WO2017175569A1 - Titanium plate, heat exchanger plate, and fuel cell separator - Google Patents

Titanium plate, heat exchanger plate, and fuel cell separator Download PDF

Info

Publication number
WO2017175569A1
WO2017175569A1 PCT/JP2017/011020 JP2017011020W WO2017175569A1 WO 2017175569 A1 WO2017175569 A1 WO 2017175569A1 JP 2017011020 W JP2017011020 W JP 2017011020W WO 2017175569 A1 WO2017175569 A1 WO 2017175569A1
Authority
WO
WIPO (PCT)
Prior art keywords
orientation
titanium plate
plate
titanium
mass
Prior art date
Application number
PCT/JP2017/011020
Other languages
French (fr)
Japanese (ja)
Inventor
良規 伊藤
浩司 山下
賢 野原
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017175569A1 publication Critical patent/WO2017175569A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a titanium plate, a heat exchanger plate using the titanium plate, and a fuel cell separator.
  • titanium plates are excellent in specific strength and corrosion resistance. Therefore, heat exchanger parts for chemical, electric power and food production plants, consumer products such as camera bodies and kitchen equipment, and transport equipment such as motorcycles and automobiles. It is used for exterior materials such as members and home appliances. Titanium plates are used in plate-type heat exchangers, which are being applied in recent years, among them, because high heat exchange efficiency is required. ing. Therefore, a titanium plate for a heat exchanger is required to have excellent formability in order to have a deep wave. Furthermore, a titanium plate for a heat exchanger is required to have a certain strength or more in order to realize durability improvement and weight reduction required as a heat exchanger.
  • Titanium plates that are frequently used for various applications are defined in the standard of JIS H4600 (2012).
  • a JIS type 1 pure titanium plate (with a proof stress of 165 MPa or more) having a low concentration of Fe or O has been used as a member requiring high formability because of its low strength but high ductility.
  • JIS type 1 pure titanium plate with a proof stress of 165 MPa or more
  • Fe or O has been used as a member requiring high formability because of its low strength but high ductility.
  • titanium plate As a titanium plate that meets these requirements, for example, a JIS type 2 pure titanium plate (with a proof stress of 215 MPa or more) can be mentioned. However, when the strength level of such a pure titanium plate is reached, the formability is inferior, making it difficult to apply to a heat exchanger.
  • titanium materials can be increased in strength by increasing the concentration of impurities such as Fe and O and by making crystal grains finer. However, these methods may greatly reduce the formability.
  • Patent Document 1 discloses a manufacturing method for obtaining a pure titanium plate having a low yield strength anisotropy by rolling so that the final rolling direction of hot rolling is perpendicular to the rolling direction of partial rolling.
  • Patent Document 2 discloses a method of reducing in-plane anisotropy by using a Ti—Fe—O—N-based alloy and rolling only once in a direction orthogonal to the initial rolling direction.
  • Patent Document 3 the frequency of deformation twins at the time of press molding is increased by increasing the crystal grain size of the ⁇ -phase crystal grains.
  • Patent Document 4 discloses a titanium plate with improved formability by setting the Keynes factor f value defined by a predetermined formula to 0.60 or more.
  • Patent Document 1 is a cross rolling method in which rolling is performed in two directions perpendicular to each other, and generally a plate longer than the rolling roll width cannot be subjected to cross rolling. There are big restrictions on the shape. Furthermore, since the hexagonal C-axis is oriented in the vicinity of the normal to the plate surface, the strength anisotropy is reduced, but it is inferior in local deformability and is not suitable for bending or stretch forming.
  • Patent Document 2 is considered to be less restrictive than the method of Patent Document 1, but in any case, there are significant restrictions on the plate shape that can be rolled. Also, the plate thickness is large. Furthermore, since the hexagonal C-axis is oriented in the vicinity of the normal to the plate surface, the strength anisotropy is reduced, but it is inferior in local deformability and is not suitable for bending or stretch forming.
  • Patent Document 3 is considered to be inferior in productivity because the number of steps is increased in order to perform skin pass rolling.
  • the method of Patent Document 4 requires a coating process and a film removal process, and is expensive.
  • the method of Patent Document 5 cannot be said to have sufficient strength and formability, and further improvements in strength and formability are desired.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a titanium plate having excellent strength and formability, a heat exchanger plate using the titanium plate, and a fuel cell separator.
  • JP 63-130753 A Japanese Patent No. 3481428 Japanese Patent No. 5385038 Japanese Patent No. 4452753 Japanese Patent No. 4088183
  • the titanium plate according to one aspect of the present invention has an alloy composition of Fe: 0.020 to 1.000 mass%, O: 0.020 to 0.200 mass%, the balance being composed of titanium and inevitable impurities,
  • Fe concentration (mass%) is represented by [Fe]
  • O concentration (mass%) is represented by [O].
  • the ⁇ -phase crystal grains have an average equivalent circle diameter of 5 to 80 ⁇ m and a maximum value of 300 ⁇ m or less.
  • a heat exchanger plate according to another aspect of the present invention is a plate for a heat exchanger using the above titanium plate, and when the plate thickness is t (mm), the pitch is 4t to 40t, and the depth is It is preferable to have one or more grooves of 5t to 15t.
  • a fuel cell separator is a fuel cell separator using the above-described titanium plate, and the pitch is 4t to 40t and the depth is 5t when the plate thickness is t (mm). It is preferable to have one or more grooves of up to 15t.
  • FIG. 1 is a conceptual diagram showing the crystal orientation of ⁇ -phase crystal grains in one embodiment of the titanium plate of the present invention.
  • FIG. 2A is a conceptual diagram showing the crystal orientation 1 of the ⁇ -phase crystal grains in one embodiment of the titanium plate of the present invention.
  • FIG. 2B is a conceptual diagram showing the crystal orientation 2 of the ⁇ -phase crystal grains in one embodiment of the titanium plate of the present invention.
  • FIG. 3 is a process flow diagram showing an embodiment of the method for producing a titanium plate of the present invention.
  • FIG. 4 is a schematic plan view showing the shape of a molding die for evaluating formability in Examples.
  • FIG. 5 is a schematic cross-sectional view taken along line EE of FIG. 4 showing the shape of a molding die for evaluating formability in the example.
  • the present inventors have made Fe and O a predetermined content, and in the control of the crystal grain structure of the ⁇ phase, which is the main phase of the titanium plate, how to orient the crystal orientation. It has been found that a titanium plate having high strength and excellent formability can be obtained by precisely controlling the present invention, and the present invention has been completed.
  • the titanium plate of the present invention has an alloy composition of Fe: 0.020 to 1.000 mass%, O: 0.020 to 0.200 mass%, the balance being composed of titanium and inevitable impurities, and an HCP structure.
  • Fe Fe
  • O 0.020 to 0.200 mass%
  • the balance being composed of titanium and inevitable impurities
  • HCP structure a titanium plate containing an ⁇ -phase crystal grain structure, and when the Fe concentration (mass%) is represented by [Fe] and the O concentration (mass%) is represented by [O], the following formula (1) is satisfied.
  • the ⁇ -phase crystal grains have an average equivalent circle diameter of 5 to 80 ⁇ m and a maximum value of 300 ⁇ m or less.
  • the titanium plate according to the present invention has excellent strength and formability. Further, by using this titanium plate, a heat exchanger plate and a fuel cell separator excellent in heat transfer efficiency and lightening effect can be obtained.
  • the titanium plate according to the present embodiment contains Fe: 0.020 to 1.300% by mass, O: 0.020 to 0.400% by mass, and the balance is made of titanium and inevitable impurities. It includes an ⁇ -phase crystal grain structure that is an HCP structure (hexagonal close-packed structure).
  • the titanium plate according to the present embodiment has a chemical composition according to industrial pure titanium such as 1 to 4 types of pure titanium specified in JIS H4600 (2012).
  • the strength of the titanium plate decreases when the content of Fe and O is small. Moreover, in order to manufacture a titanium plate having a Fe or O content of less than 0.020% by mass, high-purity sponge titanium is applied as a raw material, which increases costs. Therefore, each content of Fe and O is set to 0.020 mass% or more. The content of O is preferably 0.030% by mass or more. On the other hand, when a large amount of Fe is contained, segregation of the ingot increases and productivity decreases. Therefore, the Fe content is 1.000% by mass or less, preferably 0.800% by mass or less, and more preferably 0.500% by mass or less.
  • the O content is 0.200% by mass or less, preferably less than 0.150% by mass, more preferably 0.130% by mass or less, and further preferably 0.100% by mass or less.
  • the titanium plate according to the present embodiment exceeds the content as an unavoidable impurity described later, N: 0.050 mass% or less, C: 0.100 mass% or less, Al: 1.000 mass% or less. It is preferable to further contain one or more kinds.
  • the strength of the titanium plate is improved, and further, Al improves the heat resistance.
  • the contents of N, C, and Al are each preferably 0.001% by mass or more.
  • the titanium plate contains excessive amounts of N, C, and Al, cracking during cold rolling is likely to occur, and productivity is reduced.
  • N tends to make the titanium plate brittle, so the N content is 0.050 mass% or less, preferably 0.014 mass% or less.
  • the C content is 0.100% by mass or less, preferably 0.050% by mass or less.
  • Al content shall be 1.000 mass% or less, 0.400 mass% or less is more preferable, and 0.200 mass% or less is further more preferable.
  • the remainder of the titanium plate according to this embodiment is made of titanium and inevitable impurities.
  • Inevitable impurities include N, C, Al, H, Si, Cr, Ni and the like.
  • N, C, and Al are as described above.
  • the other elements are H: 0.005% by mass or less, and other elements: each 0.1% by mass or less are not hindered by the effects of the present invention and are allowed.
  • the titanium plate of this embodiment includes an ⁇ -phase crystal grain structure having an HCP structure (hexagonal close-packed structure).
  • the ⁇ phase crystal grains have a hexagonal crystal structure, and the crystal structure itself has a strong anisotropy.
  • Titanium plates manufactured by conventional rolling and annealing processes have a strong accumulation at an angular position where the ⁇ -phase grains are inclined by about 35 ° in the plate width direction from the normal direction of the rolling surface (perpendicular to the rolling surface). It forms a texture.
  • there is no accumulation (peak) at an angular position inclined in the rolling direction and there is a problem in that strong strength anisotropy is exhibited in the rolling surface due to higher strength in the sheet width direction than in the rolling direction. Yes.
  • the crystal orientation of a crystal grain in a material can be expressed using a Euler angle by a crystal orientation distribution function.
  • the Euler angle is a method for expressing the crystal orientation relationship of crystal grains with respect to the coordinate system of the sample.
  • the crystal orientation distribution function see, for example, edited by Shinichi Nagashima, “texture”, Maruzen, published on January 20, 1984, p. 29-39.
  • FIG. 1 is a conceptual diagram showing the crystal orientation of ⁇ -phase crystal grains of the titanium plate of the present embodiment.
  • sample coordinate system three coordinate axes in an RD direction (rolling direction), a TD direction (plate width direction), and an ND direction (normal direction of the rolling surface), which are orthogonal to each other, are shown.
  • crystal coordinate system three coordinate axes of X axis, Y axis, and Z axis that are orthogonal to each other are shown.
  • RD direction rolling direction
  • TD direction plate width direction
  • ND direction normal direction of the rolling surface
  • the X axis coincides with the [10-10] direction (the normal direction of the column surface)
  • the Y axis coincides with the [-12-10] direction
  • the Z axis coincides with the [0001] direction (C axis direction).
  • the Bunge notation method a state in which the RD direction, the TD direction, and the ND direction of the sample coordinate system coincide with the X axis, the Y axis, and the Z axis of the crystal coordinate system is first considered. From there, the crystal coordinate system is rotated by ⁇ 1 around the Z axis, and is rotated by ⁇ around the X axis (the state in FIG. 1) after the ⁇ 1 rotation. Finally, rotate ⁇ 2 around the Z axis after ⁇ 1 rotation and ⁇ rotation. Using these three angles ⁇ 1, ⁇ , and ⁇ 2, the crystal orientation of the ⁇ -phase crystal grains (such as the C-axis direction) is defined.
  • ⁇ 1 is the intersection of the RD-TD plane (rolling plane) of the sample coordinate system and the [10-10] [-12-10] plane of the crystal coordinate system and the RD direction (rolling direction) of the sample coordinate system.
  • the angle between ⁇ is an angle formed by the ND direction (the normal direction of the rolling surface) of the sample coordinate system and the [0001] direction (the normal direction of the (0001) plane) of the crystal coordinate system.
  • ⁇ 2 is the intersection of the RD-TD plane (rolling plane) of the sample coordinate system and the [10-10]-[-12-10] plane of the crystal coordinate system, and the [10-10] direction of the crystal coordinate system. Is the angle formed by
  • ⁇ 1 0 °
  • 35 °
  • ⁇ 2 30 ° as azimuth 3
  • ⁇ 1 65 °
  • 30 °
  • ⁇ 2 0 ° as azimuth 4
  • FIG. 2A is a conceptual diagram showing the crystal orientation 1 of the ⁇ phase crystal grains.
  • FIG. 2B is a conceptual diagram showing the crystal orientation 2 of the ⁇ -phase crystal grains.
  • Orientation 1 and orientation 2 are the orientations of the texture of the main ⁇ phase crystal grains recognized in the conventional material. These orientations indicate orientations in which the C axis of ⁇ -phase crystal grains (hexagonal crystals) is inclined by 35 ° from the normal direction of the rolling surface to the plate width direction (TD direction). The texture accumulated in these orientations causes the strength anisotropy of the titanium plate.
  • 2A and 2B conceptually show the difference between the orientation 1 and the orientation 2 of the ⁇ -phase crystal grains for understanding the above crystal orientation, and are not necessarily shown accurately in terms of inclination and angle. Not a thing.
  • the present inventors for these accumulations, ⁇ phase crystal grains in an orientation inclined in the rolling direction (RD direction) rather than the sheet width direction from the normal direction of the rolling surface, and the normal direction of the rolling surface
  • the strength in the plate width direction is higher than that in the rolling direction by newly forming ⁇ phase crystal grains in an orientation inclined in the direction between the rolling direction and the plate width direction at a specific quantity ratio. It was found that the strength anisotropy of the steel plate can be effectively reduced to improve the formability of the titanium plate.
  • the ⁇ phase of the main phase that defines the crystal orientation of the crystal grains may be included in an area ratio of about several percent, and the crystal orientation is not particularly specified.
  • the titanium plate is generally rolled in one direction and produced in a coil shape.
  • the longitudinal direction of the member is made to coincide with the rolling direction of the titanium plate, It is desired that the rolling direction (longitudinal direction of the member) be the main strain direction during molding.
  • the conventional material has excellent formability when the plate width direction is the main strain direction, and the formability is greatly reduced when the rolling direction is the main strain direction.
  • the present invention improves the formability in the rolling direction with the rolling direction as the main strain direction.
  • orientations of the texture of crystal grains recognized in conventional materials are mainly orientation 1 and orientation 2. These orientations indicate orientations in which the C axis of ⁇ -phase crystal grains (hexagonal crystals) is inclined by 35 ° in the plate width direction from the normal direction of the rolling surface. These textures improve the formability in the width direction of the sheet, and conversely reduce the formability in the rolling direction.Consider improving the texture and improving the formability. I found.
  • the area ratio of the crystal grains having orientation 1 and orientation 2 is relatively reduced, and the C axis has an orientation inclined in the rolling direction from the normal direction of the rolling surface or in the direction between the rolling direction and the sheet width direction.
  • a crystal grain structure was newly formed. And it discovered that the moldability of a rolling direction could be improved by fully increasing the area ratio of the crystal grain which has the newly formed direction rather than the crystal grain which has the direction 1 and the direction 2.
  • FIG. There are several possibilities for the orientation of newly formed crystal grains, and it was assumed that the same effect of reducing strength anisotropy could be obtained. Therefore, as a result of repeated studies, the above-mentioned orientation 3, orientation 4, and orientation 5 are selected and defined.
  • the azimuth 3 which corresponds to the azimuth inclined in the rolling direction from the normal direction of the rolling surface, is inclined in the direction between the rolling direction and the sheet width direction from the normal direction of the rolling surface. Attention is paid to the azimuth 4 corresponding to the azimuth and the azimuth 5 corresponding to the C-axis being oriented parallel to the rolling direction.
  • the area ratio of the area of crystal grains each having an orientation within 15 ° to the total area of all ⁇ -phase crystal grains is calculated.
  • the area ratio of the area of the crystal grains having an orientation within 15 ° centering on the obtained orientation 1, orientation 2, orientation 3, orientation 4, and orientation 5 with respect to the total area of all ⁇ -phase grains is defined as A1, A2, Let A3, A4, and A5.
  • the crystal grains having an orientation within 15 ° centered on each orientation mean all crystal grains within a range of 15 ° around each orientation.
  • (A1 + A2) indicates the total area ratio of crystal grains having the main texture orientation recognized in the conventional material.
  • (A3 + A4 + A5) indicates the total area ratio of crystal grains having crystal orientations defined by orientation 3, orientation 4, and orientation 5, and contributes to improvement of formability in the rolling direction.
  • the ratio (A3 + A4 + A5) / (A1 + A2) is smaller than 1.5, sufficient formability in the rolling direction cannot be obtained.
  • (A3 + A4 + A5) / (A1 + A2) is preferably more than 3.0, more preferably more than 6.0.
  • (A3 + A4 + A5) / (A1 + A2) does not actually exceed 30, so it is set to 30 or less.
  • A3 / (A1 + A2) represents the ratio of the area ratio of the crystal grains having the orientation defined by the orientation 3 to the area ratio of the crystal grains having the main texture orientation recognized in the conventional material.
  • A3 / (A1 + A2) is 1.0 or less, sufficient formability in the rolling direction cannot be obtained.
  • A3 / (A1 + A2) is preferably greater than 2.0.
  • A3 / (A1 + A2) does not actually exceed 10, and is 10 or less.
  • the azimuth 6 is an azimuth parallel to a direction in which the C axis is perpendicular to the normal line of the rolling surface and rotated by 40 ° from the rolling direction toward the sheet width direction. It has been found that the formability in the rolling direction can be further improved by making the degree of integration in the direction 5 higher than that in the direction 6.
  • A5 and A6 satisfy the following formula (4). It is preferable. (A5-A6)> 0 ... (4) (A5-A6) is preferably 1.0 or more.
  • the Euler angle represented by the crystal orientation distribution function can be obtained by orientation analysis using the SEM / EBSD measurement method (described later).
  • the Bunge notation method is used, and the C-axis of the ⁇ -phase crystal grain and the plate thickness direction of the rolled sheet (normal direction of the rolling surface) are parallel, and the [1010] direction (column surface method) of the ⁇ -phase crystal grain.
  • the rolling direction refers to the longitudinal direction of the material in the case of a coil shape.
  • the direction in which the 0.2% proof stress shows the maximum value when the tensile test is performed in the direction parallel to the plate surface is defined as the rolling direction for convenience.
  • the texture of the crystal grains satisfying the above formulas (2), (3), and (4) is controlled at the time of production by chemical composition, final cold rolling conditions, and final annealing conditions.
  • the circle equivalent diameter of the ⁇ -phase crystal grains (the diameter of the circle having the same area as the cross section of the crystal grains) is 5 to 80 ⁇ m on the average and 300 ⁇ m or less on the maximum.
  • the circle equivalent diameter of the ⁇ phase crystal grains is preferably 60 ⁇ m or less, more preferably 40 ⁇ m or less, on average.
  • the circle equivalent diameter of the ⁇ -phase crystal grains is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, at the maximum value.
  • the maximum value of the equivalent circle diameter of the ⁇ -phase crystal grains also depends on the plate thickness, and is preferably about 1/4 or less of the plate thickness.
  • the crystal grain size of the ⁇ phase (the equivalent circle diameter of the ⁇ phase crystal grains) can be controlled by adjusting the final annealing conditions at the time of production, as will be described later.
  • the ⁇ -phase crystal grain size can be measured in an arbitrary cross section of the titanium plate. In the case of a plate material, it is usually measured by observing a plane parallel to the rolling surface of the titanium plate. Specifically, the surface (plate surface) of the titanium plate is polished to form an observation surface, and an electron backscatter diffraction (EBSD) method is performed while scanning an electron beam on the surface with a scanning electron microscope (SEM). The EBSD pattern is measured and analyzed. A boundary having an orientation difference of 10 ° or more is recognized as a crystal grain boundary, and a region surrounded by the crystal grain boundary is defined as a crystal grain.
  • the plate thickness is preferably 1.0 mm or less.
  • the thickness of the titanium plate is more preferably 0.7 mm or less from the viewpoint of moldability and cost.
  • the thickness of the titanium plate is preferably 0.05 mm or more in order to easily obtain practical strength as a heat exchanger plate and a fuel cell separator.
  • the thickness of the titanium plate is more preferably 0.07 mm or more from the viewpoint of further improving the strength.
  • titanium plate of this embodiment it is possible to form a heat exchanger plate and a fuel cell separator that are excellent in heat transfer efficiency and weight reduction effect.
  • the thickness of the titanium plate is set to t (mm)
  • t mm
  • Complex shapes can be formed. That is, it becomes possible to deepen the groove, narrow the groove width to narrow the pitch, or form an arbitrary pattern.
  • the surface area of the formed titanium plate can be increased, the flow of the heat medium (liquid, gas) is homogenized, and a heat exchanger plate and a fuel cell separator exhibiting excellent heat transfer efficiency are obtained. Can do.
  • the thickness can be reduced as the strength increases, and a lightweight heat exchanger plate and a fuel cell separator can be obtained.
  • the titanium plate according to the present embodiment is obtained by subjecting the ingot to ingot rolling and hot rolling to a desired thickness by a known method, and further annealing and cooling under specific conditions. It can be produced by hot rolling and final annealing.
  • FIG. 3 is a process flow diagram showing a method for manufacturing a titanium plate of the present embodiment. This will be described below based on this process flow chart. In addition, conventionally well-known conditions and methods can be applied except the conditions and methods specifically described below.
  • symbol is S1: Titanium material manufacturing process, S2: Hot rolling process, S3: Annealing process, S5: Cold rolling process, S6: Intermediate annealing process, S8: Final cold rolling process, S9: Shows the final annealing step.
  • Tianium material manufacturing process S1 First, in the titanium material manufacturing step S1, an ingot is manufactured by a conventionally known method, and the ingot is subjected to ingot forging or ingot rolling. For example, first, raw materials of predetermined components are melted by a consumable electrode type vacuum arc melting method (VAR method), a plasma arc melting method (PAM method), and an electron beam melting method (EB method), and then cast into a titanium ingot. Get. This ingot is subjected to block forging (hot forging) or block rolling into a block shape of a predetermined size. The chemical component such as Fe is as described above, and is adjusted to a predetermined component at the time of dissolution.
  • VAR method consumable electrode type vacuum arc melting method
  • PAM method plasma arc melting method
  • EB method electron beam melting method
  • Hot rolling process S2 In the next hot rolling step S2, the block-shaped ingot is heated to, for example, 700 to 1050 ° C. and hot rolled to obtain a hot rolled sheet.
  • annealing step S3 Next, in the annealing step S3, the obtained hot-rolled sheet is annealed while being held at 650 ° C. or higher and lower than 800 ° C. As other conditions, known conditions are applied. In addition, when performing intermediate annealing process S6 mentioned later, annealing process S3 can be abbreviate
  • Thickness determination S4 the plate thickness is determined (S4). If the material is relatively soft, or if the desired plate thickness is relatively thick and the rolling reduction from annealing after hot rolling is small, there is no need to perform intermediate annealing. Therefore, after annealing process S3, it progresses to final cold rolling process S8 and final annealing process S9 which are mentioned later.
  • the hot-rolled sheet is usually formed into a desired sheet thickness by repeatedly performing the cold rolling process S5 and the intermediate annealing process S6 after the annealing process S3 after hot rolling.
  • the necessity of intermediate annealing and the required number of times depend on the material and the cold rolling reduction ratio.
  • the number of intermediate annealing is usually preferably 1 to 4 times, and more preferably 2 to 4 times.
  • intermediate annealing step S6 (Intermediate annealing step S6)
  • the intermediate annealing step S6 is mainly intended to soften the material in order to improve the subsequent cold rollability. Therefore, it is usually processed in the recrystallization temperature range (usually in the range of 500 ° C to 850 ° C), and processed at high temperature for a short time (about 820 ° C for several minutes) or low temperature for a long time (about 600 ° C for several tens of hours or more). Is done.
  • the intermediate annealing step S6 may be performed under any atmosphere of air, vacuum, inert gas, or reducing gas. Further, the intermediate annealing step S6 can be performed in either a batch furnace or a continuous furnace. In particular, when annealing (atmospheric annealing) is performed in an air atmosphere, the scale is attached to the surface of the titanium plate (hot rolled plate), so the process proceeds to the next step (the subsequent cold rolling step if intermediate annealing). Before the scale removal step, for example, salt heat treatment, pickling treatment, or the like is preferably performed.
  • Cold rolling step S5, final cold rolling step S8) The total rolling reduction (working ratio for the hot-rolled sheet) by cold rolling (cold rolling step S5, final cold rolling step S8) of the titanium plate according to this embodiment is set to 20 to 98%.
  • the intermediate annealing may be performed a plurality of times during the cold rolling.
  • the rolling reduction after the final intermediate annealing that is, the rolling reduction in the final cold rolling step S8 is set to 20 to 87%. As a result, a desired texture of ⁇ -phase crystal grains is formed. At this time, if the rolling reduction exceeds 87%, a desired ⁇ -phase grain structure cannot be obtained even if the final annealing described below is performed.
  • the rolling reduction in the final cold rolling step S8 is preferably 50 to 87%, and more preferably 50 to 70%.
  • the rolling reduction in the cold rolling performed from the hot rolling step S2 to immediately before the final cold rolling step S8 does not exceed the rolling reduction in the final cold rolling step S8.
  • the titanium plate according to the present embodiment preferably adjusts the temperature and time to control the crystal grain size and strength anisotropy of the ⁇ phase. Therefore, the annealing temperature is set to the ⁇ transformation point (T ⁇ ) or more and less than 950 ° C.
  • the ⁇ transformation point is the lowest temperature at which all of the ⁇ phase disappears and becomes the ⁇ phase, and changes depending on the chemical composition (Fe content, etc.) of the titanium material.
  • the general annealing condition of the pure titanium material is 600 ° C. or higher at which recrystallization proceeds and 850 ° C. or lower below the ⁇ transformation point. .
  • the fraction of ⁇ phase the growth of ⁇ phase crystal grains is not hindered and grows in equiaxed granular form.
  • the entire cold-rolled sheet is transformed into the ⁇ phase by heating to the ⁇ transformation point or higher, that is, the ⁇ single phase region. Then, it transforms from the ⁇ phase to the ⁇ phase by cooling.
  • a desired ⁇ -phase crystal grain texture is formed, and strength anisotropy can be reduced.
  • the higher the temperature in the ⁇ single-phase region the more the growth of ⁇ -phase crystal grains is promoted. Further, as the holding time at the annealing temperature becomes longer, the ⁇ -phase crystal grains become larger and become coarser after 180 seconds.
  • the annealing temperature (holding temperature) in the final annealing step is set to the ⁇ transformation point or higher and lower than 950 ° C., and the holding time in this temperature range is preferably 0 to 180 seconds.
  • the cooling condition after the final annealing is preferably 10 ° C./second or more.
  • the holding time of 0 seconds means that the cold rolled plate is heated and cooled as soon as the ⁇ transformation point is reached.
  • the final annealing step S9 may be performed in any atmosphere of air, vacuum, inert gas, or reducing gas. In addition, when it anneals to air
  • titanium material manufacturing step S1 ([Fe] ⁇ 0.020) / [O] is set to 0.68 or more
  • the annealing temperature is set to the ⁇ transformation point or more and less than 950 ° C., and the holding time is 0 to 180 seconds.
  • the reduction ratio in the final cold rolling step S8 is set to 20 to 87%.
  • the titanium plate of the present invention has an HCP structure in which the alloy composition is Fe: 0.020 to 1.000 mass%, O: 0.020 to 0.200 mass%, and the balance is composed of titanium and inevitable impurities.
  • the titanium plate includes an ⁇ -phase crystal grain structure and the Fe concentration (mass%) is represented by [Fe] and the O concentration (mass%) is represented by [O]
  • the following formula (1) is satisfied: ([Fe] ⁇ 0.020) / [O] ⁇ 0.68 (1)
  • the ⁇ -phase crystal grains have an average equivalent circle diameter of 5 to 80 ⁇ m and a maximum value of 300 ⁇ m or less.
  • the titanium plate has such a structure, the in-plane strength anisotropy is small, and a titanium plate having both strength and formability can be obtained.
  • the titanium plate of the present invention may further have any one or more of the structures listed below. Thereby, in addition to the above advantages, it is considered that further effects can be achieved.
  • the titanium plate described above preferably satisfies the following formula (3). 1.0 ⁇ A3 / (A1 + A2) ⁇ 10 (3)
  • the titanium plate has such a configuration, it can be a titanium plate with improved formability in the rolling direction.
  • A6 area ratio with respect to the total area of the crystal grains
  • the titanium plate has such a configuration, it can be a titanium plate that is further excellent in formability in the rolling direction.
  • any of the titanium plates described above may further contain one or more of N: 0.050 mass% or less, C: 0.100 mass% or less, and Al: 1.000 mass% or less. preferable.
  • the strength of the titanium plate can be further improved. Furthermore, heat resistance can be improved by adding Al.
  • any of the titanium plates described above has a plate thickness of 1.0 mm or less. If it is a titanium plate of such a structure, the improvement of a further moldability and weight reduction can be achieved.
  • the heat exchanger plate of the present invention is a heat exchanger plate using any of the titanium plates described above, and when the plate thickness is t (mm), the pitch is 4t to 40t and the depth is 5t. It is preferable to have one or more grooves of up to 15t.
  • Such a heat exchanger plate is excellent in heat transfer efficiency and weight reduction effect.
  • the fuel cell separator of the present invention is a fuel cell separator using any of the titanium plates described above, and when the plate thickness is t (mm), the pitch is 4t to 40t and the depth is 5t. It is preferable to have one or more grooves of up to 15t.
  • Such a fuel cell separator is excellent in heat transfer efficiency and weight reduction effect.
  • the texture is analyzed by SEM-EBSD analysis software using a crystal orientation distribution function (Orientio Distribution Function: ODF), and crystal orientations of specific crystal grains expressed by six Euler angles (azimuth 1, azimuth 2). , Azimuth 3, azimuth 4, azimuth 5, azimuth 6) with respect to the total area of all ⁇ -phase grains (A1, A2, A3, A4, A5, A6) was measured. From the numerical values, (A3 + A4 + A5) / (A1 + A2), A3 / (A1 + A2), and (A5-AA6) were calculated. The results are shown in Table 2.
  • ODF Orientio Distribution Function
  • Bunge's notation method is used for Euler angle notation, and the C-axis of the ⁇ -phase crystal grain and the plate thickness direction of the rolled sheet (normal direction of the rolling surface) are parallel, and [10 ⁇ 10]
  • the crystal grain size was similarly calculated based on the SEM / EBSD measurement result as a circle equivalent diameter of a crystal grain by setting a boundary having an orientation difference of 10 ° or more as a crystal grain boundary.
  • the boundary with an orientation difference of 10 ° or more is recognized as the grain boundary.
  • the region surrounded by the crystal grain boundary was defined as a crystal grain, and the equivalent circle diameter of each crystal grain was calculated by image analysis.
  • noise is included in the measurement result, so in order to remove the influence, extraction is performed in order from large crystal grains, and 95 of the total area identified as ⁇ phase.
  • % Up to the crystal grain size when it exceeded the area for the first time was used as the calculated parameter of the average grain size.
  • the average value of the fifth crystal grains in order from the largest crystal grains was taken as the maximum value based on the same data.
  • FIG. 4 is a schematic plan view showing the shape of a molding die for evaluating moldability.
  • FIG. 5 is a schematic cross-sectional view taken along the line EE of FIG. 4 showing the shape of a molding die for evaluating moldability.
  • press molding was performed by an 80-ton press.
  • press molding rust preventive oil was applied to both surfaces of each test material for lubrication, and the test material was placed on the lower mold so that the rolling direction of each test material coincided with the vertical direction of FIG.
  • the mold was pushed in under the condition of a press speed of 1 mm / sec. The mold was pushed in at intervals of 0.1 mm, and the maximum amount of indentation depth (E: unit mm) at which no cracks occurred was determined by experiment.
  • E unit mm
  • test material No. which is an example of the present invention.
  • the equivalent-circle diameter and texture state of the ⁇ -phase crystal grains are within the scope of the present invention, and have excellent strength and molding He had a good balance of sex.
  • test material No. 7 In contrast, test material No. In No. 7, the final annealing temperature was below the ⁇ transformation point, the average value of the circle equivalent diameter of the ⁇ phase crystal grains was small, the texture was not sufficiently developed, and the formability was low. Test material No. In Nos. 8 and 11, ([Fe] -0.020) / [O] was below the lower limit, the final annealing temperature was below the ⁇ transformation point, the texture was not sufficiently developed, and the moldability was low. . In addition, test material No. No. 11 was low in 0.2% proof stress because the O and Fe contents were relatively small. Test material No. No.
  • the present invention has wide industrial applicability in the technical fields related to titanium plates, heat exchangers, fuel cell separators, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Metal Rolling (AREA)

Abstract

The present invention relates to a titanium plate and is characterized in that this titanium plate: contains 0.020 to 1.000 mass% of Fe and 0.020 to 0.200 mass% of O; contains an α-phase crystal grain structure that is an HCP structure; satisfies ([Fe]–0.020)/[O] ≥ 0.68; satisfies 1.5 ≤ (A3 + A4 + A5)/(A1 + A2) ≤ 30 where A1, A2, A3, A4, and A5 are, respectively, the area ratios for the crystal grains centered on respective orientations — an orientation 1 of φ1=0°, Φ=35°, φ2=0°, an orientation 2 of φ1=0°, Φ=35°, φ2=30°, an orientation 3 of φ1=90°, Φ=35°, φ2=30°, an orientation 4 of φ1=65°, Φ=30°, φ2=0°, and an orientation 5 of φ1=90°, Φ=90°, φ2=0° — in the representation of the crystal orientations of the α-phase crystal grains by a crystal orientation distribution function; and has an average value of 5-80 μm and a maximum value of not more than 300 μm for the circle-equivalent diameter of the α-phase crystal grains.

Description

チタン板、熱交換器用プレートおよび燃料電池用セパレータTitanium plate, heat exchanger plate and fuel cell separator
 本発明は、チタン板と当該チタン板を用いた熱交換器用プレートおよび燃料電池用セパレータに関する。 The present invention relates to a titanium plate, a heat exchanger plate using the titanium plate, and a fuel cell separator.
 一般に、チタン板は、比強度および耐食性に優れているので、化学、電力、食品製造プラント等の熱交換器用部材、カメラボディ、厨房機器等の民生品、さらには、オートバイ、自動車等の輸送機器部材、家電機器等の外装材に使用されている。チタン板は、前記用途の中でも、近年適用が進みつつあるプレート式熱交換器に使用される場合、高い熱交換効率が要求されるため、表面積を増やすべくプレス成形によって波状に加工されて適用されている。そのため、熱交換器用のチタン板は、深い波目を付けるために、優れた成形性が必要とされている。さらに、熱交換器用のチタン板は、熱交換器として必要とされる耐久性の向上や軽量化を実現するために、一定以上の強度が要求される。 In general, titanium plates are excellent in specific strength and corrosion resistance. Therefore, heat exchanger parts for chemical, electric power and food production plants, consumer products such as camera bodies and kitchen equipment, and transport equipment such as motorcycles and automobiles. It is used for exterior materials such as members and home appliances. Titanium plates are used in plate-type heat exchangers, which are being applied in recent years, among them, because high heat exchange efficiency is required. ing. Therefore, a titanium plate for a heat exchanger is required to have excellent formability in order to have a deep wave. Furthermore, a titanium plate for a heat exchanger is required to have a certain strength or more in order to realize durability improvement and weight reduction required as a heat exchanger.
 前記の各種用途に多用されるチタン板は、JIS H4600(2012)の規格で規定され、Fe、O等の不純物濃度や強度等によってJIS1種、2種、3種等の等級があり、等級が増す程、強度が高くなり、用途に応じてそれらの使い分けがなされている。従来は、高い成形性が求められる部材には、強度で劣るものの延性が高いことから、FeやOの濃度が低いJIS1種の純チタン板(耐力165MPa以上)が用いられていた。しかし、近年は、熱交換器の効率の向上に加えて、高強度化・軽量化の要求もますます増大している。こうした要求に応えるチタン板として、例えばJIS2種の純チタン板(耐力215MPa以上)が挙げられる。しかし、このような純チタン板の強度レベルになると成形性が劣るため、熱交換器への適用が困難である。また、一般にチタン材料は、Fe、O等の不純物濃度の増加や、結晶粒の微細化によって高強度化が図られるが、これらの方法では成形性が大きく低下することがある。 Titanium plates that are frequently used for various applications are defined in the standard of JIS H4600 (2012). There are grades of JIS type 1, type 2, type 3, etc., depending on the concentration and strength of impurities such as Fe and O. As the number increases, the strength increases, and they are properly used according to the application. Conventionally, a JIS type 1 pure titanium plate (with a proof stress of 165 MPa or more) having a low concentration of Fe or O has been used as a member requiring high formability because of its low strength but high ductility. However, in recent years, in addition to improving the efficiency of heat exchangers, there is an increasing demand for higher strength and lighter weight. As a titanium plate that meets these requirements, for example, a JIS type 2 pure titanium plate (with a proof stress of 215 MPa or more) can be mentioned. However, when the strength level of such a pure titanium plate is reached, the formability is inferior, making it difficult to apply to a heat exchanger. In general, titanium materials can be increased in strength by increasing the concentration of impurities such as Fe and O and by making crystal grains finer. However, these methods may greatly reduce the formability.
 チタン板の成形性向上に関して、従来から種々の技術が提案されている。 Various techniques have been proposed for improving the formability of titanium plates.
 例えば、特許文献1には、熱間圧延の最終圧延方向を分塊圧延の圧延方向と直角となるように圧延して、耐力の異方性の少ない純チタン板を得るための製造方法が開示されている。特許文献2には、Ti-Fe-O-N系合金を用いて、初期圧延方向と直交する方向に一度だけ圧延することによって面内異方性を低減させる方法が開示されている。特許文献3には、α相の結晶粒の結晶粒径を大きくしてプレス成形時の変形双晶の頻度を増加させている。また、最終焼鈍後に圧下率0.7~5%のスキンパス圧延を施して、集合組織(C軸のずれ角度)を調整して規定の蓄積ひずみ量とすることによって、耐力とプレス成形性を保持したチタン板が開示されている。特許文献4には、表面に潤滑皮膜を塗布して、表面の動摩擦係数を0.15未満に制御し、伸びとr値が特定の関係式を満足することによって、プレス成形性と強度のバランスを取る方法が開示されている。特許文献5には、所定の式で定義されるキーンズ因子f値を0.60以上として、成形性を向上させたチタン板が開示されている。 For example, Patent Document 1 discloses a manufacturing method for obtaining a pure titanium plate having a low yield strength anisotropy by rolling so that the final rolling direction of hot rolling is perpendicular to the rolling direction of partial rolling. Has been. Patent Document 2 discloses a method of reducing in-plane anisotropy by using a Ti—Fe—O—N-based alloy and rolling only once in a direction orthogonal to the initial rolling direction. In Patent Document 3, the frequency of deformation twins at the time of press molding is increased by increasing the crystal grain size of the α-phase crystal grains. Also, after final annealing, skin pass rolling with a rolling reduction of 0.7 to 5% is performed, and the texture (C-axis deviation angle) is adjusted to obtain the specified accumulated strain, thereby maintaining the yield strength and press formability. A titanium plate is disclosed. In Patent Document 4, a balance between press formability and strength is achieved by applying a lubricating film to the surface, controlling the dynamic friction coefficient of the surface to less than 0.15, and satisfying a specific relational expression between elongation and r value. A method of taking is disclosed. Patent Document 5 discloses a titanium plate with improved formability by setting the Keynes factor f value defined by a predetermined formula to 0.60 or more.
 しかしながら、特許文献1の製造方法は、互いに垂直な2方向にそれぞれ圧延を施すクロス圧延方法であり、一般的に圧延ロール幅よりも長い板にクロス圧延を施すことができないため、圧延加工できる板形状に大きな制約を伴う。更に、六方晶のC軸は板面法線近傍に配向するため、強度異方性は低減するものの、局部変形能に劣り、曲げや張出成形には適さないと考えられる。 However, the manufacturing method of Patent Document 1 is a cross rolling method in which rolling is performed in two directions perpendicular to each other, and generally a plate longer than the rolling roll width cannot be subjected to cross rolling. There are big restrictions on the shape. Furthermore, since the hexagonal C-axis is oriented in the vicinity of the normal to the plate surface, the strength anisotropy is reduced, but it is inferior in local deformability and is not suitable for bending or stretch forming.
 特許文献2の方法は、特許文献1の方法よりも制約は小さいと考えられるが、いずれにしても圧延加工できる板形状に大きな制約を伴う。また板厚が大きいものである。更に、六方晶のC軸は板面法線近傍に配向するため、強度異方性は低減するものの、局部変形能に劣り、曲げや張出成形には適さないと考えられる。 The method of Patent Document 2 is considered to be less restrictive than the method of Patent Document 1, but in any case, there are significant restrictions on the plate shape that can be rolled. Also, the plate thickness is large. Furthermore, since the hexagonal C-axis is oriented in the vicinity of the normal to the plate surface, the strength anisotropy is reduced, but it is inferior in local deformability and is not suitable for bending or stretch forming.
 特許文献3の方法は、スキンパス圧延を施すために、工程数が多くなるので生産性に劣ると考えられる。特許文献4の方法は、塗布工程ならびに除膜工程が必要であり、高コストとなる。特許文献5の方法は、十分な強度と成形性が得られているとはいえず、更なる強度と成形性の向上が望まれている。 The method of Patent Document 3 is considered to be inferior in productivity because the number of steps is increased in order to perform skin pass rolling. The method of Patent Document 4 requires a coating process and a film removal process, and is expensive. The method of Patent Document 5 cannot be said to have sufficient strength and formability, and further improvements in strength and formability are desired.
 本発明は、前記問題点に鑑みてなされたものであり、優れた強度と成形性とを兼ね備えたチタン板とこのチタン板を用いた熱交換器用プレートおよび燃料電池用セパレータを提供することを課題とする。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a titanium plate having excellent strength and formability, a heat exchanger plate using the titanium plate, and a fuel cell separator. And
特開63-130753号公報JP 63-130753 A 特許第3481428号公報Japanese Patent No. 3481428 特許第5385038号公報Japanese Patent No. 5385038 特許第4452753号公報Japanese Patent No. 4452753 特許第4088183号公報Japanese Patent No. 4088183
 本発明の一局面に関するチタン板は、合金組成が、Fe:0.020~1.000質量%、O:0.020~0.200質量%、残部がチタンおよび不可避的不純物から構成され、HCP構造であるα相の結晶粒組織を含むチタン板であって、Fe濃度(質量%)を[Fe]、O濃度(質量%)を[O]で表した場合に、下記式(1)を満足し、
 ([Fe]-0.020)/[O]≧0.68・・・(1)
を満足し、α相結晶粒の結晶方位を結晶方位分布関数で表した場合に、φ1=0°、Φ=35°、φ2=0°を方位1、φ1=0°、Φ=35°、φ2=30°を方位2、φ1=90°、Φ=35°、φ2=30°を方位3、φ1=65°、Φ=30°、φ2=0°を方位4、φ1=90°、Φ=90°、φ2=0°を方位5とし、各方位を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率をそれぞれA1、A2、A3、A4、A5としたときに、下記式(2)を満足し、
 1.5≦(A3+A4+A5)/(A1+A2)≦30・・・(2)
前記α相結晶粒の円相当直径の平均値が5~80μmであり、かつ最大値が300μm以下であることを特徴としている。
The titanium plate according to one aspect of the present invention has an alloy composition of Fe: 0.020 to 1.000 mass%, O: 0.020 to 0.200 mass%, the balance being composed of titanium and inevitable impurities, In the case of a titanium plate containing an α-phase crystal grain structure as a structure, the Fe concentration (mass%) is represented by [Fe], and the O concentration (mass%) is represented by [O]. Satisfied,
([Fe] −0.020) / [O] ≧ 0.68 (1)
When the crystal orientation of the α-phase crystal grains is expressed by a crystal orientation distribution function, φ1 = 0 °, φ = 35 °, φ2 = 0 ° is orientation 1, φ1 = 0 °, φ = 35 °, φ2 = 30 ° is azimuth 2, φ1 = 90 °, Φ = 35 °, φ2 = 30 ° is azimuth 3, φ1 = 65 °, Φ = 30 °, φ2 = 0 ° is azimuth 4, φ1 = 90 °, Φ = 90 °, φ2 = 0 ° as orientation 5, and the area ratios of the area of crystal grains having an orientation within 15 ° around each orientation with respect to the total area of all α-phase grains are A1, A2, A3, A4, respectively. , A5, the following formula (2) is satisfied,
1.5 ≦ (A3 + A4 + A5) / (A1 + A2) ≦ 30 (2)
The α-phase crystal grains have an average equivalent circle diameter of 5 to 80 μm and a maximum value of 300 μm or less.
 また、本発明の他の局面に関する熱交換器用プレートは、前記のチタン板を用いた熱交換器用プレートであって、板厚t(mm)としたときに、ピッチが4t~40t、深さが5t~15tである溝を、1本または2本以上有することが好ましい。 A heat exchanger plate according to another aspect of the present invention is a plate for a heat exchanger using the above titanium plate, and when the plate thickness is t (mm), the pitch is 4t to 40t, and the depth is It is preferable to have one or more grooves of 5t to 15t.
 また、本発明のさらなる局面に関する燃料電池用セパレータは、前記のチタン板を用いた燃料電池用セパレータであって、板厚t(mm)としたときに、ピッチが4t~40t、深さが5t~15tである溝を、1本または2本以上有することが好ましい。 Further, a fuel cell separator according to a further aspect of the present invention is a fuel cell separator using the above-described titanium plate, and the pitch is 4t to 40t and the depth is 5t when the plate thickness is t (mm). It is preferable to have one or more grooves of up to 15t.
図1は、本発明のチタン板の一実施態様におけるα相結晶粒の結晶方位を示す概念図である。FIG. 1 is a conceptual diagram showing the crystal orientation of α-phase crystal grains in one embodiment of the titanium plate of the present invention. 図2Aは、本発明のチタン板の一実施態様におけるα相結晶粒の結晶方位1を示す概念図である。FIG. 2A is a conceptual diagram showing the crystal orientation 1 of the α-phase crystal grains in one embodiment of the titanium plate of the present invention. 図2Bは、本発明のチタン板の一実施態様におけるα相結晶粒の結晶方位2を示す概念図である。FIG. 2B is a conceptual diagram showing the crystal orientation 2 of the α-phase crystal grains in one embodiment of the titanium plate of the present invention. 図3は、本発明のチタン板の製造方法の一実施態様を示す工程フロー図である。FIG. 3 is a process flow diagram showing an embodiment of the method for producing a titanium plate of the present invention. 図4は、実施例において、成形性の評価を行なうための成形金型の形状を示す模式的平面図である。FIG. 4 is a schematic plan view showing the shape of a molding die for evaluating formability in Examples. 図5は、実施例において、成形性の評価を行なうための成形金型の形状を示す図4のE-Eの模式的断面図である。FIG. 5 is a schematic cross-sectional view taken along line EE of FIG. 4 showing the shape of a molding die for evaluating formability in the example.
 本発明者らは、チタンの成分等について鋭意検討した結果、FeおよびOを所定の含有量とし、チタン板の主相であるα相の結晶粒組織の制御において、結晶方位の配向の仕方を精緻に制御することによって、強度が高く、成形性に優れたチタン板が得られることを見出し、本発明を完成させるに至ったものである。 As a result of intensive studies on the components of titanium and the like, the present inventors have made Fe and O a predetermined content, and in the control of the crystal grain structure of the α phase, which is the main phase of the titanium plate, how to orient the crystal orientation. It has been found that a titanium plate having high strength and excellent formability can be obtained by precisely controlling the present invention, and the present invention has been completed.
 すなわち、本発明のチタン板は、合金組成が、Fe:0.020~1.000質量%、O:0.020~0.200質量%、残部がチタンおよび不可避的不純物から構成され、HCP構造であるα相の結晶粒組織を含むチタン板であって、Fe濃度(質量%)を[Fe]、O濃度(質量%)を[O]で表した場合に、下記式(1)を満足し、
 ([Fe]-0.020)/[O]≧0.68・・・(1)
を満足し、α相結晶粒の結晶方位を結晶方位分布関数で表した場合に、φ1=0°、Φ=35°、φ2=0°を方位1、φ1=0°、Φ=35°、φ2=30°を方位2、φ1=90°、Φ=35°、φ2=30°を方位3、φ1=65°、Φ=30°、φ2=0°を方位4、φ1=90°、Φ=90°、φ2=0°を方位5とし、各方位を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率をそれぞれA1、A2、A3、A4、A5としたときに、下記式(2)を満足し、
 1.5≦(A3+A4+A5)/(A1+A2)≦30・・・(2)
前記α相結晶粒の円相当直径の平均値が5~80μmであり、かつ最大値が300μm以下であることを特徴とする。
That is, the titanium plate of the present invention has an alloy composition of Fe: 0.020 to 1.000 mass%, O: 0.020 to 0.200 mass%, the balance being composed of titanium and inevitable impurities, and an HCP structure. Is a titanium plate containing an α-phase crystal grain structure, and when the Fe concentration (mass%) is represented by [Fe] and the O concentration (mass%) is represented by [O], the following formula (1) is satisfied. And
([Fe] −0.020) / [O] ≧ 0.68 (1)
When the crystal orientation of the α-phase crystal grains is expressed by a crystal orientation distribution function, φ1 = 0 °, φ = 35 °, φ2 = 0 ° is orientation 1, φ1 = 0 °, φ = 35 °, φ2 = 30 ° is azimuth 2, φ1 = 90 °, Φ = 35 °, φ2 = 30 ° is azimuth 3, φ1 = 65 °, Φ = 30 °, φ2 = 0 ° is azimuth 4, φ1 = 90 °, Φ = 90 °, φ2 = 0 ° as orientation 5, and the area ratios of the area of crystal grains having an orientation within 15 ° around each orientation with respect to the total area of all α-phase grains are A1, A2, A3, A4, respectively. , A5, the following formula (2) is satisfied,
1.5 ≦ (A3 + A4 + A5) / (A1 + A2) ≦ 30 (2)
The α-phase crystal grains have an average equivalent circle diameter of 5 to 80 μm and a maximum value of 300 μm or less.
 このような構成により、本発明に係るチタン板は、優れた強度と成形性とを兼ね備える。また、このチタン板を用いることによって、伝熱効率や軽量化効果に優れた熱交換器用プレートおよび燃料電池用セパレータを得ることができる。 With such a configuration, the titanium plate according to the present invention has excellent strength and formability. Further, by using this titanium plate, a heat exchanger plate and a fuel cell separator excellent in heat transfer efficiency and lightening effect can be obtained.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
〔チタン板〕
 本実施形態に係るチタン板は、上述の通り、Fe:0.020~1.300質量%、O:0.020~0.400質量%を含有し、残部がチタンおよび不可避的不純物からなり、HCP構造(六方最密充填構造)であるα相の結晶粒組織を含む。本実施形態に係るチタン板は、例えばJIS H4600(2012)に規定される1~4種の純チタンのような工業用純チタンに準じた化学組成を有している。
[Titanium plate]
As described above, the titanium plate according to the present embodiment contains Fe: 0.020 to 1.300% by mass, O: 0.020 to 0.400% by mass, and the balance is made of titanium and inevitable impurities. It includes an α-phase crystal grain structure that is an HCP structure (hexagonal close-packed structure). The titanium plate according to the present embodiment has a chemical composition according to industrial pure titanium such as 1 to 4 types of pure titanium specified in JIS H4600 (2012).
(Fe:0.020~1.000質量%、O:0.020~0.200質量%)
 チタン板は、Fe、Oの含有量が少ないと強度が低下する。また、FeやOの含有量が0.020質量%未満のチタン板を製造するためには高純度のスポンジチタンを原材料に適用することになり、コストが高くなる。したがって、Fe、Oの各含有量は0.020質量%以上とする。Oの含有量は、0.030質量%以上が好ましい。一方、Feを多く含有すると、インゴットの偏析が大きくなって生産性が低下する。そのため、Fe含有量は1.000質量%以下とし、0.800質量%以下が好ましく、0.500質量%以下がさらに好ましい。また、Oを多く含有すると、チタン板が脆くなって冷間圧延時の割れが生じ易くなり、生産性が低下し、また成形性が低下する。そのため、O含有量は0.200質量%以下とし、0.150質量%未満が好ましく、0.130質量%以下がより好ましく、0.100質量%以下がさらに好ましい。
(Fe: 0.020 to 1.000 mass%, O: 0.020 to 0.200 mass%)
The strength of the titanium plate decreases when the content of Fe and O is small. Moreover, in order to manufacture a titanium plate having a Fe or O content of less than 0.020% by mass, high-purity sponge titanium is applied as a raw material, which increases costs. Therefore, each content of Fe and O is set to 0.020 mass% or more. The content of O is preferably 0.030% by mass or more. On the other hand, when a large amount of Fe is contained, segregation of the ingot increases and productivity decreases. Therefore, the Fe content is 1.000% by mass or less, preferably 0.800% by mass or less, and more preferably 0.500% by mass or less. Further, when a large amount of O is contained, the titanium plate becomes brittle and cracks during cold rolling tend to occur, resulting in a decrease in productivity and a decrease in formability. Therefore, the O content is 0.200% by mass or less, preferably less than 0.150% by mass, more preferably 0.130% by mass or less, and further preferably 0.100% by mass or less.
(([Fe]-0.020)/[O]≧0.68)
 Fe濃度(質量%)を[Fe]、O濃度(質量%)を[O]で表した場合に、([Fe]-0.020)/[O]が0.68未満のとき、後述する圧延工程と焼鈍工程を経ても所望の集合組織が形成されない。したがって、([Fe]-0.020)/[O]は0.68以上とする。([Fe]-0.020)/[O]は好ましくは、0.70以上、より好ましくは0.75以上である。([Fe]-0.020)/[O]の上限は特に定めないが、現実的には50以下であり、好ましくは20以下であり、より好ましくは10以下である。
(([Fe] -0.020) / [O] ≧ 0.68)
When the Fe concentration (mass%) is represented by [Fe] and the O concentration (mass%) is represented by [O], when ([Fe] −0.020) / [O] is less than 0.68, it will be described later. Even if it goes through a rolling process and an annealing process, a desired texture is not formed. Therefore, ([Fe] −0.020) / [O] is set to 0.68 or more. ([Fe] −0.020) / [O] is preferably 0.70 or more, more preferably 0.75 or more. The upper limit of ([Fe] −0.020) / [O] is not particularly defined, but is practically 50 or less, preferably 20 or less, more preferably 10 or less.
(N:0.050質量%以下、C:0.100質量%以下、Al:1.000質量%以下のいずれか1種以上)
 本実施形態に係るチタン板は、後記する不可避的不純物としての含有量を超えて、N:0.050質量%以下、C:0.100質量%以下、Al:1.000質量%以下のいずれか1種以上を、さらに含有することが好ましい。
(N: 0.050% by mass or less, C: 0.100% by mass or less, Al: 1.000% by mass or less)
The titanium plate according to the present embodiment exceeds the content as an unavoidable impurity described later, N: 0.050 mass% or less, C: 0.100 mass% or less, Al: 1.000 mass% or less. It is preferable to further contain one or more kinds.
 N、C、Alはいずれも、不可避的不純物としての含有量を超えて添加させたとき、チタン板の強度を向上させ、さらにAlは耐熱性を向上させる。これらの効果を得るために、N、C、Alは、それぞれ含有量が0.001質量%以上であることが好ましい。一方、チタン板は、N、C、Alを過剰に含有すると、冷間圧延時の割れが生じ易くなり、生産性が低下する。特にNはチタン板を脆くし易いため、N含有量は0.050質量%以下とし、0.014質量%以下が好ましい。C含有量は0.100質量%以下とし、0.050質量%以下が好ましい。また、Al含有量は1.000質量%以下とし、0.400質量%以下がより好ましく、0.200質量%以下がさらに好ましい。 When N, C, and Al are added in excess of the content as an unavoidable impurity, the strength of the titanium plate is improved, and further, Al improves the heat resistance. In order to obtain these effects, the contents of N, C, and Al are each preferably 0.001% by mass or more. On the other hand, if the titanium plate contains excessive amounts of N, C, and Al, cracking during cold rolling is likely to occur, and productivity is reduced. In particular, N tends to make the titanium plate brittle, so the N content is 0.050 mass% or less, preferably 0.014 mass% or less. The C content is 0.100% by mass or less, preferably 0.050% by mass or less. Moreover, Al content shall be 1.000 mass% or less, 0.400 mass% or less is more preferable, and 0.200 mass% or less is further more preferable.
(残部:チタンおよび不可避的不純物)
 本実施形態に係るチタン板は、残部がチタンおよび不可避的不純物からなる。不可避的不純物としては、N、C、Al、H、Si、Cr、Ni等がある。N、C、Alについては前記のとおりである。その他の元素については、H:0.005質量%以下であり、その他の元素:各0.1質量%以下であれば、本発明の効果を阻害するものではなく、許容される。
(Remainder: titanium and inevitable impurities)
The remainder of the titanium plate according to this embodiment is made of titanium and inevitable impurities. Inevitable impurities include N, C, Al, H, Si, Cr, Ni and the like. N, C, and Al are as described above. The other elements are H: 0.005% by mass or less, and other elements: each 0.1% by mass or less are not hindered by the effects of the present invention and are allowed.
(結晶粒組織)
 本実施形態のチタン板は、HCP構造(六方最密充填構造)であるα相の結晶粒組織を含む。α相結晶粒の結晶は六方晶構造で、結晶構造そのものの異方性が強い。従来の圧延と焼鈍プロセスで製造されるチタン板は、α相結晶粒が圧延面の法線方向(圧延面の垂直方向)から板幅方向に約35°傾斜した角度位置に強い集積が認められる集合組織を形成している。また、圧延方向に傾斜した角度位置に集積(ピーク)が無く、圧延面内で、圧延方向に比べて板幅方向の強度が高いことにより、強い強度異方性を示すことが問題となっている。
(Grain structure)
The titanium plate of this embodiment includes an α-phase crystal grain structure having an HCP structure (hexagonal close-packed structure). The α phase crystal grains have a hexagonal crystal structure, and the crystal structure itself has a strong anisotropy. Titanium plates manufactured by conventional rolling and annealing processes have a strong accumulation at an angular position where the α-phase grains are inclined by about 35 ° in the plate width direction from the normal direction of the rolling surface (perpendicular to the rolling surface). It forms a texture. In addition, there is no accumulation (peak) at an angular position inclined in the rolling direction, and there is a problem in that strong strength anisotropy is exhibited in the rolling surface due to higher strength in the sheet width direction than in the rolling direction. Yes.
 一般に、素材(試料)中の結晶粒の結晶方位は、結晶方位分布関数によってオイラー角を用いて表すことができる。オイラー角とは試料の座標系に対する結晶粒の結晶方位関係を表記する方法である。結晶方位分布関数については、例えば、長嶋晋一編著、「集合組織」、丸善、昭和59年1月20日発行、p.29-39に記載されている。 Generally, the crystal orientation of a crystal grain in a material (sample) can be expressed using a Euler angle by a crystal orientation distribution function. The Euler angle is a method for expressing the crystal orientation relationship of crystal grains with respect to the coordinate system of the sample. Regarding the crystal orientation distribution function, see, for example, edited by Shinichi Nagashima, “texture”, Maruzen, published on January 20, 1984, p. 29-39.
 図1は、本実施形態のチタン板のα相結晶粒の結晶方位を示す概念図である。試料座標系として、互いに直交する関係にある、RD方向(圧延方向)、TD方向(板幅方向)およびND方向(圧延面の法線方向)の3本の座標軸が示されている。また、結晶座標系として、互いに直交する関係にあるX軸、Y軸およびZ軸の3本の座標軸が示されている。図1ではX軸は[10-10]方向(柱面の法線方向)と一致し、Y軸は[-12-10]方向と一致し、Z軸は[0001]方向(C軸方向)と一致する。Bungeの表記方法では、試料座標系のRD方向、TD方向、ND方向と結晶座標系のX軸、Y軸、Z軸とがそれぞれ一致した状態をまず考える。そこから、結晶座標系をZ軸回りにφ1回転させ、φ1回転後のX軸(図1の状態)回りにΦ回転させる。最後にφ1回転とΦ回転の後のZ軸回りにφ2回転させる。これらのφ1、Φ、φ2の3つの角度を用いて、α相結晶粒の結晶方位(C軸方向など)を規定する。 FIG. 1 is a conceptual diagram showing the crystal orientation of α-phase crystal grains of the titanium plate of the present embodiment. As the sample coordinate system, three coordinate axes in an RD direction (rolling direction), a TD direction (plate width direction), and an ND direction (normal direction of the rolling surface), which are orthogonal to each other, are shown. In addition, as the crystal coordinate system, three coordinate axes of X axis, Y axis, and Z axis that are orthogonal to each other are shown. In FIG. 1, the X axis coincides with the [10-10] direction (the normal direction of the column surface), the Y axis coincides with the [-12-10] direction, and the Z axis coincides with the [0001] direction (C axis direction). Matches. In the Bunge notation method, a state in which the RD direction, the TD direction, and the ND direction of the sample coordinate system coincide with the X axis, the Y axis, and the Z axis of the crystal coordinate system is first considered. From there, the crystal coordinate system is rotated by φ1 around the Z axis, and is rotated by φ around the X axis (the state in FIG. 1) after the φ1 rotation. Finally, rotate φ2 around the Z axis after φ1 rotation and φ rotation. Using these three angles φ1, Φ, and φ2, the crystal orientation of the α-phase crystal grains (such as the C-axis direction) is defined.
 すなわち、φ1は、試料座標系のRD-TD平面(圧延平面)と結晶座標系の[10-10][-12-10]平面との交線と、試料座標系のRD方向(圧延方向)とがなす角度である。Φは、試料座標系のND方向(圧延面の法線方向)と、結晶座標系の[0001]方向((0001)面の法線方向)とがなす角度である。φ2は、試料座標系のRD-TD平面(圧延平面)と結晶座標系の[10-10]-[-12-10]平面との交線と、結晶座標系の[10-10]方向とがなす角度である。 That is, φ1 is the intersection of the RD-TD plane (rolling plane) of the sample coordinate system and the [10-10] [-12-10] plane of the crystal coordinate system and the RD direction (rolling direction) of the sample coordinate system. Is the angle between Φ is an angle formed by the ND direction (the normal direction of the rolling surface) of the sample coordinate system and the [0001] direction (the normal direction of the (0001) plane) of the crystal coordinate system. φ2 is the intersection of the RD-TD plane (rolling plane) of the sample coordinate system and the [10-10]-[-12-10] plane of the crystal coordinate system, and the [10-10] direction of the crystal coordinate system. Is the angle formed by
 ここで、Bungeの表記方法を用い、φ1=0°、Φ=35°、φ2=0°を方位1、φ1=0°、Φ=35°、φ2=30°を方位2、φ1=90°、Φ=35°、φ2=30°を方位3、φ1=65°、Φ=30°、φ2=0°を方位4、φ1=90°、Φ=90°、φ2=0°を方位5とする。 Here, using the Bunge notation, φ1 = 0 °, Φ = 35 °, φ2 = 0 ° is azimuth 1, φ1 = 0 °, Φ = 35 °, φ2 = 30 ° is azimuth 2, and φ1 = 90 ° Φ = 35 °, φ2 = 30 ° as azimuth 3, φ1 = 65 °, Φ = 30 °, φ2 = 0 ° as azimuth 4, φ1 = 90 °, Φ = 90 °, φ2 = 0 ° as azimuth 5 To do.
 図2Aは、α相結晶粒の結晶方位1を示す概念図である。図2Bは、α相結晶粒の結晶方位2を示す概念図である。方位1と方位2は、従来材で認められる主なα相結晶粒の集合組織の方位である。これらの方位は、α相結晶粒(六方晶)のC軸が圧延面の法線方向から板幅方向(TD方向)に35°傾いた方位を示す。これらの方位に集積した集合組織がチタン板の強度異方性を引き起こしている。尚、図2Aおよび図2Bは、上記結晶方位の理解のために、α相結晶粒の方位1と方位2との違いを概念的に示したものであり、傾きや角度等において必ずしも正確に示したものではない。 FIG. 2A is a conceptual diagram showing the crystal orientation 1 of the α phase crystal grains. FIG. 2B is a conceptual diagram showing the crystal orientation 2 of the α-phase crystal grains. Orientation 1 and orientation 2 are the orientations of the texture of the main α phase crystal grains recognized in the conventional material. These orientations indicate orientations in which the C axis of α-phase crystal grains (hexagonal crystals) is inclined by 35 ° from the normal direction of the rolling surface to the plate width direction (TD direction). The texture accumulated in these orientations causes the strength anisotropy of the titanium plate. 2A and 2B conceptually show the difference between the orientation 1 and the orientation 2 of the α-phase crystal grains for understanding the above crystal orientation, and are not necessarily shown accurately in terms of inclination and angle. Not a thing.
 本発明者らは、これらの集積に対して、圧延面の法線方向から板幅方向ではなく、圧延方向(RD方向)に傾斜した方位にあるα相結晶粒と、圧延面の法線方向から圧延方向と板幅方向の間の方向に傾斜した方位にあるα相結晶粒を新たに特定の量比で形成させることによって、圧延方向に比べて板幅方向の強度が高い従来の面内の強度異方性を効果的に低減させて、チタン板の成形性を向上できることを見出した。 The present inventors, for these accumulations, α phase crystal grains in an orientation inclined in the rolling direction (RD direction) rather than the sheet width direction from the normal direction of the rolling surface, and the normal direction of the rolling surface In the conventional in-plane, the strength in the plate width direction is higher than that in the rolling direction by newly forming α phase crystal grains in an orientation inclined in the direction between the rolling direction and the plate width direction at a specific quantity ratio. It was found that the strength anisotropy of the steel plate can be effectively reduced to improve the formability of the titanium plate.
 なお、その結晶粒の結晶方位を規定する主相のα相の他、BCC構造(体心立方構造)のβ相を面積率で数%程度含んでもよく、その結晶方位は特に規定しない。 In addition to the α phase of the main phase that defines the crystal orientation of the crystal grains, the β phase of the BCC structure (body-centered cubic structure) may be included in an area ratio of about several percent, and the crystal orientation is not particularly specified.
 以下、本実施形態についてさらに詳しく説明する。 Hereinafter, this embodiment will be described in more detail.
 チタン板は、一方向に圧延しコイル状に生産されることが一般的であり、チタン板にプレス成形を施し、部材を製造する場合、部材の長手方向をチタン板の圧延方向と一致させ、圧延方向(部材の長手方向)を成形時の主ひずみ方向とすることが望まれる。 The titanium plate is generally rolled in one direction and produced in a coil shape.When the titanium plate is press-molded to produce a member, the longitudinal direction of the member is made to coincide with the rolling direction of the titanium plate, It is desired that the rolling direction (longitudinal direction of the member) be the main strain direction during molding.
 ところが、従来材は、板幅方向を主ひずみ方向とした場合に成形性に優れ、圧延方向を主ひずみ方向とした場合に成形性が大きく低下するものであった。このような課題に対して、本発明は、圧延方向を主ひずみ方向として、圧延方向の成形性を向上させるものである。 However, the conventional material has excellent formability when the plate width direction is the main strain direction, and the formability is greatly reduced when the rolling direction is the main strain direction. In response to such a problem, the present invention improves the formability in the rolling direction with the rolling direction as the main strain direction.
 従来材にて認められる結晶粒の集合組織の方位は、主として方位1と方位2である。これらの方位は、α相結晶粒(六方晶)のC軸が圧延面の法線方向から板幅方向に35°傾いた方位を示す。これらの集合組織は板幅方向の成形性を向上させ、逆に圧延方向の成形性の低下を招いていると考え、集合組織の改善を検討し、成形性向上を実現し得る集合組織の状態を見出した。 The orientations of the texture of crystal grains recognized in conventional materials are mainly orientation 1 and orientation 2. These orientations indicate orientations in which the C axis of α-phase crystal grains (hexagonal crystals) is inclined by 35 ° in the plate width direction from the normal direction of the rolling surface. These textures improve the formability in the width direction of the sheet, and conversely reduce the formability in the rolling direction.Consider improving the texture and improving the formability. I found.
 すなわち、方位1と方位2を有する結晶粒の面積率を相対的に減らし、C軸が圧延面の法線方向から圧延方向、もしくは圧延方向から板幅方向の間の方向に傾斜した方位を持つ結晶粒の組織を新たに形成させた。そして、方位1、方位2を有する結晶粒よりも、新たに形成した方位を有する結晶粒の面積率を十分に大きくすることによって、圧延方向の成形性を向上させることができることを見出した。新たに形成する結晶粒の方位としては、複数の可能性が存在し、同等の強度異方性の低減効果が得られることが想定された。そこで、検討を重ねた結果、上記の方位3、方位4、方位5を選択して、規定することとしたものである。 That is, the area ratio of the crystal grains having orientation 1 and orientation 2 is relatively reduced, and the C axis has an orientation inclined in the rolling direction from the normal direction of the rolling surface or in the direction between the rolling direction and the sheet width direction. A crystal grain structure was newly formed. And it discovered that the moldability of a rolling direction could be improved by fully increasing the area ratio of the crystal grain which has the newly formed direction rather than the crystal grain which has the direction 1 and the direction 2. FIG. There are several possibilities for the orientation of newly formed crystal grains, and it was assumed that the same effect of reducing strength anisotropy could be obtained. Therefore, as a result of repeated studies, the above-mentioned orientation 3, orientation 4, and orientation 5 are selected and defined.
 すなわち、方位1、方位2とは別に、圧延面の法線方向から圧延方向に傾斜した方位に相当する方位3、圧延面の法線方向から圧延方向と板幅方向の間の方向に傾斜した方位に相当する方位4、更にC軸が圧延方向と平行に配向していることに相当する方位5に着目する。これら5つの方位において、それぞれ15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率を算出する。得られた方位1、方位2、方位3、方位4、方位5を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率を、それぞれA1、A2、A3、A4、A5とする。 That is, apart from the azimuth 1 and azimuth 2, the azimuth 3, which corresponds to the azimuth inclined in the rolling direction from the normal direction of the rolling surface, is inclined in the direction between the rolling direction and the sheet width direction from the normal direction of the rolling surface. Attention is paid to the azimuth 4 corresponding to the azimuth and the azimuth 5 corresponding to the C-axis being oriented parallel to the rolling direction. In these five orientations, the area ratio of the area of crystal grains each having an orientation within 15 ° to the total area of all α-phase crystal grains is calculated. The area ratio of the area of the crystal grains having an orientation within 15 ° centering on the obtained orientation 1, orientation 2, orientation 3, orientation 4, and orientation 5 with respect to the total area of all α-phase grains is defined as A1, A2, Let A3, A4, and A5.
 このとき、本発明者らは、下記式(2)を満足すると、面内の強度異方性を低減させ、更には、圧延方向の強度向上を可能とし、圧延方向の成形性を向上できることを見出した。
 1.5≦(A3+A4+A5)/(A1+A2)≦30・・・(2)
At this time, if the present inventors satisfy the following formula (2), the in-plane strength anisotropy is reduced, and further, the strength in the rolling direction can be improved, and the formability in the rolling direction can be improved. I found it.
1.5 ≦ (A3 + A4 + A5) / (A1 + A2) ≦ 30 (2)
 ここで、各方位を中心に15°以内の方位を有する結晶粒とは、各方位を中心に15°以内の範囲にあるすべての結晶粒を意味する。 Here, the crystal grains having an orientation within 15 ° centered on each orientation mean all crystal grains within a range of 15 ° around each orientation.
 (A1+A2)は従来材で認められる主な集合組織の方位を有する結晶粒の面積率の総和を示している。一方、(A3+A4+A5)は、方位3、方位4、方位5で規定される結晶方位を有する結晶粒の面積率の総和を示しており、圧延方向の成形性向上に寄与する。それらの比である(A3+A4+A5)/(A1+A2)が1.5よりも小さい場合は、十分な圧延方向の成形性が得られない。(A3+A4+A5)/(A1+A2)は、好ましくは3.0超であり、更に好ましくは6.0超である。一方、(A3+A4+A5)/(A1+A2)は、現実的に30を超えることはないため、30以下とする。 (A1 + A2) indicates the total area ratio of crystal grains having the main texture orientation recognized in the conventional material. On the other hand, (A3 + A4 + A5) indicates the total area ratio of crystal grains having crystal orientations defined by orientation 3, orientation 4, and orientation 5, and contributes to improvement of formability in the rolling direction. When the ratio (A3 + A4 + A5) / (A1 + A2) is smaller than 1.5, sufficient formability in the rolling direction cannot be obtained. (A3 + A4 + A5) / (A1 + A2) is preferably more than 3.0, more preferably more than 6.0. On the other hand, (A3 + A4 + A5) / (A1 + A2) does not actually exceed 30, so it is set to 30 or less.
 また、本発明者らは、下記式(3)を満足すると、更に圧延方向の成形性を向上できることを見出した。
 1.0<A3/(A1+A2)≦10・・・(3)
In addition, the present inventors have found that when the following formula (3) is satisfied, the formability in the rolling direction can be further improved.
1.0 <A3 / (A1 + A2) ≦ 10 (3)
 A3/(A1+A2)は、従来材で認められる主な集合組織の方位を有する結晶粒の面積率に対する方位3で規定される方位を有する結晶粒の面積率の比率を示している。A3/(A1+A2)が1.0以下の場合、十分な圧延方向の成形性が得られない。A3/(A1+A2)は好ましくは2.0超である。一方、A3/(A1+A2)は、現実的に10を超えることはないため、10以下とする。 A3 / (A1 + A2) represents the ratio of the area ratio of the crystal grains having the orientation defined by the orientation 3 to the area ratio of the crystal grains having the main texture orientation recognized in the conventional material. When A3 / (A1 + A2) is 1.0 or less, sufficient formability in the rolling direction cannot be obtained. A3 / (A1 + A2) is preferably greater than 2.0. On the other hand, A3 / (A1 + A2) does not actually exceed 10, and is 10 or less.
 さらに、φ1=50°、Φ=90°、φ2=0°を方位6とする。方位6は、C軸が圧延面の法線に対して垂直で、かつ圧延方向から板幅方向に向かって40°回転させた方向に平行な方位である。前記の方位5の集積度を、この方位6の集積度よりも高くすることによって、圧延方向の成形性をさらに向上できることを見出した。 Furthermore, let φ1 = 50 °, Φ = 90 °, and φ2 = 0 ° be orientation 6. The azimuth 6 is an azimuth parallel to a direction in which the C axis is perpendicular to the normal line of the rolling surface and rotated by 40 ° from the rolling direction toward the sheet width direction. It has been found that the formability in the rolling direction can be further improved by making the degree of integration in the direction 5 higher than that in the direction 6.
 すなわち、方位6を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率をA6としたときに、前記A5とA6が下記式(4)を満足することが好ましい。
 (A5-A6)>0・・・(4)
 (A5-A6)は好ましくは1.0以上である。
That is, when the area ratio of the area of crystal grains having an orientation within 15 ° with respect to the orientation 6 to the total area of all α-phase crystal grains is A6, the A5 and A6 satisfy the following formula (4). It is preferable.
(A5-A6)> 0 ... (4)
(A5-A6) is preferably 1.0 or more.
 結晶方位分布関数にて表されるオイラー角は、SEM/EBSD測定法(後記)を用いて、方位解析によって求めることが出来る。ここではBungeの表記方法を用い、α相結晶粒のC軸と圧延板の板厚方向(圧延面の法線方向)が平行であり、α相結晶粒の[1010]方向(柱面の法線方向)と圧延板の圧延方向が平行である状態を、φ1=0°、Φ=0°、φ2=0°と定義した。 The Euler angle represented by the crystal orientation distribution function can be obtained by orientation analysis using the SEM / EBSD measurement method (described later). Here, the Bunge notation method is used, and the C-axis of the α-phase crystal grain and the plate thickness direction of the rolled sheet (normal direction of the rolling surface) are parallel, and the [1010] direction (column surface method) of the α-phase crystal grain. The state in which the rolling direction of the rolled plate is parallel to the linear direction was defined as φ1 = 0 °, Φ = 0 °, and φ2 = 0 °.
 また、圧延方向とは、コイル状の場合は素材の長手方向を指す。素材が板状に切断されている場合は、板面に平行な方向に引張試験を行ったときに、0.2%耐力が最大値を示す方向を圧延方向と便宜上定義する。 Also, the rolling direction refers to the longitudinal direction of the material in the case of a coil shape. When the material is cut into a plate shape, the direction in which the 0.2% proof stress shows the maximum value when the tensile test is performed in the direction parallel to the plate surface is defined as the rolling direction for convenience.
 前記の式(2)、式(3)および式(4)を満足する結晶粒の集合組織は、後記するように、製造時に、化学組成、最終冷間圧延条件、最終焼鈍条件を制御することによって得ることができる。 As will be described later, the texture of the crystal grains satisfying the above formulas (2), (3), and (4) is controlled at the time of production by chemical composition, final cold rolling conditions, and final annealing conditions. Can be obtained by:
 なお、式(2)、式(3)および式(4)を満足するかどうかの判定は、通常、後記するように、板厚中心部(板厚中心から、板厚×(±10)%の範囲)での測定結果に基づいて行う。しかし、原則的には、板厚の場所に依らずに満足される式である。 It should be noted that the determination as to whether or not Expression (2), Expression (3), and Expression (4) are satisfied is usually as follows: thickness center portion (from thickness center to sheet thickness × (± 10)% ) Based on the measurement results. However, in principle, the equation is satisfied regardless of the thickness.
 (α相結晶粒の円相当直径:平均値5~80μm、最大値300μm以下)
 本実施形態に係るチタン板は、α相結晶粒の粒径が粗大化しすぎると、たとえ強度異方性を低減しても、成形性の劣化を引き起こす。特に板厚が薄くなるに従い、板厚方向に占める結晶粒の数が減り、成形性の劣化が顕著になる。
(Equivalent circle diameter of α phase crystal grains: average value 5 to 80 μm, maximum value 300 μm or less)
In the titanium plate according to this embodiment, if the α phase crystal grains are too coarse, the formability is deteriorated even if the strength anisotropy is reduced. In particular, as the plate thickness decreases, the number of crystal grains occupying in the plate thickness direction decreases, and the formability deteriorates significantly.
 したがって、α相結晶粒の円相当直径(結晶粒の断面と同じ面積の円の直径)は、平均値で5~80μmであり、かつ最大値で300μm以下とする。α相結晶粒の円相当直径は、平均値で60μm以下が好ましく、40μm以下が更に好ましい。また、α相結晶粒の円相当直径は、最大値で250μm以下が好ましく、200μm以下がより好ましい。また、α相結晶粒の円相当直径の最大値は板厚にも依存しており、板厚の1/4以下程度が好ましい。 Therefore, the circle equivalent diameter of the α-phase crystal grains (the diameter of the circle having the same area as the cross section of the crystal grains) is 5 to 80 μm on the average and 300 μm or less on the maximum. The circle equivalent diameter of the α phase crystal grains is preferably 60 μm or less, more preferably 40 μm or less, on average. Further, the circle equivalent diameter of the α-phase crystal grains is preferably 250 μm or less, more preferably 200 μm or less, at the maximum value. Further, the maximum value of the equivalent circle diameter of the α-phase crystal grains also depends on the plate thickness, and is preferably about 1/4 or less of the plate thickness.
 前記のα相の結晶粒径(α相結晶粒の円相当直径)は、後記するように、製造時の最終焼鈍条件を調整することによって制御することができる。また、α相の結晶粒径は、チタン板の任意の断面において測定できるものであるが、板材の場合には、通常、チタン板の圧延面に平行な面を観察することにより測定する。具体的には、チタン板の表面(板面)を研磨して観察面とし、この面に走査電子顕微鏡(SEM)で電子線を走査しながら電子後方散乱回折(Electron Backscatter Diffraction:EBSD)法にてEBSDパターンを測定して、解析する。方位差10°以上の境界を結晶粒界と認識して、この結晶粒界で囲まれた領域を結晶粒とする。 The crystal grain size of the α phase (the equivalent circle diameter of the α phase crystal grains) can be controlled by adjusting the final annealing conditions at the time of production, as will be described later. The α-phase crystal grain size can be measured in an arbitrary cross section of the titanium plate. In the case of a plate material, it is usually measured by observing a plane parallel to the rolling surface of the titanium plate. Specifically, the surface (plate surface) of the titanium plate is polished to form an observation surface, and an electron backscatter diffraction (EBSD) method is performed while scanning an electron beam on the surface with a scanning electron microscope (SEM). The EBSD pattern is measured and analyzed. A boundary having an orientation difference of 10 ° or more is recognized as a crystal grain boundary, and a region surrounded by the crystal grain boundary is defined as a crystal grain.
 (板厚:1.0mm以下)
 本実施形態に係るチタン板は、熱交換器用プレート等の溝形状を設ける成形を施すのに適するため、板厚は1.0mm以下が好ましい。チタン板は、板厚が1.0mmを超えると、細かな溝形状を成形により設ける場合、シワが発生しやすくなるため、所望の精緻な溝形状が得られにくくなる。また、成形時の変形抵抗が高くなったり、コストが増大する。チタン板の板厚は、成形性やコストの観点から0.7mm以下がより好ましい。一方、チタン板の板厚は、熱交換器用プレート並びに燃料電池用セパレータとして実用的な強度を得やすくするため、0.05mm以上が好ましい。チタン板の板厚は、強度をより向上させる観点から、0.07mm以上がより好ましい。
(Thickness: 1.0mm or less)
Since the titanium plate according to the present embodiment is suitable for forming a groove shape such as a heat exchanger plate, the plate thickness is preferably 1.0 mm or less. When the thickness of the titanium plate exceeds 1.0 mm, when a fine groove shape is provided by molding, wrinkles are likely to occur, and it becomes difficult to obtain a desired precise groove shape. Moreover, the deformation resistance at the time of shaping | molding becomes high, or cost increases. The thickness of the titanium plate is more preferably 0.7 mm or less from the viewpoint of moldability and cost. On the other hand, the thickness of the titanium plate is preferably 0.05 mm or more in order to easily obtain practical strength as a heat exchanger plate and a fuel cell separator. The thickness of the titanium plate is more preferably 0.07 mm or more from the viewpoint of further improving the strength.
 本実施形態のチタン板を用いて、伝熱効率や軽量化効果に優れた熱交換器用プレート並びに燃料電池用セパレータを形成することができる。 Using the titanium plate of this embodiment, it is possible to form a heat exchanger plate and a fuel cell separator that are excellent in heat transfer efficiency and weight reduction effect.
 具体的には、チタン板の板厚t(mm)としたときに、ピッチが4t~40t、深さが5t~15tである溝を、1本または2本以上を設けることにより、従来よりも複雑な形状を成形することができる。すなわち、溝を深くしたり、溝の幅を狭くしてピッチを狭くしたり、任意の模様を形成することなどが可能となる。そのことによって、成形されたチタン板の表面積を増大させることができ、熱媒体(液体、気体)の流れを均質化し、優れた伝熱効率を発現する熱交換器用プレート並びに燃料電池用セパレータを得ることができる。さらに、同様の伝熱効率であっても、高強度化に応じて薄肉化でき、軽量の熱交換器用プレート並びに燃料電池用セパレータを得ることができる。 Specifically, when the thickness of the titanium plate is set to t (mm), by providing one or more grooves having a pitch of 4t to 40t and a depth of 5t to 15t, it is more than conventional. Complex shapes can be formed. That is, it becomes possible to deepen the groove, narrow the groove width to narrow the pitch, or form an arbitrary pattern. As a result, the surface area of the formed titanium plate can be increased, the flow of the heat medium (liquid, gas) is homogenized, and a heat exchanger plate and a fuel cell separator exhibiting excellent heat transfer efficiency are obtained. Can do. Furthermore, even with the same heat transfer efficiency, the thickness can be reduced as the strength increases, and a lightweight heat exchanger plate and a fuel cell separator can be obtained.
 〔チタン板の製造方法〕
 本実施形態に係るチタン板は、従来のチタン板と同様に、公知の方法にて、インゴットを分塊圧延し、熱間圧延を行って所望の板厚とし、さらに特定の条件で焼鈍、冷間圧延および最終焼鈍を行って製造することができる。
[Production method of titanium plate]
The titanium plate according to the present embodiment, like the conventional titanium plate, is obtained by subjecting the ingot to ingot rolling and hot rolling to a desired thickness by a known method, and further annealing and cooling under specific conditions. It can be produced by hot rolling and final annealing.
 図3は、本実施形態のチタン板の製造方法を示す工程フロー図である。この工程フロー図に基づいて以下に説明する。なお、以下に特に記載した条件や方法以外は、従来公知の条件や方法を適用することができる。なお、図3において、各符号は、S1:チタン材料製造工程、S2:熱間圧延工程、S3:焼鈍工程、S5:冷間圧延工程、S6:中間焼鈍工程、S8:最終冷間圧延工程、S9:最終焼鈍工程を示す。 FIG. 3 is a process flow diagram showing a method for manufacturing a titanium plate of the present embodiment. This will be described below based on this process flow chart. In addition, conventionally well-known conditions and methods can be applied except the conditions and methods specifically described below. In addition, in FIG. 3, each code | symbol is S1: Titanium material manufacturing process, S2: Hot rolling process, S3: Annealing process, S5: Cold rolling process, S6: Intermediate annealing process, S8: Final cold rolling process, S9: Shows the final annealing step.
 (チタン材料製造工程S1)
 まず、チタン材料製造工程S1において、従来公知の方法で、鋳塊(インゴット)を製造し、この鋳塊を分塊鍛造または分塊圧延する。例えば、まず、所定成分の原料を消耗電極式真空アーク溶解法(VAR法)、プラズマアーク溶解法(PAM法)、電子ビーム溶解法(EB法)によって溶解させた後、鋳造してチタン鋳塊を得る。この鋳塊を所定の大きさのブロック形状に分塊鍛造(熱間鍛造)または分塊圧延する。Fe等の化学成分については前記の通りであり、溶解時に所定成分に調整する。
(Titanium material manufacturing process S1)
First, in the titanium material manufacturing step S1, an ingot is manufactured by a conventionally known method, and the ingot is subjected to ingot forging or ingot rolling. For example, first, raw materials of predetermined components are melted by a consumable electrode type vacuum arc melting method (VAR method), a plasma arc melting method (PAM method), and an electron beam melting method (EB method), and then cast into a titanium ingot. Get. This ingot is subjected to block forging (hot forging) or block rolling into a block shape of a predetermined size. The chemical component such as Fe is as described above, and is adjusted to a predetermined component at the time of dissolution.
 (熱間圧延工程S2)
 次の熱間圧延工程S2において、このブロック形状にした鋳塊を、例えば700~1050℃に加熱して熱間圧延を行って熱延板を得る。
(Hot rolling process S2)
In the next hot rolling step S2, the block-shaped ingot is heated to, for example, 700 to 1050 ° C. and hot rolled to obtain a hot rolled sheet.
 (焼鈍工程S3)
 次に、焼鈍工程S3において、得られた熱延板を650℃以上、800℃未満で保持して焼鈍する。他の条件は公知の条件を適用する。
 尚、後記する中間焼鈍工程S6を行うときは、必要に応じて、焼鈍工程S3を省略することができる。
(Annealing step S3)
Next, in the annealing step S3, the obtained hot-rolled sheet is annealed while being held at 650 ° C. or higher and lower than 800 ° C. As other conditions, known conditions are applied.
In addition, when performing intermediate annealing process S6 mentioned later, annealing process S3 can be abbreviate | omitted as needed.
 (板厚の判定S4)
 ここで、板厚の判定を行う(S4)。
 素材が相対的に軟質な場合、または所望の板厚が相対的に厚く、熱延後焼鈍からの圧下率が小さい場合は、中間焼鈍を行う必要は無い。そのため、焼鈍工程S3の後、後記する最終冷間圧延工程S8、最終焼鈍工程S9へと進む。
(Thickness determination S4)
Here, the plate thickness is determined (S4).
If the material is relatively soft, or if the desired plate thickness is relatively thick and the rolling reduction from annealing after hot rolling is small, there is no need to perform intermediate annealing. Therefore, after annealing process S3, it progresses to final cold rolling process S8 and final annealing process S9 which are mentioned later.
 しかし、素材が硬質な場合、または熱延後焼鈍からの圧下率が大きくなると、冷間圧延時に割れが生じ易いため、以下に記載するように、途中で中間焼鈍が必要となる。 However, if the material is hard, or if the reduction ratio from the annealing after hot rolling becomes large, cracking is likely to occur during cold rolling, so intermediate annealing is required in the middle as described below.
 後記するように、チタン板の結晶粒組織を特定の構造に制御するためには、中間焼鈍を行う方が好ましい。 As will be described later, in order to control the crystal grain structure of the titanium plate to a specific structure, it is preferable to perform the intermediate annealing.
 (冷間圧延工程S5、中間焼鈍工程S6、板厚の判定S7)
 熱延板は、通常、熱延後の焼鈍工程S3の後、冷間圧延工程S5と中間焼鈍工程S6を繰り返し行って、所望の板厚とされる。中間焼鈍の要否や必要な回数は素材や冷間圧延の圧下率による。中間焼鈍の回数は、通常は1~4回が好ましく、2~4回がより好ましい。
(Cold rolling step S5, intermediate annealing step S6, plate thickness determination S7)
The hot-rolled sheet is usually formed into a desired sheet thickness by repeatedly performing the cold rolling process S5 and the intermediate annealing process S6 after the annealing process S3 after hot rolling. The necessity of intermediate annealing and the required number of times depend on the material and the cold rolling reduction ratio. The number of intermediate annealing is usually preferably 1 to 4 times, and more preferably 2 to 4 times.
 (中間焼鈍工程S6)
 ここでは、中間焼鈍を1回行う場合を例に取って説明する。
 中間焼鈍工程S6は、その後の冷間圧延性を向上させるために、素材を軟化させることが主な目的である。そのため、通常は、再結晶温度域(通常500℃から850℃の範囲)で処理され、高温短時間(820℃程度で数分間)または低温長時間(600℃程度で数十時間以上)で処理される。
(Intermediate annealing step S6)
Here, the case where intermediate annealing is performed once will be described as an example.
The intermediate annealing step S6 is mainly intended to soften the material in order to improve the subsequent cold rollability. Therefore, it is usually processed in the recrystallization temperature range (usually in the range of 500 ° C to 850 ° C), and processed at high temperature for a short time (about 820 ° C for several minutes) or low temperature for a long time (about 600 ° C for several tens of hours or more). Is done.
 中間焼鈍工程S6は、大気、真空、不活性ガス、還元性ガスのいずれの雰囲気下で行ってもよい。また、中間焼鈍工程S6は、バッチ炉、連続炉のいずれでも行うこともできる。また、特に大気雰囲気下で焼鈍(大気焼鈍)した場合は、チタン板(熱延板)表面にスケールが付着しているので、次工程(中間焼鈍であれば後続の冷間圧延工程)に進む前に、スケール除去工程として、例えばソルト熱処理、酸洗処理等を行うことが好ましい。 The intermediate annealing step S6 may be performed under any atmosphere of air, vacuum, inert gas, or reducing gas. Further, the intermediate annealing step S6 can be performed in either a batch furnace or a continuous furnace. In particular, when annealing (atmospheric annealing) is performed in an air atmosphere, the scale is attached to the surface of the titanium plate (hot rolled plate), so the process proceeds to the next step (the subsequent cold rolling step if intermediate annealing). Before the scale removal step, for example, salt heat treatment, pickling treatment, or the like is preferably performed.
 (冷間圧延工程S5、最終冷間圧延工程S8)
 本実施形態に係るチタン板の冷間圧延(冷間圧延工程S5、最終冷間圧延工程S8)による総圧下率(熱間圧延板に対する加工率)は、20~98%とする。なお、冷間圧延の途中で、前記中間焼鈍を複数回行っても良い。
(Cold rolling step S5, final cold rolling step S8)
The total rolling reduction (working ratio for the hot-rolled sheet) by cold rolling (cold rolling step S5, final cold rolling step S8) of the titanium plate according to this embodiment is set to 20 to 98%. The intermediate annealing may be performed a plurality of times during the cold rolling.
 また、最終の中間焼鈍後の冷間圧延、すなわち、最終冷間圧延工程S8における圧下率を20~87%とする。このことによって所望のα相結晶粒の集合組織が形成される。このとき、圧下率が87%を超えると、以下に記載する最終焼鈍を施しても、所望のα相結晶粒組織を得ることができない。最終冷間圧延工程S8における圧下率は、50~87%が好ましく、更に好ましくは、50~70%である。 Further, the rolling reduction after the final intermediate annealing, that is, the rolling reduction in the final cold rolling step S8 is set to 20 to 87%. As a result, a desired texture of α-phase crystal grains is formed. At this time, if the rolling reduction exceeds 87%, a desired α-phase grain structure cannot be obtained even if the final annealing described below is performed. The rolling reduction in the final cold rolling step S8 is preferably 50 to 87%, and more preferably 50 to 70%.
 また、熱間圧延工程S2から最終冷間圧延工程S8直前までに施される冷間圧延での圧下率は、最終冷間圧延工程S8における圧下率を超えないことが好ましい。 Moreover, it is preferable that the rolling reduction in the cold rolling performed from the hot rolling step S2 to immediately before the final cold rolling step S8 does not exceed the rolling reduction in the final cold rolling step S8.
 (最終焼鈍工程S9)
 本実施形態に係るチタン板は、最終焼鈍工程S9において、温度および時間を調整して、α相の結晶粒径および強度異方性を制御することが好ましい。そのために、焼鈍温度はβ変態点(Tβ)以上950℃未満とする。β変態点とは、α相の全てが消失してβ相となる最低温度であり、チタン材の化学組成(Fe含有量等)によって変化する。
(Final annealing step S9)
In the final annealing step S9, the titanium plate according to the present embodiment preferably adjusts the temperature and time to control the crystal grain size and strength anisotropy of the α phase. Therefore, the annealing temperature is set to the β transformation point (Tβ) or more and less than 950 ° C. The β transformation point is the lowest temperature at which all of the α phase disappears and becomes the β phase, and changes depending on the chemical composition (Fe content, etc.) of the titanium material.
 先行技術における焼鈍工程S3および中間焼鈍工程S6においては、前記した通り、純チタン材の一般的な焼鈍条件は、再結晶が進行する600℃以上で、かつβ変態点未満の850℃以下である。このように、β相の分率を増大させないことで、α相の結晶粒の成長が阻害されずに等軸粒状に成長する。 In the annealing step S3 and the intermediate annealing step S6 in the prior art, as described above, the general annealing condition of the pure titanium material is 600 ° C. or higher at which recrystallization proceeds and 850 ° C. or lower below the β transformation point. . Thus, by not increasing the fraction of β phase, the growth of α phase crystal grains is not hindered and grows in equiaxed granular form.
 これに対して、本実施形態に係る最終焼鈍においては、β変態点以上すなわちβ単相域に加熱することによって、冷延板全体をβ相に変態させる。その後に、冷却することで、β相からα相に変態させる。このような条件を採用することによって、所望のα相結晶粒の集合組織が形成され、強度異方性を低減させることができる。ただし、β単相域において温度が高いほどβ相の結晶粒の成長が促進され、950℃以上になると粗大化し、これに伴い、その後に形成されるα相の結晶粒も粗大化する。また、前記焼鈍温度での保持時間が長くなるにしたがい、β相の結晶粒が大きくなり、180秒間を超えると粗大化する。したがって、最終焼鈍工程における焼鈍温度(保持温度)はβ変態点以上950℃未満とし、この温度範囲での保持時間は0~180秒間が好ましい。最終焼鈍後の冷却条件は、10℃/秒以上が好ましい。 In contrast, in the final annealing according to the present embodiment, the entire cold-rolled sheet is transformed into the β phase by heating to the β transformation point or higher, that is, the β single phase region. Then, it transforms from the β phase to the α phase by cooling. By adopting such conditions, a desired α-phase crystal grain texture is formed, and strength anisotropy can be reduced. However, the higher the temperature in the β single-phase region, the more the growth of β-phase crystal grains is promoted. Further, as the holding time at the annealing temperature becomes longer, the β-phase crystal grains become larger and become coarser after 180 seconds. Accordingly, the annealing temperature (holding temperature) in the final annealing step is set to the β transformation point or higher and lower than 950 ° C., and the holding time in this temperature range is preferably 0 to 180 seconds. The cooling condition after the final annealing is preferably 10 ° C./second or more.
 なお、保持時間が0秒間とは、冷延板を加熱してβ変態点に到達したら直ちに冷却することを意味している。最終焼鈍工程S9は、大気、真空、不活性ガス、還元性ガスのいずれの雰囲気下で行ってもよい。なお、大気焼鈍した場合は、冷却後に、前記したようにスケール除去工程を行うことが好ましい。 Note that the holding time of 0 seconds means that the cold rolled plate is heated and cooled as soon as the β transformation point is reached. The final annealing step S9 may be performed in any atmosphere of air, vacuum, inert gas, or reducing gas. In addition, when it anneals to air | atmosphere, it is preferable to perform a scale removal process as above-mentioned after cooling.
 以上説明してきたように、本実施形態に係るチタン板の製造方法において、チタン板のα相結晶粒組織を制御する上で、特に特徴的な条件は、(1)チタン材料製造工程S1において、([Fe]-0.020)/[O]を0.68以上とすること、(2)最終焼鈍工程S9において、焼鈍温度をβ変態点以上950℃未満とし、保持時間を0~180秒間とすること、(3)最終冷間圧延工程S8における圧下率を20~87%とすることの3点である。 As described above, in the method for manufacturing a titanium plate according to the present embodiment, in controlling the α phase crystal grain structure of the titanium plate, particularly characteristic conditions are (1) titanium material manufacturing step S1. ([Fe] −0.020) / [O] is set to 0.68 or more, (2) In the final annealing step S9, the annealing temperature is set to the β transformation point or more and less than 950 ° C., and the holding time is 0 to 180 seconds. (3) The reduction ratio in the final cold rolling step S8 is set to 20 to 87%.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明のチタン板は、合金組成が、Fe:0.020~1.000質量%、O:0.020~0.200質量%、残部がチタンおよび不可避的不純物から構成され、HCP構造であるα相の結晶粒組織を含むチタン板であって、Fe濃度(質量%)を[Fe]、O濃度(質量%)を[O]で表した場合に、下記式(1)を満足し、
 ([Fe]-0.020)/[O]≧0.68・・・(1)
を満足し、α相結晶粒の結晶方位を結晶方位分布関数で表した場合に、φ1=0°、Φ=35°、φ2=0°を方位1、φ1=0°、Φ=35°、φ2=30°を方位2、φ1=90°、Φ=35°、φ2=30°を方位3、φ1=65°、Φ=30°、φ2=0°を方位4、φ1=90°、Φ=90°、φ2=0°を方位5とし、各方位を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率をそれぞれA1、A2、A3、A4、A5としたときに、下記式(2)を満足し、
 1.5≦(A3+A4+A5)/(A1+A2)≦30・・・(2)
前記α相結晶粒の円相当直径の平均値が5~80μmであり、かつ最大値が300μm以下であることを特徴としている。
The titanium plate of the present invention has an HCP structure in which the alloy composition is Fe: 0.020 to 1.000 mass%, O: 0.020 to 0.200 mass%, and the balance is composed of titanium and inevitable impurities. When the titanium plate includes an α-phase crystal grain structure and the Fe concentration (mass%) is represented by [Fe] and the O concentration (mass%) is represented by [O], the following formula (1) is satisfied:
([Fe] −0.020) / [O] ≧ 0.68 (1)
When the crystal orientation of the α-phase crystal grains is expressed by a crystal orientation distribution function, φ1 = 0 °, φ = 35 °, φ2 = 0 ° is orientation 1, φ1 = 0 °, φ = 35 °, φ2 = 30 ° is azimuth 2, φ1 = 90 °, Φ = 35 °, φ2 = 30 ° is azimuth 3, φ1 = 65 °, Φ = 30 °, φ2 = 0 ° is azimuth 4, φ1 = 90 °, Φ = 90 °, φ2 = 0 ° as orientation 5, and the area ratios of the area of crystal grains having an orientation within 15 ° around each orientation with respect to the total area of all α-phase grains are A1, A2, A3, A4, respectively. , A5, the following formula (2) is satisfied,
1.5 ≦ (A3 + A4 + A5) / (A1 + A2) ≦ 30 (2)
The α-phase crystal grains have an average equivalent circle diameter of 5 to 80 μm and a maximum value of 300 μm or less.
 このような構成のチタン板であれば、面内の強度異方性が少なく、強度と成形性とを併せ持つチタン板とすることができる。なお、本発明のチタン板は、下記に列挙するいずれかの一つ以上の構成をさらに有していてもよい。それにより、前記利点に加えて、さらなる効果を奏することもできると考えられる。 If the titanium plate has such a structure, the in-plane strength anisotropy is small, and a titanium plate having both strength and formability can be obtained. The titanium plate of the present invention may further have any one or more of the structures listed below. Thereby, in addition to the above advantages, it is considered that further effects can be achieved.
 上述のチタン板は、下記式(3)を満足することが好ましい。
 1.0<A3/(A1+A2)≦10・・・(3)
The titanium plate described above preferably satisfies the following formula (3).
1.0 <A3 / (A1 + A2) ≦ 10 (3)
 このような構成のチタン板であれば、更に圧延方向の成形性を向上させたチタン板とすることができる。 If the titanium plate has such a configuration, it can be a titanium plate with improved formability in the rolling direction.
 また、上述したいずれかのチタン板は、φ1=50°、Φ=90°、φ2=0°を方位6とし、方位6を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率をA6としたときに、下記式(4)を満足することが好ましい。
 (A5-A6)>0・・・(4)
In addition, any one of the titanium plates described above has φ1 = 50 °, φ = 90 °, φ2 = 0 ° as an orientation 6, and an entire α phase of crystal grains having an orientation within 15 ° with the orientation 6 as the center. When the area ratio with respect to the total area of the crystal grains is A6, it is preferable to satisfy the following formula (4).
(A5-A6)> 0 ... (4)
 このような構成のチタン板であれば、更に圧延方向の成形性に優れたチタン板とすることができる。 If the titanium plate has such a configuration, it can be a titanium plate that is further excellent in formability in the rolling direction.
 また、上述したいずれかのチタン板は、N:0.050質量%以下、C:0.100質量%以下、Al:1.000質量%以下のいずれか1種以上を、さらに含有することが好ましい。 Any of the titanium plates described above may further contain one or more of N: 0.050 mass% or less, C: 0.100 mass% or less, and Al: 1.000 mass% or less. preferable.
 このような構成のチタン板であれば、チタン板の強度をより向上させることが可能となる。さらにAlの添加により耐熱性を向上させることが可能となる。 If the titanium plate has such a configuration, the strength of the titanium plate can be further improved. Furthermore, heat resistance can be improved by adding Al.
 さらに、上述したいずれかのチタン板は、板厚が1.0mm以下であることが好ましい。このような構成のチタン板であれば、さらなる成形性の向上と軽量化を図ることができる。 Furthermore, it is preferable that any of the titanium plates described above has a plate thickness of 1.0 mm or less. If it is a titanium plate of such a structure, the improvement of a further moldability and weight reduction can be achieved.
 また、本発明の熱交換器用プレートは、上述したいずれかのチタン板を用いた熱交換器用プレートであって、板厚t(mm)としたときに、ピッチが4t~40t、深さが5t~15tである溝を、1本または2本以上有することが好ましい。 The heat exchanger plate of the present invention is a heat exchanger plate using any of the titanium plates described above, and when the plate thickness is t (mm), the pitch is 4t to 40t and the depth is 5t. It is preferable to have one or more grooves of up to 15t.
 このような熱交換器用プレートは、伝熱効率や軽量化効果に優れたものである。 Such a heat exchanger plate is excellent in heat transfer efficiency and weight reduction effect.
 また、本発明の燃料電池用セパレータは、上述したいずれかのチタン板を用いた燃料電池用セパレータであって、板厚t(mm)としたときに、ピッチが4t~40t、深さが5t~15tである溝を、1本または2本以上有することが好ましい。 The fuel cell separator of the present invention is a fuel cell separator using any of the titanium plates described above, and when the plate thickness is t (mm), the pitch is 4t to 40t and the depth is 5t. It is preferable to have one or more grooves of up to 15t.
 このような燃料電池用セパレータは、伝熱効率や軽量化効果に優れたものである。 Such a fuel cell separator is excellent in heat transfer efficiency and weight reduction effect.
 以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲内で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 As mentioned above, although the form for implementing this invention was described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. It should be noted that the present invention is not limited by this embodiment, and can be implemented with modifications within the scope of the claims, all of which are included in the technical scope of the present invention. .
 〔試験材の作製〕
 純チタン(JIS H4600(2012))鋳塊、および純チタン鋳塊にFe、Oなどを含有させ、残部がチタンおよび不可避的不純物からなる原料をCCIM(コールドクルーシブル誘導溶解法)により溶解し、鋳造して、表1に示す組成のチタン鋳塊を得た。このチタン鋳塊を、公知の条件で、分塊鍛造(熱間鍛造)して熱間圧延、焼鈍を施して、板厚4.0mmの熱延板とした。熱延板の表面のスケールを除去し、750℃で中間焼鈍し、表1に示す条件で最終冷間圧延、最終焼鈍を施し、ソルトバス処理および酸洗による脱スケール処理を行い、板厚0.45mmの試験材(試験材No.1~12)を得た。また、試験材の組成に基づき、β変態点(Tβ)を熱力学計算ソフト「ThermoCalc」を用いて算出し、表1に併記した。
[Production of test materials]
Pure titanium (JIS H4600 (2012)) ingot and pure titanium ingot contain Fe, O, etc., and the raw material consisting of titanium and inevitable impurities is melted by CCIM (Cold Crucible Induction Melting Method) Thus, a titanium ingot having the composition shown in Table 1 was obtained. This titanium ingot was subjected to partial forging (hot forging), hot rolling and annealing under known conditions to obtain a hot rolled sheet having a thickness of 4.0 mm. The scale of the surface of the hot-rolled sheet is removed, intermediate annealing is performed at 750 ° C., final cold rolling and final annealing are performed under the conditions shown in Table 1, and descaling processing is performed by salt bath treatment and pickling. .45 mm test materials (test materials No. 1 to 12) were obtained. Further, based on the composition of the test material, the β transformation point (Tβ) was calculated using the thermodynamic calculation software “ThermoCalc” and is also shown in Table 1.
 (α相の集合組織と結晶粒径の測定)
 試験材の表面(板面)を研磨して、板厚1/2部(板厚中心部)の圧延面において、1.6mm角(圧延方向、圧延幅方向に各1.6mm)の領域に対して、EBSDによる組織観察を行った。EBSD測定は、FE-SEM/EBSD法にて実施した。測定データについて、EBSDデータ解析ソフトを用いて解析し、集合組織と結晶粒径を測定した。尚、EBSD測定の対象となる結晶粒の最小粒径は1.5μmとした。
(Measurement of α phase texture and crystal grain size)
The surface (sheet surface) of the test material is polished, and the area is 1.6 mm square (1.6 mm each in the rolling direction and the rolling width direction) on the rolled surface having a thickness of 1/2 part (the center of the sheet thickness). On the other hand, tissue observation by EBSD was performed. The EBSD measurement was performed by the FE-SEM / EBSD method. The measurement data was analyzed using EBSD data analysis software, and the texture and crystal grain size were measured. Note that the minimum grain size of the crystal grains to be subjected to EBSD measurement was 1.5 μm.
 集合組織について、SEM-EBSDの解析ソフトを用いて、結晶方位分布関数(Orientatio Distribution Function:ODF)による解析を行い、6つのオイラー角で表記する特定の結晶粒の結晶方位(方位1、方位2、方位3、方位4、方位5、方位6)を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率(A1、A2、A3、A4、A5、A6)を測定した。その数値から、(A3+A4+A5)/(A1+A2)、A3/(A1+A2)、(A5-AA6)を算出した。その結果を表2に示した。 The texture is analyzed by SEM-EBSD analysis software using a crystal orientation distribution function (Orientio Distribution Function: ODF), and crystal orientations of specific crystal grains expressed by six Euler angles (azimuth 1, azimuth 2). , Azimuth 3, azimuth 4, azimuth 5, azimuth 6) with respect to the total area of all α-phase grains (A1, A2, A3, A4, A5, A6) was measured. From the numerical values, (A3 + A4 + A5) / (A1 + A2), A3 / (A1 + A2), and (A5-AA6) were calculated. The results are shown in Table 2.
 ここで、オイラー角表記にはBungeの表記方法を用い、α相結晶粒のC軸と圧延板の板厚方向(圧延面の法線方向)が平行であり、α相結晶粒の[10-10]方向(柱面の法線方向)と圧延板の圧延方向が平行である状態を、φ1=0°、Φ=0°、φ2=0°と定義した。一方、結晶粒径は、同様にSEM/EBSD測定結果を基に、方位差10°以上の境界を結晶粒界と設定して、結晶粒の円相当直径として算出した。 Here, Bunge's notation method is used for Euler angle notation, and the C-axis of the α-phase crystal grain and the plate thickness direction of the rolled sheet (normal direction of the rolling surface) are parallel, and [10− 10] The state in which the direction (normal direction of the column surface) and the rolling direction of the rolled sheet are parallel was defined as φ1 = 0 °, Φ = 0 °, and φ2 = 0 °. On the other hand, the crystal grain size was similarly calculated based on the SEM / EBSD measurement result as a circle equivalent diameter of a crystal grain by setting a boundary having an orientation difference of 10 ° or more as a crystal grain boundary.
 α相結晶粒の円相当直径の平均値の算出においては、EBSD測定結果を元に、α相と同定されたデータ点を元に、方位差10°以上の境界を結晶粒界と認識して、この結晶粒界で囲まれた領域を結晶粒とし、画像解析にて、各結晶粒の円相当直径を算出した。このとき、測定結果にノイズ(正確に同定されなかった測定点)が含まれるため、その影響を除去するために、大きい結晶粒から順に抽出していき、α相と同定された総面積の95%の面積を初めて超えたときの大きさの結晶粒までを平均粒径の算出母数とした。 In calculating the average value of the equivalent circle diameter of α phase crystal grains, based on the EBSD measurement results, based on the data points identified as α phase, the boundary with an orientation difference of 10 ° or more is recognized as the grain boundary. The region surrounded by the crystal grain boundary was defined as a crystal grain, and the equivalent circle diameter of each crystal grain was calculated by image analysis. At this time, noise (measurement points that were not accurately identified) is included in the measurement result, so in order to remove the influence, extraction is performed in order from large crystal grains, and 95 of the total area identified as α phase. % Up to the crystal grain size when it exceeded the area for the first time was used as the calculated parameter of the average grain size.
 α相結晶粒の円相当直径の最大値の算出においては、同データを元に、大きい結晶粒から順に5番目までの結晶粒の平均値を最大値とした。 In the calculation of the maximum value of the equivalent circle diameter of the α-phase crystal grains, the average value of the fifth crystal grains in order from the largest crystal grains was taken as the maximum value based on the same data.
 円相当直径の平均値および最大値を表2に示した。なお、表1、表2において、下線を引いた数値は、本発明の規定から外れている数値であることを示している。 The average and maximum values of equivalent circle diameters are shown in Table 2. In Tables 1 and 2, the numbers underlined indicate that the values deviate from the definition of the present invention.
 〔性能評価〕
 (引張試験)
 試験材から、JIS Z2201(2011)に規定される13号試験片を切り出した。JIS H4600(2012)に基づいて、室温で圧延方向(RD)を荷重軸方向とした室温引張試験を実施して、0.2%耐力(YS)を測定した。結果を表2に示した。170MPa以上を合格とした。
[Performance evaluation]
(Tensile test)
A No. 13 test piece specified in JIS Z2201 (2011) was cut out from the test material. Based on JIS H4600 (2012), a room temperature tensile test was performed at room temperature with the rolling direction (RD) as the load axis direction, and 0.2% yield strength (YS) was measured. The results are shown in Table 2. 170 MPa or more was accepted.
 (成形性の評価)
 成形性の評価は、各試験材に対してプレート式熱交換器の熱交換部分(プレート)を模擬した成形金型を用いたプレス成形を行うことで評価した。図4は、成形性の評価を行なうための成形金型の形状を示す模式的平面図である。図5は、成形性の評価を行なうための成形金型の形状を示す図4のE-Eの模式的断面図である。図4、図5に示すように、成形金型の形状は、成形部が100mm×100mmで、ピッチ17mm、最大深さ6.5mmの綾線部を4本有し、各綾線部は頂点に、R=2.5mmのR形状を有している。
(Evaluation of formability)
The moldability was evaluated by performing press molding using a molding die simulating a heat exchange part (plate) of a plate heat exchanger for each test material. FIG. 4 is a schematic plan view showing the shape of a molding die for evaluating moldability. FIG. 5 is a schematic cross-sectional view taken along the line EE of FIG. 4 showing the shape of a molding die for evaluating moldability. As shown in FIG. 4 and FIG. 5, the shape of the molding die is 100 mm × 100 mm in the molded part, four twill lines with a pitch of 17 mm and a maximum depth of 6.5 mm, and each twill line is apex. Further, it has an R shape with R = 2.5 mm.
 この成形金型を用いて80tonプレス機によってプレス成形を行った。プレス成形は各試験材の両面に潤滑のために防錆油を塗布し、各試験材の圧延方向が図4の上下方向と一致するように下側の金型の上に配置した。そして、フランジ部を板押さえで拘束した後、プレス速度1mm/秒の条件で金型を押込んだ。金型は、0.1mm間隔で押込み、割れが発生しない最大の押し込み深さ量(E:単位mm)を実験で求めた。そして、下式によって、成形性指標(F)を算出した。その結果を表2に示した。成形性指標(F)が正の値となる場合は、強度と成形性のバランスに優れていることを示しており、合格と判定した。
 F=E-(G-H×YS)
 G=7.70、H=0.0120
 YS=RD方向(圧延方向)の0.2%耐力を無次元化した数値
 E=最大押込み深さ量を無次元化した数値
Using this molding die, press molding was performed by an 80-ton press. In press molding, rust preventive oil was applied to both surfaces of each test material for lubrication, and the test material was placed on the lower mold so that the rolling direction of each test material coincided with the vertical direction of FIG. And after constraining the flange portion with a plate press, the mold was pushed in under the condition of a press speed of 1 mm / sec. The mold was pushed in at intervals of 0.1 mm, and the maximum amount of indentation depth (E: unit mm) at which no cracks occurred was determined by experiment. Then, the formability index (F) was calculated by the following formula. The results are shown in Table 2. When the moldability index (F) is a positive value, it indicates that the balance between strength and moldability is excellent, and it was determined to be acceptable.
F = E- (GH × YS)
G = 7.70, H = 0.0120
YS = Numerical value of 0.2% proof stress in the RD direction (rolling direction) E = Numerical value of the maximum indentation depth
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、本発明の実施例である試験材No.1~6は、α相の結晶粒の円相当直径および集合組織状態(式(2)、式(3)、式(4)の数値)が本発明の範囲内であり、優れた強度と成形性をバランスよく保持していた。 As shown in Table 1 and Table 2, test material No. which is an example of the present invention. In Nos. 1 to 6, the equivalent-circle diameter and texture state of the α-phase crystal grains (numerical values in the formulas (2), (3), and (4)) are within the scope of the present invention, and have excellent strength and molding He had a good balance of sex.
 これに対して、試験材No.7は、最終焼鈍温度がβ変態点を下回り、α相結晶粒の円相当直径の平均値が小さく、集合組織の発達が十分ではなく、成形性が低かった。試験材No.8、11は、([Fe]-0.020)/[O]が下限値を下回り、更に、最終焼鈍温度がβ変態点を下回り、集合組織の発達が十分ではなく、成形性が低かった。また、試験材No.11は、OやFeの含有量が比較的小さいため、0.2%耐力においても低いものであった。試験材No.9は、([Fe]-0.020)/[O]が下限値を下回り、更に、最終焼鈍温度が上限値を上回り、α相結晶粒の円相当直径の最大値が上限値を超えており、集合組織の発達が十分ではなく、成形性が低かった。試験材No.10、12は、最終焼鈍は適正に行われたものの、([Fe]-0.020)/[O]が下限値を下回り、集合組織の発達が十分ではなく、成形性が低かった。 In contrast, test material No. In No. 7, the final annealing temperature was below the β transformation point, the average value of the circle equivalent diameter of the α phase crystal grains was small, the texture was not sufficiently developed, and the formability was low. Test material No. In Nos. 8 and 11, ([Fe] -0.020) / [O] was below the lower limit, the final annealing temperature was below the β transformation point, the texture was not sufficiently developed, and the moldability was low. . In addition, test material No. No. 11 was low in 0.2% proof stress because the O and Fe contents were relatively small. Test material No. No. 9, ([Fe] -0.020) / [O] is below the lower limit, the final annealing temperature is above the upper limit, and the maximum equivalent circle diameter of the α phase grains exceeds the upper limit. The texture was not sufficiently developed and the moldability was low. Test material No. In Nos. 10 and 12, although final annealing was performed properly, ([Fe] -0.020) / [O] was below the lower limit, the texture was not sufficiently developed, and the formability was low.
 この出願は、2016年4月5日に出願された日本国特許出願特願2016-076121を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2016-076112 filed on Apr. 5, 2016, the contents of which are included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、チタン板、熱交換器並びに燃料電池用セパレータ等に関する技術分野において、広範な産業上の利用可能性を有する。
 
The present invention has wide industrial applicability in the technical fields related to titanium plates, heat exchangers, fuel cell separators, and the like.

Claims (7)

  1.  合金組成が、Fe:0.020~1.000質量%、O:0.020~0.200質量%、残部がチタンおよび不可避的不純物から構成され、HCP構造であるα相の結晶粒組織を含むチタン板であって、
     Fe濃度(質量%)を[Fe]、O濃度(質量%)を[O]で表した場合に、下記式(1)を満足し、
     ([Fe]-0.020)/[O]≧0.68・・・(1)
     α相結晶粒の結晶方位を結晶方位分布関数で表した場合に、φ1=0°、Φ=35°、φ2=0°を方位1、φ1=0°、Φ=35°、φ2=30°を方位2、φ1=90°、Φ=35°、φ2=30°を方位3、φ1=65°、Φ=30°、φ2=0°を方位4、φ1=90°、Φ=90°、φ2=0°を方位5とし、各方位を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率をそれぞれA1、A2、A3、A4、A5としたときに、下記式(2)を満足し、
     1.5≦(A3+A4+A5)/(A1+A2)≦30・・・(2)
     前記α相結晶粒の円相当直径の平均値が5~80μmであり、かつ最大値が300μm以下であることを特徴とするチタン板。
    The alloy composition is Fe: 0.020 to 1.000% by mass, O: 0.020 to 0.200% by mass, the balance is composed of titanium and inevitable impurities, and the crystal grain structure of the α-phase having the HCP structure Including a titanium plate,
    When the Fe concentration (mass%) is represented by [Fe] and the O concentration (mass%) is represented by [O], the following formula (1) is satisfied:
    ([Fe] −0.020) / [O] ≧ 0.68 (1)
    When the crystal orientation of the α-phase crystal grain is expressed by a crystal orientation distribution function, φ1 = 0 °, φ = 35 °, φ2 = 0 ° is orientation 1, φ1 = 0 °, φ = 35 °, φ2 = 30 ° Azimuth 2, φ1 = 90 °, Φ = 35 °, φ2 = 30 ° azimuth 3, φ1 = 65 °, Φ = 30 °, φ2 = 0 ° azimuth 4, φ1 = 90 °, Φ = 90 °, φ2 = 0 ° is the orientation 5, and the area ratio of the area of the crystal grains having the orientation within 15 ° around each orientation to the total area of all α-phase grains is A1, A2, A3, A4, and A5, respectively. Sometimes the following formula (2) is satisfied,
    1.5 ≦ (A3 + A4 + A5) / (A1 + A2) ≦ 30 (2)
    A titanium plate, wherein an average equivalent circle diameter of the α-phase crystal grains is 5 to 80 μm and a maximum value is 300 μm or less.
  2.  下記式(3)を満足することを特徴とする請求項1に記載のチタン板。
     1.0<A3/(A1+A2)≦10・・・(3)
    The titanium plate according to claim 1, wherein the following formula (3) is satisfied.
    1.0 <A3 / (A1 + A2) ≦ 10 (3)
  3.  φ1=50°、Φ=90°、φ2=0°を方位6とし、方位6を中心に15°以内の方位を有する結晶粒の面積の全α相結晶粒の総面積に対する面積率をA6としたときに、下記式(4)を満足することを特徴とする請求項1に記載のチタン板。
     (A5-A6)>0・・・(4)
    The area ratio of the area of the crystal grains having an orientation within 15 ° around the orientation 6 with φ1 = 50 °, φ = 90 °, and φ2 = 0 ° as the center and the total area of all α-phase crystal grains as A6 The titanium plate according to claim 1, wherein the following formula (4) is satisfied.
    (A5-A6)> 0 ... (4)
  4.  前記チタン板は、N:0.050質量%以下、C:0.100質量%以下、Al:1.000質量%以下のいずれか1種以上を、さらに含有することを特徴とする請求項1に記載のチタン板。 The titanium plate further contains any one or more of N: 0.050 mass% or less, C: 0.100 mass% or less, and Al: 1.000 mass% or less. The titanium plate described in 1.
  5.  板厚が1.0mm以下であることを特徴とする請求項1に記載のチタン板。 The titanium plate according to claim 1, wherein the plate thickness is 1.0 mm or less.
  6.  請求項1~5のいずれか1項に記載のチタン板を用いた熱交換器用プレートであって、板厚t(mm)としたときに、ピッチが4t~40t、深さが5t~15tである溝を、1本または2本以上有することを特徴とする熱交換器用プレート。 A heat exchanger plate using the titanium plate according to any one of claims 1 to 5, wherein when the plate thickness is t (mm), the pitch is 4t to 40t and the depth is 5t to 15t. A heat exchanger plate having one or two or more grooves.
  7.  請求項1~5のいずれか1項に記載のチタン板を用いた燃料電池用セパレータであって、板厚t(mm)としたときに、ピッチが4t~40t、深さが5t~15tである溝を、1本または2本以上有することを特徴する燃料電池用セパレータ。 A fuel cell separator using the titanium plate according to any one of claims 1 to 5, wherein when the plate thickness is t (mm), the pitch is 4t to 40t and the depth is 5t to 15t. A fuel cell separator having one groove or two or more grooves.
PCT/JP2017/011020 2016-04-05 2017-03-17 Titanium plate, heat exchanger plate, and fuel cell separator WO2017175569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016076121 2016-04-05
JP2016-076121 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017175569A1 true WO2017175569A1 (en) 2017-10-12

Family

ID=60001018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011020 WO2017175569A1 (en) 2016-04-05 2017-03-17 Titanium plate, heat exchanger plate, and fuel cell separator

Country Status (2)

Country Link
JP (1) JP2017186672A (en)
WO (1) WO2017175569A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157842A1 (en) * 2021-01-20 2022-07-28 日本製鉄株式会社 Titanium plate
WO2023084746A1 (en) * 2021-11-12 2023-05-19 日本製鉄株式会社 Titanium plate
WO2024048002A1 (en) * 2022-08-30 2024-03-07 日本製鉄株式会社 Titanium alloy sheet and eye glasses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285267A (en) * 2001-03-23 2002-10-03 Nippon Steel Corp Titanium for copper foil production drum having excellent surface layer part structure and production method therefor
WO2015046084A1 (en) * 2013-09-24 2015-04-02 株式会社神戸製鋼所 Titanium plate
JP2016108652A (en) * 2014-11-28 2016-06-20 株式会社神戸製鋼所 Titanium plate, heat exchanger plate and fuel cell separator
WO2016152935A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Titanium plate, plate for heat exchanger, and separator for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285267A (en) * 2001-03-23 2002-10-03 Nippon Steel Corp Titanium for copper foil production drum having excellent surface layer part structure and production method therefor
WO2015046084A1 (en) * 2013-09-24 2015-04-02 株式会社神戸製鋼所 Titanium plate
JP2016108652A (en) * 2014-11-28 2016-06-20 株式会社神戸製鋼所 Titanium plate, heat exchanger plate and fuel cell separator
WO2016152935A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Titanium plate, plate for heat exchanger, and separator for fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157842A1 (en) * 2021-01-20 2022-07-28 日本製鉄株式会社 Titanium plate
JP7495645B2 (en) 2021-01-20 2024-06-05 日本製鉄株式会社 Titanium Plate
WO2023084746A1 (en) * 2021-11-12 2023-05-19 日本製鉄株式会社 Titanium plate
WO2024048002A1 (en) * 2022-08-30 2024-03-07 日本製鉄株式会社 Titanium alloy sheet and eye glasses

Also Published As

Publication number Publication date
JP2017186672A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
WO2016152935A1 (en) Titanium plate, plate for heat exchanger, and separator for fuel cell
JP5700650B2 (en) Pure titanium plate with excellent balance between press formability and strength
TWI732529B (en) Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing roller, and copper foil manufacturing roller manufacturing method
JP6263040B2 (en) Titanium plate
JP5625646B2 (en) Titanium plate excellent in rigidity in the rolling width direction and method for producing the same
JP7448776B2 (en) Titanium alloy thin plate and method for producing titanium alloy thin plate
WO2015046084A1 (en) Titanium plate
WO2017175569A1 (en) Titanium plate, heat exchanger plate, and fuel cell separator
JP5988899B2 (en) Titanium plate and method for producing titanium plate
JP6577707B2 (en) Titanium plate, heat exchanger plate, fuel cell separator, and titanium plate manufacturing method
JP2017190480A (en) Titanium sheet
JP5531931B2 (en) Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof
JP2016108652A (en) Titanium plate, heat exchanger plate and fuel cell separator
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP2016023315A (en) Titanium plate and manufacturing method therefor
TWI796118B (en) Titanium alloy plate and titanium alloy coil and manufacturing method of titanium alloy plate and titanium alloy coil
JP6623950B2 (en) Titanium plate excellent in balance between proof stress and ductility and method for producing the same
WO2023127073A1 (en) α+β TYPE TITANIUM ALLOY SHAPED MATERIAL AND MANUFACTURING METHOD THEREOF
WO2023145050A1 (en) Titanium alloy plate
JP3951564B2 (en) Hot rolled titanium plate for surface member of electrolytic deposition drum and method for producing the same
WO2020261436A1 (en) Titanium alloy plate and golf club head
CN116724136A (en) Titanium alloy sheet and method for producing titanium alloy sheet
CN118202075A (en) Titanium plate
JP2023162898A (en) β TITANIUM ALLOY
JP2023040457A (en) Titanium alloy plate and method for producing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778948

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778948

Country of ref document: EP

Kind code of ref document: A1