JP6536317B2 - α + β-type titanium alloy sheet and method of manufacturing the same - Google Patents

α + β-type titanium alloy sheet and method of manufacturing the same Download PDF

Info

Publication number
JP6536317B2
JP6536317B2 JP2015184476A JP2015184476A JP6536317B2 JP 6536317 B2 JP6536317 B2 JP 6536317B2 JP 2015184476 A JP2015184476 A JP 2015184476A JP 2015184476 A JP2015184476 A JP 2015184476A JP 6536317 B2 JP6536317 B2 JP 6536317B2
Authority
JP
Japan
Prior art keywords
phase
recrystallized
equiaxed
less
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015184476A
Other languages
Japanese (ja)
Other versions
JP2017057473A (en
Inventor
英人 瀬戸
英人 瀬戸
一浩 ▲高▼橋
一浩 ▲高▼橋
哲 川上
哲 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015184476A priority Critical patent/JP6536317B2/en
Publication of JP2017057473A publication Critical patent/JP2017057473A/en
Application granted granted Critical
Publication of JP6536317B2 publication Critical patent/JP6536317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、α+β型チタン合金板およびその製造方法に関する。   The present invention relates to an α + β-type titanium alloy sheet and a method of manufacturing the same.

Ti−6Al−4Vに代表される高強度α+β型チタン合金は軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性などの利用加工諸特性を有することから、宇宙・航空機産業を中心に広く使用されてきた。しかし、α+β型チタン合金の著しく高い製造コストが、その適用拡大を妨げており、これらの用途や民生品分野への適用拡大のためには、安価な高強度チタン合金の開発が求められている。   The high strength α + β type titanium alloy represented by Ti-6Al-4V has various processing characteristics such as weldability, superplasticity and diffusion bondability in addition to light weight, high strength and high corrosion resistance, so the space and aircraft industry It has been widely used around the world. However, the extremely high manufacturing cost of α + β-type titanium alloys hinders the expansion of their applications, and development of inexpensive high-strength titanium alloys is required in order to expand their application to these applications and consumer products. .

これら高強度α+β型チタン合金の製造コストが高い理由としては、以下の2点を挙げることができる。
(1)Vなどの高価なβ相安定化元素を使用していること。
(2)α相安定化元素および固溶強化元素として使用しているAlが、熱間での変形抵抗を著しく高めるため、加工しにくくなるとともに熱間加工性を損ねる。そのために、加工には、高温での熱間加工、高い加工力が必要であり、加工設備の高耐熱化、高耐応力化が必要となる。また、加工しにくくなる結果、加工時に割れなどの欠陥を生じ易くなるために、製品歩留りが落ちる点もコストが高くなる問題点として挙げられる。
The following two points can be mentioned as a reason for the high manufacturing cost of these high strength alpha + beta-type titanium alloys.
(1) The use of an expensive β-phase stabilizing element such as V.
(2) Al used as an α-phase stabilizing element and a solid solution strengthening element significantly increases the deformation resistance in hot, so it becomes difficult to process and impairs the hot workability. Therefore, processing requires hot processing at high temperature and high processing power, and requires high heat resistance and high stress resistance of processing equipment. Further, as a result of difficulty in processing, defects such as cracks are likely to occur during processing, and the point of lowering the product yield is also mentioned as a problem of high cost.

近年では、低コスト化を実現するとともに、更に高い延性を有する高強度チタン合金が求められている。Al、V等の合金元素を添加しない先行技術としては、特許文献1〜4のような技術が開示されている。   In recent years, high strength titanium alloys having higher ductility while achieving cost reduction have been sought. As prior art which does not add alloy elements, such as Al and V, the technique like patent documents 1-4 is disclosed.

特許文献1には、鉄、酸素、窒素の量で決まる酸素等量値を所定の範囲とし、板の長さ方向および幅方向の引張強さが、いずれも700MPa以上、長さ方向および幅方向の引張伸びが、いずれも15%以上であるTi−Fe−O−N系高強度チタン合金板が記載されている。   In Patent Document 1, the oxygen equivalent value determined by the amount of iron, oxygen, and nitrogen is taken as a predetermined range, and the tensile strength of the plate in the length direction and the width direction is 700 MPa or more in both the length direction and the width direction. A Ti-Fe-O-N based high strength titanium alloy sheet is described which has a tensile elongation of at least 15%.

特許文献2には、特許文献1と同じく酸素等量値を所定の範囲とし、体積比で5〜30%の等軸α相と残部が微細な針状のα相とβ相の混合組織からなり、長さ方向の引張強さが700MPa以上、板幅方向の引張伸びが10%以上であるTi−Fe−O−N系チタン合金からなる熱延ストリップ、熱延板または熱延条が記載されている。   In Patent Document 2, as in Patent Document 1, the oxygen equivalent value is in a predetermined range, and a mixed structure of an equiaxed α phase of 5 to 30% by volume ratio and a needle-like α phase and β phase in which the balance is fine Described is a hot-rolled strip, a hot-rolled sheet or a hot-rolled strip consisting of a Ti-Fe-O-N titanium alloy having a tensile strength in the longitudinal direction of 700 MPa or more and a tensile elongation in the sheet width direction of 10% or more. It is done.

特許文献3には、酸素、炭素、窒素、鉄の含有量を所定の範囲とした、引張強さが750MPa以上である高強度低合金チタン合金が記載されている。   Patent Document 3 describes a high-strength low-alloy titanium alloy having a tensile strength of 750 MPa or more, in which the contents of oxygen, carbon, nitrogen, and iron are in a predetermined range.

特許文献4には、鉄、酸素、窒素の量で決まる酸素等量値を所定の範囲とし、粒径が20μm以下の等軸α+β組織からなることを特徴とする超塑性成形に適した高強度チタン合金が記載されている。   Patent Document 4 has an oxygen equivalent value determined by the amount of iron, oxygen, and nitrogen as a predetermined range, and is composed of an equiaxed α + β structure having a particle diameter of 20 μm or less. High strength suitable for superplastic forming Titanium alloys are described.

特開平11−61297号公報JP-A-11-61297 特開平10−265876号公報Japanese Patent Application Laid-Open No. 10-265876 特開2004−269982号公報Japanese Patent Application Publication No. 2004-269982 特開平8−295969号公報Japanese Patent Application Laid-Open No. 8-295969

しかし、特許文献1および2では、高強度・高延性の面内異方性を低減するために種々の製造条件が検討されているものの、強度・延性の各特性値自体は、更なる改善の余地がある。このため、強度と延性とを高いレベルで両立できるような組織は得られていなかった。これらの文献に記載された発明を検討した結果、近年の厳しい要求に対応するためには延性が不十分であり、更なる改善が必要である。
特許文献3に記載の発明では、O、N、C、Feが調整されているが、実施例では高強度が得られているものの、強度を十分に高めると、延性が低く、伸びが20%に達していない。
特許文献4に記載の発明は、超塑性の温度域での延性は検討されているものの、常温での延性については、実質的に検討されていない。
このように、従来の技術では、高強度を維持したまま、近年の要求を満足するような高い延性を有する高強度チタン板は得られず、更なる検討が必要である。
そこで、本発明は、高強度を維持したまま、優れた延性を有する高強度チタン板を提供することを課題とする。
However, in Patent Documents 1 and 2, although various manufacturing conditions are studied to reduce high strength and high ductility in-plane anisotropy, each of the strength and ductility characteristic values themselves is further improved. There is room. For this reason, a structure in which strength and ductility can be compatible at a high level has not been obtained. As a result of examining the inventions described in these documents, ductility is insufficient in order to meet recent severe demands, and further improvement is necessary.
In the invention described in Patent Document 3, although O, N, C, and Fe are adjusted, although high strength is obtained in the example, ductility is low and elongation is 20% when the strength is sufficiently increased. Has not reached.
In the invention described in Patent Document 4, although ductility in a temperature range of superplasticity is examined, ductility at normal temperature is not substantially examined.
As described above, in the prior art, while maintaining high strength, a high strength titanium plate having high ductility that satisfies the recent requirements can not be obtained, and further study is necessary.
Then, this invention makes it a subject to provide the high strength titanium plate which has the outstanding ductility, maintaining high strength.

即ち、本発明の要旨とするところは以下のとおりである。
(1)質量で、Feが0.8%以上1.5%以下、酸素(O)が0.28%以上0.4%以下を含有し、残部がチタンおよび不可避不純物からなり、再結晶した等軸α相の円相当平均結晶粒径が2〜10μmであり、再結晶した等軸α相が面積率で15%以上、再結晶したβ相率が0.5%以上10%以下で、さらに加工組織が10%以上存在するα+β型チタン合金板。
(2)さらに、質量で、窒素(N)を0.05%以下含有することを特徴とする(1)に記載のα+β型チタン合金板。
(3)(1)または(2)に記載したα+β型チタン合金板の製造方法であって、最終焼鈍において、バッチ焼鈍の場合は500〜600℃で10800〜54000秒保持し、連続焼鈍の場合は700〜850℃で30〜150秒保持することを特徴とするα+β型チタン合金板の製造方法。
That is, the place made into the summary of the present invention is as follows.
(1) Recrystallization was made by containing 0.8% to 1.5% of Fe, 0.28% to 0.4% of oxygen (O) by mass, and the balance consisting of titanium and unavoidable impurities The circle equivalent average crystal grain size of the equiaxed α phase is 2 to 10 μm, and the recrystallized equiaxed α phase has an area ratio of 15% or more, and the recrystallized β phase ratio of 0.5% or more and 10% or less, Furthermore, an α + β-type titanium alloy sheet having a processed structure of 10% or more .
(2) The α + β-type titanium alloy sheet according to (1), which further contains 0.05% or less of nitrogen (N) by mass.
(3) The method for producing an α + β-type titanium alloy sheet described in (1) or (2), wherein, in the final annealing, in the case of batch annealing, it is held at 500 to 600 ° C. for 10800 to 54000 seconds, and in the case of continuous annealing Is held at 700 to 850 ° C. for 30 to 150 seconds, and a method of producing an α + β-type titanium alloy sheet.

従来のチタン合金のように、α相安定化元素であるAlを含有させて固溶強化させると、強度を高めるには効果的である。しかしながら、強化能が高いためにすべり変形や双晶変形が起こりにくいために、延性が低下し靭性が損なわれてしまう。さらに、熱間変形抵抗が高いため、鍛造や圧延などで割れが生じやすい。そのため、本発明においては、Alを添加しないこととした。
一方、Alと同じくα相安定化元素である酸素は、固溶強化には効果的である上に、含有量を最適化すれば、延性を阻害せずに高強度が実現できる。本発明者らは、このような知見に基づいて、低コスト化と高強度化が可能な酸素(O)をある程度含有させた上でFe含有量、さらにはN含有量にも着目し、これらの元素と組織との関係を考慮しつつ鋭意検討を行った。その結果、以下の知見が得られた。
If Al is contained as an α-phase stabilizing element to cause solid solution strengthening as in a conventional titanium alloy, it is effective to increase the strength. However, due to the high strengthening ability, it is difficult for slip deformation and twin deformation to occur, so the ductility is reduced and the toughness is impaired. Furthermore, since the hot deformation resistance is high, cracking is likely to occur by forging or rolling. Therefore, in the present invention, Al is not added.
On the other hand, oxygen, which is an α-phase stabilizing element like Al, is effective for solid solution strengthening, and by optimizing the content, high strength can be realized without inhibiting ductility. On the basis of such findings, the present inventors have included oxygen (O) capable of achieving cost reduction and high strength to some extent, and also focused on Fe content and N content. The study was conducted in consideration of the relationship between the elements and the structure of As a result, the following findings were obtained.

(1)酸素はAlと同様にすべり変形や双晶変形を抑制する効果があるが、含有量が0.28〜0.4質量%であれば、大きく延性を損なわず熱間変形抵抗も大きくならないため、鍛造などで割れが生じにくい。さらにFe含有量が0.8〜1.5質量%とすることで結晶粒を細粒化・整粒化でき良好な延性が得られる。
(2)酸素よりさらに固溶強化能が高い窒素は、0.05質量%以下で添加すれば、延性を損なわずに強度を高めることができる。また、窒素は酸素同様に熱間変形抵抗が大きくならないため、鍛造での割れは生じにくい。
(3)再結晶した等軸α相とβ相とこれ以外の加工組織の存在割合を調整することにより、高強度高延性が得られる。結晶粒径は再結晶が完了すると結晶粒が成長し大きくなるため、2〜10μm以下の微細な等軸結晶粒を得るには、再結晶した等軸α相とβ相以外の加工組織の存在割合を10〜85%に調整する。そして、再結晶した等軸α相とβ相とこれ以外の加工組織の存在割合を調整することで、良好な強度延性バランスが得られる。α相を再結晶した等軸組織にする理由は以下の通りである。等軸組織であれば結晶粒の変形が均一で加工硬化しやすく、良好な延性および強度が得られる。針状組織では結晶粒の形状が影響して、不均一変形が生じ加工硬化しにくいため、良好な延性および強度が得られない。
(1) Similar to Al, oxygen has the effect of suppressing slip deformation and twin crystal deformation, but if the content is 0.28 to 0.4 mass%, the ductility is not largely lost and the hot deformation resistance is also large. It is hard to produce a crack by forging etc. Further, by setting the Fe content to 0.8 to 1.5% by mass, the crystal grains can be made finer and sized, and good ductility can be obtained.
(2) If nitrogen having a higher solid solution strengthening ability than oxygen is added at 0.05% by mass or less, the strength can be enhanced without losing the ductility. Moreover, since nitrogen does not increase the resistance to hot deformation like oxygen, it is difficult for cracking to occur in forging.
(3) A high strength and high ductility can be obtained by adjusting the existing proportions of recrystallized equiaxed α phase and β phase and processed structures other than this. The crystal grain size grows and increases when recrystallization is complete. Therefore, in order to obtain fine equiaxed crystal grains of 2 to 10 μm or less, existence of machined structures other than equiaxed α phase and β phase which are recrystallized Adjust the percentage to 10-85%. And, by adjusting the existing proportions of the recrystallized equiaxed α-phase, β-phase and other processed structures, a good balance of strength and ductility can be obtained. The reason for making the alpha phase recrystallized equiaxed is as follows. If it is an equiaxial structure, deformation of crystal grains is uniform and work hardening is easy, and good ductility and strength can be obtained. In the needle-like structure, the shape of the crystal grains affects to cause non-uniform deformation, so that it is difficult to work harden, so that good ductility and strength can not be obtained.

本発明によれば、α+β型チタン合金において、高価な合金成分添加元素を添加することなく、O、Fe、Nという安価な添加元素のみで、高強度、高延性を兼備させることができる。   According to the present invention, in the α + β-type titanium alloy, high strength and high ductility can be simultaneously provided only by the inexpensive additive elements such as O, Fe and N without adding expensive alloy component additive elements.

合金組織の測定場所を示す概念図Conceptual diagram showing the measurement site of alloy structure

以下に、各本発明の成分組成について、さらに詳細に説明する。以下の含有%はすべて質量%表記である。   The component compositions of the present invention will be described in more detail below. The following% contents are all represented by mass%.

酸素含有量:質量で0.28〜0.4%
酸素は、チタン材料中に、0.28〜0.4%含有される。酸素はチタン材料全般に強度を増加させるために有効な元素である。酸素含有量が0.28%未満であると、チタン板を用いて製造する製品に十分な強度を付与させることができない。より好ましくは0.3%以上、より好ましくは0.32%以上である。一方、酸素含有量が0.4%を超えると、強度が大きくなりすぎてしまい延性が低いチタン板となるため、上限をこのように規定した。好ましくは0.39%以下、より好ましくは0.38%以下である。
Oxygen content: 0.28 to 0.4% by mass
Oxygen is contained 0.28 to 0.4% in the titanium material. Oxygen is an effective element to increase the strength of titanium materials in general. If the oxygen content is less than 0.28%, it is not possible to impart sufficient strength to a product manufactured using a titanium plate. More preferably, it is 0.3% or more, more preferably 0.32% or more. On the other hand, when the oxygen content exceeds 0.4%, the strength becomes too high, resulting in a titanium plate with low ductility, so the upper limit is defined in this way. Preferably it is 0.39% or less, more preferably 0.38% or less.

Fe含有量:質量で0.8〜1.5%
Feは、チタン材料中に、0.8〜1.5%含有される。チタン材料において、Feはβ相安定化元素であり、一部はα相に固溶するものの、多くはβ相に固溶することが知られている。つまり、Feの量が多くなるとβ相の量が増加し、これに伴ってα相の粒成長が抑制でき細粒の組織が得られる。Fe含有量が0.8%未満であると十分な強度が得られない。好ましくは0.9%以上である。Fe含有量が1.5%を超えるとβ相の安定度が高くなり、室温に冷却してもα相に変態せずほとんどがβ相として残留し、熱延、焼鈍などの加熱工程を経ていくごとに残留β相が粗大化する恐れがある。また、耐食性が低下する恐れがある。好ましくは1.4%以下である。さらに、Feは溶解・凝固時に偏析しやすい。コイルでの均質性の観点から、より好ましくは1.2%以下がよい。
Fe content: 0.8 to 1.5% by mass
Fe is contained 0.8 to 1.5% in the titanium material. In a titanium material, it is known that Fe is a β-phase stabilizing element, and although a part thereof is in solid solution in the α phase, most is in solid solution in the β phase. That is, when the amount of Fe increases, the amount of β phase increases, and accordingly, the grain growth of the α phase can be suppressed, and a fine grain structure can be obtained. If the Fe content is less than 0.8%, sufficient strength can not be obtained. Preferably it is 0.9% or more. When the Fe content exceeds 1.5%, the stability of the β phase increases, and even if cooled to room temperature, it does not transform to the α phase and most remains as the β phase, and passes through heating processes such as hot rolling and annealing There is a risk that the residual β phase may become coarser with each other. In addition, the corrosion resistance may be reduced. Preferably it is 1.4% or less. Furthermore, Fe is likely to segregate during melting and solidification. From the viewpoint of homogeneity in the coil, more preferably 1.2% or less.

窒素含有量:質量で0.05%以下
窒素は、0.002%程度不可避に含まれる。さらに、チタン材料中に、窒素を0.05%以下含有させることにより、より強度を向上させることができる。窒素は酸素と同様にチタン材料全般に強度を増加させるために有効な元素で、その固溶強化能は酸素より高い。しかしながら、窒素含有量が0.05%を超えると、強度が大きくなりすぎてしまい延性が低いチタン板となってしまうため上限を0.05%と規定した。好ましくは0.048%以下、より好ましくは0.046%以下である。なお、窒素含有量が0.002%未満であると、脱窒素のコストがかかるので好ましくない。窒素の含有量の下限は、好ましくは0.004%以上である。
Nitrogen content: 0.05% or less by mass Nitrogen is inevitably contained by about 0.002%. Furthermore, by containing 0.05% or less of nitrogen in the titanium material, the strength can be further improved. Nitrogen, like oxygen, is an element effective to increase the strength of titanium materials in general, and its solid solution strengthening ability is higher than that of oxygen. However, if the nitrogen content exceeds 0.05%, the strength becomes too high and the titanium plate becomes low in ductility, so the upper limit is defined as 0.05%. Preferably it is 0.048% or less, More preferably, it is 0.046% or less. If the nitrogen content is less than 0.002%, it is not preferable because the cost of nitrogen removal is increased. The lower limit of the nitrogen content is preferably 0.004% or more.

合金組織に関する各数値範囲を決定した意義について詳細に説明する。   The significance of determining each numerical range regarding the alloy structure will be described in detail.

本発明によって形成されるチタン板は、塑性変形の担い手である再結晶した等軸α相の結晶粒径が2〜10μmとなるようにチタン板を形成することで、高強度と高延性が得られる。等軸α相の平均結晶粒径が2μmを下回ると、転位の稼動が困難な結晶粒が多く存在するため、塑性変形が起こりにくくなり、延性が低下する。好ましくは等軸α相の平均結晶粒径が3μm以上、より好ましくは4μm以上である。一方、等軸α相の平均結晶粒径が10μmを超えると転位の稼動をピン止めする結晶粒界の表面積が減少するため、不均一な塑性変形が起こりやすくなり、加工硬化能が低下し、高強度が得られない。好ましくは等軸α相の平均結晶粒径が9μm以下、より好ましくは8μm以下である。   The titanium plate formed according to the present invention has high strength and high ductility by forming the titanium plate so that the grain size of the recrystallized equiaxed α phase, which is a leader of plastic deformation, is 2 to 10 μm. Be When the average crystal grain size of the equiaxed α phase is less than 2 μm, many crystal grains in which the operation of dislocation is difficult exist, so that plastic deformation hardly occurs and the ductility is lowered. Preferably, the average crystal grain size of the equiaxed α phase is 3 μm or more, more preferably 4 μm or more. On the other hand, if the average crystal grain size of the equiaxed α phase exceeds 10 μm, the surface area of the grain boundary for pinning the operation of dislocations decreases, so non-uniform plastic deformation easily occurs, and the work hardening ability decreases. High strength can not be obtained. Preferably, the average crystal grain size of the equiaxed α phase is 9 μm or less, more preferably 8 μm or less.

本発明によって形成されるチタン板は、再結晶した等軸α相が面積率で15%以上90%以下となるようにチタン板を形成することで、高強度と高延性が得られる。再結晶した等軸α相の面積率が15%に満たない場合は、塑性変形の担い手であるα相が不足し十分な延性が得られない。また、再結晶した等軸α相が、15%未満であると、再結晶した等軸α相の平均結晶粒径が小さくなりやすく、その結果、上述のように延性が低下する。好ましくは20%以上、より好ましくは30%以上である。一方、再結晶した等軸α相の面積率が90%を超える場合は、塑性変形が進行しやすくなり、高強度が得られない。また、90%を超えると、再結晶した等軸α相の平均結晶粒径が粗大化しやすくなり、相対的に加工組織が減少するから、高強度が得られない。好ましくは85%以下、より好ましくは80%以下である。   In the titanium plate formed according to the present invention, high strength and high ductility can be obtained by forming the titanium plate so that the recrystallized equiaxed α phase has an area ratio of 15% to 90%. If the area ratio of the recrystallized equiaxed α phase is less than 15%, the α phase which is the carrier of plastic deformation is insufficient and sufficient ductility can not be obtained. In addition, if the recrystallized equiaxed α phase is less than 15%, the average grain size of the recrystallized equiaxed α phase tends to be small, and as a result, the ductility is lowered as described above. Preferably it is 20% or more, more preferably 30% or more. On the other hand, when the area ratio of the recrystallized equiaxed α phase exceeds 90%, plastic deformation easily progresses and high strength can not be obtained. If it exceeds 90%, the average crystal grain size of the recrystallized equiaxed α-phase tends to be coarsened, and the processed structure relatively decreases, so high strength can not be obtained. Preferably it is 85% or less, more preferably 80% or less.

本発明において、再結晶したβ相は、再結晶した等軸α相の粒径の粗大化を防止するために0.5%以上10%以下の面積率で存在させる。それにより、高強度と高延性が得られる。β相が、0.5%未満であると、β相による再結晶した等軸α相の粒成長が抑制できず、α相の組織が粗大となる。再結晶した等軸α相組織が粗大となると、上述のように、強度が低下する。一方、10%を超えると、再結晶した等軸α相の結晶粒径が小さくなりすぎ、上述のように、高延性が低下する。
また、再結晶したβ相が多くなると、再結晶した等軸α相と再結晶したβ相の界面面積が大きくなってしまう。塑性変形時は変形能が異なる上記α相とβ相の界面に応力集中してボイドが発生しやすくなる。このため、再結晶したβ相が増加すると延性が低下する。
In the present invention, the recrystallized β phase is present at an area ratio of 0.5% or more and 10% or less in order to prevent coarsening of the grain size of the recrystallized equiaxed α phase. Thereby, high strength and high ductility can be obtained. If the β phase is less than 0.5%, the grain growth of the recrystallized equiaxed α phase by the β phase can not be suppressed, and the structure of the α phase becomes coarse. When the recrystallized equiaxed α-phase structure becomes coarse, the strength decreases as described above. On the other hand, if it exceeds 10%, the crystal grain size of the recrystallized equiaxed α phase becomes too small, and as described above, the high ductility decreases.
In addition, when the recrystallized β phase increases, the interface area between the recrystallized equiaxed α phase and the recrystallized β phase increases. At the time of plastic deformation, stress concentrates on the interface between the α phase and β phase different in deformability, and voids are easily generated. For this reason, ductility is reduced as the recrystallized β phase increases.

加工組織の比率(A値):10〜85%
本発明によって形成されるチタン板は、上記再結晶した等軸α相とβ相以外の比率、すなわち、再結晶していない加工組織の比率(未再結晶部の比率)が10〜85%で存在する。ここでいう加工組織とは、ステップサイズ0.2μmで後方散乱電子回折像EBSD(Electron Backscatter Diffraction Pattern)を用いた結晶方位解析方法によって測定して付属の解析ソフト(TSL OIM Analysis)にて求め、得られた情報において、CI値(Coincidence index)が0.1に満たない部分を加工組織と見なした。ここでは、加工組織の比率をA値と記載する。再結晶が完了すると、結晶粒が成長をはじめ粗大化する。このため、強度と延性のバランスに優れるチタン材料を得るためには、再結晶が完全に完了する前の加工組織が適度に残存した状態が好ましい。ただし、加工組織が多いと延性が低くなる恐れがあるが、本発明者らが鋭意検討を重ねた結果、A値が10〜85%であれば、高強度高延性が得られることを見出した。
A値が10%未満では、部分的に結晶粒が粗大化し始めるため、チタン板を用いて製造する製品に十分な強度を付与させることが困難となるおそれがある。すなわち、A値が低いと強度が不足する。好ましくはA値が15%以上、より好ましくは20%以上である。一方、A値が85%を超えると、塑性変形を担う再結晶した等軸α相の結晶粒数が少なくなり、十分な延性が得られない。好ましくはA値が80%以下、より好ましくは70%以下である。本発明のチタン板は、加工組織が存在するため、高強度となる。そして、その上限を制限しているため、加工組織が存在しても、本発明で規定する範囲内であれば、強度と延性のバランスに優れたチタン合金を得ることが可能となる。
Proportion of processed tissue (A value): 10 to 85%
The titanium plate formed according to the present invention has a ratio of non-recrystallized processed structure (ratio of unrecrystallized portion) of 10 to 85%. Exists. The processed structure here is determined by a crystal orientation analysis method using a backscattered electron diffraction image EBSD (Electron Backscatter Diffraction Pattern) with a step size of 0.2 μm, and determined by the attached analysis software (TSL OIM Analysis), In the obtained information, a portion where the CI value (coincidence index) was less than 0.1 was regarded as a processed tissue. Here, the ratio of processed tissue is described as A value. When recrystallization is complete, the grains start to grow and become coarse. For this reason, in order to obtain a titanium material excellent in the balance between strength and ductility, it is preferable that the machined structure before recrystallization is completely completed remains in an appropriate manner. However, if there are many processed structures, there is a possibility that the ductility may be lowered, but as a result of intensive studies by the present inventors, it was found that high strength and high ductility can be obtained if the A value is 10 to 85%. .
If the value of A is less than 10%, the crystal grains partially start to be coarsened, which may make it difficult to impart sufficient strength to a product manufactured using a titanium plate. That is, if the A value is low, the strength is insufficient. Preferably, the A value is 15% or more, more preferably 20% or more. On the other hand, if the A value exceeds 85%, the number of recrystallized equiaxed α-phase grains responsible for plastic deformation decreases, and sufficient ductility can not be obtained. Preferably, the A value is 80% or less, more preferably 70% or less. The titanium plate of the present invention has high strength because of the presence of a processed structure. And since the upper limit is limited, it is possible to obtain a titanium alloy excellent in the balance of strength and ductility within the range specified in the present invention even if there is a machined structure.

次に本発明の製造方法について述べる。   Next, the production method of the present invention will be described.

最終焼鈍条件:バッチ焼鈍の場合、500〜600℃で10800〜54000秒保持。連続焼鈍の場合、700〜850℃で30〜150秒保持。
本発明において、特徴となる製造条件は、最終焼鈍条件である。熱延、冷延条件は、本発明の合金組織を有するチタン板を製造する際に特に影響せず、最終焼鈍条件を制御することが重要である。
ここでは、再結晶した等軸α相、β相、および加工組織(未再結晶部)を得るための最終焼鈍条件を述べる。
バッチ焼鈍の場合、焼鈍温度は500〜600℃で、保持時間は10800〜54000秒である。500℃より低い温度では未再結晶部が多く残存してしまい、延性が低下する恐れがある。600℃より高い温度では結晶粒が粗大化するため、2〜10μmの再結晶した等軸α相結晶粒を得るのが困難である。一方、保持時間については、10800秒未満では未再結晶部が多く残存してしまい、延性が低下する恐れがある。54000秒を超える場合は結晶粒が粗大化するため、2〜10μmの再結晶した等軸α相結晶粒を得るのが困難である。
一方、連続焼鈍の場合、焼鈍温度は700〜850℃で、保持時間は30〜150秒である。700℃より低い温度では未再結晶部が多く残存してしまい、延性が低下する恐れがある。最終焼鈍温度が、850℃を超える高温であった場合、焼鈍時にβ相に固溶しているFe濃度が低いためβ相が不安定となり、高温での焼鈍後の冷却時はβ相が残留せずα相に変態する。この高温での焼鈍後に冷却によって発生するα相は針状に析出するため、最終焼鈍温度が850℃を超える高温であると、好ましくない針状組織が生成する。一方、保持時間については、30秒未満では未再結晶部が多く残存してしまい、延性が低下する恐れがある。150秒を超える場合は結晶粒が粗大化するため、2〜10μmの再結晶した等軸α相結晶粒を得るのが困難である。
Feが0.8%以上1.5%以下、酸素(O)が0.28%以上0.4%以下を含有し、残部がチタンおよび不可避不純物からなる組成のチタン合金を用い、上記の最終焼鈍条件を施すことにより、再結晶した等軸α相の円相当平均結晶粒径が2〜10μmであり、再結晶した等軸α相が面積率で15%以上90%以下、再結晶したβ相率が0.5%以上10%以下で、さらに加工組織が10%以上85%以下存在する、α+β型チタン合金板を製造することができる。
Final annealing conditions: In the case of batch annealing, hold at 500 to 600 ° C. for 10800 to 54000 seconds. In the case of continuous annealing, it hold | maintains for 30 to 150 seconds at 700-850 degreeC.
In the present invention, the characteristic production conditions are the final annealing conditions. The hot rolling and cold rolling conditions do not particularly affect the production of the titanium plate having the alloy structure of the present invention, and it is important to control the final annealing conditions.
Here, the final annealing conditions for obtaining recrystallized equiaxed α phase, β phase, and processed structure (unrecrystallized portion) will be described.
In the case of batch annealing, the annealing temperature is 500 to 600 ° C., and the holding time is 10800 to 54000 seconds. If the temperature is lower than 500 ° C., a large amount of unrecrystallized portion remains, which may lower the ductility. At temperatures higher than 600 ° C., it is difficult to obtain 2 to 10 μm recrystallized equiaxed α-phase crystal grains because the crystal grains become coarse. On the other hand, with respect to the holding time, if it is less than 10,800 seconds, a large amount of unrecrystallized portions remain, which may lower ductility. If it exceeds 54000 seconds, it is difficult to obtain 2 to 10 μm recrystallized equiaxed α-phase crystal grains because the crystal grains become coarse.
On the other hand, in the case of continuous annealing, the annealing temperature is 700 to 850 ° C., and the holding time is 30 to 150 seconds. If the temperature is lower than 700 ° C., a large amount of unrecrystallized portion remains, which may lower the ductility. When the final annealing temperature is a high temperature exceeding 850 ° C., the β phase becomes unstable because the concentration of Fe dissolved in the β phase at the time of annealing is low, and the β phase remains at the time of cooling after annealing at high temperature It transforms into the α phase without oxidization. Since the α phase generated by cooling after annealing at this high temperature precipitates like needles, an undesirable needle-like structure is formed if the final annealing temperature is a high temperature exceeding 850 ° C. On the other hand, with respect to the holding time, if it is less than 30 seconds, a large amount of unrecrystallized portions remain, which may lower the ductility. If it exceeds 150 seconds, it is difficult to obtain 2 to 10 μm recrystallized equiaxed α-phase crystal grains because the crystal grains are coarsened.
Using the titanium alloy having a composition containing 0.8% to 1.5% of Fe, 0.28% to 0.4% of oxygen (O) and the balance being titanium and unavoidable impurities, the above final By applying the annealing conditions, the circle equivalent average crystal grain size of the recrystallized equiaxed α phase is 2 to 10 μm, and the recrystallized equiaxed α phase is 15% to 90% by area ratio, recrystallized β It is possible to manufacture an α + β-type titanium alloy sheet having a phase ratio of 0.5% or more and 10% or less, and further having a processed structure of 10% or more and 85% or less.

本発明では、熱間加工までの工程は一般的なチタン板の製造方法により製造することができる。例えば、スポンジチタン等からチタンインゴットを製造し、このインゴットを鍛造でスラブ形状にし、これを熱間圧延により熱延板に加工した。その後、熱延板にショットブラスト、酸洗による脱スケールを行い、冷間圧延に供するチタン材を製造する。これらの条件は特に限定されず、一般的な条件であればよい。具体的には、熱延の加熱温度範囲として、900〜1000℃、加熱時間として1〜4時間、圧下率として70%以上、冷延の圧下率として50%以上との製造条件が挙げられる。ここで、最終焼鈍直前の冷間圧延での圧下率は50%以上とすることが好ましい。50%未満ではひずみが不十分で再結晶の駆動力が小さく、等軸になりにくくなる。一方、50%以上の圧下率であれば、再結晶の駆動力が十分で、等軸再結晶粒になりやすくなる。   In the present invention, the steps up to hot working can be manufactured by a general method of manufacturing a titanium plate. For example, titanium ingot was manufactured from sponge titanium etc., this ingot was made into slab shape by forging, and this was processed into a hot-rolled sheet by hot rolling. Thereafter, the hot-rolled sheet is subjected to shot blasting and descaling by pickling to produce a titanium material to be subjected to cold rolling. These conditions are not particularly limited, and may be general conditions. Specifically, manufacturing conditions with a heating temperature range of hot rolling of 900 to 1000 ° C., a heating time of 1 to 4 hours, a rolling reduction of 70% or more, and a cold rolling reduction of 50% or more. Here, the rolling reduction immediately before final annealing in cold rolling is preferably 50% or more. If it is less than 50%, the strain is insufficient, the recrystallization driving force is small, and it becomes difficult to become equiaxed. On the other hand, if the rolling reduction is 50% or more, the driving force for recrystallization is sufficient, and it becomes easy to become equiaxed recrystallized grains.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

(試験片作製)
アーク溶解によりFe、酸素、窒素含有量を調整したチタン鋳塊を作製し、該鋳塊を1000℃に加熱した後、鍛造してスラブを作製した。続いて、該スラブを厚さ4mmまで熱延した後、焼鈍を行い、ショットブラスト、硝ふっ酸酸洗にて表面のスケールを除去した。冷間圧延、焼鈍、冷間圧延して厚さ0.9mmのチタン薄板を作製した。
このチタン薄板に対して、真空中で450〜650℃にて14400〜72000h保持してバッチ焼鈍を行なった。また、大気中で650〜900℃にて15〜120秒保持して連続焼鈍を行なった。大気中での焼鈍後は、ソルト(アルカリ溶融塩)へ浸漬してスケールを改質し、硝ふっ酸で酸洗して脱スケールを行なった。
(Test specimen preparation)
A titanium ingot having adjusted Fe, oxygen and nitrogen contents by arc melting was produced, and the ingot was heated to 1000 ° C. and then forged to produce a slab. Subsequently, the slab was hot-rolled to a thickness of 4 mm and then annealing was performed to remove surface scale by shot blasting and nitric acid fluoride washing. Cold rolling, annealing, and cold rolling were performed to produce a thin titanium plate having a thickness of 0.9 mm.
The titanium thin plate was subjected to batch annealing while held at 450 to 650 ° C. for 14400 to 72000 h in vacuum. Moreover, it hold | maintained at 650-900 degreeC in air | atmosphere for 15 to 120 seconds, and performed continuous annealing. After annealing in the air, it was immersed in a salt (alkali molten salt) to reform the scale, and it was pickled with nitric hydrofluoric acid to be descaled.

(組成分析)
熱延後の表面のスケールを除去した試料のFe含有量をJIS H 1614に準じて測定し、酸素含有量をJIS H 1620に準じて測定し、窒素含有量をJIS H 1612に準じて測定した。
(Composition analysis)
The Fe content of the sample from which the surface scale after hot rolling was removed was measured according to JIS H 1614, the oxygen content was measured according to JIS H 1620, and the nitrogen content was measured according to JIS H 1612 .

(引張試験)
平行部6.25×32mm、標点間25mm、チャック部15mm幅、全長100mmの引張試験片を作製し、0.2%耐力測定までは標点間0.5%/minで、耐力測定後は20%/minの引張速度で引張試験を行った。ここでは、圧延幅方向(T方向)の引張強度と伸びを評価した。伸びの測定は室温において、破断した後の突合せを行い、伸びの数値を割り出し、破断伸びとして表記した。引張強度は800MPa以上となる場合を、伸びは23%以上となる場合を合格とした。
(Tensile test)
Prepare tensile test pieces of 6.25 × 32 mm in parallel, 25 mm between gauge points, 15 mm in width for chuck, 100 mm in total length, and measure the yield strength at 0.5% / min between gauge points until 0.2% proof stress measurement Performed a tensile test at a tensile rate of 20% / min. Here, the tensile strength and the elongation in the rolling width direction (T direction) were evaluated. The measurement of elongation was carried out at room temperature, but the joints after fracture were made, the numerical value of elongation was determined, and it was described as the elongation at break. A tensile strength of 800 MPa or more was regarded as passing, and a tensile strength of 23% or more was regarded as passing.

(再結晶した等軸α相および再結晶したβ相の面積率、再結晶した等軸α相の平均結晶粒径とA値)
再結晶したα相の平均結晶粒径、α相率、β相率とA値は、試験片の圧延幅方向に平行な方向から見た断面(L断面)の任意の(板厚)×1mmの範囲をステップサイズ0.2μmで後方散乱電子回折像EBSD(Electron Backscatter Diffraction Pattern)を用いた結晶方位解析方法によって測定して付属の解析ソフト(TSL OIM Analysis)にて求めた。測定したL断面の方向を模式的に図1に示す。得られた情報において、CI値(Coincidence index)が0.1に満たない部分は冷間圧延時の加工ひずみが残っているため、明瞭な回折パターンが得られない。IPFマップ上でCI値が0.1以上と0.1未満に区別し、CI値が0.1に満たない部分は加工組織と見なした。CI値が0.1以上の部分を再結晶した組織とみなした。再結晶した組織とみなしたα相が、等軸か否かの判定は、付属の解析ソフトにて、アスペクト比が5以下で等軸、5を超える場合を等軸ではないとした。この再結晶した等軸α相において、方位差15°以上の境界を結晶粒界と設定して、円相当直径を求め、平均結晶粒径を算出した。また、α相とβ相は「Phase」モードでα相とβ相を識別し、再結晶した等軸α相とβ相のそれぞれの面積率を算出した。
(Area fraction of recrystallized equiaxed α phase and recrystallized β phase, average grain size and A value of recrystallized equiaxed α phase)
The average crystal grain size, α phase ratio, β phase ratio and A value of the recrystallized α phase are arbitrary (plate thickness) x 1 mm of the cross section (L cross section) seen from the direction parallel to the rolling width direction of the test piece The step size was measured by a crystal orientation analysis method using a backscattered electron diffraction image EBSD (Electron Backscatter Diffraction Pattern) with a step size of 0.2 μm, and determined using the attached analysis software (TSL OIM Analysis). The direction of the measured L cross section is schematically shown in FIG. In the obtained information, since the processing distortion at the time of cold rolling remains in the part where CI value (Coincidence index) is less than 0.1, a clear diffraction pattern can not be obtained. On the IPF map, the CI value was distinguished to be 0.1 or more and less than 0.1, and the part having a CI value of less than 0.1 was regarded as a processed tissue. The portion having a CI value of 0.1 or more was regarded as a recrystallized structure. Whether the α phase regarded as a recrystallized structure is equiaxed or not was judged not to be equiaxed when the aspect ratio is 5 or less and equiaxed or more than 5 in the attached analysis software. In the recrystallized equiaxed α-phase, a boundary with a misorientation of 15 ° or more was set as a grain boundary, a circle equivalent diameter was determined, and an average grain size was calculated. In addition, the α phase and the β phase distinguish between the α phase and the β phase in the “Phase” mode, and the area ratio of the recrystallized equiaxed α phase and the β phase was calculated.

結果について、表1に示した。実施例、比較例において、窒素が、0.002%の組成のものは、不可避的に含まれる窒素含有量を測定したものである。No.10を除き、再結晶α組織はいずれも等軸晶であった。   The results are shown in Table 1. In the examples and comparative examples, those having a composition of 0.002% nitrogen were obtained by measuring the nitrogen content contained unavoidably. No. Except for 10, all the recrystallized α structures were equiaxed.

No.1〜11は比較例である。No.1は、Fe、酸素含有量ともに規定の下限値に満たないため、引張強度が低かった。No.2は、Fe含有量が規定の下限値に満たないため、引張強度が低かった。No.3は、酸素含有量が規定の下限値に満たないため、引張強度が低かった。   No. 1 to 11 are comparative examples. No. Since No. 1 and Fe content and oxygen content did not reach the specified lower limit value, tensile strength was low. No. In No. 2, the Fe content was less than the specified lower limit value, so the tensile strength was low. No. No. 3 had a low tensile strength because the oxygen content did not reach the specified lower limit.

No.4は、酸素含有量が規定の上限値を超えているため、伸びが低かった。No.5は、窒素含有量が規定の上限値を超えているため、伸びが低かった。No.6は、Fe含有量が規定の上限値を超えているため、伸びが低かった。   No. 4, the elongation was low because the oxygen content exceeded the specified upper limit. No. 5 was low in elongation because the nitrogen content exceeded the specified upper limit. No. In No. 6, the Fe content was above the specified upper limit, so the elongation was low.

No.7は、焼鈍時間が長く、再結晶した等軸α相の粒径および面積率が規定の上限値を超えているため、引張強度が低かった。   No. In No. 7, the tensile strength was low because the annealing time was long, and the grain size and area ratio of the recrystallized equiaxed α phase exceeded the specified upper limit.

No.8は、焼鈍温度が低く、未再結晶部(加工組織)の比率が規定の上限値を超えているため、伸びが低かった。No.9は、焼鈍時間が短く、再結晶した等軸α相の粒径が下限を下回り、未再結晶部の比率が規定の上限値を超えているため、伸びが低かった。   No. No. 8 had a low annealing temperature, and the ratio of unrecrystallized portion (processed structure) exceeded the specified upper limit, so the elongation was low. No. In No. 9, the elongation was low because the annealing time was short, the grain size of the recrystallized equiaxed α phase was below the lower limit, and the ratio of the non-recrystallized part exceeded the specified upper limit.

No.10は、焼鈍温度が高いため、針状組織が混在しているため、伸びが低かった。   No. In No. 10, since the annealing temperature was high, the needle-like structure was mixed, so the elongation was low.

No.11は、焼鈍温度が低いため、再結晶した等軸α相の粒径および面積率が規定より低く、未再結晶部(加工組織)の比率が規定の上限値を超えているため、伸びが低かった。   No. In No. 11, since the annealing temperature is low, the grain size and area ratio of the recrystallized equiaxed α phase are lower than defined, and the ratio of the non-recrystallized portion (processed structure) exceeds the defined upper limit. It was low.

一方、実施例である、No.12〜23については、最終焼鈍の焼鈍温度と時間を適正化した結果、再結晶した等軸α相の粒径および面積率、再結晶したβ相の面積率、未再結晶部(加工組織)の比率が規定の範囲となり、引張強度800MPa以上、かつ、伸び23%以上を実現できた。   On the other hand, no. As for 12 to 23, as a result of optimizing the annealing temperature and time of the final annealing, the grain size and area ratio of recrystallized equiaxed α phase, area ratio of recrystallized β phase, non-recrystallized part (processed structure) The tensile strength was 800 MPa or more and the elongation was 23% or more.

本発明によれば、高価な合金成分添加元素を添加することなく、O、Fe、Nという安価な添加元素のみで、高強度、高延性を兼備させたα+β型チタン合金を提供することができる。   According to the present invention, it is possible to provide an α + β-type titanium alloy which combines high strength and high ductility only with inexpensive additive elements such as O, Fe and N without adding expensive alloy component additive elements. .

Claims (3)

質量で、Feが0.8%以上1.5%以下、酸素(O)が0.28%以上0.4%以下を含有し、残部がチタンおよび不可避不純物からなり、再結晶した等軸α相の円相当平均結晶粒径が2〜10μmであり、再結晶した等軸α相が面積率で15%以上、再結晶したβ相率が0.5%以上10%以下で、さらに加工組織が10%以上存在するα+β型チタン合金板。 Contained by mass, 0.8% to 1.5% of Fe, 0.28% to 0.4% of oxygen (O), and the balance is titanium and unavoidable impurities, and is equiaxed with recrystallized α The circle equivalent average crystal grain size of the phase is 2 to 10 μm, the recrystallized equiaxed α phase has an area ratio of 15% or more, and the recrystallized β phase ratio is 0.5% or more and 10% or less. Α + β-type titanium alloy sheet in which 10% or more exists . さらに、質量で、窒素(N)を0.05%以下含有することを特徴とする請求項1に記載のα+β型チタン合金板。   The α + β-type titanium alloy sheet according to claim 1, further comprising 0.05% or less of nitrogen (N) by mass. 請求項1または請求項2に記載したα+β型チタン合金板の製造方法であって、最終焼鈍において、バッチ焼鈍の場合は500〜600℃で10800〜54000秒保持し、連続焼鈍の場合は700〜850℃で30〜150秒保持することを特徴とするα+β型チタン合金板の製造方法。   It is a manufacturing method of the alpha + beta-type titanium alloy plate indicated in Claim 1 or Claim 2, and in final annealing, in batch annealing, it holds 10800-54000 seconds at 500-600 ° C, and 700- in case of continuous annealing. A method of manufacturing an α + β-type titanium alloy sheet characterized by holding at 850 ° C. for 30 to 150 seconds.
JP2015184476A 2015-09-17 2015-09-17 α + β-type titanium alloy sheet and method of manufacturing the same Active JP6536317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015184476A JP6536317B2 (en) 2015-09-17 2015-09-17 α + β-type titanium alloy sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015184476A JP6536317B2 (en) 2015-09-17 2015-09-17 α + β-type titanium alloy sheet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017057473A JP2017057473A (en) 2017-03-23
JP6536317B2 true JP6536317B2 (en) 2019-07-03

Family

ID=58389816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015184476A Active JP6536317B2 (en) 2015-09-17 2015-09-17 α + β-type titanium alloy sheet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6536317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118164A (en) * 2017-12-22 2018-06-05 大连英蕴科技有限公司 The preparation method of the anti-corrosion solderable crack arrest titanium alloy of intensity during ship is used
KR102589875B1 (en) * 2021-04-22 2023-10-13 한국재료연구원 Fine grained pure titanium and manufacturing method for the same

Also Published As

Publication number Publication date
JP2017057473A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5335056B2 (en) Aluminum alloy wire for bolt, bolt and method for producing the same
JP5298368B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
EP3009525A1 (en) Aluminium alloy forging and method for producing the same
JP2017155251A (en) Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
JP5166921B2 (en) Titanium alloy plate with high strength and excellent formability
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP2013220472A (en) Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT
WO2012032610A1 (en) Titanium material
JP6540179B2 (en) Hot-worked titanium alloy bar and method of manufacturing the same
JP2009013479A (en) High strength aluminum alloy material having excellent stress corrosion cracking resistance, and method for producing the same
KR101643838B1 (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
JP2017002388A (en) High strength aluminum alloy hot forging material
JP2009167464A (en) Method for producing aluminum alloy material having excellent toughness
US20220136087A1 (en) Bar
JP5027603B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP5161059B2 (en) Titanium alloy plate with high strength and excellent deep drawability and method for producing titanium alloy plate
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
JP5605232B2 (en) Hot rolling method of α + β type titanium alloy
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
JP5088876B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JP5382518B2 (en) Titanium material
JP2003013159A (en) Fastener material of titanium alloy and manufacturing method therefor
JP6623950B2 (en) Titanium plate excellent in balance between proof stress and ductility and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151