JP2009013479A - High strength aluminum alloy material having excellent stress corrosion cracking resistance, and method for producing the same - Google Patents

High strength aluminum alloy material having excellent stress corrosion cracking resistance, and method for producing the same Download PDF

Info

Publication number
JP2009013479A
JP2009013479A JP2007177881A JP2007177881A JP2009013479A JP 2009013479 A JP2009013479 A JP 2009013479A JP 2007177881 A JP2007177881 A JP 2007177881A JP 2007177881 A JP2007177881 A JP 2007177881A JP 2009013479 A JP2009013479 A JP 2009013479A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
corrosion cracking
stress corrosion
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007177881A
Other languages
Japanese (ja)
Other versions
JP5343333B2 (en
Inventor
Haruyumi Kosuge
張弓 小菅
Masahito Yatsukura
政仁 谷津倉
Yusuke Kamimura
雄介 上村
Shingo Koizumi
慎吾 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2007177881A priority Critical patent/JP5343333B2/en
Publication of JP2009013479A publication Critical patent/JP2009013479A/en
Application granted granted Critical
Publication of JP5343333B2 publication Critical patent/JP5343333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Zn-Mg-Cu based alloy material having high strength, further exhibiting high elongation, and provided with excellent SCC resistance. <P>SOLUTION: The hot-worked or cold-worked material of an aluminum alloy comprising Mg and Zn in quantities surrounded by points A (6.0, 1.5), B (12.0, 1.5), C (12.0, 1.75), D (9.0, 2.5) and E (6.0, 2.5) in Fig.1 showing the Zn content (mass%) in the horizontal axis and the Mg content in the vertical axis, including Cu of 1.0 to 2.5 mass% and Zr of 0.08 to 0.20 mass% is subjected to solution treatment, is thereafter quenched at a prescribed temperature in the range of 150 to 350°C, is held to the prescribed temperature for 1 s to 30 min, is subsequently water-cooled, and is thereafter subjected to natural aging or artificial aging, so as to be a microstructure where the size of precipitates in the crystal grain boundary in which an orientation difference between the adjoining crystal grains is ≥10° is 50 to 250 nm by the major axis, and further, the inside of each crystal grain has microstructure provided with a GP zone and/or a η'-MgZn<SB>2</SB>intermediate phase, thus high strength and excellent SCC resistance are exhibited. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ボルトやリベット等の締結具にも使用できる高強度で伸びも高く、しかも耐応力腐食割れ性にも優れたAl‐Zn‐Mg‐Cu系合金材とその製造方法に関する。   The present invention relates to an Al—Zn—Mg—Cu based alloy material that can be used for fasteners such as bolts and rivets, has high strength and high elongation, and is excellent in stress corrosion cracking resistance, and a method for producing the same.

Al‐Zn‐Mg‐Cu系の合金材は、時効処理によって高い強度を得ることができるが、応力腐食割れを生じやすいために、その使用にも限界があった。しかしながら、種々の熱処理を組み合わせることにより、耐応力腐食割れ性を改善できることから、種々の熱処理方法が提案されている。
すなわち、Al‐Zn‐Mg‐Cu系合金材に溶体化処理後に人工時効処理を施す(いわゆるT6処理を施す)と、高い強度が得られるが、応力腐食割れ(以下、「SCC」と記す。)を起こし易くなる。このため、応力を負荷した腐食環境のもとでは長時間の使用はできない。
Al-Zn-Mg-Cu alloy materials can obtain high strength by aging treatment, but their use is limited because they tend to cause stress corrosion cracking. However, various heat treatment methods have been proposed because the stress corrosion cracking resistance can be improved by combining various heat treatments.
That is, when an Al-Zn-Mg-Cu alloy material is subjected to an artificial aging treatment (so-called T6 treatment) after solution treatment, high strength is obtained, but stress corrosion cracking (hereinafter referred to as "SCC"). ). For this reason, it cannot be used for a long time in a corrosive environment loaded with stress.

溶体化処理後に過時効処理する(いわゆるT73処理する)ことにより耐SCC性は改善されるが、T6処理に比べて強度が低下してしまう。
この問題を解消するために、一旦溶体化処理した後に人工時効処理(いわゆるT6処理)したものに、より高温で短時間の過時効を行う復元処理を施し、その後に再度低温での人工時効処理を施してT6材並みの強度とT73材並みの耐SCC性を確保する処理法(いわゆるT77処理)も提案されている。しかしながら、上記のT77処理法は熱処理工程が多く、しかも複雑であるため量産には適さない。
このような背景のもとで、簡便な熱処理法の採用により、高い強度と優れた耐SCC性を確保する技術が特許文献1で提案されている。
特許第3246940号公報
SCC resistance is improved by over-aging treatment (so-called T73 treatment) after solution treatment, but the strength is reduced compared to T6 treatment.
In order to solve this problem, a solution that has been subjected to solution treatment and then artificial aging treatment (so-called T6 treatment) is subjected to restoration treatment that performs overaging at a higher temperature for a short time, and then artificial aging treatment at a lower temperature again. A treatment method (so-called T77 treatment) that secures the same strength as T6 and the same SCC resistance as T73 has been proposed. However, the T77 treatment method described above is not suitable for mass production because it involves many heat treatment steps and is complicated.
Under such circumstances, Patent Document 1 proposes a technique for ensuring high strength and excellent SCC resistance by adopting a simple heat treatment method.
Japanese Patent No. 3246940

特許文献1で提案されている技術は、7000系合金を溶体化処理後に熱処理するものであって、溶体化処理後、200〜400℃の温度範囲に焼入れし、その温度に2時間以内保持した後水焼入れし、続いてT6時効処理するものである。
しかしながら、この熱処理方法によっても、高い強度が得られているとは言えない。
本発明は、このような問題を解消すべく案出されたものであり、Al‐Zn‐Mg‐Cu系合金材でさらに強度が高く、しかも高い伸びを呈し、優れた耐SCC性を備えたアルミニウム合金材を提供することを目的とする。
The technique proposed in Patent Document 1 is to heat-treat a 7000 series alloy after solution treatment. After the solution treatment, it is quenched into a temperature range of 200 to 400 ° C. and kept at that temperature for 2 hours or less. Post-water quenching followed by T6 aging treatment.
However, it cannot be said that high strength is obtained even by this heat treatment method.
The present invention has been devised to solve such problems, and is an Al-Zn-Mg-Cu alloy material that has higher strength, higher elongation, and excellent SCC resistance. An object is to provide an aluminum alloy material.

本発明の耐応力腐食割れ性に優れた高強度アルミニウム合金材は、その目的を達成するため、横軸にZn含有量(質量%)を、縦軸にMg含有量(質量%)を示す図1において、点A(6.0,1.5)、B(12.0,1.5)、C(12.0,1.75)、D(9.0,2.5)及びE(6.0,2.5)で囲まれる量のMgとZn、1.0〜2.5質量%のCu及び0.08〜0.20質量%のZrを、さらに必要に応じて0.05〜0.5質量%のMn、0.05〜0.25質量%のCr及び0.05〜0.15質量%のVのうちの一種以上を含み、残部がAl及び不可避的不純物からなり、該不可避的不純物としてのFeを0.20質量%以下に、Siを0.20質量%以下に規制した組成を有するとともに、引張り強さが650MPa以上、0.2%耐力/引張り強さ比が0.7〜0.95、伸びが10%以上、耐応力腐食割れ性が7075合金のT77熱処理材と同等以上である特性を有することを特徴とする。
そして、相隣る結晶粒の方位差が10°以上の結晶粒界における析出物の大きさが長径で50〜250nmであるミクロ組織を有していることが好ましい。
The high-strength aluminum alloy material excellent in stress corrosion cracking resistance according to the present invention shows the Zn content (mass%) on the horizontal axis and the Mg content (mass%) on the vertical axis in order to achieve the object. 1, Mg and Zn in an amount surrounded by points A (6.0, 1.5), B (12.0, 1.5), C (12.0, 1.75), D (9.0, 2.5) and E (6.0, 2.5), 1.0 to 2.5 Cu of mass% and Zr of 0.08 to 0.20 mass%, optionally further including one or more of 0.05 to 0.5 mass% of Mn, 0.05 to 0.25 mass% of Cr and 0.05 to 0.15 mass% of V, The balance consists of Al and unavoidable impurities, and has a composition in which Fe as the inevitable impurities is regulated to 0.20 mass% or less and Si is regulated to 0.20 mass% or less, and the tensile strength is 650 MPa or more, 0.2% proof stress / tensile. The strength ratio is 0.7 to 0.95, the elongation is 10% or more, and the stress corrosion cracking resistance is equal to or higher than that of the T77 heat treatment material of 7075 alloy.
And it is preferable that the size of the precipitate in the grain boundary where the orientation difference between adjacent crystal grains is 10 ° or more is a major axis of 50 to 250 nm.

このような耐応力腐食割れ性に優れた高強度アルミニウム合金材は、上記のような組成を有するアルミニウム合金の連続鋳造材を均質化処理し、熱間加工又は冷間加工、或いは両加工を併用して加工した後、溶体化処理し、その後に、150〜350℃の範囲の所定温度に焼入れし、該所定温度に1秒〜30分の時間保持した後水冷し、その後に、自然時効又は人工時効することにより製造される。   Such a high-strength aluminum alloy material excellent in stress corrosion cracking resistance is obtained by homogenizing a continuous cast material of an aluminum alloy having the above composition and using hot working or cold working, or both working together. After being processed, solution treatment is performed, after which it is quenched to a predetermined temperature in the range of 150 to 350 ° C., held at the predetermined temperature for 1 second to 30 minutes, and then cooled with water, and then natural aging or Manufactured by artificial aging.

本発明により提供されるアルミニウム合金材は、従前になく強度が高くかつ優れた耐SCC性と高い伸び性を有し、締結具や構造材として広く使用される。
また、従前の方法と比べて所定温度への焼入れ後の保持時間を短時間に抑えるのみで、強度が高くしかも優れた耐SCC性を有するアルミニウム合金材が得られるので、生産効率も一段と高めることができる。
The aluminum alloy material provided by the present invention has an unprecedented strength, excellent SCC resistance and high elongation, and is widely used as a fastener or a structural material.
In addition, it is possible to obtain an aluminum alloy material with high strength and excellent SCC resistance just by keeping the holding time after quenching to a predetermined temperature in a short time compared with the conventional method, so that the production efficiency is further improved. Can do.

本発明者等は、7000系で代表されるAl‐Zn‐Mg‐Cu系合金材において、強度を低下させることなく耐SCC性を発現・維持できる熱処理法について検討を重ねてきた。
確かに、前記特許文献1で提案された技術は有効な熱処理法ではあるが、強度が低下すると言った問題点を抱えている。この問題点を検討する際、強度が低下する原因が、所定温度への焼入れ後の保持時間が長すぎたために、結晶粒界に形成される析出物が大きく成長しすぎ、粒内の合金元素固溶量が減少したことにあると予測した。そこで、焼入れ後の保持時間を短くすることにより、結晶粒界上に形成される析出物の成長を抑制し、固溶量を確保して強度低下を防いだ。
以下に、その詳細を説明する。
The present inventors have repeatedly studied a heat treatment method capable of expressing and maintaining SCC resistance without reducing the strength of Al-Zn-Mg-Cu alloy materials represented by 7000 series.
Certainly, although the technique proposed in Patent Document 1 is an effective heat treatment method, it has a problem that the strength decreases. When examining this problem, the cause of the decrease in strength is that the retention time after quenching to a predetermined temperature is too long, so that the precipitates formed at the grain boundaries grow too large, and the alloy elements in the grains It was predicted that the amount of solid solution decreased. Therefore, by shortening the holding time after quenching, the growth of precipitates formed on the crystal grain boundaries was suppressed, and the solid solution amount was secured to prevent the strength from being lowered.
The details will be described below.

まず、本発明合金材は、Mg及びZnの含有量を、横軸にZn含有量(質量%)を、縦軸にMg含有量(質量%)を示す図1において、点A(6.0,1.5)、B(12.0,1.5)、C(12.0,1.75)、D(9.0,2.5)及びE(6.0,2.5)で囲まれる量とするとともに、1.0〜2.5質量%のCu及び0.08〜0.20質量%のZrを、さらに必要に応じて0.05〜0.5質量%のMn、0.05〜0.25質量%のCr及び0.05〜0.15質量%のVのうちの一種以上を含み、残部がAl及び不可避的不純物からなり、該不可避的不純物としてのFeを0.20質量%以下に、Siを0.20質量%以下に規制した組成を有することを前提とする。   First, the alloy material of the present invention shows the content of Mg and Zn, the abscissa indicates the Zn content (mass%), and the ordinate indicates the Mg content (mass%). ), B (12.0, 1.5), C (12.0, 1.75), D (9.0, 2.5) and E (6.0, 2.5) and the amount enclosed, 1.0 to 2.5 mass% Cu and 0.08 to 0.20 mass% Zr of 0.05 to 0.5% by mass of Mn, 0.05 to 0.25% by mass of Cr, and 0.05 to 0.15% by mass of V, if necessary, and the balance consisting of Al and inevitable impurities, It is assumed that the composition has a composition in which Fe as inevitable impurities is regulated to 0.20 mass% or less and Si is regulated to 0.20 mass% or less.

Zn及びMg
Znは時効処理で強度を増加させるための最も重要な元素であって、その含有量が6.0質量%未満では所望の強度が得られない。また12.0質量%を超えると本提案の方法を適応しても短い期間にSCCが発生して好ましくない。MgもZnと同様に時効処理で強度向上に重要な元素であって、その含有量が1.5質量%未満では所望の強度が得られない。また2.5質量%を超えると本提案の方法を適応しても短い期間にSCCが発生し易く好ましくない。
Zn及びMgの含有量が点C(12.0,1.75)と点D(9.0,2.5)を結ぶ線分CDの上方部分は、Cu含有量の増加に伴って合金の融点が低下し部分溶解し易くなって強度、伸び等を低下させるので除いた。
Zn and Mg
Zn is the most important element for increasing the strength by aging treatment, and if the content is less than 6.0% by mass, the desired strength cannot be obtained. On the other hand, if it exceeds 12.0% by mass, SCC will occur in a short period even if the proposed method is applied. Mg, as well as Zn, is an element important for improving the strength by aging treatment, and if its content is less than 1.5% by mass, the desired strength cannot be obtained. On the other hand, if it exceeds 2.5% by mass, SCC is likely to occur in a short period even if the proposed method is applied.
The upper part of the line segment CD connecting the points C (12.0, 1.75) and D (9.0, 2.5) with Zn and Mg contents is easy to partially melt as the Cu content increases. Since strength, elongation, etc. were lowered, it was excluded.

Cu:1.0〜2.5質量%
Cuは、ZnやMgと同様に時効処理で強度向上に重要な元素であって、その含有量が1.0質量%未満では所望の強度が得られない。逆に2.5質量%を超えるほどに含有させると合金の融点が低下し過ぎて均質化処理温度を下げ、十分な均質化効果が得られない。
Cu: 1.0-2.5% by mass
Cu, like Zn and Mg, is an element important for improving the strength by aging treatment, and if its content is less than 1.0% by mass, the desired strength cannot be obtained. On the other hand, if the content exceeds 2.5% by mass, the melting point of the alloy is excessively lowered and the homogenization temperature is lowered, so that a sufficient homogenization effect cannot be obtained.

Zr:0.08〜0.20質量%
Zrは、Zr‐Al化合物として析出し、この析出物の存在によって合金材の再結晶化を遅滞させて回復組織を安定化し、強度の向上と耐SCC性の向上に資する。その含有量が0.08質量%に満たないと再結晶化の遅滞効果が少なく、また、0.20質量%を超えるほどに多く含有させると粗大な金属間化合物を形成し、展延性を害することになる。したがって、Zr含有量は0.08〜0.20質量%とする。
Zr: 0.08-0.20 mass%
Zr precipitates as a Zr-Al compound, and the presence of this precipitate delays the recrystallization of the alloy material, stabilizes the recovery structure, and contributes to improvement in strength and SCC resistance. If the content is less than 0.08% by mass, the effect of delaying recrystallization is small, and if the content exceeds 0.20% by mass, a coarse intermetallic compound is formed and the ductility is impaired. Therefore, the Zr content is set to 0.08 to 0.20 mass%.

Mn:0.05〜0.5質量%
Cr:0.05〜0.25質量%
V:0.05〜0.15質量%
Mn,Cr,VはいずれもZrと同様に再結晶化を遅滞させる作用を有するので、一種以上を必要に応じて含有させる。Zrと併せて含有させることにより、再結晶化の遅滞効果が向上される。それぞれ、規定量に満たないと再結晶化の遅滞効果は認められない。また、規定量を超えるほどに多く含ませると粗大な化合物が晶出して靭性や展延性を害することになる。
Mn: 0.05 to 0.5% by mass
Cr: 0.05-0.25 mass%
V: 0.05-0.15 mass%
Since Mn, Cr, and V all have the action of delaying recrystallization as with Zr, one or more of them are contained as necessary. By containing it together with Zr, the delay effect of recrystallization is improved. In each case, the delay effect of recrystallization is not recognized unless the prescribed amount is reached. On the other hand, if it is included in an amount exceeding the specified amount, a coarse compound is crystallized to impair toughness and ductility.

Fe:0.20質量%以下
Si:0.20質量%以下
Al合金材に含まれる不可避的不純物としてはFe及びSiが量的に最も多い。これらの元素が過剰に含まれていると粗大な金属間化合物を形成し、展延性を害することになる。したがって、Fe含有量及びSi含有量はいずれも0.20質量%以下に規制する。
その他の不可避的不純物はそれぞれで0.10質量%以下、好ましくは0.05質量%以下、その他の不可避的不純物の合計で0.3質量%以下、好ましくは0.15質量%以下である。
なお、鋳造に際して鋳塊の鋳造割れを防止するために、0.005〜0.20質量%のTi添加又は0.005〜0.20質量%のTiと0.0005〜0.20質量%のBの併用添加、若しくは若干量のTiCの添加を行っても良い。
Fe: 0.20 mass% or less
Si: 0.20 mass% or less
Fe and Si are the most inevitable impurities contained in the Al alloy material. If these elements are excessively contained, a coarse intermetallic compound is formed, and the ductility is impaired. Therefore, both Fe content and Si content are regulated to 0.20 mass% or less.
The other inevitable impurities are 0.10% by mass or less, preferably 0.05% by mass or less, and the total of other inevitable impurities is 0.3% by mass or less, preferably 0.15% by mass or less.
In addition, in order to prevent casting cracks in the ingot at the time of casting, 0.005 to 0.20 mass% Ti addition, 0.005 to 0.20 mass% Ti and 0.0005 to 0.20 mass% B addition, or a slight amount of TiC addition May be performed.

次に本発明合金材のミクロ組織について説明する。
相隣る結晶粒の方位差が10°以上の結晶粒界における析出物の大きさ:50〜250nm
本発明においては、耐応力腐食割れ性に関連する析出物の位置を相隣る結晶粒の方位差が10°以上の結晶粒界と規定する。その理由は析出物が相隣る結晶粒の方位差が10°未満の結晶粒界に析出してもその場合は、応力腐食割れが発生するまでの期間が、方位差が10°以上の結晶粒界に析出した場合と比較して10倍程度長期間であり、応力腐食割れに関与する割合が低いからである。
時効処理を施したAl合金材において、所要の強度を発現させるためには、結晶粒界上に形成される析出物の大きさを調整することが必要である。特許文献1で提案された技術では、この析出物の大きさが300nmを超えていたために強度が低下していた。本発明では、成分組成と適切条件の熱処理を組み合わせることにより析出物の大きさを長径で50〜250nmの範囲に調整することによって、強度の低下を抑制することができている。
Next, the microstructure of the alloy material of the present invention will be described.
Size of precipitates at grain boundaries where the orientation difference between adjacent crystal grains is 10 ° or more: 50 to 250 nm
In the present invention, the position of precipitates related to resistance to stress corrosion cracking is defined as a crystal grain boundary in which the orientation difference between adjacent crystal grains is 10 ° or more. The reason for this is that even if the crystal grains adjacent to each other have a misorientation of less than 10 °, the period until stress corrosion cracking occurs is a crystal whose misorientation is 10 ° or more. This is because it is about 10 times longer than the case where it precipitates at the grain boundary, and the proportion involved in stress corrosion cracking is low.
In an Al alloy material that has been subjected to an aging treatment, it is necessary to adjust the size of precipitates formed on the grain boundaries in order to develop the required strength. In the technique proposed in Patent Document 1, since the size of the precipitate exceeded 300 nm, the strength was lowered. In the present invention, a decrease in strength can be suppressed by adjusting the size of the precipitate to a range of 50 to 250 nm in terms of major axis by combining the component composition and heat treatment under appropriate conditions.

相隣る結晶粒の方位差が10°以上の結晶粒界における析出物の大きさは長径で50〜250nmである。このような大きさとすることで、析出物の周囲にはPFZ(無析出ゾーン)が存在し、7075合金のT77熱処理材と少なくとも同等或いはそれ以上の耐SCC性が発現されると共に強度に寄与するZn,Mg,Cuの固溶量を確保し、その後の自然時効または人工時効で結晶粒内にGPゾーン或いはη’‐MgZn或いはS’‐Al2CuMg等の中間相もしくはGPゾーンおよび該中間相の両者を形成して引張り強度が向上する。前記析出物の大きさが下限値未満ではその後の熱処理で強度は向上するがPFZの幅も狭く腐食が連続して進行し易く耐SCCに寄与しない。また上限値を超えるとPFZの幅も広く腐食が連続して進行し難く耐SCCに寄与するが、結晶粒内においてもη‐MgZn等の安定相が増えて、Zn,Mg,Cuの固溶量が確保できず爾後の処理で引張り強度の向上に限界がある。 The size of the precipitate at the grain boundary where the orientation difference between adjacent crystal grains is 10 ° or more is 50 to 250 nm in the major axis. With such a size, there is a PFZ (precipitation-free zone) around the precipitates, and SCC resistance at least equivalent to or higher than that of the T77 heat treatment material of 7075 alloy is expressed and contributes to strength. Ensure the solid solution amount of Zn, Mg, Cu, then GP zone or η'-MgZn 2 or S'-Al 2 CuMg or other intermediate phase or GP zone and intermediate Both phases are formed and the tensile strength is improved. If the size of the precipitate is less than the lower limit, the strength is improved by the subsequent heat treatment, but the width of the PFZ is narrow and corrosion is likely to proceed continuously, and does not contribute to SCC resistance. If the upper limit is exceeded, the width of the PFZ is wide and corrosion does not progress continuously and contributes to SCC resistance. However, the stable phase such as η-MgZn 2 also increases in the crystal grains, and the solid phase of Zn, Mg, Cu increases. The amount of solution cannot be secured, and there is a limit to the improvement of tensile strength in the subsequent treatment.

上記のように成分組成及びミクロ組織を調整すると、引張り強さが650MPa以上、0.2%耐力/引張り強さ比が0.7〜0.95、伸びが10%以上で、耐応力腐食割れ性が7075合金のT77熱処理材と同等以上である特性を有する耐SCC性に優れた高強度のAl‐Zn‐Mg‐Cu系合金材が低コストで提供でき、ボルトやビスの如く、張力を付与されても長期にわたり安全に使用できる。   When the component composition and microstructure are adjusted as described above, the tensile strength is 650 MPa or more, the 0.2% proof stress / tensile strength ratio is 0.7 to 0.95, the elongation is 10% or more, and the stress corrosion cracking resistance is T77 of 7075 alloy. High-strength Al-Zn-Mg-Cu alloy material with excellent SCC resistance with characteristics equivalent to or better than heat-treated materials can be provided at low cost, and even if tension is applied, such as bolts and screws, for a long time It can be used safely.

さらに、上記のような耐SCC性に優れた高強度のAl‐Zn‐Mg‐Cu系合金材の製造方法について説明する。
連続鋳造や均質化処理、熱間加工及び/又は冷間加工とその後の溶体化処理までの工程には特に制限はない。通常通りの方法で、溶体化処理まで行う。
しかしながら、酸化物粒子や粗大な金属間化合物粒子の混入は好ましくないので、上記組成を有する合金溶湯を、脱ガス、脱滓の後、フィルターを通過させて前記粒子を除去した後に鋳塊に鋳造することが好ましい。
Furthermore, a method for producing a high-strength Al—Zn—Mg—Cu alloy material having excellent SCC resistance as described above will be described.
There are no particular limitations on the steps from continuous casting, homogenization, hot working and / or cold working and subsequent solution treatment. The solution treatment is performed in the usual manner.
However, since mixing of oxide particles or coarse intermetallic compound particles is not preferable, the molten alloy having the above composition is degassed and degassed and then passed through a filter to remove the particles and cast into an ingot. It is preferable to do.

鋳造は、用途によってビレットやスラブ、或いはシート形状に鋳造するが、形状はどのようなものでもかまわない。
DC、CC等を含む連続鋳造法で前記鋳塊を鋳造する。連続鋳造法を採用する理由は、生産性の向上のためである。鋳造装置に付属させる設備、例えば超音波付与装置、低周波付与装置等の使用も任意である。鋳塊の用途目的に応じて適宜選択・採用すればよい。
The casting is cast into a billet, slab, or sheet shape depending on the application, but any shape may be used.
The ingot is cast by a continuous casting method including DC, CC, and the like. The reason for adopting the continuous casting method is to improve productivity. The use of equipment attached to the casting apparatus, such as an ultrasonic applicator or a low frequency applicator, is also optional. What is necessary is just to select and employ | adopt suitably according to the use purpose of an ingot.

得られた鋳塊は均質化処理される。この処理は、鋳造時に晶出した金属間化合物や析出物、或いは鋳造時の偏析を均質化させるために行うものである。均質化の条件は組成によって微妙に変化するが、450〜470℃の範囲で組成に適合する温度を選択して加熱する。
保持時間は目標温度に到達して60分以上保持することにより均質化する。保持時間は24時間以内とすることが好ましい。長時間保持しても効果は飽和し、経済的でない。
The obtained ingot is homogenized. This treatment is performed in order to homogenize intermetallic compounds and precipitates crystallized during casting or segregation during casting. The homogenization conditions vary slightly depending on the composition, but a temperature suitable for the composition is selected in the range of 450 to 470 ° C. and heated.
Holding time is homogenized by reaching the target temperature and holding for 60 minutes or more. The holding time is preferably within 24 hours. Even if kept for a long time, the effect is saturated and not economical.

均質化処理終了後は引続き高温のままでも良いし、冷却後再加熱しても良い。鋳塊を熱間で加工する。鋳塊がビレット形状の場合は、押出加工し所要断面の押出材とする。スラブ形状の場合は、熱間圧延して所要厚さの熱延板とし、次いで冷間圧延して所要厚さの冷延板とする。
中間焼鈍処理を施しても良い。シート形状の場合は熱間圧延しても良いが、冷間圧延のみでも良く、両者を併用しても良い。所要厚さの冷延板とする。冷間圧延のときに中間焼鈍を施しても良い。
After completion of the homogenization treatment, it may be kept at a high temperature or may be reheated after cooling. The ingot is processed hot. When the ingot is billet-shaped, it is extruded to obtain an extruded material having a required cross section. In the case of a slab shape, hot rolling is performed to obtain a hot rolled sheet having a required thickness, and then cold rolling is performed to obtain a cold rolled sheet having a required thickness.
An intermediate annealing treatment may be performed. In the case of a sheet shape, hot rolling may be performed, but only cold rolling may be performed, or both may be used in combination. Cold-rolled sheet with the required thickness. Intermediate annealing may be performed during cold rolling.

得られた押出材或いは冷延板は、溶体化処理し、合金元素を固溶させる。溶体化処理条件は、合金元素を固溶させればよいので、温度や時間を細かく規定する必要はない。400〜470℃の温度範囲に加熱し、この温度に0.5時間以上保持すれば合金元素は固溶する。24時間を超えるほどに長時間保持しても効果は飽和し、経済的ではない。
この温度で溶体化処理後、直ちに150〜350℃の温度範囲の所定温度に焼き入れ、この焼入れ温度に30分以内の条件で保持し、その後水冷する。
The obtained extruded material or cold-rolled sheet is subjected to a solution treatment to dissolve the alloy element. Since the solution treatment conditions may be obtained by dissolving the alloy element, it is not necessary to define the temperature and time in detail. When heated to a temperature range of 400 to 470 ° C. and kept at this temperature for 0.5 hours or more, the alloy elements are dissolved. Even if it is kept for a long time exceeding 24 hours, the effect is saturated and it is not economical.
Immediately after solution treatment at this temperature, it is quenched to a predetermined temperature in the temperature range of 150 to 350 ° C., kept at this quenching temperature within 30 minutes, and then cooled with water.

本発明は、上記焼入れを、焼入れ温度150〜350℃及び保持時間1秒〜30分とする条件で行うことを最大の特徴とするものである。
上記条件を採用することにより、組織的には、合金元素の一部が結晶粒界上において優先的に析出し、大きさが長径で50〜250nmの析出物を生成する。特許文献1で提案された技術と比べて小さな析出物を分散させることになるため、強度、伸びを高くすることができる。さらに、上記条件の採用により、結晶粒界に析出した上記析出物の周囲にPFZ(無析出ゾーン)が生成され、7075合金のT77熱処理材と少なくとも同等或いはそれ以上の耐SCC性が発現される。
The present invention is characterized in that the above quenching is performed under the conditions of a quenching temperature of 150 to 350 ° C. and a holding time of 1 second to 30 minutes.
By adopting the above conditions, structurally, a part of the alloy element is preferentially precipitated on the grain boundary, and a precipitate having a major axis of 50 to 250 nm is generated. Compared with the technique proposed in Patent Document 1, since small precipitates are dispersed, the strength and elongation can be increased. Furthermore, by adopting the above conditions, PFZ (no precipitation zone) is generated around the precipitates precipitated at the grain boundaries, and SCC resistance at least equivalent to or higher than that of the T77 heat treatment material of 7075 alloy is expressed. .

析出物の大きさに関してさらに詳述すると、本発明の析出物は特許文献1で提案しているものよりも成長が抑制されているので、結晶粒内は強度に寄与するZn,Mg,Cuが多く固溶している。従って、本発明の前記の条件で焼入れ、保持処理した後さらに自然時効することによって、結晶粒内において固溶している強度に寄与するZn,Mg,Cuで形成されたGPゾーンを形成し、引張り強さが650MPa以上、0.2%耐力/引張り強さ比が0.7〜0.95、伸びが10%以上の特性が得られる。或いは人工時効好ましくはT6処理することによって強度に寄与するZn,Mg,Cuが、GPゾーンが更に成長したη’‐MgZn或いはS’‐Al2CuMg等の中間層を形成し、引張り強さが650MPa以上、0.2%耐力/引張り強さ比が0.7〜0.95、伸びが10%以上の特性が得られる。 In further detail regarding the size of the precipitate, since the growth of the precipitate of the present invention is suppressed as compared with that proposed in Patent Document 1, Zn, Mg, and Cu that contribute to strength are contained in the crystal grains. Many are dissolved. Therefore, by quenching under the above-mentioned conditions of the present invention, further natural aging is performed to form a GP zone formed of Zn, Mg, Cu that contributes to the strength of solid solution in the crystal grains, A tensile strength of 650 MPa or more, a 0.2% proof stress / tensile strength ratio of 0.7 to 0.95, and an elongation of 10% or more can be obtained. Alternatively, Zn, Mg, Cu that contributes to strength by artificial aging, preferably by T6 treatment, forms an intermediate layer such as η'-MgZn 2 or S'-Al 2 CuMg with further growth of GP zone, and tensile strength Of 650 MPa or more, 0.2% proof stress / tensile strength ratio of 0.7 to 0.95, and elongation of 10% or more.

なお、焼入れ温度が350℃を超え、或いは保持時間が30分を超えると、組織的には合金元素の一部が結晶粒界において析出物の大きさが250nmを超えて粗大に析出成長し、伸び率が低下する一方で、結晶粒内においては固溶している強度に寄与するZn,Mg,Cuを強度に寄与しない化合物、例えばη‐MgZn平衡相等として析出してしまい、その後の時効において強度に寄与するGPゾーン或いはη’‐MgZn或いはS’‐Al2CuMg等の中間相の形成量が減少してしまい、引張り強度の向上に限界がある。 In addition, when the quenching temperature exceeds 350 ° C. or the holding time exceeds 30 minutes, a part of the alloy element structurally precipitates and grows coarsely at a grain boundary exceeding 250 nm, While the elongation decreases, Zn, Mg, and Cu that contribute to the strength of the solid solution in the crystal grains precipitate as a compound that does not contribute to the strength, such as η-MgZn 2 equilibrium phase. In this case, the formation amount of the GP zone or the intermediate phase such as η′-MgZn 2 or S′-Al 2 CuMg that contributes to the strength decreases, and there is a limit to the improvement of the tensile strength.

前記焼入れ温度での保持時間は1秒以上とすることが好ましい。焼入れ温度が高いほど短時間の保持とし、焼入れ温度が低いほど長時間の保持とする。溶体化処理後の焼入れ温度が150℃未満或いは保持時間が1秒未満であると結晶粒界における析出物の大きさが長径で50nm未満とサイズが小さく、PFZの幅も狭いので腐食が析出物を連続して進行し易く、耐SCC性の効果が得難い。   The holding time at the quenching temperature is preferably 1 second or longer. The higher the quenching temperature, the shorter the holding time, and the lower the quenching temperature, the longer the holding time. If the quenching temperature after solution treatment is less than 150 ° C or the holding time is less than 1 second, the size of the precipitate at the grain boundary is less than 50 nm in the major axis and the size is small, and the width of the PFZ is narrow, so the corrosion is precipitated. It is difficult to obtain the effect of SCC resistance.

実施例1;
次に具体的な実施例について説明する。
表1に示す成分組成のアルミニウム合金溶湯を溶製し、連続鋳造法で直径200mmのビレットを鋳造した。鋳塊の結晶粒の平均円相当径は約40μmであった。そして、鋳塊断面で結晶粒径の変動は±10μmであった。
得られたビレットを460℃×6hで均質化処理し、押出し比20の44.5mm直径の押出し棒に、400℃で熱間押出し、460℃×1hの溶体化処理を施し、溶体化処理温度から200℃の塩浴に焼入れし、その温度に20分間保持し、最後に水冷する処理を施した。その後、120℃×24hの人工時効処理を施して供試材とした。
Example 1;
Next, specific examples will be described.
A molten aluminum alloy having the composition shown in Table 1 was melted, and a billet having a diameter of 200 mm was cast by a continuous casting method. The average equivalent circle diameter of the ingot crystal grains was about 40 μm. The variation in crystal grain size was ± 10 μm in the ingot cross section.
The obtained billet is homogenized at 460 ° C x 6h, extruded to a 44.5mm diameter extrusion rod with an extrusion ratio of 20, hot extruded at 400 ° C, and subjected to a solution treatment of 460 ° C x 1h, from the solution treatment temperature. It was quenched in a salt bath at 200 ° C., kept at that temperature for 20 minutes, and finally cooled with water. Thereafter, an artificial aging treatment of 120 ° C. × 24 h was performed to obtain a test material.

供試材の評価は、引張試験による機械的性質の測定、光学顕微鏡及び透過電子顕微鏡による組織観察を行った。
機械的特性は、JIS Z2201の4号試験片を使用してJIS Z2241に準拠して引張試験し、0.2%耐力、引張強さ、伸びを求めた。
組織観察は、供試材を研磨のまま及び0.5%HF水溶液でエッチングした状態で、主に局部溶融の発生の有無を判定した。また、透過電子顕微鏡で結晶粒内及び粒界の析出物を観察した。 その結果を表2に示す。
The specimens were evaluated by measuring mechanical properties by a tensile test and observing the structure with an optical microscope and a transmission electron microscope.
For mechanical properties, a tensile test was performed in accordance with JIS Z2241 using a JIS Z2201 No. 4 test piece, and 0.2% proof stress, tensile strength, and elongation were obtained.
In the structure observation, the presence or absence of local melting was mainly determined while the specimen was polished and etched with a 0.5% HF aqueous solution. In addition, precipitates in the crystal grains and grain boundaries were observed with a transmission electron microscope. The results are shown in Table 2.

表2の結果から、本発明に係る試料番号1〜12は、機械的性質や耐力比に優れ、金属組織も正常であることがわかる。
一方、本発明の範囲外である試料番号13〜17は、いずれかの特性に劣っていることがわかる。特に、A7075になる試料番号17は結晶粒界や粒内に粗大粒子が多く、伸び率が低くなっていることがわかる。
From the results in Table 2, it can be seen that Sample Nos. 1 to 12 according to the present invention are excellent in mechanical properties and proof stress ratio and have a normal metal structure.
On the other hand, it can be seen that Sample Nos. 13 to 17 which are outside the scope of the present invention are inferior in any of the characteristics. In particular, it can be seen that Sample No. 17, which is A7075, has many coarse particles in the grain boundaries and grains, and the elongation is low.

Figure 2009013479
Figure 2009013479

Figure 2009013479
Figure 2009013479

実施例2;
上記表1でJ6及びJ8で示す合金組成を有するアルミニウム合金溶湯を溶製し、連続鋳造法で直径200mmのビレットを鋳造した。鋳塊の結晶粒の平均円相当径は約40μmであった。そして、鋳塊断面で結晶粒径の変動は±10μmであった。
得られたビレットを実施例1と同様に、460℃×6hで均質化処理し、押出し比20の44.5mm直径の押出し棒に、400℃で熱間押出し、表3に示す熱処理条件で熱処理を施して供試材とした。
Example 2;
A molten aluminum alloy having the alloy composition indicated by J6 and J8 in Table 1 was melted, and a billet having a diameter of 200 mm was cast by a continuous casting method. The average equivalent circle diameter of the ingot crystal grains was about 40 μm. The variation in crystal grain size was ± 10 μm in the ingot cross section.
The billet thus obtained was homogenized at 460 ° C. for 6 hours in the same manner as in Example 1. This was used as a test material.

各供試材について、引張試験による機械的性質の測定、応力腐食割れ試験による耐SCC性の評価、光学顕微鏡及び透過電子顕微鏡による組織観察を行った。
機械的特性は、実施例1と同様に、0.2%耐力、引張強さ、伸びを求めた。
耐SCC性の評価は、JIS H8711のアルミニウム合金の応力腐食割れ試験方法に準拠し、押出し棒より図2に示すように押出し方向と垂直に負荷できるようにCリング試験片を作製し、0.2%耐力の75%の応力を負荷し、25℃の3.5%食塩水中に交互浸漬し、応力腐食割れの発生の有無、発生の時間などを求めた。なお、浸漬時間は最大30日とした。
組織観察は、実施例1と同様に、局部溶融の発生の有無と、結晶粒内及び粒界の析出物を観察した。この実施例2では特に方位差10°以上の高角結晶粒界における析出物の大きさを測定した。
その結果を表4,5に示す。
For each specimen, measurement of mechanical properties by a tensile test, evaluation of SCC resistance by a stress corrosion cracking test, and observation of a structure by an optical microscope and a transmission electron microscope were performed.
As for the mechanical properties, 0.2% proof stress, tensile strength, and elongation were obtained in the same manner as in Example 1.
Evaluation of SCC resistance conforms to the stress corrosion cracking test method of JIS H8711 aluminum alloy, and a C-ring test piece is prepared from the extruded bar so that it can be loaded perpendicular to the direction of extrusion as shown in Fig. 2, 0.2% A stress of 75% of the proof stress was applied and immersed alternately in a 3.5% saline solution at 25 ° C. to determine whether or not stress corrosion cracking occurred and the time of occurrence. The immersion time was a maximum of 30 days.
In the structure observation, as in Example 1, the presence or absence of local melting and the precipitates in the crystal grains and the grain boundaries were observed. In Example 2, the size of precipitates at high-angle grain boundaries with an orientation difference of 10 ° or more was measured.
The results are shown in Tables 4 and 5.

Figure 2009013479
Figure 2009013479

Figure 2009013479
Figure 2009013479

Figure 2009013479
Figure 2009013479

表4,5の結果から、本発明に係る試料番号21,22,23,24及び30,31,32,33は、局部溶融もなくしかも機械的性質や耐力比に優れていた。また、方位差10°以上の高角粒界に存在する析出物の大きさも大きく、耐SCC性も、試料番号40に示すA7075のT77処理材と同等であることがわかる。
一方、本発明の熱処理条件範囲から外れる試料番号25,26,27及び34,35,36は、いずれかの特性で劣っていることがわかる。すなわち、溶体化処理後の焼入れ温度が高すぎたり、保持時間が長すぎたりすると、析出物が大きく成長し、機械的性質を低下させている(試料番号25,27及び34,36)。また、溶体化処理温度が高すぎると(試料番号26及び35)、局部溶融が発生し、伸びが低下している。
From the results of Tables 4 and 5, Sample Nos. 21, 22, 23, 24 and 30, 31, 32, 33 according to the present invention were excellent in mechanical properties and proof stress ratio without local melting. It can also be seen that the size of precipitates present at high-angle grain boundaries with an orientation difference of 10 ° or more is large, and the SCC resistance is equivalent to that of the A7775 T77-treated material shown in Sample No.
On the other hand, it can be seen that sample numbers 25, 26, 27 and 34, 35, 36 outside the heat treatment condition range of the present invention are inferior in any of the characteristics. That is, if the quenching temperature after the solution treatment is too high or the holding time is too long, the precipitate grows greatly and the mechanical properties are deteriorated (sample numbers 25, 27 and 34, 36). Moreover, when the solution treatment temperature is too high (sample numbers 26 and 35), local melting occurs and elongation decreases.

本発明アルミニウム合金材中のZnとMgの関係を示す図Diagram showing the relationship between Zn and Mg in the aluminum alloy material of the present invention 応力腐食割れ試験に供するCリング試験片形状を示す図Diagram showing C-ring specimen shape for stress corrosion cracking test

Claims (4)

横軸にZn含有量(質量%)を、縦軸にMg含有量(質量%)を示す図1において、点A(6.0,1.5)、B(12.0,1.5)、C(12.0,1.75)、D(9.0,2.5)及びE(6.0,2.5)で囲まれる量のMgとZn、1.0〜2.5質量%のCu及び0.08〜0.20質量%のZrを含み、残部がAl及び不可避的不純物からなり、該不可避的不純物としてのFeを0.20質量%以下に、Siを0.20質量%以下に規制した組成を有するとともに、引張り強さが650MPa以上、0.2%耐力/引張り強さ比が0.7〜0.95、伸びが10%以上、耐応力腐食割れ性が7075合金のT77熱処理材と同等以上である特性を有することを特徴とする耐応力腐食割れ性に優れた高強度アルミニウム合金材。   In FIG. 1 showing the Zn content (mass%) on the horizontal axis and the Mg content (mass%) on the vertical axis, points A (6.0, 1.5), B (12.0, 1.5), C (12.0, 1.75), Mg and Zn in an amount surrounded by D (9.0, 2.5) and E (6.0, 2.5), 1.0 to 2.5 mass% Cu and 0.08 to 0.20 mass% Zr, with the balance consisting of Al and inevitable impurities, It has a composition in which Fe as an inevitable impurity is regulated to 0.20 mass% or less and Si is regulated to 0.20 mass% or less, tensile strength is 650 MPa or more, 0.2% proof stress / tensile strength ratio is 0.7 to 0.95, elongation is High-strength aluminum alloy material with excellent stress corrosion cracking resistance, characterized by 10% or more and stress corrosion cracking resistance equivalent to or higher than T77 heat treated material of 7075 alloy. さらに、0.05〜0.5質量%のMn、0.05〜0.25質量%のCr及び0.05〜0.15質量%のVのうちの一種以上を含む請求項1に記載の耐応力腐食割れ性に優れた高強度アルミニウム合金材。   The high-strength aluminum alloy having excellent stress corrosion cracking resistance according to claim 1, further comprising one or more of 0.05 to 0.5 mass% of Mn, 0.05 to 0.25 mass% of Cr, and 0.05 to 0.15 mass% of V. Wood. 相隣る結晶粒の方位差が10°以上の結晶粒界における析出物の大きさが長径で50〜250nmであるミクロ組織を有している請求項1又は2に記載の耐応力腐食割れ性に優れた高強度アルミニウム合金材。   The stress corrosion cracking resistance according to claim 1 or 2, which has a microstructure in which the size of precipitates at grain boundaries where the orientation difference between adjacent crystal grains is 10 ° or more is 50 to 250 nm in major axis. Excellent high-strength aluminum alloy material. 請求項1又は2に記載の組成を有するアルミニウム合金の連続鋳造材を均質化処理し、熱間加工又は冷間加工、或いは両加工を併用して加工した後、溶体化処理し、その後に、150〜350℃の範囲の所定温度に焼入れし、該所定温度に1秒〜30分の時間保持した後水冷し、その後に、自然時効又は人工時効することを特徴とする耐応力腐食割れ性に優れた高強度アルミニウム合金材の製造方法。   The aluminum alloy continuous cast material having the composition according to claim 1 or 2 is homogenized, hot-worked or cold-worked, or processed in combination with both, then solution-treated, Quenched to a predetermined temperature in the range of 150 to 350 ° C, held at the predetermined temperature for 1 second to 30 minutes, then cooled with water, and then subjected to natural aging or artificial aging for stress corrosion cracking resistance. A method for producing an excellent high-strength aluminum alloy material.
JP2007177881A 2007-07-06 2007-07-06 Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking Expired - Fee Related JP5343333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177881A JP5343333B2 (en) 2007-07-06 2007-07-06 Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177881A JP5343333B2 (en) 2007-07-06 2007-07-06 Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JP2009013479A true JP2009013479A (en) 2009-01-22
JP5343333B2 JP5343333B2 (en) 2013-11-13

Family

ID=40354742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177881A Expired - Fee Related JP5343333B2 (en) 2007-07-06 2007-07-06 Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP5343333B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236665A (en) * 2009-03-31 2010-10-21 Nippon Light Metal Co Ltd Method for manufacturing high-tensile aluminum alloy bolt
JP2014037557A (en) * 2012-08-10 2014-02-27 Nippon Light Metal Co Ltd Aluminum-zinc based alloy extrusion material and method for producing teh same
RU2544331C1 (en) * 2014-01-23 2015-03-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Aluminium alloy
JP2015063747A (en) * 2013-08-30 2015-04-09 株式会社Uacj High strength aluminum alloy extrusion thin shape material and manufacturing method therefor
EP2714954A4 (en) * 2011-05-21 2015-08-19 Questek Innovations Llc Aluminum alloys
JP2016141880A (en) * 2015-02-05 2016-08-08 アイシン軽金属株式会社 Aluminum alloy and material, and manufacturing method of extrusion material
WO2016132995A1 (en) * 2015-02-20 2016-08-25 日本軽金属株式会社 Aluminum alloy worked material, and manufacturing method thereof
JP2016153516A (en) * 2015-02-20 2016-08-25 日本軽金属株式会社 Aluminum alloy processed material and manufacturing method therefor
JP2017052989A (en) * 2015-09-08 2017-03-16 株式会社Uacj Structural aluminum alloy plate and method for producing the same
WO2017169962A1 (en) * 2016-03-30 2017-10-05 アイシン軽金属株式会社 High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
JP2017203198A (en) * 2016-05-13 2017-11-16 日本軽金属株式会社 Original pipe for aluminum alloy bat, bat and manufacturing method thereof
WO2018025275A1 (en) * 2016-08-04 2018-02-08 Indian Institute Of Technology, Bombay Four-step thermal aging method for improving environmentally assisted cracking resistance of 7xxx series aluminium alloys
WO2018100867A1 (en) * 2016-11-30 2018-06-07 アイシン軽金属株式会社 Aluminum alloy for extruded material, extruded material using same, and extruded material production method
EP3730639A4 (en) * 2017-12-22 2021-07-28 NHK Spring Co., Ltd. Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
CN118147590A (en) * 2024-03-08 2024-06-07 瀚蕾智造(广东)科技有限公司 Unsteady aluminum alloy and preparation method thereof, rapid hot stamping part forming process and thin-wall aluminum alloy part prepared by using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443814A (en) * 1977-09-16 1979-04-06 Mitsubishi Heavy Ind Ltd Heat treatment method for damping alloy
JPH0247235A (en) * 1988-08-05 1990-02-16 Showa Alum Corp Seamless rim of autobicycle or the like using al-zn-mg-cu alloy
JPH03294445A (en) * 1990-04-13 1991-12-25 Sumitomo Light Metal Ind Ltd High strength aluminum alloy having good formability and its manufacture
JPH08295977A (en) * 1995-04-21 1996-11-12 Sumitomo Light Metal Ind Ltd High strength aluminum alloy extruded material excellent in fatigue strength and motorcycle front fork outer tube material
JP2004002983A (en) * 2002-03-27 2004-01-08 Kobe Steel Ltd Bat made of aluminium alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443814A (en) * 1977-09-16 1979-04-06 Mitsubishi Heavy Ind Ltd Heat treatment method for damping alloy
JPH0247235A (en) * 1988-08-05 1990-02-16 Showa Alum Corp Seamless rim of autobicycle or the like using al-zn-mg-cu alloy
JPH03294445A (en) * 1990-04-13 1991-12-25 Sumitomo Light Metal Ind Ltd High strength aluminum alloy having good formability and its manufacture
JPH08295977A (en) * 1995-04-21 1996-11-12 Sumitomo Light Metal Ind Ltd High strength aluminum alloy extruded material excellent in fatigue strength and motorcycle front fork outer tube material
JP2004002983A (en) * 2002-03-27 2004-01-08 Kobe Steel Ltd Bat made of aluminium alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012016381; 40周年記念事業実行委員会記念出版部会編集: アルミニウムの組織と性質 , 19911130, p.311-313, 日本軽金属学会発行 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236665A (en) * 2009-03-31 2010-10-21 Nippon Light Metal Co Ltd Method for manufacturing high-tensile aluminum alloy bolt
EP2714954A4 (en) * 2011-05-21 2015-08-19 Questek Innovations Llc Aluminum alloys
JP2014037557A (en) * 2012-08-10 2014-02-27 Nippon Light Metal Co Ltd Aluminum-zinc based alloy extrusion material and method for producing teh same
JP2015063747A (en) * 2013-08-30 2015-04-09 株式会社Uacj High strength aluminum alloy extrusion thin shape material and manufacturing method therefor
RU2544331C1 (en) * 2014-01-23 2015-03-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Aluminium alloy
JP2016141880A (en) * 2015-02-05 2016-08-08 アイシン軽金属株式会社 Aluminum alloy and material, and manufacturing method of extrusion material
WO2016132995A1 (en) * 2015-02-20 2016-08-25 日本軽金属株式会社 Aluminum alloy worked material, and manufacturing method thereof
JP2016153517A (en) * 2015-02-20 2016-08-25 日本軽金属株式会社 Aluminum alloy processed material and manufacturing method therefor
JP2016153516A (en) * 2015-02-20 2016-08-25 日本軽金属株式会社 Aluminum alloy processed material and manufacturing method therefor
WO2016132994A1 (en) * 2015-02-20 2016-08-25 日本軽金属株式会社 Aluminum alloy worked material, and manufacturing method thereof
JP2017052989A (en) * 2015-09-08 2017-03-16 株式会社Uacj Structural aluminum alloy plate and method for producing the same
WO2017169962A1 (en) * 2016-03-30 2017-10-05 アイシン軽金属株式会社 High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
JPWO2017169962A1 (en) * 2016-03-30 2019-02-14 アイシン軽金属株式会社 High strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability, and method for producing the same
US11136658B2 (en) 2016-03-30 2021-10-05 Aisin Keikinzoku Co., Ltd. High strength aluminum alloy extruded material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
EP3441491A4 (en) * 2016-03-30 2019-09-25 Aisin Keikinzoku Co., Ltd. High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
JP2017203198A (en) * 2016-05-13 2017-11-16 日本軽金属株式会社 Original pipe for aluminum alloy bat, bat and manufacturing method thereof
WO2018025275A1 (en) * 2016-08-04 2018-02-08 Indian Institute Of Technology, Bombay Four-step thermal aging method for improving environmentally assisted cracking resistance of 7xxx series aluminium alloys
JP2018090839A (en) * 2016-11-30 2018-06-14 アイシン軽金属株式会社 Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material
WO2018100867A1 (en) * 2016-11-30 2018-06-07 アイシン軽金属株式会社 Aluminum alloy for extruded material, extruded material using same, and extruded material production method
EP3730639A4 (en) * 2017-12-22 2021-07-28 NHK Spring Co., Ltd. Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy
US11505851B2 (en) 2017-12-22 2022-11-22 Nhk Spring Co., Ltd. Aluminum alloy, aluminum alloy spring, and fastening member made of aluminum alloy
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
US11746400B2 (en) 2019-06-03 2023-09-05 Novelis Inc. Ultra-high strength aluminum alloy products and methods of making the same
CN118147590A (en) * 2024-03-08 2024-06-07 瀚蕾智造(广东)科技有限公司 Unsteady aluminum alloy and preparation method thereof, rapid hot stamping part forming process and thin-wall aluminum alloy part prepared by using same

Also Published As

Publication number Publication date
JP5343333B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP2022512876A (en) 7XXX series aluminum alloy products
JP2009501847A (en) Forged aluminum AA7000 series alloy product and method for producing the product
JP4498180B2 (en) Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
JP6182490B2 (en) Aluminum alloy forging
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
WO2015114880A1 (en) High-strength aluminum alloy and process for producing same
SI24911A (en) High-strength aluminum alloy Al-Mg-Si and procedure for its manufacture
JP2009167464A (en) Method for producing aluminum alloy material having excellent toughness
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2021526594A (en) A method for producing an Al-Mg-Mn alloy plate product having improved corrosion resistance.
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP6638192B2 (en) Aluminum alloy processing material and method of manufacturing the same
JP2006206984A (en) Aluminum alloy extruded material having excellent impact fracture resistance
JP5279119B2 (en) Partially modified aluminum alloy member and manufacturing method thereof
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
JP6467154B2 (en) Manufacturing method of high strength and high ductility aluminum alloy sheet
JP6063295B2 (en) Aluminum alloy and method for producing the same
JP2011137233A5 (en)
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JP2018135579A (en) Structural aluminium alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5343333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees