微細化するため、方位差が60°〜70°の範囲における最大ピークが不足し、成形性が低下する。そのため、Fe含有量は0.120質量%以下が好ましく、0.080質量%以下がより好ましく、0.070質量%以下がさらに好ましい。また、O含有量が多くなると、チタン板が脆くなって冷間圧延時の割れが生じ易くなり、生産性が低下し、また成形性が低下する。そのため、O含有量は0.160質量%以下が好ましく、0.140質量%以下がより好ましく、0.125質量%以下がさらに好ましい。
(Fe: 0.020-0.120 mass%, O: 0.030-0.160 mass%)
The strength of the titanium plate decreases when the content of Fe and O is small. If an attempt is made to compensate for the lack of strength due to Fe or O deficiency, the amount of strain to be introduced increases, resulting in a decrease in formability. Therefore, the Fe content is preferably 0.020% by mass or more, more preferably 0.025% by mass or more, and further preferably 0.030% by mass or more. Moreover, 0.030 mass% or more is preferable, as for O content, 0.050 mass% or more is more preferable, and 0.070 mass% or more is further more preferable. On the other hand, when the Fe content increases, the segregation of the ingot increases and the productivity decreases. Further, since the crystal grains are refined by increasing the precipitation amount of the β phase, the maximum peak in the orientation difference range of 60 ° to 70 ° is insufficient, and the formability is deteriorated. Therefore, the Fe content is preferably 0.120% by mass or less, more preferably 0.080% by mass or less, and further preferably 0.070% by mass or less. Moreover, when O content increases, a titanium plate will become weak and it will become easy to produce the crack at the time of cold rolling, productivity will fall, and a moldability will fall. Therefore, the O content is preferably 0.160% by mass or less, more preferably 0.140% by mass or less, and further preferably 0.125% by mass or less.

本発明に係るチタン板は、Fe,O、およびTi(チタン)以外に、C,H,N,Si,Cr,Ni等を不可避的不純物として含有してもよい。C:0.015質量%以下、N:0.02質量%以下、H:0.005質量%以下、その他の元素:各0.1質量%以下であれば、本発明の効果を阻害するものではなく許容される。   The titanium plate according to the present invention may contain C, H, N, Si, Cr, Ni, and the like as unavoidable impurities in addition to Fe, O, and Ti (titanium). C: 0.015% by mass or less, N: 0.02% by mass or less, H: 0.005% by mass or less, other elements: each 0.1% by mass or less inhibits the effects of the present invention. Is not acceptable.

〔チタン板の製造方法〕
本発明に係るチタン板は、従来のチタン板と同様に、公知の方法にて、インゴットを分塊圧延し、熱間圧延、中間焼鈍、冷間圧延、最終焼鈍を行って製造される。冷間圧延工程では、素材の冷間圧延性(耳割れの発生し易さ、変形荷重等)に応じて適切な圧下率と焼鈍条件を選択し、冷間圧延と中間焼鈍が繰り返される。最終焼鈍工程は、冷間圧延で硬化した素材(チタン)を再結晶させて成形性を付与するために行う。そのため、最終焼鈍工程の直前に実施する冷間圧延(最終冷間圧延)は、再結晶するために必要な加工率で、具体的には50%以上の圧下率で行う。また、焼鈍(中間焼鈍、最終焼鈍)後にチタン板表面にスケールが付着する場合は、次工程(中間焼鈍であれば後続の冷間圧延)の前に、スケール除去工程として、例えばソルト熱処理、酸洗処理等を行う。
[Production method of titanium plate]
The titanium plate according to the present invention is produced by performing ingot rolling on an ingot and performing hot rolling, intermediate annealing, cold rolling, and final annealing in the same manner as a conventional titanium plate. In the cold rolling step, appropriate rolling reduction and annealing conditions are selected according to the cold rolling properties of the material (ease of occurrence of ear cracks, deformation load, etc.), and cold rolling and intermediate annealing are repeated. The final annealing step is performed in order to recrystallize a material (titanium) that has been hardened by cold rolling to impart formability. Therefore, the cold rolling (final cold rolling) performed immediately before the final annealing step is performed at a processing rate necessary for recrystallization, specifically, a reduction rate of 50% or more. In addition, when the scale adheres to the titanium plate surface after annealing (intermediate annealing, final annealing), as a scale removal step, for example, salt heat treatment, acid treatment, etc., before the next step (subsequent cold rolling in the case of intermediate annealing) Perform washing treatment.

本発明に係るチタン板は、最終冷間圧延工程および最終焼鈍工程を所定の条件で行うことにより、α相の結晶粒組織を前記にて規定されたものとすることができる。以下、本発明に係るチタン板の製造方法における最終冷間圧延工程および最終焼鈍工程について説明する。   The titanium plate according to the present invention can have the α phase crystal grain structure defined above by performing the final cold rolling step and the final annealing step under predetermined conditions. Hereinafter, the final cold rolling step and the final annealing step in the titanium plate manufacturing method according to the present invention will be described.

(最終冷間圧延)
本発明に係るチタン板は、最終焼鈍工程の直前に実施する冷間圧延(最終冷間圧延)において、冷間圧延率を調整して、α相の平均結晶粒径を制御することが好ましい。最終冷間圧延の圧下率は50%以上88%以下が好ましい。圧下率が50%未満では、その後の最終焼鈍において条件を調整しても、前記したように再結晶し難く、また、最終焼鈍後において再結晶粒径が粗大化し易く、α相の結晶粒径を120μm以下に制御することが困難となる。一方、最終冷間圧延の圧下率が88%を超えると、冷延時の耳割れが起こり易くなり、歩留りが低下する等の工業的な問題が発生する。また、最終焼鈍後において再結晶粒径が微細化し易くなり、α相の結晶粒径が10μm未満となる。
(Final cold rolling)
The titanium plate according to the present invention preferably controls the average crystal grain size of the α phase by adjusting the cold rolling rate in cold rolling (final cold rolling) performed immediately before the final annealing step. The rolling reduction of the final cold rolling is preferably 50% or more and 88% or less. When the rolling reduction is less than 50%, even if the conditions are adjusted in the subsequent final annealing, it is difficult to recrystallize as described above, and the recrystallized grain size is likely to become coarse after the final annealing, and the crystal grain size of the α phase. It is difficult to control the thickness to 120 μm or less. On the other hand, when the rolling reduction of the final cold rolling exceeds 88%, an ear crack at the time of cold rolling is likely to occur, and industrial problems such as a decrease in yield occur. In addition, the recrystallized grain size is likely to be refined after the final annealing, and the α phase crystal grain size is less than 10 μm.

(最終焼鈍)
本発明に係るチタン板は、最終焼鈍において、温度および時間を調整して、α相の平均結晶粒径を制御することが好ましい。そのために、焼鈍温度は600〜890℃とする。温度が600℃未満では、再結晶が進行せず、結晶粒径も小さいため、十分に双晶が導入されない。一方、温度が890℃を超えると、β相の分率が増大してα相粒の粒成長が阻害され、結晶粒径が微細化する。さらに、温度がβ変態点温度を超えると、冷却後にα相粒が針状組織となって、顕著に微細な組織となり、プレス成形性が阻害される。保持時間は、一例として連続焼鈍炉であれば15分間以内とすることが好ましく、さらに焼鈍温度に応じて設定される。すなわち焼鈍温度が高い程、再結晶の進行が速く、結晶粒径も急速に大きくなるため、短時間とする。また、前記したように、チタン板のFe含有量が多いと結晶粒が微細化する傾向があるので、最終焼鈍は高温で、また長時間とすることが好ましい。
(Final annealing)
The titanium plate according to the present invention preferably controls the average crystal grain size of the α phase by adjusting the temperature and time in the final annealing. Therefore, annealing temperature shall be 600-890 degreeC. If the temperature is less than 600 ° C., recrystallization does not proceed and the crystal grain size is small, so that twins are not sufficiently introduced. On the other hand, when the temperature exceeds 890 ° C., the fraction of β phase increases, the growth of α phase grains is inhibited, and the crystal grain size becomes finer. Furthermore, when the temperature exceeds the β transformation point temperature, the α phase grains become a needle-like structure after cooling, a remarkably fine structure, and press formability is hindered. As an example, the holding time is preferably within 15 minutes in the case of a continuous annealing furnace, and is further set according to the annealing temperature. That is, the higher the annealing temperature, the faster the recrystallization proceeds and the crystal grain size increases rapidly, so the time is short. Further, as described above, when the Fe content of the titanium plate is large, the crystal grains tend to become finer. Therefore, the final annealing is preferably performed at a high temperature for a long time.

さらに本発明に係るチタン板は、最終焼鈍後の冷却速度を速くする。これにより、チタン板は、冷却時のひずみによって、双晶が導入されてα相の結晶粒界の方位差分布が前記の規定範囲となる。通常の塑性加工(引張、圧延等)によって導入されるひずみは、異方性があるために、そのひずみモードで発生する双晶も異方性を持ち、結晶粒分布内で不均一になり易い。それに対して、冷却時のひずみは、面内等方的に発生し易くなるために異方性が低減し、導入される双晶も結晶粒分布内で均一になり易い。したがって、チタン板は、冷却時にひずみを導入されることにより、強度と成形性のバランスが向上する効果が顕著に得られる。具体的には、前記条件の最終焼鈍後に、40℃/s以上で冷却することが好ましく、60℃/s以上がより好ましく、100℃/s以上がさらに好ましい。前記の冷却速度は、200℃以下になるまでとし、さらなる冷却における速度は特に規定しない。このような急速冷却を行うために、最終焼鈍は連続炉で行うことが好ましい。   Furthermore, the titanium plate according to the present invention increases the cooling rate after the final annealing. Thereby, in the titanium plate, twins are introduced due to strain at the time of cooling, and the orientation difference distribution of the α-phase grain boundaries becomes within the specified range. Strain introduced by normal plastic working (tensile, rolling, etc.) has anisotropy, so twins generated in the strain mode also have anisotropy and are likely to be non-uniform in the grain distribution. . On the other hand, the strain at the time of cooling tends to be generated in an in-plane isotropic manner, so that anisotropy is reduced, and the introduced twins are likely to be uniform in the crystal grain distribution. Therefore, the effect of improving the balance between strength and formability can be remarkably obtained by introducing strain at the time of cooling the titanium plate. Specifically, after the final annealing under the above conditions, cooling is preferably performed at 40 ° C./s or more, more preferably 60 ° C./s or more, and further preferably 100 ° C./s or more. The cooling rate is up to 200 ° C. or less, and the rate for further cooling is not particularly specified. In order to perform such rapid cooling, the final annealing is preferably performed in a continuous furnace.

最終焼鈍のその他の条件は特に規定されず、公知の方法で行うことができる。例えば、雰囲気は、大気、真空、Ar等の不活性ガス、還元性ガスのいずれでもよい。なお、特に大気雰囲気で焼鈍(大気焼鈍)した場合は、前記したように、酸洗処理等のスケール除去工程を行う。   Other conditions for the final annealing are not particularly defined, and can be performed by a known method. For example, the atmosphere may be air, vacuum, an inert gas such as Ar, or a reducing gas. In particular, when annealing (atmospheric annealing) is performed in an air atmosphere, a scale removal process such as pickling is performed as described above.

(スキンパス圧延)
さらに、本発明に係るチタン板は、従来のチタン板と同様に、最終焼鈍後に引張(ストレッチ)や圧延等を行って、平坦性を高くするだけでなく、ひずみを付与して強度と成形性を向上させてもよい。冷却時に導入されるひずみ量には上限があるため、最終焼鈍後にストレッチや圧延等を行ってひずみを付与することが好ましく、これにより、チタン板は、さらに強度と成形性のバランスの向上効果が得られる。
(Skin pass rolling)
Furthermore, the titanium plate according to the present invention, like the conventional titanium plate, is not only subjected to tension (stretching) or rolling after final annealing to increase flatness, but also imparts strain to provide strength and formability. May be improved. Since there is an upper limit to the amount of strain introduced during cooling, it is preferable to apply strain by performing stretching or rolling after the final annealing, whereby the titanium plate has the effect of further improving the balance between strength and formability. can get.

ここで、最終焼鈍後の引張や圧延によるひずみを付与する方向を、最終焼鈍の直前の圧延すなわち最終冷間圧延における圧延方向と平行にすることによって、方位差が60°〜70°の範囲の関係を有する双晶粒界のみの頻度が増大する。一方、このひずみを付与する方向が最終冷間圧延における圧延方向に垂直(圧延幅方向)であると、方位差が82°〜87°の範囲の関係を有する双晶粒界の頻度も増大する。したがって、予ひずみを付与する場合には、その付与方向は最終冷間圧延における圧延方向と同じ方向が好ましい。   Here, the orientation difference is in the range of 60 ° to 70 ° by making the direction to give strain due to tension or rolling after the final annealing parallel to the rolling direction in the rolling immediately before the final annealing, that is, the final cold rolling. The frequency of only the twin grain boundaries having the relationship increases. On the other hand, if the direction of applying the strain is perpendicular to the rolling direction in the final cold rolling (rolling width direction), the frequency of twin grain boundaries having a relationship in the range of 82 ° to 87 ° in orientation difference also increases. . Therefore, when pre-strain is applied, the application direction is preferably the same as the rolling direction in the final cold rolling.

最終焼鈍後に付与する総ひずみ量は、強度と成形性を向上させるために0.5%以上が好ましい。一方、ひずみ量が5%を超えると、強度が過大となって成形性が低下する。ひずみ付与には、一例として軽圧下圧延(スキンパス圧延)が挙げられ、この場合、総圧下率を5%以下とする。また、スキンパス圧延の1回(1パス)あたりのひずみ量が小さいと、圧延板の板厚中心部まで本発明で規定される方位差分布の結晶組織が得られ難い。したがって、スキンパス圧延における1パスの圧下率は0.5%以上とすることが好ましく、0.8%以上がさらに好ましい。   The total strain applied after the final annealing is preferably 0.5% or more in order to improve strength and formability. On the other hand, if the amount of strain exceeds 5%, the strength becomes excessive and the formability deteriorates. As an example of the strain application, light rolling (skin pass rolling) can be mentioned. In this case, the total rolling reduction is set to 5% or less. Further, if the amount of strain per one-time (one pass) of the skin pass rolling is small, it is difficult to obtain the crystal structure of the orientation difference distribution defined by the present invention up to the center of the thickness of the rolled plate. Therefore, the rolling reduction of one pass in skin pass rolling is preferably 0.5% or more, and more preferably 0.8% or more.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. It should be noted that the present invention is not limited by this embodiment, and can be implemented with modifications within the scope shown in the claims, all of which are included in the technical scope of the present invention.

〔試験体作製〕
表1に示すFe,O組成の純チタン(JIS H4600)熱延板(板厚4.0mm)に、通常の冷間圧延および中間焼鈍をした後、表1に示す圧下率で最終冷間圧延をして、大気雰囲気下で表1に示す条件の最終焼鈍、および酸洗工程により、板厚0.5mmの冷間圧延板を得た。この冷間圧延板に、さらに表1に示す方向(予ひずみ方向)および圧下率の圧延によって軽圧下を付与して試験材とした。なお、表1に示す予ひずみの付与方向(最終焼鈍後の圧延方向)は、最終冷間圧延における圧延方向に対する方向で表し、RD:圧延方向、TD:圧延幅方向を示す。また、表1において予ひずみの圧下率0の試験体は、最終焼鈍後の圧延をしていない。
[Test specimen preparation]
After performing normal cold rolling and intermediate annealing on pure titanium (JIS H4600) hot-rolled sheet (sheet thickness: 4.0 mm) having the Fe and O composition shown in Table 1, the final cold rolling is performed at the rolling reduction shown in Table 1. Then, a cold-rolled sheet having a thickness of 0.5 mm was obtained by the final annealing under the conditions shown in Table 1 in an air atmosphere and the pickling process. This cold-rolled sheet was further subjected to light reduction by rolling in the direction shown in Table 1 (pre-strain direction) and a reduction ratio to obtain a test material. In addition, the prestraining direction (rolling direction after final annealing) shown in Table 1 is expressed as a direction with respect to the rolling direction in final cold rolling, and indicates RD: rolling direction and TD: rolling width direction. In Table 1, the specimens with a pre-strain reduction ratio of 0 are not rolled after the final annealing.

(α相の平均結晶粒径の測定)
試験材の表面(板面)を研磨して、表層部、板厚1/4部、および板厚中心部のそれぞれの圧延面において、0.5mm角(圧延方向、板幅方向に各0.5mm)の領域を、EBSDによる組織観察を行った。EBSD測定は、FE−SEM(Carl-Zeiss製、ULTRA55)およびEBSD検出器(Oxford Instruments製、NordlysII)を使用した。測定データについて、EBSDデータ解析ソフトChannel 5のプログラム:Tangoを用いて解析した。Tangoにて、Boundary ComponentとしてGrain Boundariesを選択し、方位差5°以上の境界を結晶粒界と設定して、Grain Area Determinationの操作を行って、各結晶粒の円相当直径およびその平均を算出した。得られた平均値を表1に示す。
(Measurement of average crystal grain size of α phase)
The surface (plate surface) of the test material is polished, and 0.5 mm square (0. The region of 5 mm) was subjected to tissue observation by EBSD. For the EBSD measurement, an FE-SEM (manufactured by Carl-Zeiss, ULTRA55) and an EBSD detector (manufactured by Oxford Instruments, Nordlys II) were used. The measurement data was analyzed using the program of the EBSD data analysis software Channel 5: Tango. In Tango, select Grain Boundaries as the Boundary Component, set the boundary with an orientation difference of 5 ° or more as the crystal grain boundary, perform the Grain Area Determination operation, and calculate the equivalent circle diameter of each crystal grain and its average did. The average value obtained is shown in Table 1.

(α相の結晶粒界の方位差分布の測定)
平均結晶粒径の測定におけるEBSD測定結果より、隣接する結晶粒間の方位差の分布を解析し、方位差60°〜70°、82°〜87°の各範囲における最大頻度を求めた。詳しくは、Tangoにて、Boundary ComponentとしてGrain Boundariesを選択し、Legend機能を用いて、方位差0°から94.5°まで0.5°刻みで頻度を求めた。方位差60°〜70°、82°〜87°の各範囲における頻度を表1に示す。なお、これらの範囲においてピークが観察される場合(双晶粒界の存在に対応)は、そのピーク強度を、ピークが観察されない場合(双晶粒界が存在しない)は、前記範囲における最大値を測定した。また、試験材No.2,10の結晶粒間の方位差60°〜70°における分布を図2(a)に、試験材No.2,15の結晶粒間の方位差82°〜87°における分布を図2(b)に、それぞれ示す。
(Measurement of orientation difference distribution of α phase grain boundary)
From the EBSD measurement result in the measurement of the average crystal grain size, the distribution of orientation differences between adjacent crystal grains was analyzed, and the maximum frequency in each range of orientation differences of 60 ° to 70 ° and 82 ° to 87 ° was determined. Specifically, at Tango, Grain Boundaries was selected as Boundary Component, and the frequency was determined in increments of 0.5 ° from an azimuth difference of 0 ° to 94.5 ° using the Legend function. Table 1 shows the frequency in each range of the azimuth difference of 60 ° to 70 ° and 82 ° to 87 °. In addition, when a peak is observed in these ranges (corresponding to the existence of twin grain boundaries), the peak intensity is shown, and when no peak is observed (no twin grain boundaries are present), the maximum value in the above range. Was measured. In addition, test material No. The distribution in the orientation difference between 60 ° and 70 ° between 2, 10 crystal grains is shown in FIG. FIG. 2 (b) shows the distributions of orientation differences between 82 ° and 87 ° between 2,15 crystal grains.

〔評価〕
(強度)
試験材から、試験材の圧延方向が荷重軸と一致する方向にJISZ2201に規定される13号試験片を採取し、室温でJIS H4600に基づいて引張試験を実施して0.2%耐力(YS)を測定し、表1に示す。合格基準は0.2%耐力が215MPa以上とした。
[Evaluation]
(Strength)
A No. 13 test piece defined in JISZ2201 was taken from the test material in the direction in which the rolling direction of the test material coincided with the load axis, and a tensile test was performed based on JIS H4600 at room temperature to obtain a 0.2% proof stress (YS ) Was measured and shown in Table 1. The acceptance criterion was 0.2% proof stress of 215 MPa or more.

(成形性)
試験材に対してプレート式熱交換器の熱交換(プレート)部分を模擬して、図3に示す形状の成形金型を用いて80tプレス機によってプレス成形を行い、成形性を評価した。成形金型は、100mm×100mmの成形部に、最大高さ6.5mmの稜線部を17mmピッチで4本有し、前記稜線部は頂点にR=2.5mmのR形状に形成されている。プレス成形は、試験材の両面に厚さ0.05mmのポリシートを敷き、圧延方向が図3(a)における上下方向と一致するように下側の金型の上に試験材を配置し、フランジ部を板押さえで拘束して、プレス速度1mm/秒で金型を押し込んだ。0.1mm刻みで押し込み、試験材に割れが発生しない最大の押込み深さ量(mm)Yを求めた。
(Formability)
A heat exchange (plate) portion of a plate heat exchanger was simulated with respect to the test material, and press molding was performed with an 80-t press using a molding die having the shape shown in FIG. 3, and the moldability was evaluated. The molding die has four ridge line portions with a maximum height of 6.5 mm at a pitch of 17 mm in a molded portion of 100 mm × 100 mm, and the ridge line portions are formed in an R shape with R = 2.5 mm at the apex. . In press molding, a polysheet having a thickness of 0.05 mm is laid on both sides of the test material, and the test material is placed on the lower mold so that the rolling direction coincides with the vertical direction in FIG. The flange portion was restrained with a plate press, and the mold was pushed in at a press speed of 1 mm / second. Indentation was performed in increments of 0.1 mm, and the maximum indentation depth (mm) Y at which no cracks occurred in the test material was determined.

前記引張試験で測定した圧延方向における0.2%耐力(MPa)YSと、押込み深さ量Yに基づいて、式(1)で表される成形性指標(mm)Fが正の値(F>0)となるものを合格とした。押込み深さ量および成形性指標Fを表1に示す。
F=Y−(9.844−0.016YS) ・・・(1)
Based on the 0.2% proof stress (MPa) YS in the rolling direction measured in the tensile test and the indentation depth Y, the formability index (mm) F represented by the formula (1) is a positive value (F > 0) was accepted. The indentation depth and the formability index F are shown in Table 1.
F = Y− (9.844−0.016YS) (1)

Figure 0005875965
Figure 0005875965

表1に示すように、試験材No.1〜9,15,16は、α相の結晶粒界の方位差分布が本発明の範囲内であり、図2(a)に示すように方位差60°〜70°において存在割合が突出した結晶粒間すなわち双晶粒界が存在するので、十分な強度と成形性を有していた。特に試験体No.1〜9は、方位差82°〜87°の分布が抑えられていたため、方位差60°〜70°の双晶粒界によって強度と成形性のバランスが十分に得られた。さらに、試験体No.1〜3,5〜9は、最終焼鈍後に、最終冷間圧延における圧延方向と同じ方向に圧延して予ひずみを付与したため、強度と成形性がいっそう向上した。なお、試験材No.9は、最終焼鈍時間が長く、結晶粒が大きくなったため、表面に肌荒れを生じた。   As shown in Table 1, the test material No. As for 1-9,15,16, the orientation difference distribution of the crystal grain boundary of (alpha) phase is in the range of this invention, and as shown to Fig.2 (a), the presence rate protruded in orientation difference 60 degrees-70 degrees. Since there existed inter-grain boundaries, that is, twin grain boundaries, it had sufficient strength and formability. In particular, specimen No. In Nos. 1 to 9, since the distribution of the orientation difference of 82 ° to 87 ° was suppressed, the balance between strength and formability was sufficiently obtained by the twin grain boundaries having the orientation difference of 60 ° to 70 °. Furthermore, specimen No. Since Nos. 1-3 and 5-9 were pre-strained by rolling in the same direction as the rolling direction in the final cold rolling after the final annealing, the strength and formability were further improved. The test material No. In No. 9, since the final annealing time was long and the crystal grains became large, the surface was roughened.

一方、試験体No.15,16は、最終焼鈍後の圧延による予ひずみの付与の方向を、試験体No.2,8が最終冷間圧延における圧延方向と同じ方向であるのに対して、直交する方向(圧延幅方向)としたものである。その結果、方位差60°〜70°の分布が試験体No.2,8と同程度に増大したものの、同時に、図2(b)に示すように方位差82°〜87°の分布も増大したため、試験体No.2,8と比較して成形性が低下した。   On the other hand, the specimen No. Nos. 15 and 16 indicate the direction of applying pre-strain by rolling after the final annealing. While 2 and 8 are the same direction as the rolling direction in the final cold rolling, they are orthogonal directions (rolling width direction). As a result, a distribution with an azimuth difference of 60 ° to 70 ° indicates a specimen No. 2 and 8, but at the same time, as shown in FIG. Compared with 2 and 8, the moldability decreased.

これらに対して、試験体No.10〜13は、方位差60°〜70°の分布が少なく、双晶粒界が不足したため、強度が不足して成形性とのバランスが不十分であった。試験体No.10,11は、最終焼鈍後の冷却が一般的な冷却速度で遅かったために冷却時にひずみが十分に導入されず、さらに試験体No.10は、その後の圧延もしなかったために、図2に示すように方位差60°〜70°の分布が試験材No.2と比較して少なかった。また、試験体No.12は最終焼鈍温度が低く、試験体No.13は最終焼鈍の温度に対する保持時間が不十分であったために、それぞれ再結晶が十分に進行せず、結晶粒が小さく、その後の急速冷却や軽圧下によっても十分に双晶が導入されなかった。さらに試験体No.12は、強度が特に不足した。一方、試験体No.14は、最終焼鈍後の圧下が過剰で方位差60°〜70°の分布が過大となり、過剰な双晶粒界により強度が過大となって延性が低下して、成形性が低下した。   On the other hand, specimen No. Nos. 10 to 13 had a small distribution of orientation difference of 60 ° to 70 ° and lacked twin grain boundaries, so that the strength was insufficient and the balance with moldability was insufficient. Specimen No. Nos. 10 and 11 were not sufficiently strained during cooling because the cooling after the final annealing was slow at a general cooling rate. No. 10 was not rolled after that, and as shown in FIG. Less than 2. In addition, the specimen No. No. 12 has a low final annealing temperature. In No. 13, since the holding time with respect to the final annealing temperature was insufficient, recrystallization did not proceed sufficiently, the crystal grains were small, and twins were not sufficiently introduced even by rapid cooling or light pressure thereafter. . Furthermore, specimen No. No. 12 was particularly deficient in strength. On the other hand, the specimen No. No. 14, the reduction after the final annealing was excessive, the distribution of orientation difference 60 ° to 70 ° was excessive, the strength was excessive due to excessive twin grain boundaries, the ductility was lowered, and the formability was lowered.

Claims (7)

α相の結晶粒組織を含有し、工業用純チタンからなるチタン板であって、
前記α相の結晶粒界の方位差分布において、方位差60°〜70°の範囲の0.5°刻みにおける最大ピークが0.0114以上0.040以下の割合であることを特徴とするチタン板。
A titanium plate containing an α-phase grain structure and made of industrial pure titanium,
In the orientation difference distribution of the α-phase grain boundaries, the maximum peak in 0.5 ° increments in the orientation difference range of 60 ° to 70 ° is a ratio of 0.0114 to 0.040. Board.
前記α相の結晶粒界の方位差分布において、方位差82°〜87°の範囲の0.5°刻みにおける最大ピークが0.010未満の割合であることを特徴とする請求項1に記載のチタン板。 2. The orientation difference distribution of the α phase crystal grain boundaries has a ratio of the maximum peak in 0.5 ° increments in the range of orientation difference of 82 ° to 87 ° being less than 0.010. 3. Titanium plate. 前記α相の平均結晶粒径が10μm以上120μm以下であることを特徴とする請求項1または請求項2に記載のチタン板。   The titanium plate according to claim 1 or 2, wherein an average crystal grain size of the α phase is 10 µm or more and 120 µm or less. Fe:0.020〜0.120質量%、O:0.030〜0.160質量%を含有し、残部がチタンおよび不可避的不純物からなることを特徴とする請求項1ないし請求項3のいずれか一項に記載のチタン板。   4. Any one of claims 1 to 3, wherein Fe: 0.020 to 0.120 mass%, O: 0.030 to 0.160 mass% is contained, and the balance consists of titanium and inevitable impurities. The titanium plate according to claim 1. 成形加工を施されてプレート式熱交換器用プレートとして使用されることを特徴とする請求項1ないし請求項4のいずれか一項に記載のチタン板。   The titanium plate according to any one of claims 1 to 4, wherein the titanium plate is used as a plate heat exchanger plate after being molded. 請求項1ないし請求項5のいずれか一項に記載のチタン板を製造する方法であって、
最終冷間圧延を圧下率50%以上88%以下で行い、
前記最終冷間圧延の後に、α相結晶粒が平均粒径10μm以上120μmの範囲になるように、600〜890℃で焼鈍し、40℃/s以上で200℃以下まで冷却する最終焼鈍工程と、
前記最終焼鈍工程の後に、1パスの圧下率0.5%以上かつ総圧下率5%以下で圧延する軽圧下圧延工程と、を行うことを特徴とするチタン板製造方法。
A method for producing a titanium plate according to any one of claims 1 to 5,
Final cold rolling is performed at a reduction rate of 50% to 88%,
After the final cold rolling, as α-phase crystal grains is in the range of 120μm or more average particle size of 10 [mu] m, and a final annealing step of cooling at six hundred to eight hundred ninety ° C. annealing, to 200 ° C. or less at 40 ° C. / s or higher ,
A light reduction rolling process in which rolling is performed at a rolling reduction rate of 0.5% or more and a total rolling reduction rate of 5% or less in one pass after the final annealing step .
前記軽圧下圧延工程では、前記最終冷間圧延における圧延方向に平行に圧延することを特徴とする請求項に記載のチタン板製造方法。 The titanium plate manufacturing method according to claim 6 , wherein in the light rolling process , rolling is performed in parallel with a rolling direction in the final cold rolling.
JP2012231862A 2012-06-07 2012-10-19 Titanium plate and manufacturing method thereof Expired - Fee Related JP5875965B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012231862A JP5875965B2 (en) 2012-06-07 2012-10-19 Titanium plate and manufacturing method thereof
KR1020130064651A KR20130137553A (en) 2012-06-07 2013-06-05 Titanium sheet and manufacturing method thereof
CN201310220555.2A CN103484805B (en) 2012-06-07 2013-06-05 Titanium plate and manufacture method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012129622 2012-06-07
JP2012129622 2012-06-07
JP2012231862A JP5875965B2 (en) 2012-06-07 2012-10-19 Titanium plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014012881A JP2014012881A (en) 2014-01-23
JP5875965B2 true JP5875965B2 (en) 2016-03-02

Family

ID=50108718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012231862A Expired - Fee Related JP5875965B2 (en) 2012-06-07 2012-10-19 Titanium plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5875965B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023315A (en) * 2014-07-16 2016-02-08 株式会社神戸製鋼所 Titanium plate and manufacturing method therefor
JP6432328B2 (en) * 2014-12-11 2018-12-05 新日鐵住金株式会社 High strength titanium plate and manufacturing method thereof
US10480050B2 (en) 2015-03-02 2019-11-19 Nippon Steel Corporation Titanium sheet and method for producing the same
EP3276017A4 (en) * 2015-03-23 2018-08-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium plate, plate for heat exchanger, and separator for fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5166921B2 (en) * 2008-03-10 2013-03-21 株式会社神戸製鋼所 Titanium alloy plate with high strength and excellent formability

Also Published As

Publication number Publication date
JP2014012881A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
KR20130137553A (en) Titanium sheet and manufacturing method thereof
US9260773B2 (en) Nanocrystal titanium alloy and production method for same
JP6263040B2 (en) Titanium plate
EP2481824B1 (en) Pure titanium sheet excellent in balance between stamping formability and strenght
KR101943253B1 (en) Titanium plates, plates for heat exchangers and separators for fuel cells
KR20150030245A (en) α+β TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
JP5625646B2 (en) Titanium plate excellent in rigidity in the rolling width direction and method for producing the same
JP5875965B2 (en) Titanium plate and manufacturing method thereof
JP5973975B2 (en) Titanium plate
JP5988899B2 (en) Titanium plate and method for producing titanium plate
JP6577707B2 (en) Titanium plate, heat exchanger plate, fuel cell separator, and titanium plate manufacturing method
WO2017175569A1 (en) Titanium plate, heat exchanger plate, and fuel cell separator
JP5615792B2 (en) Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger
US10844457B2 (en) Ferritic stainless steel foil
JP5865582B2 (en) Aluminum alloy plate for forming process excellent in bending workability and manufacturing method thereof
JP2017190480A (en) Titanium sheet
CN106906338A (en) A kind of method of raising DC01 strip elongation percentage qualification rates
JP2016108652A (en) Titanium plate, heat exchanger plate and fuel cell separator
JP2016023315A (en) Titanium plate and manufacturing method therefor
KR101773602B1 (en) Method for improving formability of pure titanium sheet and pure titanium sheet prepared thereby
JP2013177651A (en) Heat-resistant titanium alloy cold-rolling stock excellent in cold rollability and cold handleability and production method therefor
JP6623950B2 (en) Titanium plate excellent in balance between proof stress and ductility and method for producing the same
JP5691563B2 (en) Method for producing member having excellent shape freezing property
CN116724136A (en) Titanium alloy sheet and method for producing titanium alloy sheet
KR20190065713A (en) Ferritic stainless steel excellent in workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5875965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees