JP2013177651A - Heat-resistant titanium alloy cold-rolling stock excellent in cold rollability and cold handleability and production method therefor - Google Patents

Heat-resistant titanium alloy cold-rolling stock excellent in cold rollability and cold handleability and production method therefor Download PDF

Info

Publication number
JP2013177651A
JP2013177651A JP2012041464A JP2012041464A JP2013177651A JP 2013177651 A JP2013177651 A JP 2013177651A JP 2012041464 A JP2012041464 A JP 2012041464A JP 2012041464 A JP2012041464 A JP 2012041464A JP 2013177651 A JP2013177651 A JP 2013177651A
Authority
JP
Japan
Prior art keywords
cold
rolling
titanium alloy
heat
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012041464A
Other languages
Japanese (ja)
Other versions
JP5660061B2 (en
Inventor
Kenichi Mori
健一 森
Hiroaki Otsuka
広明 大塚
Satoru Kawakami
哲 川上
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012041464A priority Critical patent/JP5660061B2/en
Publication of JP2013177651A publication Critical patent/JP2013177651A/en
Application granted granted Critical
Publication of JP5660061B2 publication Critical patent/JP5660061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant titanium alloy cold-rolling stock having a higher impact resistance than a conventional one and excellent in cold rollability and cold handleability, at low cost.SOLUTION: A heat-resistant titanium alloy cold-rolling stock excellent in cold rollability and cold handleability is characterized in that a heat-resistant titanium alloy hot-rolled sheet contains, by mass, 0.2% to below 0.5% Si, 0.10% to less than 0.40% Fe, and 0.01% to less than 0.10% O, and has a maximum value of the distribution in the rolling direction of the (0002) plane orientation of the α phase tilting from the sheet normal direction to the rolling direction in the range of from 10° to less than 20°. This stock can be produced by performing unidirectional hot rolling at a heating temperature of 800°C to 870°C, at a final rolling temperature of 700°C or less, and at a reduction ratio of 95% or more. Thus, a heat-resistant titanium alloy sheet excellent in cold rollability and cold handleability can be produced more inexpensively than in a conventional case, to thereby obtain extensive utilization effects owing to its properties of lightness and high strength.

Description

本発明は、冷延性および冷間での取り扱い性に優れた耐熱チタン合金冷間圧延用素材及び耐熱チタン合金冷延焼鈍板並びにそれらその製造方法に関する。   The present invention relates to a heat-resistant titanium alloy cold-rolling material, a heat-resistant titanium alloy cold-rolled annealed plate excellent in cold-rollability and cold handleability, and a method for producing them.

チタン材の利用領域を拡大させるため、強度、加工性、耐熱性等の向上に安価な元素を少量添加するチタン合金の開発が行われている。なかでも自動車用マフラー材などの耐熱部品は、軽量・高強度であるチタン材の利点が活かせる適用例であり、また耐熱性や加工性が高いレベルで要求されることから新合金が多く開発されている。   In order to expand the application range of titanium materials, titanium alloys have been developed in which small amounts of inexpensive elements are added to improve strength, workability, heat resistance, and the like. In particular, heat-resistant parts such as automotive muffler materials are examples of applications where the advantages of lightweight and high-strength titanium materials can be utilized, and many new alloys have been developed because they require high levels of heat resistance and workability. Has been.

耐熱部材用のチタン材には、高温強度や耐酸化性を高めるために、Si、Cu、Fe、Sn、Nbといった合金元素が添加されており、Ti−Cu系(特許文献1)、Ti−Cu−Si系(特許文献2)、Ti−Fe−Si系(特許文献3)などの例がある。   In order to increase the high temperature strength and oxidation resistance, alloy elements such as Si, Cu, Fe, Sn, and Nb are added to the titanium material for the heat-resistant member, and Ti—Cu (Patent Document 1), Ti— Examples include Cu-Si (Patent Document 2) and Ti-Fe-Si (Patent Document 3).

特許文献2には、Cu:0.5〜1.8%、Si:0.1〜0.6%、酸素:0.1%以下を含有するチタン合金部材、および、その製造工程として熱延、冷延、最終焼鈍あるいは、熱延、熱延板焼鈍、冷延、最終焼鈍の工程を経るとの記載がある。   Patent Document 2 discloses a titanium alloy member containing Cu: 0.5 to 1.8%, Si: 0.1 to 0.6%, oxygen: 0.1% or less, and hot rolling as a manufacturing process thereof. , Cold rolling, final annealing or hot rolling, hot rolled sheet annealing, cold rolling, and final annealing are described.

Ti−Fe−Si系合金には、耐高温大気酸化性に優れたFeを含有する高強度、高延性チタン合金(特許文献4)や、高強度チタン合金およびその製品並びに該製品の製造方法(特許文献5)もあるが、Fe、Si、Oのいずれか、あるいは2種以上の元素を多く含有するため冷間加工性は低く、いずれにも冷間圧延に関する記載はない。   Ti-Fe-Si alloys include high-strength, high-ductility titanium alloys containing Fe excellent in high-temperature atmospheric oxidation resistance (Patent Document 4), high-strength titanium alloys and their products, and methods for producing the products ( Although there is Patent Document 5), cold workability is low because it contains any one of Fe, Si, O, or two or more elements, and there is no description regarding cold rolling.

SiやFeの添加は室温延性を低下させ、冷間での製造性を悪化させる。特に、冷間圧延時にエッジに生じる微小な割れを起因として、冷延中あるいは通板中にき裂が板幅方向に進展して板の破断を招き易くなり、冷延性が低下する。   Addition of Si or Fe lowers the room temperature ductility and worsens the manufacturability in the cold. In particular, due to minute cracks generated at the edge during cold rolling, cracks tend to break in the plate width direction during cold rolling or during sheet passing, leading to breakage of the plate, and cold rolling properties are reduced.

Cu、Nbは室温延性を阻害しにくいため、Cu単独あるいCuとNbを強化元素として用いる耐熱部材用の合金には冷延工程における課題は比較的生じにくいと考えられる。   Since Cu and Nb hardly inhibit room temperature ductility, it is considered that problems in the cold rolling process are relatively difficult to occur in alloys for heat-resistant members using Cu alone or Cu and Nb as reinforcing elements.

ところで、利用拡大に応じて大幅なコストダウンを達成するには、チタン合金素材の製造工程である溶解工程の選択も重要であり、工業的に用いられている消耗電極式真空アーク溶解法または電子ビーム溶解法またはプラズマアーク溶解法等の中では、電子ビーム溶解法が大量生産時の製造コストが安価であるといわれている。電子ビーム溶解法は、溶融金属と真空との接触面積が大きく時間も長いために、上記の耐熱部材用合金のうち、蒸気圧の高いCuを添加する合金を製造する場合には、Cu含有量を緻密に制御することは難しいと考えられる。   By the way, in order to achieve a significant cost reduction according to the expansion of use, it is also important to select a melting process that is a manufacturing process of a titanium alloy material. Among the beam melting method and the plasma arc melting method, it is said that the electron beam melting method has a low manufacturing cost in mass production. Since the electron beam melting method has a large contact area between the molten metal and vacuum and a long time, among the above alloys for heat-resistant members, when manufacturing an alloy to which Cu having a high vapor pressure is added, the Cu content It is thought that it is difficult to control precisely.

従って、SiやFeを含有し、製造性を確保するための方策が必要となる。操業的には、冷延の途中で耐衝撃性を回復させるために中間焼鈍を行い、再度冷延を続けることで破断トラブルを回避することが可能であるが、コスト高となる。   Therefore, it is necessary to take measures for containing Si and Fe and ensuring manufacturability. Operationally, it is possible to avoid fracture troubles by performing intermediate annealing to recover impact resistance during cold rolling and continuing cold rolling again, but this increases costs.

そこで、SiやFeを低減することなく耐熱性を維持したまま、冷延素材の耐衝撃性を高めることによって、中間焼鈍を行わないで目的とする厚みまで冷延する方法が求められている。   Therefore, there is a demand for a method of cold rolling to a target thickness without performing intermediate annealing by increasing the impact resistance of the cold rolled material while maintaining heat resistance without reducing Si and Fe.

また、マフラー部品に加工する際には、成形性の指標として、深絞り性と相間のあるr値(塑性ひずみ比)が用いられる。そこでr値を高める製造方法の確立も重要である。   Further, when processing into a muffler part, an r value (plastic strain ratio) having a deep drawability and a phase is used as an index of formability. It is therefore important to establish a manufacturing method that increases the r value.

特開2005−298970号公報JP 2005-298970 A 特開2009−68026号公報JP 2009-68026 A 米国特許7,767,040号公報US Patent 7,767,040 特開2001−89821号公報JP 2001-89821 A 特開平10−17961号公報JP 10-179161 A

本発明は、耐熱チタン合金板の冷間製造性を向上するために、熱延条件を適正に制御することによって、従来よりも耐衝撃性が高く冷延性および冷間での取り扱い性に優れた耐熱チタン合金板を低コストで提供するものである。   In order to improve the cold manufacturability of the heat-resistant titanium alloy sheet, the present invention has higher impact resistance than conventional and excellent cold-rollability and cold handling properties by appropriately controlling the hot-rolling conditions. A heat-resistant titanium alloy plate is provided at a low cost.

本発明者らは、上記目的を達成するために、冷間圧延用素材の微視組織が冷延性に与える影響を鋭意調査した。   In order to achieve the above-mentioned object, the present inventors diligently investigated the influence of the microstructure of the cold rolling material on the cold rolling property.

冷延中に生じるエッジの微小な割れに起因する板破断の容易さを判断する方法として、簡便的に、シャルピー衝撃試験を用いた。試験片長手方向を圧延方向とし、板厚を貫通するノッチを有し、板面に平行な方向にき裂が進展する2mmVノッチ衝撃試験片を用いて室温でシャルピー衝撃試験を行った場合の試験片によって吸収されるエネルギーを用いた。ここで、衝撃吸収エネルギーが高い方が、即ち、耐衝撃性が高い方が、靭性が高く、冷延加工性に優れることを示す。   A Charpy impact test was simply used as a method for determining the ease of plate breakage due to minute cracks in the edges that occur during cold rolling. Test when the Charpy impact test is performed at room temperature using a 2 mm V notch impact test piece in which the longitudinal direction of the test piece is the rolling direction, has a notch penetrating the plate thickness, and the crack propagates in a direction parallel to the plate surface The energy absorbed by the strip was used. Here, the higher the shock absorption energy, that is, the higher the impact resistance, the higher the toughness and the better the cold rolling workability.

一般には、熱間圧延材を焼鈍して延性を回復させることが、高い耐衝撃性を得るために有利であると考えられていた。   In general, it has been considered that annealing a hot-rolled material to restore ductility is advantageous for obtaining high impact resistance.

しかし、発明者らの試験の過程において、Ti−Si−Fe−O系耐熱チタン合金の主相である六方晶であるα相が、熱延板において特定の集合組織を有している場合には、冷延板の衝撃吸収エネルギーは高い値を維持することが明らかになった。すなわち、熱延後に焼鈍した板と、熱延ままの板を同じ圧下率で冷延した場合に、熱延まま材を冷延した方が高い耐衝撃性を示した。これは、熱延まま材のα相の(0002)結晶面の法線方向であるc軸方位が圧延方向に適度に傾斜して分散している一方で、焼鈍された熱延板のα相(0002)結晶面c軸方位は圧延方向には傾斜していないことと関係があると推察された。以下、α相(0002)結晶面法線方位を単に「c軸方位」と表すこととする。異方性の強い六方晶であるα相は、破面を形成しやすい方位が限られており、その方位が結晶粒ごとに分散されている場合には、破壊進展の過程で形成される破面の方位が細かく分散されることでより多量のエネルギーが消費されると推定される。従って、焼鈍を施すことで再結晶によって方位が揃い、c軸方位の圧延方向への傾斜が失われることは、本推定メカニズムの作用に対して、かえって不利となると考えられる。   However, when the α phase, which is a hexagonal crystal, which is the main phase of the Ti—Si—Fe—O heat-resistant titanium alloy, has a specific texture in the hot-rolled sheet in the process of the inventors' tests. It was clarified that the impact absorption energy of the cold-rolled sheet maintained a high value. That is, when a sheet annealed after hot rolling and a sheet as hot-rolled were cold-rolled at the same rolling reduction, the material cold-rolled as hot-rolled showed higher impact resistance. This is because the c-axis direction, which is the normal direction of the (0002) crystal plane of the α phase of the material as it is hot-rolled, is dispersed with an appropriate inclination in the rolling direction, while the α phase of the annealed hot-rolled sheet It was speculated that the (0002) crystal plane c-axis orientation is related to the fact that it is not inclined in the rolling direction. Hereinafter, the α phase (0002) crystal plane normal direction is simply referred to as “c-axis direction”. The α phase, which is a highly anisotropic hexagonal crystal, has a limited orientation in which fracture surfaces are likely to be formed, and if the orientation is dispersed for each crystal grain, the fracture formed in the process of fracture progression It is estimated that a larger amount of energy is consumed by finely distributing the orientation of the surface. Therefore, it is considered that the fact that the orientation is aligned by recrystallization and the inclination of the c-axis orientation in the rolling direction is lost by annealing is disadvantageous to the action of the present estimation mechanism.

また、上記のc軸方位が圧延方向に適度に傾斜する方位を形成するための熱延条件を検討し、その条件を得るに至った。   Moreover, the hot rolling conditions for forming an orientation in which the c-axis orientation is appropriately inclined in the rolling direction have been studied, and the conditions have been obtained.

以上のように、熱延板集合組織を適正に調整することで、冷延性および冷間での取り扱い性に優れた耐熱チタン合金板を製造可能なことを見出すにいたった。   As described above, it has been found that a heat-resistant titanium alloy plate excellent in cold rolling properties and cold handling properties can be produced by appropriately adjusting the hot rolled plate texture.

さらに、上記熱延板集合組織を調整された冷間圧延用素材を冷延し、r値を高めるための冷延板焼鈍条件の探索を行った。発明者らが鋭意検討した結果、従来、工業用純チタン等で行われる600〜700℃程度よりも高い温度で冷延板焼鈍を行うことで、より高いr値が得られることを見出した。   Furthermore, the cold-rolling raw material in which the hot-rolled sheet texture was adjusted was cold-rolled to search for cold-rolled sheet annealing conditions for increasing the r value. As a result of intensive studies by the inventors, it has been found that a higher r value can be obtained by performing cold-rolled sheet annealing at a temperature higher than about 600 to 700 ° C. conventionally performed with industrial pure titanium or the like.

本発明の要旨とするところは、以下のとおりである。
(1)質量%で、Si:0.2%以上0.5%未満、Fe:0.1%以上0.4%未満、O:0.01%以上0.10%未満を含み、残部がチタン及び不可避不純物からなるチタン合金熱延板において、α相の(0002)面方位の分布を圧延方向〜板垂直方向の断面で示した場合に、その分布の最大値が、板垂直方向から圧延方向に10°以上20°未満の範囲に傾斜していることを特徴とする冷延性および冷間での取り扱い性に優れた耐熱チタン合金冷間圧延用素材。
(2)(1)に記載の耐熱チタン合金熱延板の製造において、加熱温度を800℃以上870℃以下、圧延終了時の温度700℃以下、圧下率95%以上で一方向の熱間圧延を行うことを特徴とする冷延性および冷間での取り扱い性に優れた耐熱チタン合金冷間圧延用素材の製造方法。
(3)(1)に記載のチタン合金冷間圧延用素材であるチタン合金熱延板のスケールを除去した後、冷間圧延、焼鈍してなり、圧延方向の室温における引張り強度が500MPa未満、延びが30%以上、r値が1.7以上であり、かつ、700℃における引張り強度が50MPa以上を有することを特徴とする耐熱チタン合金冷延焼鈍板。
(4)(3)に記載の耐熱チタン合金冷延焼鈍板の製造方法であって、冷間圧延を圧下率40%以上で行い、焼鈍を700℃〜850℃の温度域で行うことを特徴とする耐熱チタン合金冷延焼鈍板の製造方法。
The gist of the present invention is as follows.
(1) In mass%, Si: 0.2% or more and less than 0.5%, Fe: 0.1% or more and less than 0.4%, O: 0.01% or more and less than 0.10%, the balance being In a titanium alloy hot-rolled sheet made of titanium and inevitable impurities, when the distribution of the (0002) plane orientation of the α phase is shown by a section from the rolling direction to the plate vertical direction, the maximum value of the distribution is rolled from the plate vertical direction. A heat-resistant titanium alloy cold-rolling material excellent in cold-rollability and cold handleability, characterized in that it is inclined in the range of 10 ° or more and less than 20 ° in the direction.
(2) In the production of the heat-resistant titanium alloy hot-rolled sheet according to (1), one-way hot rolling at a heating temperature of 800 ° C. or higher and 870 ° C. or lower, a temperature at the end of rolling of 700 ° C. or lower, and a reduction rate of 95% or higher. A method for producing a heat-resistant titanium alloy material for cold rolling excellent in cold-rollability and cold handleability.
(3) After removing the scale of the titanium alloy hot-rolled sheet, which is the material for cold rolling of the titanium alloy according to (1), cold rolling and annealing are performed, and the tensile strength at room temperature in the rolling direction is less than 500 MPa, A heat-resistant titanium alloy cold-rolled annealed plate having an elongation of 30% or more, an r value of 1.7 or more, and a tensile strength at 700 ° C. of 50 MPa or more.
(4) A method for producing a heat-resistant titanium alloy cold-rolled annealed sheet according to (3), wherein cold rolling is performed at a rolling reduction of 40% or more, and annealing is performed in a temperature range of 700 ° C to 850 ° C. A method for producing a heat-resistant titanium alloy cold-rolled annealed sheet.

本発明のチタン合金板は、耐熱性に優れたチタン合金板を安価に製造可能とするものであり、その製品を広範に利用することを可能にし、その効果を幅広く得ることが可能になることから、産業上の効果は計り知れない。   The titanium alloy plate of the present invention makes it possible to manufacture a titanium alloy plate having excellent heat resistance at low cost, making it possible to widely use the product and obtaining a wide range of effects. Therefore, the industrial effects are immeasurable.

α相(0002)結晶面 極点図α phase (0002) crystal face Pole figure c軸方位説明の図Illustration of c-axis orientation X線強度分布図X-ray intensity distribution chart X線測定装置及び試料配置概略図X-ray measuring device and sample arrangement schematic

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

本発明の耐熱チタン合金冷間圧延用素材では、まずチタン合金の組成として、Si、Fe、Oの含有量を規定している。これらの添加元素は、本発明のチタン合金冷間圧延用素材の冷延性を向上するとともに、同素材を冷間圧延、焼鈍した後に、製品である自動車用マフラー部品に加工される際あるいは利用される際に求められる室温における成形性と高温における強度、耐酸化性を高めるために有用である。   In the heat-resistant titanium alloy cold rolling material of the present invention, the contents of Si, Fe, and O are first defined as the composition of the titanium alloy. These additive elements improve the cold-rollability of the titanium alloy cold-rolling material of the present invention and are used or processed when the material is cold-rolled and annealed and then processed into an automotive muffler part. It is useful for improving the formability at room temperature, the strength at high temperature, and the oxidation resistance required for the production.

Siは、室温および高温における固溶強化、耐酸化性を向上させる。一方で、シリサイド相TixSiyを形成して、延性を低下させる元素である。高温強度および耐酸化性の確保には0.20%以上、好ましくは0.25%以上の添加が必要である。一方、室温延性の確保には0.50%未満に抑える必要がある。 Si improves solid solution strengthening and oxidation resistance at room temperature and high temperature. On the other hand, it is an element that forms a silicide phase Ti x Si y and reduces ductility. In order to ensure high temperature strength and oxidation resistance, addition of 0.20% or more, preferably 0.25% or more is necessary. On the other hand, to ensure room temperature ductility, it is necessary to suppress it to less than 0.50%.

Feは、β相を固溶強化するとともに、β相を形成することでα相の粒径拡大を抑制させる元素である。高温強度の確保には0.10%以上の添加が必要である。一方、室温延性を確保するためには0.40%未満に抑える必要がある。   Fe is an element that solid-solution strengthens the β phase and suppresses the expansion of the particle size of the α phase by forming the β phase. Addition of 0.10% or more is necessary for securing high-temperature strength. On the other hand, in order to ensure room temperature ductility, it is necessary to suppress to less than 0.40%.

Oは、α相を固溶強化する元素であり、添加量が多くなると室温延性が低下して加工性を悪化させる。そのため、0.10%未満とした。好ましくは、0.08%未満である。一方、強度を確保するためにO含有量下限を0.01%以上とする。好ましくは0.02%以上、より好ましくは0.03%以上である。   O is an element for solid solution strengthening of the α phase. When the addition amount is increased, the room temperature ductility is lowered and workability is deteriorated. Therefore, it was made into less than 0.10%. Preferably, it is less than 0.08%. On the other hand, in order to ensure strength, the lower limit of the O content is set to 0.01% or more. Preferably it is 0.02% or more, More preferably, it is 0.03% or more.

さらに、本発明はα相の集合組織を規定している。α相の集合組織は、X線回折によって測定された(0002)極点図によって表わされる。(0002)極点図の例を図1に示す。ここで、図2のように、圧延方向(RD)、圧延面法線方向(ND)、板幅方向(TD)とする。α相のc軸方位(α相(0002)結晶面法線方位)は、c軸がNDとなす角度θ、c軸とND方向を含む面がND方向とTD方向を含む面となす角度φを用いて表される。   Furthermore, the present invention defines an α-phase texture. The α phase texture is represented by a (0002) pole figure measured by X-ray diffraction. An example of a (0002) pole figure is shown in FIG. Here, as shown in FIG. 2, the rolling direction (RD), the rolling surface normal direction (ND), and the plate width direction (TD) are used. The α-phase c-axis orientation (α-phase (0002) crystal plane normal orientation) is the angle θ between the c-axis and the ND, and the angle φ between the plane including the c-axis and the ND direction and the plane including the ND and TD directions It is expressed using

図1に示す極点図は、θ=0〜90°、φ=0〜360°の範囲で各々5°間隔で数値化された(0002)X線反射相対強度の測定結果から表される。本発明で指標としたRD方向に関する分布は、RD方向とND方向を含む断面で、上記極点図を切り取ったもの、すなわち、φ=90°および270°、θ=0〜90°に相当する。φ=90°および270°は圧延前後方向で等価なため、各θにおけるφ=90°と270°のX線反射強度の平均値を用いる。抽出されたc軸方位の分布を、縦軸をφ=90および270°を平均化したX線反射強度、横軸をθとして図3に示す。図3において、図1の極点図をRD−ND断面で抽出したものが記号Aに相当し、別の例をRD−ND断面で抽出したものが記号Bに相当する。一般的に、記号AはSplit−RD−texture、記号BはB−textureと呼ばれる。   The pole figure shown in FIG. 1 is expressed from the measurement result of the (0002) X-ray reflection relative intensity that is quantified at intervals of 5 ° in the range of θ = 0 to 90 ° and φ = 0 to 360 °. The distribution relating to the RD direction as an index in the present invention corresponds to a cross section including the RD direction and the ND direction, and the above pole figure cut out, that is, φ = 90 ° and 270 °, θ = 0 to 90 °. Since φ = 90 ° and 270 ° are equivalent in the longitudinal direction of rolling, the average value of the X-ray reflection intensities at φ = 90 ° and 270 ° at each θ is used. The extracted c-axis orientation distribution is shown in FIG. 3 with the vertical axis representing the X-ray reflection intensity obtained by averaging φ = 90 and 270 ° and the horizontal axis representing θ. In FIG. 3, the pole figure of FIG. 1 extracted from the RD-ND cross section corresponds to the symbol A, and another example extracted from the RD-ND cross section corresponds to the symbol B. In general, the symbol A is called Split-RD-texture, and the symbol B is called B-texture.

本発明は、c軸方位(α相の(0002)面方位)の圧延方向に関する分布において、その最大値を示す方位とND方向のなす角度(θmax)が10°以上20°未満に傾斜していることとしている。図3の記号Aはθ=15°で最大値を示し、記号Bはθ=0°で最大値を示している。以後、このようなX線反射の最大値を与えるθ(θmax)を集積角と呼ぶ。α相の(0002)面方位分布の最大値を示す方位とND方向とのなす角度θmax、即ち集積角が10°より小さい場合、板厚の減少が困難になり塑性変形による衝撃吸収エネルギーが低下する。また、柱面に沿ったき裂進展を生じやすく、底面によるき裂進展方位の分散が生じにくくなるため、衝撃吸収エネルギーが低下する。   In the present invention, in the distribution of the c-axis orientation (α phase (0002) plane orientation) in the rolling direction, the angle (θmax) formed by the orientation indicating the maximum value and the ND direction is inclined at 10 ° or more and less than 20 °. It is going to be. The symbol A in FIG. 3 indicates the maximum value at θ = 15 °, and the symbol B indicates the maximum value at θ = 0 °. Hereinafter, θ (θmax) that gives such a maximum value of X-ray reflection is called an integration angle. If the angle θmax between the orientation indicating the maximum value of the (0002) plane orientation distribution of the α phase and the ND direction, that is, the integrated angle is smaller than 10 °, it is difficult to reduce the plate thickness, and the impact absorption energy due to plastic deformation decreases. To do. In addition, crack propagation along the column surface is likely to occur, and the crack propagation orientation is less likely to be dispersed by the bottom surface, so that the impact absorption energy is reduced.

一方、α相の(0002)面方位分布の最大値を示す方位とND方向とのなす角度θmax、即ち集積角が20°以上の場合には、板面内方位による異方性が増加し、特定の方向のき裂進展に対する抵抗は大きくなるが、異なる方向のき裂進展に対する抵抗は小さくなり、板の衝撃吸収エネルギーは低下する。結晶粒毎に板面内に不規則に分散する方位を形成すれば衝撃吸収エネルギーの低下は抑制できると推定されるが、展伸材の製造過程では特定の方位が発達する傾向があるため工業的に製造することは困難である。   On the other hand, when the angle θmax formed by the orientation indicating the maximum value of the (0002) plane orientation distribution of the α phase and the ND direction, that is, when the integration angle is 20 ° or more, anisotropy due to the in-plane orientation increases. Although resistance to crack growth in a specific direction increases, resistance to crack propagation in different directions decreases, and the impact absorption energy of the plate decreases. It is presumed that the impact absorption energy can be reduced by forming irregularly distributed orientations in the plate surface for each crystal grain. However, since a specific orientation tends to develop during the manufacturing process of wrought material, It is difficult to manufacture automatically.

α相の(0002)面方位分布の最大値を示す方位とND方向とのなす角度θmax、即ち集積角が10°以上20°未満の範囲であれば耐衝撃性が向上するが、その理由は、き裂の進展は、柱面あるいは底面に沿って不規則的に生じるため、き裂進展方向が分散されるためと推定される。   The impact resistance is improved if the angle θmax formed by the orientation indicating the maximum value of the (0002) plane orientation distribution of the α phase and the ND direction, that is, the integration angle is in the range of 10 ° or more and less than 20 °. It is presumed that crack propagation occurs irregularly along the column surface or bottom surface, so that the crack propagation direction is dispersed.

本発明の耐熱チタン合金冷間圧延用素材の製造方法について説明する。   The manufacturing method of the heat-resistant titanium alloy cold rolling raw material of this invention is demonstrated.

質量%で、Si:0.2%以上0.5%未満、Fe:0.10%以上0.40%未満、O:0.01%以上0.10%未満を含み、残部がチタン及び不可避不純物からなる熱延素材を用い、加熱温度を800℃以上870℃以下、圧延終了時の温度700℃以下、圧下率95%以上で一方向の熱間圧延を行うことにより、熱延板において、α相の(0002)面方位の分布を圧延方向〜板垂直方向の断面で示した場合に、その分布の最大値が、板垂直方向から圧延方向に10°以上20°未満の範囲に傾斜させることができる。   In mass%, Si: 0.2% or more and less than 0.5%, Fe: 0.10% or more and less than 0.40%, O: 0.01% or more and less than 0.10%, the balance being titanium and inevitable By using a hot-rolled material made of impurities, a heating temperature of 800 ° C. or higher and 870 ° C. or lower, a temperature at the end of rolling of 700 ° C. or lower, and hot rolling in one direction at a reduction rate of 95% or higher, When the distribution of the (0002) plane orientation of the α phase is shown in a cross section from the rolling direction to the plate vertical direction, the maximum value of the distribution is inclined from the plate vertical direction to the rolling direction in a range of 10 ° or more and less than 20 °. be able to.

このようにして製造した本発明の熱延板を焼鈍して再結晶すると、結晶粒径の拡大やc軸の圧延面法線方向、即ち、図2に示すND方向への集積が生じるため、焼鈍は行わない。c軸のND方向への集積が生じると衝撃吸収エネルギーが低下し、冷間加工性が劣化するためである。しかしながら、熱延組織が変化しない条件での熱延板焼鈍、例えば600℃以下、3分以下の焼鈍は否定しない。これより高温あるいは長時間の焼鈍を行うと再結晶を生じ、結晶粒の粗大化や特定の結晶方位の増加を招き、衝撃吸収エネルギーが低下するためである。圧下率95%以上は、熱延集合組織の形成に必要な圧下率を規定している。   When the hot-rolled sheet of the present invention thus produced is annealed and recrystallized, the crystal grain size increases and c-axis roll surface normal direction, that is, accumulation in the ND direction shown in FIG. No annealing is performed. This is because when the c-axis is accumulated in the ND direction, the impact absorption energy is lowered and the cold workability is deteriorated. However, hot-rolled sheet annealing under conditions in which the hot-rolled structure does not change, for example, annealing at 600 ° C. or lower and 3 minutes or lower is not denied. This is because annealing at a higher temperature or longer time causes recrystallization, resulting in coarsening of crystal grains and an increase in specific crystal orientation, resulting in a reduction in impact absorption energy. The reduction ratio of 95% or more defines the reduction ratio necessary for forming the hot rolled texture.

また、上記の条件で熱間圧延を行った場合、板断面の結晶粒径は10μm以下になる。き裂は結晶粒単位に進展方向が変化するため、結晶粒径が小さい方が、上記のき裂進展方向の分散の効果が大きいと考えられる。   Further, when hot rolling is performed under the above conditions, the crystal grain size of the plate cross section is 10 μm or less. Since the growth direction of a crack changes in units of crystal grains, it is considered that the smaller the crystal grain size, the greater the effect of dispersion in the crack growth direction.

また、冷間圧延用素材としているが、上記の熱延集合組織は熱延まま板であっても、ショットブラスト後の硝沸酸への浸漬などにって行われる脱スケール工程を経た熱延酸洗板であったも変わらない。冷間圧延は脱スケール工程の後に行う。   In addition, although it is a material for cold rolling, even if the hot rolled texture is a plate as hot rolled, it is hot rolled through a descaling process performed by immersion in nitric acid after shot blasting. Although it was a pickled plate, it does not change. Cold rolling is performed after the descaling process.

本発明の耐熱チタン合金冷延焼鈍板では、上記本発明の冷間圧延用素材である熱延板のスケールを除去した後、冷間圧延、焼鈍して得られるチタン合金板の室温における圧延方向の引張強度、伸び、r値、700℃における圧延方向の引張強度を規定している。スケール除去は通常チタン熱延板に施されるものであり、ショットブラスト後に硝沸酸に浸漬するなどの方法によって行われる。自動車用マフラー材等に成形する場合、室温強度が500MPa以上あるいは伸びが30%未満では成形中に割れが発生するなど成形が困難になるため、500MPa未満、30%以上を規定している。好ましくは470MPa未満である。r値(塑性ひずみ比)は、塑性ひずみが5%の時の値とする。r値は深絞り性に相間のある指標であり、本発明では1.7以上を指標とした。また700℃における引張強度が50MPa未満の場合には、自動車用マフラーとして使用中に割れを生じやすくなるため、50MPa以上としている。好ましくは55MPa以上である。   In the heat-resistant titanium alloy cold-rolled annealed sheet of the present invention, after removing the scale of the hot-rolled sheet that is the cold-rolling material of the present invention, the rolling direction at room temperature of the titanium alloy sheet obtained by cold rolling and annealing Tensile strength, elongation, r value, and tensile strength in the rolling direction at 700 ° C. The scale removal is usually performed on a titanium hot-rolled sheet, and is performed by a method such as dipping in hydrofluoric acid after shot blasting. In the case of molding to an automobile muffler material or the like, if the room temperature strength is 500 MPa or more or the elongation is less than 30%, the molding becomes difficult because cracking occurs during molding, so that it is specified to be less than 500 MPa and 30% or more. Preferably it is less than 470 MPa. The r value (plastic strain ratio) is the value when the plastic strain is 5%. The r value is an index having a correlation with the deep drawability, and in the present invention, 1.7 or more is used as an index. In addition, when the tensile strength at 700 ° C. is less than 50 MPa, cracks are likely to occur during use as an automobile muffler, and therefore, 50 MPa or more. Preferably it is 55 MPa or more.

本発明による耐熱チタン合金冷間圧延用素材を冷間圧延、焼鈍した板は、高い耐熱性を示し、自動車用マフラー材等の耐熱部品として好適なものとなる。ここで自動車用マフラーには、エンジン以降のエキゾーストマニホールド、エキゾーストパイプ、触媒マフラー、メインマフラー等を含む。   A plate obtained by cold-rolling and annealing a heat-resistant titanium alloy cold-rolling material according to the present invention exhibits high heat resistance, and is suitable as a heat-resistant component such as an automobile muffler material. Here, the automobile muffler includes an exhaust manifold, an exhaust pipe, a catalyst muffler, a main muffler, and the like after the engine.

本発明の耐熱チタン合金冷延焼鈍板の製造方法では、上記本発明の冷間圧延用素材を用い、冷間圧延を圧下率40%以上で行い、焼鈍を700℃〜850℃の温度域で行うことにより、圧延方向の室温における引張り強度が500MPa未満、伸びが30%以上、r値が1.7以上であり、かつ、700℃における引張り強度が50MPa以上を有する耐熱チタン合金冷延焼鈍板とすることができる。   In the manufacturing method of the heat-resistant titanium alloy cold-rolled annealed plate of the present invention, the cold rolling material of the present invention is used, cold rolling is performed at a rolling reduction of 40% or more, and annealing is performed in a temperature range of 700 ° C to 850 ° C. A heat-resistant titanium alloy cold-rolled annealed plate having a tensile strength at room temperature in the rolling direction of less than 500 MPa, an elongation of 30% or more, an r value of 1.7 or more, and a tensile strength at 700 ° C. of 50 MPa or more. It can be.

通常、チタン合金板を熱延焼鈍板から製造する場合には、焼鈍後の再結晶組織を均一にするために必要な圧下率は60%以上などとされている。本発明の方法では熱間圧延時の加工組織を残したまま冷間圧延するため、圧下率の下限を設ける必要性は小さい。しかし、一貫工程で効率的に製造するためには、例えば熱間圧延を3mm厚まで行った後、1.8mm厚の製品板を製造することも考えられ、冷間圧延での圧下率40%以上とした。焼鈍は、700℃未満では延性回復や集合組織変化が不十分で伸び30%以上とr値1.7以上の両方を得ることができず、また、固溶Si量が少ないため高温強度が低下する。850℃を超えると伸びおよびr値の向上効果が飽和する。   Usually, when a titanium alloy plate is produced from a hot-rolled annealed plate, the rolling reduction required to make the recrystallized structure after annealing uniform is 60% or more. In the method of the present invention, since cold rolling is performed while leaving the processed structure at the time of hot rolling, it is not necessary to provide a lower limit of the rolling reduction. However, in order to manufacture efficiently in an integrated process, for example, it is conceivable to produce a product plate having a thickness of 1.8 mm after performing hot rolling to a thickness of 3 mm. That is all. Annealing is less than 700 ° C., and the ductility recovery and texture change are insufficient, so that it is impossible to obtain both elongation of 30% or more and r value of 1.7 or more. To do. If it exceeds 850 ° C., the effect of improving elongation and r value is saturated.

冷延板焼鈍を700℃以上で行うことでr値が向上する機構について、詳細は不明であるが本発明の合金組成に特徴的なSiとFeの挙動が影響していると考えられる。ひとつの要因は、Si添加により冷延焼鈍板集合組織がc軸がND方向と平行となる方位への集積が促進され、それによって板面内の変形が容易になるため、r値が向上すると推定される。別の観点からは、Siはシリサイド相を形成し、Feはβ相を形成し、どちらもα相の成長を抑制するが、より高温で焼鈍することにより、粒成長が進み、上記の集合組織形成が促進されるためと推定される。   Although the details of the mechanism of improving the r value by performing cold-rolled sheet annealing at 700 ° C. or higher are unclear, it is considered that the characteristic behavior of Si and Fe has an influence on the alloy composition of the present invention. One factor is that the addition of Si promotes the accumulation of the cold-rolled annealed plate texture in an orientation in which the c-axis is parallel to the ND direction, thereby facilitating deformation within the plate surface, and thus the r value is improved. Presumed. From another point of view, Si forms a silicide phase and Fe forms a β phase, both of which suppress the growth of the α phase, but by annealing at a higher temperature, the grain growth proceeds, and the above texture It is estimated that the formation is promoted.

本発明チタン合金熱延板の代表的な製造工程は次のとおりである。スポンジチタン、成分調整用添加材を原料として、消耗電極式真空アーク溶解法または電子ビーム溶解法またはプラズマアーク溶解法により、チタン鋳塊とする。この鋳塊から製造された80〜250mm厚のチタンスラブを加熱し熱間圧延を行い、3〜6mm厚の熱延板を得ることができる。   A typical manufacturing process of the titanium alloy hot-rolled sheet of the present invention is as follows. A titanium ingot is obtained by using a sponge titanium and a component adjusting additive as a raw material by a consumable electrode type vacuum arc melting method, electron beam melting method or plasma arc melting method. A 80 to 250 mm thick titanium slab manufactured from this ingot is heated and hot-rolled to obtain a 3 to 6 mm thick hot rolled sheet.

以下、実施例により本発明を更に具体的に説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this one condition example.

表1に示すA〜Jの成分のチタン鋳塊を真空アーク溶解法により製造し、鍛造して各々100mm厚のスラブとした。これらの素材を用いて以下の試験を行った。表1において、本発明範囲からはずれる数値にアンダーラインを付している。以下、表2、表3も同様である。   Titanium ingots having components A to J shown in Table 1 were produced by a vacuum arc melting method and forged into slabs each having a thickness of 100 mm. The following tests were conducted using these materials. In Table 1, numerical values that deviate from the scope of the present invention are underlined. The same applies to Tables 2 and 3 below.

Figure 2013177651
Figure 2013177651

(実施例1)
表1の素材Fを用いて、表2に記載の熱延条件で熱間圧延を行い、熱延条件と集合組織の関係を調査した。熱延板の板厚を変更することにより、熱延圧下率を変化させた。該熱延板を、焼鈍なしあるいは一部は焼鈍した後、ショットブラスト、酸洗して表面にできたスケールを除去した。その後各熱延板の1部からX線測定用の試料を採取した。その後、該熱延板に圧下率40%で冷間圧延を行った。
Example 1
Using the material F in Table 1, hot rolling was performed under the hot rolling conditions described in Table 2, and the relationship between the hot rolling conditions and the texture was investigated. The hot rolling reduction ratio was changed by changing the thickness of the hot rolled sheet. The hot-rolled sheet was not annealed or partially annealed, then shot blasted and pickled to remove the scale formed on the surface. Thereafter, a sample for X-ray measurement was taken from one part of each hot-rolled sheet. Thereafter, the hot-rolled sheet was cold-rolled at a rolling reduction of 40%.

熱延板の板厚中央部より、研磨およびエッチングにより試料を作製し、X線回折による集合組織調査を行った。c軸(α相の(0002)面)の集積度は、θ(0°〜90°)、φ(0°〜360°)の範囲で各々5°間隔で数値化された(0002)X線反射相対強度で表される。RD方向すなわちφ=90°、270°におけるX線強度の積算値は、ほぼ同じ値を示すが、これらの値の平均値に対しての相対的なX線反射強度(相対的X線反射強度という)をθ=0°〜90°に対してプロットしたとき、該相対的X線反射強度が最大値を示すθ(θmax)(「集積角」ともいう。)を「α(0002)のピーク方位」として表2に記載した。また、前記、RD方向、すなわちφ=90°、270°におけるθ=0°〜90°のX線強度とは、X線測定装置において図4のようにX線源1と試料3を配置し、X線カウンター5をα相(0002)結晶面からの回折X線4が入射する位置に固定し、その後、試料3をTD軸の周りに回転させて得られるα相(0002)結晶面反射強度の変化をプロットしたものと等価である。   A sample was prepared by polishing and etching from the center of the thickness of the hot-rolled sheet, and the texture was examined by X-ray diffraction. The degree of integration of the c-axis (α phase (0002) plane) is (0002) X-rays digitized at 5 ° intervals in the range of θ (0 ° to 90 °) and φ (0 ° to 360 °). It is expressed in reflected relative intensity. The integrated value of the X-ray intensity in the RD direction, that is, φ = 90 ° and 270 ° shows substantially the same value, but the relative X-ray reflection intensity (relative X-ray reflection intensity with respect to the average value of these values). When θ = 0 ° to 90 ° is plotted, θ (θmax) (also referred to as “integration angle”) at which the relative X-ray reflection intensity shows the maximum value is expressed as a peak of “α (0002)”. The orientation is shown in Table 2. Further, the X-ray intensity of θ = 0 ° to 90 ° in the RD direction, that is, φ = 90 °, 270 °, indicates that the X-ray source 1 and the sample 3 are arranged as shown in FIG. The X-ray counter 5 is obtained by fixing the X-ray counter 5 at a position where the diffracted X-ray 4 from the α-phase (0002) crystal plane is incident, and then rotating the sample 3 around the TD axis. It is equivalent to plotting the change in intensity.

また、熱延板の冷延性および冷間での取扱性を評価するために、シャルピー試験を実施した。前記熱延板(熱延焼鈍を行った水準では熱延焼鈍板)、冷延板から、シャルピー衝撃試験片を、試験片長軸の向きをRD方向に、板厚を試験片厚とし、深さ2mmのV型ノッチをノッチ深さが板幅方向となるように入れて採取し、衝撃値を評価した。試験方法はJISに則り、23℃にて行った。   In addition, a Charpy test was performed in order to evaluate the cold-rollability and cold handling of the hot-rolled sheet. From the hot-rolled sheet (hot-rolled annealed sheet at the level of hot-rolled annealing), cold-rolled sheet, Charpy impact test piece, test piece long axis direction in RD direction, plate thickness as test piece thickness, depth A 2 mm V-shaped notch was sampled so that the notch depth was in the plate width direction, and the impact value was evaluated. The test method was performed at 23 ° C. according to JIS.

結果を表2に示す。表2に示すNo.1〜4が本発明例、No.5〜9が比較例である。No.5は熱延加熱温度が750℃と低いため、その集合組織がND方向に集積してしまっており、No.6は加熱温度が920℃と高いためその集合組織がRD方向に傾斜して集積してしまっている。また、No.7は、熱延終了温度が730℃と高いために、やはりc軸のND方向への集積が進み、集積角は0°であった。また、熱延板焼鈍の、集合組織に与える影響は、No.4及び8において明瞭である。600℃×3分の熱延板焼鈍を行ったNo.4では、c軸のND方向への集積はそれほど進まず、集積角は15°である。一方、670℃×3分の熱延板焼鈍を行ったNo.8は、c軸のND方向への集積が進み、集積角は5°となり、本発明を外れる。No.9は熱延圧下率が90%と本発明範囲を外れており、c軸の集積角は0°であった。シャルピー試験による耐衝撃性の評価結果より、本発明になるものは熱延板で180J/cm2以上、40%圧下した冷延板で100J/cm2以上と優勢であり、本発明より外れるものは劣勢となる。即ち、本発明になるものの冷延性および冷間加工性に優れることが分かった。 The results are shown in Table 2. No. shown in Table 2 1-4 are examples of the present invention, No.1. 5 to 9 are comparative examples. No. No. 5 has a hot rolling heating temperature as low as 750 ° C., and its texture is accumulated in the ND direction. In No. 6, the heating temperature is as high as 920 ° C., so that the texture is accumulated in an inclined manner in the RD direction. No. In No. 7, since the hot rolling end temperature was as high as 730 ° C., the integration of the c-axis in the ND direction also progressed, and the integration angle was 0 °. The effect of hot-rolled sheet annealing on the texture is No. It is clear in 4 and 8. No. which performed hot-rolled sheet annealing at 600 ° C. for 3 minutes. 4, the accumulation in the ND direction of the c-axis does not proceed so much, and the accumulation angle is 15 °. On the other hand, No. 1 was subjected to hot rolled sheet annealing at 670 ° C. for 3 minutes. In No. 8, accumulation in the ND direction of the c-axis progresses, and the accumulation angle becomes 5 °, which is outside the scope of the present invention. No. No. 9 had a hot rolling reduction ratio of 90%, which was outside the range of the present invention, and the c-axis accumulation angle was 0 °. The result of the evaluation of impact resistance by Charpy test, made to the present invention is 180 J / cm 2 or more in the hot rolled sheet, a dominant 40% reduction was cold-rolled sheet 100 J / cm 2 or more, as a departure from the present invention Is inferior. That is, it turned out that the cold rolling property and cold workability of the present invention are excellent.

Figure 2013177651
Figure 2013177651

(実施例2)
素材A〜Jのスラブを、850℃に加熱して4mm厚まで圧下率96%の熱間圧延を行い、600〜700℃で熱間圧延を終了し、熱延板を作成した。該熱延板を焼鈍なしで、ショットブラスト、酸洗して表面にできたスケールを除去した。各熱延板の1部からX線測定用の試料、及びシャルピー試験片、さらに該熱延板に圧下率40%で冷間圧延を行った冷延板からシャルピー試験片を実施例1に記載の要領で採取した。
(Example 2)
The slabs of the materials A to J were heated to 850 ° C. and hot rolled to a thickness of 4 mm with a reduction rate of 96%, and the hot rolling was finished at 600 to 700 ° C. to prepare hot rolled sheets. The hot-rolled sheet was shot blasted and pickled without annealing to remove the scale formed on the surface. A sample for X-ray measurement and a Charpy test piece from one part of each hot-rolled sheet, and a Charpy test piece from a cold-rolled sheet obtained by cold rolling the hot-rolled sheet at a rolling reduction of 40% are described in Example 1. It was collected as follows.

各熱延板を圧下率75%で冷延した板を750℃、5h、真空焼鈍した後、室温引張試験、700℃における高温引張試験を行った。いずれも圧延方向の、室温における引張強度、伸び、r値、700℃における強度(高温強度)を表3に示す。r値は塑性ひずみ5%で評価した。   Each hot-rolled sheet was subjected to vacuum annealing at 750 ° C. for 5 hours, and then subjected to a room temperature tensile test and a high-temperature tensile test at 700 ° C. Table 3 shows the tensile strength, elongation, r value, and strength at 700 ° C. (high temperature strength) in the rolling direction at room temperature. The r value was evaluated at a plastic strain of 5%.

表3に示すNo.10〜15は本発明例、No.16〜19は比較例である。c軸の集積角が本発明になるNo.10〜15においては、室温強度、室温延性、r値、及び700℃における強度が本発明の目標範囲であり、自動車用マフラー材等の耐熱部品として好適なものとなることを確認した。しかしながら、それぞれSi、Fe、Oが本発明範囲の上限を超えているNo.16〜18は、c軸の集積角は本発明の範囲に入っているものも強度が高すぎるために冷間加工性が劣っている。Feが下限よりも低いNo.19は、c軸の集積角が本発明の範囲をはずれており、シャルピー試験によって評価した耐衝撃性が劣化し、冷延性および冷間での取扱い性が劣化し、冷間歩留まりが著しく低下した。また、組成が本発明範囲からはずれるNo.16〜19においては、その室温強度、室温延性、r値、700℃における強度において、No.10〜15より劣勢にある。   No. shown in Table 3 Nos. 10 to 15 are examples of the present invention. 16-19 are comparative examples. The accumulated angle of the c-axis is No. 1 according to the present invention. In Nos. 10 to 15, room temperature strength, room temperature ductility, r value, and strength at 700 ° C. were the target ranges of the present invention, and it was confirmed that they would be suitable as heat-resistant parts such as automobile muffler materials. However, each of Si, Fe, and O exceeds the upper limit of the scope of the present invention. Nos. 16 to 18 are inferior in cold workability because the c-axis integration angle is within the range of the present invention and the strength is too high. No. Fe is lower than the lower limit. No. 19, the c-axis integration angle is out of the range of the present invention, impact resistance evaluated by Charpy test is deteriorated, cold-rollability and cold handleability are deteriorated, and cold yield is remarkably lowered. . Further, No. whose composition deviates from the scope of the present invention. In Nos. 16 to 19, the room temperature strength, room temperature ductility, r value, and strength at 700 ° C. It is inferior to 10-15.

Figure 2013177651
Figure 2013177651

(実施例3)
素材Fを用いて、冷延および焼鈍条件を変えて室温強度、伸び、r値、および700℃における強度を調査した。表4のNo.20〜27は、表2のNo.2で用いた熱延板を用いた。表4に示すように冷延圧下率を30〜80%、冷延板焼鈍を670〜870℃、5〜300分で行った。これらの例においては、熱延板において、集合組織における集積角は本発明の範囲にあり、冷延性は問題がなかった。
(Example 3)
Using the material F, room temperature strength, elongation, r value, and strength at 700 ° C. were investigated by changing the cold rolling and annealing conditions. No. in Table 4 20 to 27 are No. in Table 2. The hot-rolled sheet used in 2 was used. As shown in Table 4, the cold rolling reduction was 30 to 80%, and cold rolling sheet annealing was performed at 670 to 870 ° C. for 5 to 300 minutes. In these examples, in the hot-rolled sheet, the accumulation angle in the texture is within the scope of the present invention, and the cold-rollability has no problem.

表4中に本発明2と記載したNo.20〜No.23は、冷延圧下率40%以上、冷延板焼鈍温度700℃以上であって本発明の耐熱チタン合金冷延焼鈍板の製造方法の条件を満たしており、特にr値が1.8以上と優れた特性を示した。上記条件で製造した場合には、自動車用マフラー材等の加工において重要な絞り加工性が特に優位となっている。表2のNo.2で用いた熱延板に750℃、1分の熱延板焼鈍を施すことでc軸の集積角が0°となり請求項1のc軸の集積角をはずれるNo.27は、冷延圧下率、冷延板焼鈍条件は請求項4の範囲を満たすものの、r値が劣っている。   In Table 4, No. 2 described as the present invention 2 was used. 20-No. No. 23 has a cold rolling reduction of 40% or more, a cold rolled sheet annealing temperature of 700 ° C. or higher, and satisfies the conditions of the method for producing a heat-resistant titanium alloy cold rolled annealed sheet of the present invention, and in particular, the r value is 1.8 or higher. And showed excellent characteristics. When manufactured under the above conditions, drawing workability, which is important in processing of muffler materials for automobiles, is particularly superior. No. in Table 2 When the hot-rolled sheet used in No. 2 was subjected to hot-rolled sheet annealing at 750 ° C. for 1 minute, the c-axis accumulated angle became 0 °, and the No. No. 27 is inferior in r value although the cold rolling reduction ratio and cold rolled sheet annealing conditions satisfy the range of claim 4.

Figure 2013177651
Figure 2013177651

前記の本発明になる熱延チタン板は、すべてその後の通板および冷間圧延において、耳ワレやきれつの発生は見られず、高い冷延歩留まりを示した。さらに、該熱延チタン板を冷間圧延、焼鈍したチタン板は、高い耐熱性を示し、自動車用マフラー材等の耐熱部品として好適なものとなることを確認した。   All the hot-rolled titanium plates according to the present invention showed high cold-rolling yield without any occurrence of cracks or cracks in subsequent sheeting and cold rolling. Further, it was confirmed that a titanium plate obtained by cold rolling and annealing the hot-rolled titanium plate exhibits high heat resistance and is suitable as a heat-resistant component such as an automobile muffler material.

1 X線源
2 入射X線
3 試料
4 α相(0002)結晶面からの回折X線
5 X線カウンター
1 X-ray source 2 Incident X-ray 3 Sample 4 Diffracted X-ray from α phase (0002) crystal plane 5 X-ray counter

Claims (4)

質量%で、Si:0.2%以上0.5%未満、Fe:0.10%以上0.40%未満、O:0.01%以上0.10%未満を含み、残部がチタン及び不可避不純物からなるチタン合金熱延板において、α相の(0002)面方位の分布を圧延方向〜板垂直方向の断面で示した場合に、その分布の最大値が、板垂直方向から圧延方向に10°以上20°未満の範囲に傾斜していることを特徴とする冷延性および冷間での取り扱い性に優れた耐熱チタン合金冷間圧延用素材。   In mass%, Si: 0.2% or more and less than 0.5%, Fe: 0.10% or more and less than 0.40%, O: 0.01% or more and less than 0.10%, the balance being titanium and inevitable In a titanium alloy hot-rolled sheet made of impurities, when the distribution of the (0002) plane orientation of the α phase is shown in a section from the rolling direction to the plate vertical direction, the maximum value of the distribution is 10 in the rolling direction from the plate vertical direction. A heat-resistant titanium alloy cold-rolling material excellent in cold-rollability and cold handling characteristics, characterized in that it is inclined in a range of at least 20 ° and less than 20 °. 請求項1に記載の耐熱チタン合金熱延板の製造において、加熱温度を800℃以上870℃以下、圧延終了時の温度700℃以下、圧下率95%以上で一方向の熱間圧延を行うことを特徴とする冷延性および冷間での取り扱い性に優れた耐熱チタン合金冷間圧延用素材の製造方法。   In the production of the heat-resistant titanium alloy hot-rolled sheet according to claim 1, unidirectional hot rolling is performed at a heating temperature of 800 ° C. or higher and 870 ° C. or lower, a temperature at the end of rolling of 700 ° C. or lower, and a reduction rate of 95% or higher. A method for producing a heat-resistant titanium alloy cold rolling material excellent in cold rolling properties and cold handling properties. 請求項1に記載のチタン合金冷間圧延用素材であるチタン合金熱延板を冷間圧延、焼鈍してなり、圧延方向の室温における引張り強度が500MPa未満、伸びが30%以上、r値が1.7以上であり、かつ、700℃における引張り強度が50MPa以上を有することを特徴とする耐熱チタン合金冷延焼鈍板。   The titanium alloy hot-rolled sheet, which is a material for cold rolling of the titanium alloy according to claim 1, is cold-rolled and annealed. The tensile strength at room temperature in the rolling direction is less than 500 MPa, the elongation is 30% or more, and the r value is A heat-resistant titanium alloy cold-rolled annealed plate having a tensile strength at 700 ° C. of not less than 1.7 and not less than 50 MPa. 請求項3に記載の耐熱チタン合金冷延焼鈍板の製造方法であって、冷間圧延を圧下率40%以上で行い、焼鈍を700℃〜850℃の温度域で行うことを特徴とする耐熱チタン合金冷延焼鈍板の製造方法。   It is a manufacturing method of the heat-resistant titanium alloy cold-rolled annealing board of Claim 3, Comprising: Cold rolling is performed by 40% or more of rolling reduction, and annealing is performed in a 700 to 850 degreeC temperature range. Manufacturing method of titanium alloy cold-rolled annealed sheet.
JP2012041464A 2012-02-28 2012-02-28 Material for cold rolling of heat-resistant titanium alloy having excellent cold-rollability and cold handleability and method for producing the same Active JP5660061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041464A JP5660061B2 (en) 2012-02-28 2012-02-28 Material for cold rolling of heat-resistant titanium alloy having excellent cold-rollability and cold handleability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041464A JP5660061B2 (en) 2012-02-28 2012-02-28 Material for cold rolling of heat-resistant titanium alloy having excellent cold-rollability and cold handleability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013177651A true JP2013177651A (en) 2013-09-09
JP5660061B2 JP5660061B2 (en) 2015-01-28

Family

ID=49269553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041464A Active JP5660061B2 (en) 2012-02-28 2012-02-28 Material for cold rolling of heat-resistant titanium alloy having excellent cold-rollability and cold handleability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5660061B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930641A (en) * 2021-10-18 2022-01-14 东北大学 Medical beta titanium alloy plate and cold machining manufacturing method for controlling texture thereof
CN114101330A (en) * 2021-11-26 2022-03-01 中色科技股份有限公司 Rolling base plate for producing titanium alloy plate
CN115874129A (en) * 2023-01-09 2023-03-31 湖南湘投金天钛金属股份有限公司 Preparation method of titanium strip coil for plate heat exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151459A (en) * 1982-02-27 1983-09-08 Nippon Stainless Steel Co Ltd Manufacture of hot rolled and annealed pure titanium material having satisfactory bendability
JPS60194052A (en) * 1984-03-15 1985-10-02 Sumitomo Metal Ind Ltd Production of high-strength pure titanium sheet
JPH1017961A (en) * 1996-03-29 1998-01-20 Kobe Steel Ltd High strength titanium alloy, product thereof and production of the same product
JP2010150607A (en) * 2008-12-25 2010-07-08 Kobe Steel Ltd Titanium alloy sheet having high strength and excellent deep drawability, and method for producing the titanium alloy sheet
US7767040B2 (en) * 2002-06-21 2010-08-03 Titanium Metals Corporation Titanium alloy and automotive exhaust systems thereof
WO2010093016A1 (en) * 2009-02-13 2010-08-19 住友金属工業株式会社 Titanium plate
JP2010242197A (en) * 2009-04-09 2010-10-28 Kobe Steel Ltd High-strength titanium alloy sheet having excellent bendability and press formability and method of producing the same
JP2011195884A (en) * 2010-03-19 2011-10-06 Kobe Steel Ltd Titanium coil having excellent high strength and strength stability
JP2012508318A (en) * 2008-11-06 2012-04-05 テイタニウム メタルス コーポレイシヨン Method for producing titanium alloy used in exhaust system of combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151459A (en) * 1982-02-27 1983-09-08 Nippon Stainless Steel Co Ltd Manufacture of hot rolled and annealed pure titanium material having satisfactory bendability
JPS60194052A (en) * 1984-03-15 1985-10-02 Sumitomo Metal Ind Ltd Production of high-strength pure titanium sheet
JPH1017961A (en) * 1996-03-29 1998-01-20 Kobe Steel Ltd High strength titanium alloy, product thereof and production of the same product
US7767040B2 (en) * 2002-06-21 2010-08-03 Titanium Metals Corporation Titanium alloy and automotive exhaust systems thereof
US8349096B2 (en) * 2002-06-21 2013-01-08 Titanium Metals Corporation Titanium alloy and automotive exhaust systems thereof
JP2012508318A (en) * 2008-11-06 2012-04-05 テイタニウム メタルス コーポレイシヨン Method for producing titanium alloy used in exhaust system of combustion engine
JP2010150607A (en) * 2008-12-25 2010-07-08 Kobe Steel Ltd Titanium alloy sheet having high strength and excellent deep drawability, and method for producing the titanium alloy sheet
WO2010093016A1 (en) * 2009-02-13 2010-08-19 住友金属工業株式会社 Titanium plate
JP2010242197A (en) * 2009-04-09 2010-10-28 Kobe Steel Ltd High-strength titanium alloy sheet having excellent bendability and press formability and method of producing the same
JP2011195884A (en) * 2010-03-19 2011-10-06 Kobe Steel Ltd Titanium coil having excellent high strength and strength stability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930641A (en) * 2021-10-18 2022-01-14 东北大学 Medical beta titanium alloy plate and cold machining manufacturing method for controlling texture thereof
CN114101330A (en) * 2021-11-26 2022-03-01 中色科技股份有限公司 Rolling base plate for producing titanium alloy plate
CN114101330B (en) * 2021-11-26 2024-03-29 中色科技股份有限公司 Rolling base plate for producing titanium alloy plate
CN115874129A (en) * 2023-01-09 2023-03-31 湖南湘投金天钛金属股份有限公司 Preparation method of titanium strip coil for plate heat exchanger
CN115874129B (en) * 2023-01-09 2023-06-09 湖南湘投金天钛金属股份有限公司 Preparation method of titanium strip coil for plate heat exchanger

Also Published As

Publication number Publication date
JP5660061B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
US10011888B2 (en) Cold-rolled steel sheet for vitreous enameling and its named enameled product thereof
JP6385507B2 (en) Nb-containing ferritic stainless steel sheet and method for producing the same
KR101905784B1 (en) HIGH-STRENGTH α+β TYPE HOT-ROLLED TITANIUM ALLOY WITH EXCELLENT COIL HANDLING PROPERTIES WHEN COLD, AND PRODUCTION METHOD THEREFOR
KR101582271B1 (en) + type titanium alloy sheet with excellent cold rolling properties and cold handling properties and production method therefor
JP5924459B1 (en) Stainless steel for cold rolled steel
JP5625646B2 (en) Titanium plate excellent in rigidity in the rolling width direction and method for producing the same
JP6263040B2 (en) Titanium plate
JP4666271B2 (en) Titanium plate
JP6301095B2 (en) Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same
JP6022097B1 (en) Ti-containing ferritic stainless steel sheet and manufacturing method
JP2013011013A (en) Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same
JP4502272B2 (en) Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP5605232B2 (en) Hot rolling method of α + β type titanium alloy
JP5660061B2 (en) Material for cold rolling of heat-resistant titanium alloy having excellent cold-rollability and cold handleability and method for producing the same
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
JP2019173070A (en) Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE AND WORKED ARTICLE
KR20130093177A (en) Cold-rolled steel sheet, process for production of same, and backlight chassis
JP5668712B2 (en) A hard pure titanium plate excellent in impact resistance and a method for producing the same.
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP6134553B2 (en) Duplex stainless steel with good acid resistance
JP5400510B2 (en) Aluminum alloy sheet for forming with excellent deep drawability and bending workability
JP4166657B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
TWI701343B (en) Titanium alloy plate and golf club head
JP2021028408A (en) Titanium alloy sheet, and exhaust system components for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5660061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350