JP2004292937A - Aluminum alloy forging material for transport carrier structural material, and production method therefor - Google Patents

Aluminum alloy forging material for transport carrier structural material, and production method therefor Download PDF

Info

Publication number
JP2004292937A
JP2004292937A JP2003090662A JP2003090662A JP2004292937A JP 2004292937 A JP2004292937 A JP 2004292937A JP 2003090662 A JP2003090662 A JP 2003090662A JP 2003090662 A JP2003090662 A JP 2003090662A JP 2004292937 A JP2004292937 A JP 2004292937A
Authority
JP
Japan
Prior art keywords
less
aluminum alloy
alloy
forged
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003090662A
Other languages
Japanese (ja)
Inventor
Yoshiya Inagaki
佳也 稲垣
Manabu Nakai
学 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003090662A priority Critical patent/JP2004292937A/en
Publication of JP2004292937A publication Critical patent/JP2004292937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg-Si based aluminum alloy forging material for a transport carrier structural material in which the crystal grains in the casting material or forging material structure can surely be refined, and which has high strength, high toughness and excellent corrosion resistance as well, and to provide a production method therefor. <P>SOLUTION: The aluminum alloy forging material has a composition comprising 0.6 to 1.8% Mg, 0.4 to 1.8% Si and 0.1 to 1.0% Cu, further comprising one or two kinds of metals selected from 0.01 to 0.9% Mn and 0.01 to 0.25% Cr, and, in which, further, under the new addition of 0.05 to 0.1% metal Ti, the total content of Ti is controlled to ≤0.15%, and, as impurities, the content of Zr is regulated to ≤0.01%, V to ≤0.01% and Hf to ≤0.01%, and, the total content of Zr, V and Hf is also regulated to ≤0.01%, and the balance Al with inevitable impurities. The average crystal grain size of the structure of the forging material after artificial age hardening treatment is ≤100 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高強度、高靱性であって、耐応力腐食割れ性などの耐食性にも優れた輸送機構造材用Al−Mg−Si系アルミニウム合金鍛造材およびその製造方法 (以下、アルミニウムを単にAlとも言う) に関するものである。
【0002】
【従来の技術】
周知の通り、車両、船舶、航空機、自動二輪あるいは自動車などの輸送機の構造材乃至部品用、特にアッパーアーム、ロアーアームなどの足回り部品として、AA乃至JIS の規格で言う6000系(Al−Mg−Si 系) などのAl合金鍛造材が使用されている。6000系Al合金鍛造材は高強度、高靱性で、耐食性にも比較的優れている。また、6000系Al合金自体も、合金元素量が少なく、スクラップを再び6000系Al合金溶解原料として再利用しやすい点で、リサイクル性にも優れている。
【0003】
これら6000系Al合金鍛造材は、通常、Al合金鋳造材を均質化熱処理後、メカニカル鍛造、油圧鍛造などの熱間鍛造(型鍛造)を行い、その後、溶体化および焼き入れ処理と人工時効硬化処理を行う、所謂調質処理が施されて製造される。なお、鍛造素材には、鋳造材の他に、鋳造材を一旦押出した押出材が用いられることもある。
【0004】
近年、これら輸送機の構造材においても、より薄肉化させた上での高強度化や高靱性化が求められている。このため、Al合金鋳造材やAl合金鍛造材のミクロ組織を改善することが種々行われている。例えば、6000系Al合金鋳造材の晶析出物 (晶出物や析出物) の平均粒径を8 μm 以下と小さくし、かつデンドライト二次アーム間隔(DAS) を40μm 以下と細かくして、Al合金鍛造材をより高強度で高靱性化することが提案されている(特許文献1、2参照) 。また、6000系Al合金鍛造材の結晶粒内や粒界の晶出物や晶析出物の平均粒径や平均間隔などを制御することで、Al合金鍛造材をより高強度で高靱性化することも提案されている(特許文献3、4、5参照) 。これらの制御は、粒界腐食や応力腐食割れなどに対しても高耐食性化できる。そして、これらの晶出物や晶析出物の制御に合わせて、Mn、Zr、Crなどの結晶粒微細化効果を有する遷移元素を添加して、結晶粒を微細化乃至亜結晶粒化させ、破壊靱性や疲労特性を向上させることも知られている(特許文献3、4、5参照) 。
【0005】
【特許文献1】
特開平07−145440 号公報
【特許文献2】
特開平06−256880 号公報
【特許文献3】
特開2000−144296 号公報
【特許文献4】
特開2001−107168 号公報
【特許文献5】
特開2002−294382 号公報
【0006】
しかし、これら6000系Al合金鍛造材には、上記鍛造および溶体化処理工程において、加工組織が再結晶して粗大結晶粒が発生する傾向がある。これら粗大結晶粒が発生した場合、上記ミクロ組織を制御しても、高強度化や高靱性化が果たせず、また、耐食性も低下する。しかも、これらの各特許文献では、鍛造における加工温度が450 ℃未満と比較的低く、このような低温の熱間鍛造では、目標としている結晶粒を微細化乃至亜結晶粒化させることが実際には困難である。
【0007】
一方、前記加工組織が再結晶化した粗大結晶粒の発生を抑制するため、Mn、Zr、Crなどの結晶粒微細化効果を有する遷移元素を添加した上で、450 〜570 ℃の比較的高温の温度で熱間鍛造を開始することが知られている(特許文献5 、6 参照) 。
【0008】
【特許文献5】
特開平5−247574号公報
【特許文献6】
特開2002−348630 号公報
【0009】
【発明が解決しようとする課題】
しかし、本発明者らの知見によれば、これらの高温鍛造を行なったとしても、これらMn、Zr、Crなどの結晶粒微細化効果を有する遷移元素を添加した場合、却って、鍛造材の結晶粒を微細化できないことが実際に生じうる。
【0010】
これは、添加されたこれらMn、Zr、Crなどの遷移元素が、元々Al合金鋳造材の結晶粒微細化用の元素として添加されるTiと化合物を形成しやすいためである。このように遷移元素によって化合物化されたTiは、金属Tiに比して、結晶粒の核になり得ずに、Al合金鋳造材の結晶粒微細化効果が失われる。この理由は、上記化合物化されたTiは、金属Tiに比して、Al合金溶湯中で微細分散せずに沈降しやすいために、結晶粒の核になり得ないものと推考される。このTiの効果が発揮されない結果、Al合金鋳造材の段階で、鋳塊の平均結晶粒径が100 μm を大きく越えて粗大化することとなる。
【0011】
一方で、6000系Al合金鍛造材用鋳塊を溶製する場合、近年の鍛造材製品のリサイクル化に沿って、溶製用の溶解原料には、高純度なAl地金だけではなく、鍛造材製品スクラップも配合されるようになっている。これら鍛造材製品スクラップには、当然、元の鍛造材製品 (鋳塊) の結晶粒微細化用元素としてのTiが含まれている。このTiは、前記したように、遷移元素などによって化合物化されたTiであり、Al合金鋳造材の結晶粒微細化効果が失われている。
【0012】
一般的に、鍛造材を含めて、通常は、Al合金展伸材 (圧延材、押出材、鍛造材) 製品の成分組成は、Al合金溶湯および鋳造材あるいは鍛造材の各元素の含有量で管理、保障される。したがって、鍛造材製品スクラップが溶解原料に配合されて、上記化合物化されたTiが多く含まれるようになると、通常はTi含有量が0.15% 以下に管理されるために、新たに添加される金属Ti (フレッシュなTi) の量は必然的に減少する。この結果、前記したMn、Zr、Crなどの遷移元素を添加した場合には、化合物化されたTiの量が増すために、より添加される金属Tiの量を増す必要があるにも関わらず、実際の鋳塊結晶粒微細化に必要な金属Tiの量は減少してしまっていることとなる。このような状況も、前記したMn、Zr、Crなどの遷移元素を添加した場合の鍛造材の結晶粒を微細化できない状況の発生を助長している。
【0013】
この様な事情に鑑み、本発明の目的は、Mn、Crなどの遷移元素を添加した場合でも、鋳造材乃至鍛造材組織の結晶粒を確実に微細化でき、高強度、高靱性であって、耐応力腐食割れ性などの耐食性にも優れた輸送機構造材用Al−Mg−Si系アルミニウム合金鍛造材およびその製造方法を提供しようとするものである。
【0014】
【課題を解決するための手段】
この目的を達成するために、本発明輸送機構造材用アルミニウム合金鍛造材の要旨は、Al−Mg−Si系アルミニウム合金鍛造材であって、Mg:0.6〜1.8%、Si:0.4〜1.8%、Cu:0.1〜1.0%を含むとともに、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% の一種または二種を含み、更に、0.05〜0.1%の金属Tiが新たに添加された上で、Tiの総含有量を0.15% 以下とし、不純物として、Zr:0.01%以下、V:0.01% 以下、Hf:0.01%以下であって、かつ、これらZr、V 、Hfの総含有量でも0.01% 以下に規制し、残部Alおよび不可避的不純物からなり、人工時効硬化処理後の鍛造材組織の平均結晶粒径が100 μm 以下であることとする。これによって、人工時効硬化処理後の鍛造材を、好ましくは高強度高靱性材として、0.2%耐力が345MPa以上でシャルピー衝撃値が20J/cm以上であるものとするか、または、好ましくは高強度材として、鍛造材の0.2%耐力が370MPa以上でシャルピー衝撃値が12J/cm以上であるものとする。
【0015】
また、本発明輸送機構造材用アルミニウム合金鍛造材の製造方法の要旨は、Mg:0.6〜1.8%、Si:0.4〜1.8%、Cu:0.1〜1.0%を含むとともに、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% の一種または二種を含み、更に、0.05〜0.1%の金属Tiが新たに添加された上で、Tiの総含有量を0.15% 以下とし、不純物として、Zr:0.01%以下、V:0.01% 以下、Hf:0.01%以下であって、かつ、これらZr、V 、Hfの総含有量でも0.01% 以下に規制し、残部Alおよび不可避的不純物からなるアルミニウム合金合金溶湯を、10℃/sec以上の冷却速度で鋳造し、アルミニウム合金鋳造材組織の平均結晶粒径を100 μm 以下とし、この鋳造材を250 ℃/h以下の加熱速度で加熱して500 〜550 ℃で均質化熱処理した後に、480 〜520 ℃の開始温度と380 ℃以上の終了温度で熱間鍛造し、その後、540 〜560 ℃で溶体化処理した後に70℃以下の温度に焼入れ処理し、更に170 〜200 ℃で人工時効硬化処理し、この人工時効硬化処理後の鍛造材組織の平均結晶粒径を100 μm 以下とするとともに、0.2%耐力が345MPa以上でシャルピー衝撃値が20J/cm以上とするか、0.2%耐力が370MPa以上でシャルピー衝撃値が12J/cm以上とすることである。
【0016】
なお、本発明で規定する各元素量における% 表示はすべて質量% の意味である。そして、新たに添加される金属Ti以外の、各元素の含有量とは、新たに溶湯に添加される場合や、地金や元素添加母合金、スクラップなどから元々混入する場合を含めた、当該元素のAl合金溶湯中における合計量 (総量) である。
【0017】
前記した通り、鍛造材組織の結晶粒微細化のために添加されるMn、Zr、Crなどの遷移元素は、Al合金鋳造材の結晶粒微細化用の元素として添加されるTiと化合物を形成しやすい。そして、これら遷移元素の中でも、Zrが最もTiと化合物を形成しやすい。したがって、本発明では、このZrを積極的に規制して、含有されるZr量自体を極力少なくする。そして、鍛造材組織の結晶粒微細化のために一定量含有する遷移元素は、Mn、Crのみとする。
【0018】
そして、このZrのみならず、Zrと同様にTiと化合物を形成しやすく、かつ地金や合金添加用の原料あるいは鍛造材製品スクラップなどから鋳造材中に混入しやすい、V 、Hfの各元素を選択して、各々の元素を個別と総含有量で積極的に規制して、含有されるV 、Hfの量自体を極力少なくする。
【0019】
これらTiと化合物を形成しやすく、TiのAl合金鋳造材の結晶粒微細化効果を損なう上記諸元素を積極的に規制した上で、本発明では、鋳造材および鍛造材の組織の結晶粒微細化効果を発揮するために、新たに添加される金属Tiの量を0.05〜0.1%の範囲で確保する。但し、地金や合金添加用の母合金原料あるいは鍛造材製品などのスクラップなどから鋳造材中に混入される化合物化されたTiの量と、上記新たに添加される金属Tiの量とを合わせて、Tiの総含有量として、0.15% 以下と、上限を規定する。
【0020】
これらによって、Al合金鋳造材 (鋳塊) 組織の平均結晶粒径を100 μm 以下およびAl合金鍛造材組織の平均結晶粒径を100 μm 以下と、確実にまた再現性良くすることができ、高強度、高靱性であって、耐応力腐食割れ性などの耐食性にも優れた輸送機構造材用Al−Mg−Si系アルミニウム合金鍛造材の基本性能が達成および保障できる。また上記本発明製造方法は、Al合金鍛造材の平均結晶粒径を100 μm 以下とすることを保障する好ましい製造方法である。
【0021】
【発明の実施の形態】
先ず、本発明においては、鍛造材 (人工時効処理後) の組織を平均結晶粒径が100 μm 以下の微細な組織とすることを目的とする。このような組織とできれば、成分組成および調質条件の選択によって、人工時効硬化処理後の鍛造材を、例えば、高強度高靱性材として、0.2%耐力が345MPa以上でシャルピー衝撃値が20J/cm以上であるものとするか、または、高強度材として、鍛造材の0.2%耐力が370MPa以上でシャルピー衝撃値が12J/cm以上であるものとできる。また、鍛造材の耐応力腐食割れ性も向上できる。なお、鍛造材の用途( 要求特性) に応じて、0.2%耐力を高くするか、シャルピー衝撃値を高くするか、またはこの両方を高くするかは、適宜選択される。
【0022】
このため、鍛造材を大量に生産する場合であっても、確実にまた再現性良く、高強度、高靱性、高耐食性な鍛造材を生産できる。そして、鍛造材が自動車の足回り部品などの輸送機構造材として、ブッシュなどの他の鉄鋼部材などとの接合や、引張応力が付加されて使用されるような、高強度や高耐久性が必要で、かつ応力腐食割れの腐食環境が厳しい使用環境であっても、その要求特性を保障できる。一方、鍛造材が平均結晶粒径が100 μm を越える組織であった場合、このような要求特性を保障できない。例えば、鍛造材の0.2%耐力を370MPa以上および/ またはシャルピー衝撃値を20J/cm以上と高くできない。また、例えば、輸送機構造材としての使用中に引張応力が付加される部位では、前記した鉄鋼部材との接合による電食などとの相乗効果で、応力腐食割れが発生する可能性が高くなる。
【0023】
なお、平均結晶粒径が100 μm 以下の微細な組織とする鍛造材部位は、必ずしも鍛造材の部位全てでなくても良く、必要部位のみでも良い。微細な組織とする鍛造材部位は、必要に応じて、また、前記輸送機の構造材乃至部品などの鍛造材の用途に応じて適宜決定乃至選択される。例えば、アッパーアーム、ロアーアームなどの足回り部品では、高強度化、高靱性化が必要な部位はアーム本体 (中央部) であり、高耐食性化が必要な部位は、鉄などの異種金属などからなる他部品との接合部およびその近傍である。
【0024】
この平均結晶粒径は、鍛造材の高特性必要部位の組織測定断面を電解エッチング後、特に亜結晶粒界および結晶粒界を鮮明化させ、400 倍の偏光顕微鏡によって、結晶粒界を判別した上で、測定できる。通常の組織測定断面の化学エッチングや、偏光させない投影機および光学顕微鏡による観察では、結晶粒界が判別しにくい。この際、結晶粒径のバラツキを考慮するため、鍛造材の微細化が必要な部位毎に、測定 (試料採取) の位置を変えた複数部位の観察によって行うことが好ましい。
【0025】
次に、本発明Al合金鍛造材乃至鍛造材用の素材 (鋳造材) における、化学成分組成について説明する。本発明鍛造材のAl合金化学成分組成は、自動車、船舶などの輸送機材構造材として、高強度、高靱性および耐応力腐食割れ性などの高い耐食性乃至耐久性を保証する必要がある。
【0026】
したがって、本発明に係るAl合金鋳造材あるいは鍛造材の化学成分組成は、Al−Mg−Si系のJIS 6000系Al合金の成分規格に相当するものとして、基本的な組成として、Mg:0.6〜1.8%、Si:0.4〜1.8%、Cu:0.1〜1.0%を含むものとする。
【0027】
そして、前記した通り、鍛造材組織の結晶粒微細化のために含有する遷移元素は、最もTiと化合物を形成しやすいZrを除く、Mn、Crの一種または二種のみとする。MnとCrもTiと化合物を形成しやすいものの、Zrほどではない。また、高温鍛造などによって、鍛造材組織を平均結晶粒径が100 μm 以下に微細化させるためには、どうしても、Mn、Crの一種または二種が必要となる。
【0028】
したがって、本発明では、Mn、Crによって化合物化されるTi (鋳造材および鍛造材の組織の結晶粒微細化効果を発揮できない化合物化Ti) の量を、Mn、Crの含有量との関係で見越して、鋳造材の溶製時に、Al合金溶湯中に新たに添加される金属Tiの量を確保する。
【0029】
また、前記した通り、このZrのみならず、Zrと同様にTiと化合物を形成しやすく、かつ地金や合金添加用の原料あるいは鍛造材製品スクラップなどから鋳造材中に混入しやすい、Zr、V 、Hfの各元素を選択して、各々の元素を個別と総含有量で積極的に規制する。これによって、鋳造材および鍛造材の組織の結晶粒微細化効果を発揮するに有効なTiの量を確保する。なお、本発明で規定する以外の元素は不純物であるが、本発明の諸特性を阻害しない範囲で、更なる特性の向上や他の特性を付加するための、他の元素を適宜含むなどの成分組成の変更は適宜許容される。
【0030】
次に、本発明の各元素の含有量について、個別に臨界的意義や好ましい範囲について説明する。
【0031】
Mg:0.6〜1.8%。
Mgは人工時効硬化処理により、Siとともにβ’’相ならびにβ’ 相として析出し、鍛造材の輸送機構造材使用時の高強度 (耐力) を付与するために必須の元素である。Mgの0.6%未満の含有では人工時効硬化処理時の時効硬化量が低下する。一方、1.8%を越えてMgを含有すると、却って、強度、靱性、耐食性そして鍛造性などを低下させる。したがって、Mgの含有量は0.6 〜1.8%の範囲とする。
【0032】
Si:0.4〜1.8%。
SiもMgとともに、人工時効硬化処理により、β’’相ならびにβ’ 相として析出して、鍛造材の輸送機構造材使用時の高強度を付与するために必須の元素である。Siの0.4%未満の含有では人工時効硬化処理で十分な強度が得られない。一方、1.8%を越えて含有されると、鋳造時および溶体化処理後の焼き入れ途中で、粗大な単体Si粒子が晶出および析出して、耐食性と靱性を低下させる。また、過剰Siが多くなって、高耐食性と高靱性、高疲労特性を得ることができない。更に伸びが低くなるなど、加工性も阻害する。したがって、Siの含有量は0.4 〜1.8%の範囲とする。
【0033】
Cu:0.1〜1.0%。
Cuは、固溶強化にて強度の向上に寄与する他、人工時効硬化処理に際して、鍛造材の人工時効硬化性を著しく促進する効果も有する必須の元素である。Cuの含有量が0.1%未満ではこれらの硬化が無い。一方、Cuの含有量が1.0%を越えると、鍛造材の組織の応力腐食割れや粒界腐食の感受性を著しく高め、耐食性や耐久性を著しく低下させる。したがって、Cuの含有量は0.1 〜1.0%の範囲とする。
【0034】
Mn:0.01 〜0.9%、Cr:0.01 〜0.25% の一種または二種。
これらの元素は均質化熱処理時およびその後の熱間鍛造時に、Fe、Mn、Cr、Zr、Si、Alなどがその含有量に応じて選択的に結合したAl−Mn 系、Al−Cr 系金属間化合物であり、(Fe 、Mn、Cr)SiAl12などに代表される分散粒子 (分散相) を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、鍛造材組織の結晶粒の粗大化を防止するとともに、微細な結晶粒とすることができる。
【0035】
Mn、Crの含有量が少なすぎると、これらの効果が期待できず、一方、これらの元素の過剰な含有は溶解、鋳造時に粗大な金属間化合物や晶出物を生成しやすく、破壊の起点となり、靱性や疲労特性を低下させる原因となる。このため、これらの元素は各々、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% の範囲で、一種または二種含有させる。
【0036】
Ti。
Tiは、鋳塊の結晶粒を微細化し、鍛造材組織を微細な結晶粒とする効果がある。しかし、地金や合金添加用の原料あるいは鍛造材製品スクラップなどから鋳造材中に混入される化合物化されたTiは、Al合金鋳造材の結晶粒微細化効果が失われている。したがって、本発明では、新たに添加されるMn、Crによって、同様に化合物化されるTi (結晶粒微細化効果を発揮できない化合物化Ti) の量を、Mn、Crの含有量との関係で見越して、新たに添加される金属Tiの量として確保する。この量は0.05〜0.1%の金属Tiの添加量範囲とする。新たに添加される金属Tiの量が0.05% 未満では、上記結晶粒微細化効果が発揮できない。なお、Tiの添加量ではなく、通常通り、Tiの含有量のみで規定した場合、分析によって得られたTiの含有量は新たに添加される金属Tiと化合物化したTiとの総量を示すものに過ぎず、結晶粒微細化に有効なTiの実質量は一切不明となる。
【0037】
また、新たに添加される金属Tiの量が0.1%を越えた場合、地金や合金添加用の母合金原料あるいは鍛造材製品などのスクラップなどから鋳造材中に混入される化合物化されたTiと合わせたTiの総含有量が0.15% を越える可能性が大きくなる。Tiの総含有量が0.15% を越えて含有されると、却って、粗大な晶析出物を形成し、鍛造性などの加工性を低下させる。したがって、Tiの含有量は、地金や合金添加用の原料あるいは鍛造材製品スクラップなどから鋳造材中に混入される化合物化されたTiと新たに添加される金属Tiの量とを合わせて、総含有量として、0.15% 以下とする。
【0038】
なお、本発明で言う金属Tiとは、結晶粒微細化効果を発揮できるTiの意味であり、通常Ti−Bなどの他の元素との母合金の形でAl合金溶湯に添加されるようなTiの形態を言う。通常はTiはこのTi−B合金の母合金で添加されるため、B が必然的に混入しやすい。B は不純物ではあるが、Tiと同様、鋳塊の結晶粒を微細化し、鍛造時の加工性を向上させる効果もある。しかし、300ppmを越えて含有されると、やはり粗大な晶析出物を形成し、前記加工性を低下させる。したがって、B は300ppm以下の含有まで許容する。
【0039】
以下に、本発明の不純物の規制について説明する。本発明において、Zr、V 、Hfは、Tiと化合物を形成してTiの効果を消滅させ、かつ地金や合金添加用の原料あるいは鍛造材製品スクラップなどから鋳造材中に混入しやすい。このため、これらZr、V 、Hfの各元素の個別含有量と総含有量とが、できるだけ少なくなるように積極的に規制することが必須である。具体的には、Zr:0.01%以下、V:0.01% 以下、Hf:0.01%以下であって、かつ、これらZr、V 、Hfの総含有量でも0.01% 以下に規制する。
【0040】
Zr、V 、Hfの各元素の個別含有量と総含有量とが各々上記上限値を越えた場合には、例え、上記本発明にとっての必須の元素が本発明組成成分範囲を満足していたとしても、Al合金鋳造材 (鋳塊) 組織の平均結晶粒径が100 μm 以下およびAl合金鍛造材組織の平均結晶粒径が100 μm 以下とすること、更に、高強度、高靱性であって、耐応力腐食割れ性などの耐食性にも優れた輸送機構造材用Al−Mg−Si系アルミニウム合金鍛造材の基本性能が達成できない乃至保障することができない。
【0041】
以下に規制することが好ましいその他の不純物について説明する。
Fe:0.40%以下。Al合金に不純物として含まれるFeは、本発明で問題とする粗大な晶出物を生成する。これらの晶出物は、前記した通り、破壊靱性および疲労特性などを劣化させる。したがって、Feの含有量は0.40% 以下、より好ましくは0.35% 以下のできるだけ少ない含有量に規制することが好ましい。
【0042】
水素:0.25 ml/100g Al以下。水素(H)は不純物であり、特に、鍛造材の加工度が小さくなる場合、水素に起因する気泡が鍛造等加工で圧着せず、破壊の起点となるため、靱性や疲労特性を著しく低下させる。そして、高強度化した輸送機の構造材などにおいては、特に水素による影響が大きい。したがって、 Al 100g当たりの水素濃度は0.25ml以下の、できるだけ少ない含有量とすることが好ましい。
【0043】
Zn:1.0% 以下。Znは人工時効時において、MgZnを微細かつ高密度に析出させ高い強度を実現させる。また、固溶したZnは粒内の電位を下げ、腐食形態を粒界からではなく、全面的な腐食として、粒界腐食や応力腐食割れを結果として軽減する効果もある。しかし、1.0%を越えて含有されると、耐蝕性が顕著に低下する。したがって、Znは1.0%以下の含有量まで許容する。
【0044】
Be:100ppm 以下。Beは空気中におけるAl溶湯の再酸化を防止する効果もある。しかし、100ppmを越えて含有されると、材料硬度が増大し、前記加工性を低下させる。したがって、Beは100ppm以下の含有量まで許容する。
【0045】
次に、本発明におけるAl合金鍛造材の好ましい製造方法について述べる。本発明におけるAl合金鍛造材の各製造工程自体は、前記した鍛造条件を除き、常法により製造が可能である。例えば、前記Al合金成分範囲内に溶解調整されたAl合金溶湯を鋳造する場合には、例えば、連続鋳造圧延法、半連続鋳造法(DC鋳造法)、ホットトップ鋳造法等の通常の溶解鋳造法を適宜選択して鋳造する。
【0046】
ここで、Al合金鋳塊 (鋳造材) の平均結晶粒径を100 μm 以下として、鍛造材の結晶粒を微細化させるためには、Al合金溶湯を上記化学成分組成とするとともに、このAl合金溶湯を10℃/sec以上の冷却速度で鋳造して鋳塊とすることが好ましい。また、Al合金鍛造材に残留する鋳造組織を無くし、晶出物を破壊および微細化し、強度と靱性ならびに疲労特性をより向上させるために、Al合金鋳塊を均質化熱処理後、押出や圧延加工した後に、前記鍛造を行っても良い。
【0047】
次いで、このAl合金鋳塊 (鋳造材) を250 ℃/h以下の加熱速度で加熱して、500 〜550 ℃の温度で均質化熱処理することが好ましい。均質化熱処理温度への加熱速度が250 ℃/hを越えて速すぎると、均質化熱処理において、Mn、Crなどが固溶しにくくなり、粗大化しやすく、微細な分散粒子を形成しにくくなる。
【0048】
均質化熱処理温度が550 ℃を越えて高過ぎると、バーニング等が生じやすく、鍛造割れの原因となる。また、鍛造製品での靱性、疲労特性などの機械的な特性を低下させる。更に、Mn、Crなどの分散粒子が粗大化して、結晶粒微細化を促進する分散粒子自体の数も不足する。一方、均質化熱処理温度が490 ℃未満と低過ぎると、鋳塊の均質化が不足し、鍛造材を高強度化、高靱性化することが難しくなる。
【0049】
この均質化熱処理の後に、480 〜520 ℃の開始温度と380 ℃以上の終了温度で、メカニカル鍛造や油圧鍛造等により熱間鍛造して、輸送機構造材の最終製品形状 (ニアネットシェイプ) のAl合金鍛造材に成形する。この際、熱間鍛造開始温度と終了温度とを、各々480 ℃以上、380 ℃以上の比較的高い温度とする。
【0050】
熱間鍛造開始温度が480 ℃未満であれば、特に再加熱無しで複数回行われる熱間鍛造において、最終回次の製品部の熱間鍛造の終了温度を380 ℃以上のより高温に保証することが困難となる。この結果、熱間鍛造の終了温度が380 ℃未満となって、本発明の成分組成範囲内であっても、鍛造および溶体化処理工程において、加工組織が再結晶して粗大結晶粒が発生する可能性がある。このため、鍛造材組織の平均結晶粒径を100 μm 以下とすることが困難となり、高強度、高靱性、高耐食性などの要求特性を保障できなくなる。また、熱間鍛造加工自体も困難となる。一方、熱間鍛造開始温度が520 ℃を越えた場合、摩擦熱により局部融解して鍛造加工割れを生じやすくなる。
【0051】
これらの鍛造後、輸送機構造部材としての必要な強度および靱性、耐食性を得るためのT6 (溶体化処理後、最大強さを得る人工時効硬化処理) 、T7 (溶体化処理後、最大強さを得る人工時効硬化処理条件を超えて過剰時効硬化処理) 、T8 (溶体化処理後、冷間加工を行い、更に最大強さを得る人工時効硬化処理) 等の調質処理を適宜行う。
【0052】
但し、平均結晶粒径が100 μm 以下の組織を有する鍛造材の0.2%耐力とシャルピー衝撃値をより高くするためには、これらの調質処理の内の各温度を以下の通りの特定範囲とする。
【0053】
即ち、溶体化処理温度は540 〜560 ℃の範囲とする。溶体化処理温度が540 ℃未満ではMgSi などが十分固溶せず、その後の焼入れや人工時効硬化処理によっても、上記高強度、高靱性が得られない。また、溶体化処理温度が560 ℃を越えた場合、局部溶解の可能性が生じる。
【0054】
溶体化処理後の焼入れ温度は70℃以下の温度とする。焼入れ温度が70℃を越えた場合、焼入れが不足し、上記高強度が得られない。この際、焼入れ処理の冷却は水冷が好ましい。焼き入れ処理時の冷却速度が低くなると、粒界上にMgSi 、Si等が析出し、人工時効後の製品において、粒界破壊が生じ易くなり、靱性ならびに疲労特性を低くする。また、冷却途中に、粒内にも、安定相MgSi 、Siが形成され、人工時効時に析出するβ相、β’’相の析出量が減るため、強度が低下する。
【0055】
人工時効硬化処理の温度は170 〜200 ℃の範囲とする。人工時効硬化処理温度が170 ℃未満では、時効硬化が進まず、上記高強度が得られない。また、人工時効硬化処理温度が200 ℃を越えると、過時効となって、逆に強度が低下し、上記高強度が得られない。
【0056】
なお、前記した、均質化熱処理、溶体化処理には空気炉、誘導加熱炉、硝石炉などが適宜用いられる。更に、人工時効硬化処理には空気炉、誘導加熱炉、オイルバスなどが適宜用いられる。本発明鍛造材は、これら調質処理の前後に、また、輸送機構造材として取り付けられるまでに、輸送機構造材として必要な、機械加工や表面処理などが適宜施されても良い。
【0057】
【実施例】
次に、本発明の実施例を説明する。表1 に示す合金番号1 〜6 の本発明成分組成範囲内と、合金番号7 〜10の本発明化学成分組成範囲外とのAl合金鋳塊 (Al合金鋳造材、いずれも直径φ80mmの丸棒) を、各々半連続鋳造法により、表2 に示す冷却速度により鋳造した。
【0058】
表1 に示す合金番号7 〜10の本発明化学成分組成範囲外の例の内、合金番号7 は新たに添加される金属Ti量が0.04% と低めに外れた比較例である。合金番号8 は新たに添加される金属Ti量が0.12% と高めに外れているため、Tiの総含有量も0.16% と高めに外れた比較例である。合金番号9 はTi量はいずれも本発明範囲内であり、不純物であるZr、V 、Hfの個別の含有量は各々本発明範囲内であるものの、Zr、V 、Hfの総含有量のみが0.012%と、本発明上限を越えている比較例である。合金番号10はTi量はいずれも本発明範囲内であり、不純物であるV 、Hfの個別の含有量は各々本発明範囲内であるものの、Zrの含有量のみが0.012%と本発明上限を越え、このため、Zr、V 、Hfの総含有量も0.012%と、本発明上限を越えている比較例である。
【0059】
上記鋳塊 (鋳造材) の平均結晶粒径 (μm)を表2 に示す。なお、表1 に示した発明例、比較例合金とも、Al合金鋳塊におけるB は100 〜200ppm、他の不純物であるZnは0.1 〜0.2%、Beは10ppm 以下、100gのAl中のH濃度は全て0.10〜0.15mlであった。
【0060】
そして、この鋳塊の外表面を厚さ3mm 面削して、長さ500mm に切断後、表2 に示す各条件の加熱速度( ℃/h) と温度( ℃) で、4 時間均質化熱処理した。この均質化熱処理後に、表2 に示す各条件の開始温度( ℃) と終了温度( ℃) とで、熱間鍛造し、足回り部品に対応する厚みである20mmt の平板に鍛造した (各例とも加工率は同じ) 。
【0061】
これらの鍛造後、表2 に示す各温度と各時間条件で、溶体化処理(530〜550 ℃×5 時間) および水焼入れ処理 (焼入れ温度80〜50℃) 、人工時効硬化処理(170〜200 ℃×5 時間) して、試験用鍛造材を作製した。溶体化処理は、空気炉を用いて、昇温時間を1 〜2 時間とした。また、溶体化および焼入れ処理の後30分以内に人工時効硬化処理を行った。
【0062】
これら各鍛造材の特性を表3 に示す。なお、表2 、3 のAl合金番号は表1 のAl合金番号と対応している。この鍛造材の特性の内、平均結晶粒径は20視野を測定し、これらを平均して平均結晶粒径( μm)とした。
【0063】
また、各鍛造材より、各々引張試験片A (L方向) とシャルピー試験片B (LT 方向) を任意の箇所から各5 個づつ採取し、引張強度(MPa) 、0.2%耐力(MPa) 、伸び(%) 、シャルピー衝撃値、等をJIS の測定方法に準じて各々測定し、各平均値を求めた。
【0064】
更に、応力腐食割れ試験は、型割り部と周辺部とを採取し、C リング状の試験片に加工して行った。応力腐食割れ試験条件は、前記 Cリング試験片をASTM G47の交互浸漬法の規定に準じて行った。但し、試験条件は、更に、鍛造材が型割り部に対しST方向に引張応力が付加されて使用されることを模擬して、C リング試験片のST方向に、前記機械的特性の試験片のL 方向の耐力の75% の応力を負荷した状態とした。この状態で、C リング試験片の塩水への浸漬と引き上げを繰り返して90日間行い、試験片の応力腐食割れ発生の有無を確認した。これらの結果を、応力腐食割れが発生している場合を×、応力腐食割れではないが、応力腐食割れに至る可能性の高い粒界腐食が発生している場合を△、応力腐食割れや粒界腐食が発生していない場合 (表面的な全面腐食が発生している場合を含む) を○として、表3 に示す。
【0065】
なお、本発明の実施例では、Mn、Crなどの遷移元素を添加した場合でも、鋳造材乃至鍛造材組織の結晶粒を確実に再現性良く微細化できることを確認するために、表2 、3 の発明例1 〜6 および比較例7 〜10までは、同じ合金組成 (同じ合金番号) の鋳造材を各例とも各々別々に (極力同一条件になるように) 溶製して5 本準備した。そして、これら各鋳造材を素材とする鍛造材も各例とも各々別々に (極力同一条件になるように) 均質化熱処理、熱間鍛造、溶体化処理焼入れ処理、人工時効硬化処理を行い、各例とも5 本の鍛造材を製造した。なお、比較例11〜17は1 本の鋳造材および対応する鍛造材について評価した。
【0066】
そして、各例とも特性評価は、比較例11〜17を除き、上記条件にて測定した5 本の鍛造材の各機械的な特性値の最低値、5 本の鍛造材の各平均結晶粒径値の内の最大平均結晶粒径値で行なった。また、応力腐食割れの評価も、最低レベル基準での評価で行い、前記した評価試験で、1 本の鍛造材にでも応力腐食割れが発生している場合を×、1 本の鍛造材にでも粒界腐食が発生している場合を△、5 本全てに応力腐食割れや粒界腐食が発生していない場合を○として評価した。したがって、表3 に示す各特性値は、これらの意味を有する。なお、表3 に示す比較例11〜17の特性値は1 本のみの鍛造材のものである。
【0067】
表3 から明らかな通り、本発明成分組成範囲とし、所定量の金属Tiが添加された上で、Tiの総含有量を0.15% 以下とし、更に、不純物として、Zr、V 、Hfを個別に、またこれらZr、V 、Hfの総含有量でも0.01% 以下に規制し、更に好ましい範囲内の条件で製造した発明例1 〜6 の鍛造材は、表2 の鋳造材と表3 の鍛造材ともに平均結晶粒径が100 μm 以下であって、強度、靱性が高く、応力腐食割れ性にも優れている。即ち、別々に試作した5 本の人工時効硬化処理後の鍛造材は、各発明例ともに、全て平均結晶粒径が100 μm 以下であるとともに、高強度高靱性材として、0.2%耐力が345MPa以上でシャルピー衝撃値が20J/cm以上であるか、または、高強度材として、鍛造材の0.2%耐力が370MPa以上でシャルピー衝撃値が12J/cm以上であった。
【0068】
なお、合金例1 は高強度高靱性材を狙いとした組成であり、これを用いた発明例1 は、0.2%耐力が345MPa以上でシャルピー衝撃値が20J/cm以上である。また、合金例2 は高強度材を狙いとした組成であり、これを用いた発明例2 は0.2%耐力が370MPa以上でシャルピー衝撃値が12J/cm以上である。
【0069】
ただ、発明例の中でも、不純物であるZrが上限値に近い発明例3 や、Zr、V 、Hfの総含有量が上限値に近い発明例4 は、同じ成分組成の発明例2 などに比較して、比較的平均結晶粒径が大きく、比較的強度、靱性が低い。
【0070】
これに対して、添加される金属Ti量が低めに外れた合金番号7 を用いた比較例7 、不純物であるZr、V 、Hfの総含有量のみが本発明上限を越えている合金番号9 を用いた比較例9 、Zr含有量とZr、V 、Hfの総含有量とが本発明上限を越えている合金番号10用いた比較例10は、表2 の鋳造材や表3 の鍛造材の平均結晶粒径が軒並み100 μm を越えて大きくなっており、発明例に比して、強度、靱性が著しく低く、応力腐食割れ性も劣っている。即ち、別々に試作した各比較例の鍛造材5 本全てが、各々平均結晶粒径が100 μm を越え、また、0.2%耐力かシャルピー衝撃値が低い。また、添加される金属Ti量やTi総含有量が多めに外れた合金番号8 を用いた比較例8 は、表2 の鋳造材や表3 の鍛造材の平均結晶粒径は100 μm 以下であるものの、発明例に比して、靱性が低く、耐食性も劣っている。
【0071】
更に、本発明範囲内の合金番号2 を用いても、鋳造の冷却速度が遅い比較例11は、表2 の鋳造材の平均結晶粒径が100 μm を越えて大きくなっている。このため、その後、高温鍛造など、好ましい条件で鍛造材を製造しているのも関わらず、表3 の鍛造材の平均結晶粒径が100 μm を越えて大きくなっており、発明例に比して、強度、靱性が著しく低く、応力腐食割れ性も劣っている。
【0072】
同様に化学成分組成が発明範囲内の合金番号2 であって、表2 の鋳造材の平均結晶粒径が100 μm 以下であっても、均質化熱処理の加熱速度が速すぎる比較例12、熱間鍛造の開始温度が低過ぎる比較例14、最終終了温度が低過ぎる比較例15は、表3 の鍛造材の平均結晶粒径がいずれも100 μm を越えて大きくなっており、発明例に比して、強度、靱性が著しく低く、応力腐食割れ性も劣っている。
【0073】
また、化学成分組成が発明範囲内合金番号2 であっても、均質化熱処理温度が低過ぎる比較例13は、表2 の鋳造材の平均結晶粒径が100 μm 以下であっても、表3 の鍛造材の平均結晶粒径がいずれも100 μm を越えて大きくなっており、発明例に比して、強度、靱性が著しく低く、応力腐食割れ性も劣っている。更に、溶体化処理温度が低過ぎる比較例16、焼入れ温度が高過ぎる比較例17は、表2 の鋳造材や表3 の鍛造材の平均結晶粒径が100 μm 以下であっても、いずれも発明例に比して、強度が著しく低い。
【0074】
したがって、これらの結果から、Mn、Crなどの遷移元素を添加した場合でも、鋳造材乃至鍛造材組織の結晶粒を確実に微細化でき、鍛造材を高強度化、高靱性化および高耐食性化できる、本発明の成分組成と製造条件の臨界的な意義が分かる。
【0075】
【表1】

Figure 2004292937
【0076】
【表2】
Figure 2004292937
【0077】
【表3】
Figure 2004292937
【0078】
【発明の効果】
本発明によれば、Mn、Crなどの遷移元素を添加した場合でも、鋳造材乃至鍛造材組織の結晶粒を確実に微細化できる輸送機構造材用Al−Mg−Si系アルミニウム合金鍛造材およびその製造方法を提供でき、高強度化、高靱性化および高耐食性化させた輸送機構造材用アルミニウム合金鍛造材およびその製造方法を提供することができる。したがって、Al−Mg−Si系アルミニウム合金鍛造材の輸送機用への用途の拡大を図ることができる点で、多大な工業的な価値を有するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an Al-Mg-Si-based aluminum alloy forging for a transport structural material having high strength, high toughness, and excellent corrosion resistance such as stress corrosion cracking resistance, and a method for producing the same. Al).
[0002]
[Prior art]
As is well-known, 6000 series (Al-Mg) according to AA to JIS standards is used as a structural material or a part for a transport machine such as a vehicle, a ship, an aircraft, a motorcycle or an automobile, and particularly as an undercarriage part such as an upper arm and a lower arm. -Si-based) forged aluminum alloys. The 6000 series Al alloy forged material has high strength, high toughness, and relatively excellent corrosion resistance. Moreover, the 6000 series Al alloy itself is also excellent in recyclability since the amount of alloying elements is small and scrap can be easily reused as a 6000 series Al alloy melting raw material.
[0003]
These 6000 series Al alloy forged materials are usually subjected to hot forging (die forging) such as mechanical forging, hydraulic forging, etc. after homogenizing heat treatment of the Al alloy cast material, followed by solution treatment and quenching treatment and artificial age hardening. It is manufactured by performing a so-called tempering treatment. Note that, in addition to the cast material, an extruded material obtained by once extruding the cast material may be used as the forged material.
[0004]
In recent years, structural materials for these transporters have also been required to have higher strength and higher toughness after being made thinner. For this reason, various attempts have been made to improve the microstructure of an Al alloy cast material or an Al alloy forged material. For example, the average particle size of crystal precipitates (crystals and precipitates) of a 6000 series Al alloy casting material is reduced to 8 μm or less, and the dendrite secondary arm interval (DAS) is reduced to 40 μm or less to reduce Al It has been proposed to increase the strength and toughness of a forged alloy (see Patent Documents 1 and 2). In addition, by controlling the average grain size and average interval of crystallized substances and crystal precipitates in the crystal grains and grain boundaries of the 6000 series Al alloy forged material, the Al alloy forged material has higher strength and toughness. It has also been proposed (see Patent Documents 3, 4, and 5). These controls can enhance the corrosion resistance against intergranular corrosion and stress corrosion cracking. And, in accordance with the control of these crystallized substances and crystal precipitates, Mn, Zr, a transition element having a crystal grain refining effect such as Cr is added, and the crystal grains are refined or sub-crystallized, It is also known to improve fracture toughness and fatigue properties (see Patent Documents 3, 4, and 5).
[0005]
[Patent Document 1]
JP-A-07-145440
[Patent Document 2]
JP 06-256880 A
[Patent Document 3]
JP 2000-144296 A
[Patent Document 4]
JP 2001-107168 A
[Patent Document 5]
JP-A-2002-294382
[0006]
However, in these 6000 series Al alloy forgings, there is a tendency that in the above-described forging and solution treatment, the processed structure is recrystallized to generate coarse crystal grains. When these coarse crystal grains are generated, even if the microstructure is controlled, high strength and high toughness cannot be achieved, and the corrosion resistance is reduced. Moreover, in each of these patent documents, the processing temperature in forging is relatively low at less than 450 ° C., and in such a low-temperature hot forging, it is actually possible to make the target crystal grains finer or sub-grain. It is difficult.
[0007]
On the other hand, in order to suppress the generation of coarse crystal grains in which the processed structure is recrystallized, a relatively high temperature of 450 to 570 ° C. is added after adding a transition element having a crystal grain refinement effect such as Mn, Zr, and Cr. It is known that hot forging is started at a temperature (see Patent Documents 5 and 6).
[0008]
[Patent Document 5]
JP-A-5-247574
[Patent Document 6]
JP-A-2002-348630
[0009]
[Problems to be solved by the invention]
However, according to the knowledge of the present inventors, even when these high-temperature forgings are performed, when these transition elements having a crystal grain refinement effect such as Mn, Zr, and Cr are added, instead of the forging material, The inability to refine the grains can actually occur.
[0010]
This is because the added transition elements such as Mn, Zr, and Cr easily form a compound with Ti which is originally added as an element for refining crystal grains of the Al alloy casting material. Ti thus compounded by the transition element cannot become a nucleus of a crystal grain as compared with metal Ti, and the grain refinement effect of the Al alloy casting material is lost. It is presumed that the reason for this is that the compounded Ti does not disperse finely in the Al alloy melt and precipitates more easily than the metallic Ti, so that it cannot be a core of crystal grains. As a result of the effect of Ti not being exhibited, the average crystal grain size of the ingot greatly exceeds 100 μm and becomes coarse at the stage of the Al alloy casting material.
[0011]
On the other hand, when smelting ingots for 6000 series Al alloy forgings, along with recycling of forged products in recent years, not only high-purity aluminum ingots but also forging Material scrap is also being compounded. Naturally, these forged product scraps contain Ti as an element for refining crystal grains of the original forged product (ingot). As described above, Ti is compounded by a transition element or the like, and the effect of refining the crystal grains of the Al alloy casting material is lost.
[0012]
Generally, wrought aluminum alloys (rolled materials, extruded materials, forged materials), including forged materials, are usually composed of the components of the molten aluminum alloy and the elements of the cast or forged materials. Management, guaranteed. Therefore, when the forged material scrap is blended with the melting raw material and contains a large amount of the compounded Ti, the Ti content is usually controlled to 0.15% or less, so that the newly added Ti is added. Metal Ti (fresh Ti) inevitably decreases. As a result, when the above-mentioned transition elements such as Mn, Zr, and Cr are added, the amount of compounded Ti increases, so that it is necessary to increase the amount of added metal Ti. In other words, the amount of metal Ti required for actual refinement of ingot crystal grains has been reduced. Such a situation also promotes the occurrence of a situation where the crystal grains of the forged material cannot be refined when the above-described transition elements such as Mn, Zr, and Cr are added.
[0013]
In view of such circumstances, an object of the present invention is to provide a high strength and high toughness even when a transition element such as Mn or Cr is added, in which the grains of the cast or forged material structure can be reliably refined. It is an object of the present invention to provide an Al-Mg-Si-based aluminum alloy forging for a transport structure material having excellent corrosion resistance such as stress corrosion cracking resistance and a method for producing the same.
[0014]
[Means for Solving the Problems]
In order to achieve this object, the gist of the present invention for an aluminum alloy forging for a transport structural material is an Al-Mg-Si based aluminum alloy forging, in which Mg: 0.6 to 1.8%, Si: 0.4 to 1.8%, Cu: 0.1 to 1.0%, and one or two of Mn: 0.01 to 0.9% and Cr: 0.01 to 0.25% In addition, 0.05 to 0.1% of metallic Ti is newly added, and the total content of Ti is set to 0.15% or less, Zr: 0.01% or less, and V: 0.01% or less, Hf: 0.01% or less, and the total content of Zr, V, and Hf is regulated to 0.01% or less, and the balance consists of Al and unavoidable impurities. The average grain size of the forged material structure after the hardening treatment is 100 μm or less. Thereby, the forged material after the artificial age hardening treatment is preferably made of a high-strength and tough material, having a 0.2% proof stress of 345 MPa or more and a Charpy impact value of 20 J / cm. 2 Or a high-strength material, preferably a forged material having a 0.2% proof stress of 370 MPa or more and a Charpy impact value of 12 J / cm. 2 That is all.
[0015]
In addition, the gist of the method for producing a forged aluminum alloy material for a transport aircraft structural material according to the present invention is as follows: Mg: 0.6 to 1.8%, Si: 0.4 to 1.8%, Cu: 0.1 to 1.%. 0%, one or two types of Mn: 0.01 to 0.9%, Cr: 0.01 to 0.25%, and 0.05 to 0.1% of metallic Ti is newly added. , The total content of Ti is set to 0.15% or less, and as impurities Zr: 0.01% or less, V: 0.01% or less, Hf: 0.01% or less, In addition, the total content of Zr, V 2 and Hf is regulated to 0.01% or less, and a molten aluminum alloy alloy containing the balance of Al and inevitable impurities is cast at a cooling rate of 10 ° C./sec or more. The average grain size of the cast material structure is set to 100 μm or less, and the cast material is heated at 250 ° C. / After heating at the following heating rate and homogenizing heat treatment at 500 to 550 ° C, hot forging was performed at a starting temperature of 480 to 520 ° C and an ending temperature of 380 ° C or more, and then solution treatment was performed at 540 to 560 ° C. Thereafter, the steel is quenched to a temperature of 70 ° C. or less, and further subjected to artificial aging hardening at 170 to 200 ° C. to reduce the average grain size of the forged material structure after the artificial aging hardening to 100 μm or less and 0.2% Strength of 345 MPa or more and Charpy impact value of 20 J / cm 2 Or a Charpy impact value of 12 J / cm with a 0.2% proof stress of 370 MPa or more 2 That is all.
[0016]
In addition, the percentages in the amounts of the respective elements specified in the present invention all mean mass%. The content of each element other than the newly added metal Ti includes the case where it is newly added to the molten metal and the case where it is originally mixed from a base metal, an element-added mother alloy, scrap, or the like. It is the total amount (total amount) of the elements in the Al alloy melt.
[0017]
As described above, the transition elements such as Mn, Zr, and Cr added for refining the crystal grains of the forged material form a compound with Ti added as the elements for refining the crystal grains of the Al alloy casting. It's easy to do. And among these transition elements, Zr most easily forms a compound with Ti. Therefore, in the present invention, this Zr is positively regulated, and the contained Zr amount itself is reduced as much as possible. The transition elements contained in a certain amount to refine the crystal grains of the forged material structure are only Mn and Cr.
[0018]
In addition, not only Zr but also V and Hf, which are easy to form a compound with Ti similarly to Zr and are easily mixed into a casting material from a raw material for adding a base metal or an alloy or scrap from a forged product scrap. Is selected and each element is positively regulated individually and in total content to minimize the amount of V and Hf contained as much as possible.
[0019]
After actively controlling the above-mentioned elements which easily form a compound with Ti and impair the grain refinement effect of the Al alloy cast material of Ti, the present invention provides a method of forming a fine grain of a cast material and a forged material. In order to exhibit the effect of the conversion, the amount of newly added metal Ti is secured in the range of 0.05 to 0.1%. However, the amount of the compounded Ti mixed into the casting material from the scrap of the base metal, the mother alloy material for adding the alloy or the forged material product and the like, and the amount of the newly added metal Ti are combined. Therefore, the upper limit is defined as 0.15% or less as the total content of Ti.
[0020]
As a result, the average crystal grain size of the Al alloy cast material (ingot) structure is 100 μm or less, and the average crystal grain size of the Al alloy forged material structure is 100 μm or less. The basic performance of an Al-Mg-Si-based aluminum alloy forging for a transport structure material having strength and high toughness and excellent corrosion resistance such as stress corrosion cracking resistance can be achieved and guaranteed. Further, the production method of the present invention is a preferable production method for ensuring that the average crystal grain size of the forged Al alloy is 100 μm or less.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
First, an object of the present invention is to make the structure of the forged material (after the artificial aging treatment) a fine structure having an average crystal grain size of 100 μm or less. If such a structure can be obtained, the forged material after the artificial age hardening treatment is selected as, for example, a high-strength high-toughness material by selecting the component composition and the tempering condition to obtain a 0.2% proof stress of 345 MPa or more and a Charpy impact value of 20 J. / Cm 2 Or a high-strength material having a 0.2% proof stress of 370 MPa or more and a Charpy impact value of 12 J / cm 2 That is all. Further, the stress corrosion cracking resistance of the forged material can be improved. Depending on the application (required characteristics) of the forged material, whether to increase the 0.2% proof stress, increase the Charpy impact value, or increase both are appropriately selected.
[0022]
For this reason, even when mass-producing a forged material, a forged material with high strength, high toughness, and high corrosion resistance can be produced reliably and with good reproducibility. The forged material has high strength and high durability, such as joining with other steel members such as bushings and applying tensile stress as a structural material for transport vehicles such as undercarriage parts of automobiles. The required characteristics can be guaranteed even in a required use environment where the corrosion environment of stress corrosion cracking is severe. On the other hand, if the forged material has a structure having an average crystal grain size exceeding 100 μm, such required characteristics cannot be guaranteed. For example, the 0.2% proof stress of the forged material is 370 MPa or more and / or the Charpy impact value is 20 J / cm. 2 It cannot be as high as above. In addition, for example, in a portion where a tensile stress is added during use as a transport structural material, the possibility of occurrence of stress corrosion cracking increases due to a synergistic effect with electric corrosion and the like caused by joining with the steel member described above. .
[0023]
The forged material portion having a fine structure with an average crystal grain size of 100 μm or less is not necessarily all of the forged material portion, and may be only a necessary portion. The forged material portion having a fine structure is appropriately determined or selected as needed and according to the use of the forged material such as a structural material or a part of the transport machine. For example, in the underbody parts such as the upper arm and lower arm, the part where high strength and high toughness are required is the arm body (central part), and the part where high corrosion resistance is required is made of dissimilar metals such as iron. And the vicinity of the joint with other components.
[0024]
The average crystal grain size was determined by electrolytically etching the structure measurement cross section of the forged material required for high properties, then sharpening particularly the sub-grain boundaries and the crystal grain boundaries, and discriminating the crystal grain boundaries with a 400-fold polarizing microscope. Above, you can measure. It is difficult to distinguish crystal grain boundaries by chemical etching of a normal tissue measurement section or observation by a projector or an optical microscope that does not polarize. At this time, in order to take into account the variation in the crystal grain size, it is preferable to perform the observation (sampling) at a plurality of sites where the position of measurement (sampling) is changed for each site where the forging material needs to be refined.
[0025]
Next, the chemical composition of the Al alloy forged material or the material for the forged material (cast material) of the present invention will be described. The chemical composition of the Al alloy of the forged material of the present invention is required to guarantee high corrosion resistance or durability such as high strength, high toughness and stress corrosion cracking resistance as a structural material for transportation equipment such as automobiles and ships.
[0026]
Therefore, the chemical composition of the Al alloy cast material or the forged material according to the present invention is equivalent to the component standard of the Al-Mg-Si JIS 6000 type Al alloy, and the basic composition is Mg: 0. 6 to 1.8%, Si: 0.4 to 1.8%, and Cu: 0.1 to 1.0%.
[0027]
And, as described above, the transition elements contained to refine the crystal grains of the forged material structure are one or two of Mn and Cr, excluding Zr, which is most likely to form a compound with Ti. Mn and Cr also easily form compounds with Ti, but not as much as Zr. Further, in order to refine the forged material structure to have an average crystal grain size of 100 μm or less by high-temperature forging or the like, one or two types of Mn and Cr are absolutely necessary.
[0028]
Therefore, in the present invention, the amount of Ti compounded by Mn and Cr (compounded Ti that cannot exhibit the effect of refining the crystal grains in the structures of the cast material and the forged material) is determined in relation to the contents of Mn and Cr. In anticipation, the amount of metal Ti newly added to the molten Al alloy during the production of the cast material is ensured.
[0029]
Further, as described above, it is easy to form a compound with Ti as well as Zr as in the case of Zr, and it is easy to mix into a casting material from a raw material for adding a base metal or an alloy or a forged product scrap. Each element of V and Hf is selected, and each element is positively regulated individually and in total content. As a result, the amount of Ti effective for exhibiting the crystal grain refinement effect of the structures of the cast material and the forged material is secured. Elements other than those specified in the present invention are impurities, but within a range that does not impair various properties of the present invention, for further improving properties or adding other properties, appropriately including other elements. Changes in the component composition are appropriately permitted.
[0030]
Next, regarding the content of each element of the present invention, critical significance and preferred ranges will be individually described.
[0031]
Mg: 0.6-1.8%.
Mg precipitates together with Si as a β ″ phase and a β ′ phase by artificial age hardening, and is an essential element for imparting high strength (proof stress) when using a forging material for transport equipment. If the content of Mg is less than 0.6%, the amount of age hardening during artificial age hardening decreases. On the other hand, when Mg is contained in excess of 1.8%, the strength, toughness, corrosion resistance, forgeability, etc. are rather reduced. Therefore, the content of Mg is set in the range of 0.6 to 1.8%.
[0032]
Si: 0.4 to 1.8%.
Si is also an element that, together with Mg, precipitates as a β ″ phase and a β ′ phase by artificial age hardening treatment and imparts high strength when a forged material is used in a transport structure. If the content of Si is less than 0.4%, sufficient strength cannot be obtained by artificial age hardening. On the other hand, if it is contained in excess of 1.8%, coarse single Si particles are crystallized and precipitated during casting and during quenching after the solution treatment, thereby deteriorating corrosion resistance and toughness. In addition, excess Si increases, and high corrosion resistance, high toughness, and high fatigue characteristics cannot be obtained. Further, workability is impaired, such as lower elongation. Therefore, the content of Si is set in the range of 0.4 to 1.8%.
[0033]
Cu: 0.1 to 1.0%.
Cu is an essential element that contributes to the improvement of strength by solid solution strengthening and also has the effect of significantly promoting the artificial age hardening of the forged material during the artificial age hardening treatment. If the Cu content is less than 0.1%, these hardenings do not occur. On the other hand, if the Cu content exceeds 1.0%, the susceptibility of the structure of the forged material to stress corrosion cracking and intergranular corrosion is significantly increased, and the corrosion resistance and durability are significantly reduced. Therefore, the content of Cu is set in the range of 0.1 to 1.0%.
[0034]
One or two of Mn: 0.01 to 0.9% and Cr: 0.01 to 0.25%.
These elements are Al-Mn-based and Al-Cr-based metals in which Fe, Mn, Cr, Zr, Si, Al and the like are selectively bonded in accordance with their contents during the homogenizing heat treatment and subsequent hot forging. Compound (Fe 2, Mn, Cr) 3 SiAl 12 Generate dispersed particles (dispersed phase) typified by Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, it is possible to prevent the crystal grains of the forged material structure from becoming coarse and to make the crystal grains fine.
[0035]
If the contents of Mn and Cr are too small, these effects cannot be expected. On the other hand, excessive contents of these elements are likely to generate coarse intermetallic compounds and crystallized substances during melting and casting, and the starting point of fracture. It becomes a cause to reduce toughness and fatigue characteristics. Therefore, one or two of these elements are contained in the range of Mn: 0.01 to 0.9% and Cr: 0.01 to 0.25%, respectively.
[0036]
Ti.
Ti has the effect of refining the crystal grains of the ingot to make the forged material structure fine crystal grains. However, the compounded Ti mixed into the casting material from the raw metal, the alloy addition raw material, the forged material scrap, or the like loses the crystal grain refining effect of the Al alloy casting material. Therefore, in the present invention, the amount of Ti (compounded Ti that cannot exhibit the crystal grain refining effect) similarly compounded by the newly added Mn and Cr is determined in relation to the content of Mn and Cr. In anticipation, the amount of newly added metal Ti is ensured. This amount is in the range of 0.05 to 0.1% of metal Ti. If the amount of newly added metal Ti is less than 0.05%, the above-mentioned effect of refining crystal grains cannot be exhibited. In the case where the content of Ti is determined only by the content of Ti as usual, not by the content of Ti, the content of Ti obtained by analysis indicates the total amount of newly added metal Ti and compounded Ti. And the substantial amount of Ti effective for crystal grain refinement is unknown at all.
[0037]
If the amount of newly added metal Ti exceeds 0.1%, a compound to be mixed into the cast material from scraps of a base metal, a raw material of a mother alloy for adding an alloy or a forged product, or the like is formed. It is more likely that the total content of Ti, together with the total Ti, exceeds 0.15%. If the total content of Ti exceeds 0.15%, rather, a coarse crystal precipitate is formed, and workability such as forgeability is reduced. Accordingly, the content of Ti is determined by adding the amount of compounded Ti mixed into the casting material from the raw material for adding metal or alloy or forged product scrap to the amount of newly added metal Ti, The total content is set to 0.15% or less.
[0038]
In the present invention, metallic Ti means Ti capable of exhibiting a crystal grain refining effect, and is usually added to a molten Al alloy in the form of a master alloy with another element such as Ti-B. Refers to the form of Ti. Normally, Ti is added as a mother alloy of this Ti-B alloy, so that B is necessarily easily mixed. Although B is an impurity, it has the effect of refining the crystal grains of the ingot and improving the workability during forging, similarly to Ti. However, when the content exceeds 300 ppm, a coarse crystal precipitate is formed, and the workability is reduced. Therefore, B is allowed up to a content of 300 ppm or less.
[0039]
Hereinafter, the regulation of impurities according to the present invention will be described. In the present invention, Zr, V 2, and Hf form a compound with Ti to eliminate the effect of Ti, and are liable to be mixed into the cast material from a raw material for adding metal or alloy, scrap from a forged product, or the like. For this reason, it is essential that the individual contents and the total contents of these elements of Zr, V 2 and Hf be actively regulated so as to be as small as possible. Specifically, Zr: 0.01% or less, V: 0.01% or less, Hf: 0.01% or less, and the total content of Zr, V 2, and Hf is 0.01% or less. To be regulated.
[0040]
When the individual content and the total content of each of the elements Zr, V, and Hf exceeded the upper limit values, for example, the essential elements for the present invention satisfied the composition range of the present invention. In addition, the average grain size of the Al alloy cast material (ingot) structure is 100 μm or less, and the average crystal grain size of the Al alloy forged material structure is 100 μm or less. Also, the basic performance of the Al-Mg-Si-based aluminum alloy forged material for transport structure materials having excellent corrosion resistance such as stress corrosion cracking resistance cannot be achieved or cannot be guaranteed.
[0041]
Other impurities that are preferably regulated below will be described.
Fe: 0.40% or less. Fe contained as an impurity in the Al alloy generates a coarse crystallized substance which is a problem in the present invention. These crystals degrade the fracture toughness and fatigue properties as described above. Therefore, it is preferable that the content of Fe is restricted to as small as possible 0.40% or less, more preferably 0.35% or less.
[0042]
Hydrogen: 0.25 ml / 100 g Al or less. Hydrogen (H 2 ) Is an impurity. In particular, when the degree of processing of the forged material is small, bubbles due to hydrogen are not pressed by forging or the like and serve as starting points for destruction, so that toughness and fatigue characteristics are significantly reduced. And, in the structural material of a transport machine with high strength, the influence of hydrogen is particularly large. Therefore, the content of hydrogen per 100 g of Al is preferably 0.25 ml or less, which is as small as possible.
[0043]
Zn: 1.0% or less. Zn is MgZn during artificial aging. 2 To achieve high strength by precipitating fine and high density. In addition, the solid solution Zn lowers the intragranular potential, and also has the effect of reducing the intergranular corrosion and stress corrosion cracking as a result of reducing the form of corrosion not from the grain boundaries but over the entire surface. However, if the content exceeds 1.0%, the corrosion resistance is significantly reduced. Therefore, Zn is allowed up to a content of 1.0% or less.
[0044]
Be: 100 ppm or less. Be also has the effect of preventing the re-oxidation of the Al melt in the air. However, when the content exceeds 100 ppm, the hardness of the material increases, and the workability decreases. Therefore, Be is allowed up to a content of 100 ppm or less.
[0045]
Next, a preferred method of manufacturing the forged Al alloy according to the present invention will be described. Except for the forging conditions described above, the respective manufacturing steps of the Al alloy forging material in the present invention can be manufactured by a conventional method. For example, in the case of casting an Al alloy melt that has been melt-adjusted within the above-mentioned range of the Al alloy component, for example, ordinary melt casting such as continuous casting and rolling, semi-continuous casting (DC casting), and hot-top casting. Casting is performed by appropriately selecting a method.
[0046]
Here, in order to reduce the average crystal grain size of the Al alloy ingot (casting material) to 100 μm or less and to refine the crystal grains of the forged material, the Al alloy melt should have the above-mentioned chemical composition, It is preferable to cast the molten metal at a cooling rate of 10 ° C./sec or more to form an ingot. In addition, in order to eliminate the cast structure remaining in the Al alloy forging, break and refine crystallized materials, and further improve strength, toughness and fatigue properties, the aluminum alloy ingot is homogenized, extruded and rolled. After that, the forging may be performed.
[0047]
Next, the Al alloy ingot (cast material) is preferably heated at a heating rate of 250 ° C./h or less and subjected to a homogenizing heat treatment at a temperature of 500 to 550 ° C. If the heating rate to the homogenizing heat treatment temperature is too high, exceeding 250 ° C./h, Mn, Cr, and the like hardly form a solid solution in the homogenizing heat treatment, tend to be coarsened, and difficult to form fine dispersed particles.
[0048]
If the homogenizing heat treatment temperature is too high, exceeding 550 ° C., burning and the like are liable to occur and cause forging cracks. Also, it reduces mechanical properties such as toughness and fatigue properties of the forged product. Furthermore, the dispersed particles of Mn, Cr, etc. become coarse, and the number of the dispersed particles that promotes the refinement of the crystal grains becomes insufficient. On the other hand, if the homogenization heat treatment temperature is too low, less than 490 ° C., the ingot is not sufficiently homogenized, and it becomes difficult to increase the strength and toughness of the forged material.
[0049]
After this homogenization heat treatment, the forging is performed at a starting temperature of 480 to 520 ° C. and an ending temperature of 380 ° C. or higher by mechanical forging or hydraulic forging to form a final product shape (near net shape) of a transport machine structural material. Formed into an Al alloy forging. At this time, the hot forging start temperature and the end temperature are set to relatively high temperatures of 480 ° C. or more and 380 ° C. or more, respectively.
[0050]
If the hot forging start temperature is lower than 480 ° C., particularly in the hot forging performed a plurality of times without reheating, the end temperature of the hot forging of the product part in the final round is guaranteed to be higher than 380 ° C. It becomes difficult. As a result, the end temperature of the hot forging becomes lower than 380 ° C., and even within the composition range of the present invention, the work structure is recrystallized in the forging and solution treatment steps to generate coarse crystal grains. there is a possibility. For this reason, it is difficult to reduce the average crystal grain size of the forged material structure to 100 μm or less, so that required characteristics such as high strength, high toughness, and high corrosion resistance cannot be guaranteed. In addition, the hot forging itself becomes difficult. On the other hand, when the hot forging start temperature exceeds 520 ° C., local melting occurs due to frictional heat, and forging cracks tend to occur.
[0051]
After forging, T6 (artificial age hardening treatment to obtain the maximum strength after solution treatment) and T7 (maximum strength after solution treatment) to obtain the necessary strength, toughness and corrosion resistance as structural members of the transport machine. , A tempering treatment such as T8 (excessive aging hardening beyond the conditions of the artificial aging hardening), T8 (cold working after the solution treatment, and an artificial aging hardening to further maximize the strength).
[0052]
However, in order to further increase the 0.2% proof stress and the Charpy impact value of a forged material having a structure having an average crystal grain size of 100 μm or less, each temperature in these tempering treatments is specified as follows. Range.
[0053]
That is, the solution treatment temperature is in the range of 540 to 560 ° C. If the solution treatment temperature is lower than 540 ° C, Mg 2 Si or the like does not form a solid solution, and the high strength and high toughness cannot be obtained even by subsequent quenching or artificial age hardening treatment. If the solution treatment temperature exceeds 560 ° C., local melting may occur.
[0054]
The quenching temperature after the solution treatment is 70 ° C. or lower. When the quenching temperature exceeds 70 ° C., quenching is insufficient, and the above-mentioned high strength cannot be obtained. At this time, the cooling in the quenching treatment is preferably water cooling. When the cooling rate during the quenching process decreases, Mg 2 Si, Si, and the like are precipitated, and in the product after artificial aging, grain boundary fracture is likely to occur, and the toughness and fatigue characteristics are lowered. During the cooling, the stable phase Mg 2 Si, Si is formed and β precipitated during artificial aging ' Phase, β '' Since the amount of phase precipitation is reduced, the strength is reduced.
[0055]
The temperature of the artificial age hardening treatment is in the range of 170 to 200 ° C. When the artificial age hardening treatment temperature is lower than 170 ° C., age hardening does not proceed, and the high strength cannot be obtained. On the other hand, when the temperature of the artificial aging hardening treatment exceeds 200 ° C., overaging occurs, and conversely, the strength is reduced, and the high strength cannot be obtained.
[0056]
Note that an air furnace, an induction heating furnace, a nitrite furnace, or the like is appropriately used for the above-described homogenization heat treatment and solution treatment. Further, an air furnace, an induction heating furnace, an oil bath and the like are appropriately used for the artificial age hardening treatment. The forged material of the present invention may be appropriately subjected to machining and surface treatment, etc., required as a transport structural material before and after the tempering treatment and before being mounted as a transport structural material.
[0057]
【Example】
Next, examples of the present invention will be described. Aluminum alloy ingots (Alloy cast materials, round bars having a diameter of φ80 mm) of alloy numbers 1 to 6 shown in Table 1 within the composition range of the present invention and alloy numbers 7 to 10 outside the composition range of the chemical composition of the present invention ) Were cast at a cooling rate shown in Table 2 by a semi-continuous casting method.
[0058]
Among the examples of alloy numbers 7 to 10 shown in Table 1 which are out of the range of the chemical composition of the present invention, alloy number 7 is a comparative example in which the amount of newly added metal Ti is as low as 0.04%. Alloy No. 8 is a comparative example in which the amount of newly added metal Ti was as high as 0.12%, so that the total content of Ti was as high as 0.16%. The alloy No. 9 has a Ti content within the range of the present invention, and the individual contents of impurities Zr, V, and Hf are within the range of the present invention, but only the total content of Zr, V, and Hf is different. 0.012% is a comparative example exceeding the upper limit of the present invention. In alloy No. 10, the Ti content is within the range of the present invention, and the individual contents of impurities V and Hf are within the range of the present invention, but the content of Zr alone is 0.012%. This is a comparative example exceeding the upper limit of the present invention, which exceeds the upper limit, and therefore the total content of Zr, V and Hf is also 0.012%.
[0059]
Table 2 shows the average crystal grain size (μm) of the ingot (cast material). In the alloys of the invention and the comparative examples shown in Table 1, B in the Al alloy ingot is 100 to 200 ppm, Zn as another impurity is 0.1 to 0.2%, Be is 10 ppm or less, and 100 g of Al is used. H inside 2 All concentrations were 0.10-0.15 ml.
[0060]
Then, the outer surface of the ingot was chamfered to a thickness of 3 mm, cut into a length of 500 mm, and then homogenized at a heating rate (° C./h) and a temperature (° C.) of each condition shown in Table 2 for 4 hours. did. After this homogenization heat treatment, forging was performed by hot forging at a start temperature (° C.) and an end temperature (° C.) of each condition shown in Table 2, and forged into a flat plate having a thickness of 20 mmt corresponding to the underbody parts. Both have the same processing rate).
[0061]
After these forgings, a solution treatment (530 to 550 ° C. × 5 hours), a water quenching treatment (quenching temperature of 80 to 50 ° C.), and an artificial age hardening treatment (170 to 200 ° C.) at each temperature and each time condition shown in Table 2 (° C. × 5 hours) to produce a forged material for testing. The solution treatment was performed using an air furnace with a heating time of 1 to 2 hours. An artificial age hardening treatment was performed within 30 minutes after the solution treatment and the quenching treatment.
[0062]
Table 3 shows the characteristics of these forged materials. The Al alloy numbers in Tables 2 and 3 correspond to the Al alloy numbers in Table 1. Among the characteristics of the forged material, the average crystal grain size was measured in 20 visual fields, and these were averaged to obtain the average crystal grain size (μm).
[0063]
From each forged material, a tensile test piece A (in the L direction) and a Charpy test piece B (in the LT direction) were sampled from arbitrary locations, each of which was taken as a sample. Tensile strength (MPa), 0.2% proof stress (MPa) ), Elongation (%), Charpy impact value, etc. were measured in accordance with JIS measurement methods, and average values were obtained.
[0064]
Further, the stress corrosion cracking test was performed by collecting a mold part and a peripheral part and processing it into a C-ring-shaped test piece. The stress corrosion cracking test conditions were performed on the C-ring test piece in accordance with the provisions of the alternate immersion method of ASTM G47. However, the test condition further simulates that the forged material is used by applying a tensile stress to the mold part in the ST direction, and the test piece having the mechanical characteristics is placed in the ST direction of the C-ring test piece. A state in which a stress of 75% of the proof stress in the L direction was applied. In this state, immersion and lifting of the C-ring test piece in salt water were repeatedly performed for 90 days, and the presence or absence of stress corrosion cracking of the test piece was confirmed. These results are shown as × for cases where stress corrosion cracking has occurred, and △ for cases where intergranular corrosion, which is not stress corrosion cracking but is likely to lead to stress corrosion cracking, has occurred. Table 3 shows the case where interfacial corrosion has not occurred (including the case where superficial general corrosion has occurred).
[0065]
In Examples of the present invention, Tables 2 and 3 were used in order to confirm that even when a transition element such as Mn or Cr was added, the crystal grains of the structure of the cast or forged material could be reliably refined with good reproducibility. Inventive Examples 1 to 6 and Comparative Examples 7 to 10 were prepared by smelting cast materials of the same alloy composition (same alloy number) separately (to make the same conditions as much as possible) in each case. . Each of the forgings made from these cast materials is also subjected to homogenization heat treatment, hot forging, solution treatment quenching, and artificial aging hardening separately (so that the same conditions are maintained). In each case, five forgings were produced. In Comparative Examples 11 to 17, one cast material and a corresponding forged material were evaluated.
[0066]
In each case, the characteristic evaluation was the lowest value of each mechanical characteristic value of the five forged materials measured under the above conditions except for Comparative Examples 11 to 17, and each average crystal grain size of the five forged materials. The measurement was performed at the maximum average crystal grain size value among the values. In addition, the evaluation of stress corrosion cracking was also performed based on the evaluation based on the minimum level standard. In the above-described evaluation test, the case where stress corrosion cracking occurred even in one forged material was evaluated as x. A case where intergranular corrosion occurred was evaluated as △, and a case where no stress corrosion cracking or intergranular corrosion occurred in all five samples was evaluated as ○. Therefore, each characteristic value shown in Table 3 has these meanings. The characteristic values of Comparative Examples 11 to 17 shown in Table 3 are for only one forged material.
[0067]
As is clear from Table 3, the composition of the present invention is set to the range, and after adding a predetermined amount of metal Ti, the total content of Ti is set to 0.15% or less, and Zr, V, and Hf are further set as impurities. The forged materials of Invention Examples 1 to 6 manufactured individually and under the conditions within the more preferable range by controlling the total content of Zr, V, and Hf to 0.01% or less, respectively, are the same as the forged materials in Table 2. The forged material of No. 3 has an average crystal grain size of 100 μm or less, has high strength and toughness, and has excellent stress corrosion cracking resistance. In other words, all of the five forged materials after artificial age hardening, which were separately manufactured, had an average crystal grain size of 100 μm or less, and had a 0.2% proof stress as a high-strength and toughness material. Charpy impact value of 20 J / cm at 345 MPa or more 2 Or a high-strength material with a 0.2% proof stress of 370 MPa or more and a Charpy impact value of 12 J / cm 2 That was all.
[0068]
The alloy example 1 has a composition aimed at a high-strength and high-toughness material, and the invention example 1 using the alloy has a 0.2% proof stress of 345 MPa or more and a Charpy impact value of 20 J / cm. 2 That is all. Alloy Example 2 has a composition aimed at a high-strength material, and Invention Example 2 using this has a 0.2% proof stress of 370 MPa or more and a Charpy impact value of 12 J / cm. 2 That is all.
[0069]
However, among the invention examples, the invention example 3 in which the impurity Zr is close to the upper limit value, and the invention example 4 in which the total content of Zr, V and Hf is close to the upper limit value are compared with the invention example 2 having the same component composition. Thus, the average crystal grain size is relatively large, and the strength and toughness are relatively low.
[0070]
On the other hand, Comparative Example 7 using Alloy No. 7 in which the amount of metallic Ti added was slightly lower, Alloy No. 9 in which only the total content of impurities Zr, V and Hf exceeded the upper limit of the present invention. Comparative Example 9 using alloy No. 10 in which the Zr content and the total content of Zr, V, and Hf exceeded the upper limit of the present invention were used in Comparative Example 10 using the cast material in Table 2 and the forged material in Table 3. Has an average crystal grain size of over 100 μm throughout, and is extremely low in strength and toughness and inferior in stress corrosion cracking as compared with the invention examples. That is, all of the five forged materials of each comparative example, which were separately manufactured, each had an average crystal grain size exceeding 100 μm, and had a low 0.2% proof stress or a low Charpy impact value. Comparative Example 8 using Alloy No. 8 in which the amount of added metal Ti or the total content of Ti was slightly larger was found to have an average crystal grain size of 100 μm or less for the cast material in Table 2 and the forged material in Table 3. However, as compared with the invention examples, the toughness is low and the corrosion resistance is inferior.
[0071]
Furthermore, even when using alloy number 2 within the range of the present invention, in Comparative Example 11 in which the casting cooling rate is low, the average crystal grain size of the cast material shown in Table 2 is larger than 100 μm. For this reason, the average crystal grain size of the forged material shown in Table 3 is larger than 100 μm, even though the forged material is manufactured under favorable conditions such as high-temperature forging. Therefore, the strength and toughness are remarkably low, and the stress corrosion cracking resistance is also inferior.
[0072]
Similarly, even if the chemical composition is Alloy No. 2 within the scope of the invention and the average crystal grain size of the cast material in Table 2 is 100 μm or less, the heating rate of the homogenizing heat treatment is too high in Comparative Example 12; In Comparative Example 14 in which the starting temperature of hot forging was too low, and in Comparative Example 15 in which the final ending temperature was too low, the average grain size of the forged material in Table 3 was larger than 100 μm in both cases. As a result, the strength and toughness are extremely low, and the stress corrosion cracking resistance is also poor.
[0073]
Further, even when the chemical composition was Alloy No. 2 within the scope of the invention, Comparative Example 13 in which the homogenization heat treatment temperature was too low showed that even if the average crystal grain size of the cast material in Table 2 was 100 μm or less, The average crystal grain size of each forged material exceeds 100 μm, and the strength and toughness are remarkably low and the stress corrosion cracking resistance is inferior to the invention examples. Further, in Comparative Example 16 in which the solution treatment temperature was too low and in Comparative Example 17 in which the quenching temperature was too high, even if the average crystal grain size of the cast material in Table 2 and the forged material in Table 3 was 100 μm or less, none of them. The strength is remarkably low as compared with the invention examples.
[0074]
Therefore, from these results, even when a transition element such as Mn or Cr is added, the crystal grains of the structure of the cast material or the forged material can be surely refined, and the forged material has high strength, high toughness, and high corrosion resistance. The critical significance of the composition of the present invention and the production conditions can be understood.
[0075]
[Table 1]
Figure 2004292937
[0076]
[Table 2]
Figure 2004292937
[0077]
[Table 3]
Figure 2004292937
[0078]
【The invention's effect】
According to the present invention, even when a transition element such as Mn or Cr is added, a cast material or an Al-Mg-Si-based aluminum alloy forging material for a transport structure material capable of reliably refining crystal grains of a forging material structure and It is possible to provide a method for producing the same, and to provide a forged aluminum alloy for transportation structural materials, which has increased strength, toughness, and corrosion resistance, and a method for producing the same. Therefore, the use of the forged Al-Mg-Si-based aluminum alloy can be expanded for use in transport vehicles, and thus has great industrial value.

Claims (5)

Al−Mg−Si系アルミニウム合金鍛造材であって、Mg:0.6〜1.8%、Si:0.4〜1.8%、Cu:0.1〜1.0%を含むとともに、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% の一種または二種を含み、更に、0.05〜0.1%の金属Tiが新たに添加された上で、Tiの総含有量を0.15% 以下とし、不純物として、Zr:0.01%以下、V:0.01% 以下、Hf:0.01%以下であって、かつ、これらZr、V 、Hfの総含有量でも0.01% 以下に規制し、残部Alおよび不可避的不純物からなり、人工時効硬化処理後の鍛造材組織の平均結晶粒径が100 μm 以下であることを特徴とする輸送機構造材用アルミニウム合金鍛造材。An Al-Mg-Si based aluminum alloy forging material, which contains 0.6 to 1.8% of Mg, 0.4 to 1.8% of Si, and 0.1 to 1.0% of Cu, Mn: 0.01 to 0.9%, Cr: 0.01 to 0.25%, one or two of which are further added, and after 0.05 to 0.1% of metallic Ti is newly added, , Ti is set to 0.15% or less, and Zr: 0.01% or less, V: 0.01% or less, and Hf: 0.01% or less as impurities. , The total content of Hf is regulated to 0.01% or less, the balance is made of Al and inevitable impurities, and the average crystal grain size of the forged material structure after artificial age hardening is 100 μm or less. Aluminum alloy forgings for transport aircraft structural materials. 前記鍛造材の0.2%耐力が345MPa以上でシャルピー衝撃値が20J/cm以上である請求項1に記載の輸送機構造材用アルミニウム合金鍛造材。The aluminum alloy forging for a structural material of a transport machine according to claim 1, wherein the forging material has a 0.2% proof stress of 345 MPa or more and a Charpy impact value of 20 J / cm 2 or more. 前記鍛造材の0.2%耐力が370MPa以上でシャルピー衝撃値が12J/cm以上である請求項1に記載の輸送機構造材用アルミニウム合金鍛造材。 2. The aluminum alloy forged material for a transport structure according to claim 1, wherein the forged material has a 0.2% proof stress of 370 MPa or more and a Charpy impact value of 12 J / cm 2 or more. 前記輸送機構造材が自動車足回り部品である請求項1乃至3のいずれか1項に記載の輸送機構造材用アルミニウム合金鍛造材。The aluminum alloy forging for a transport structure according to any one of claims 1 to 3, wherein the transport structure is a vehicle underbody part. Mg:0.6〜1.8%、Si:0.4〜1.8%、Cu:0.1〜1.0%を含むとともに、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% の一種または二種を含み、更に、0.05〜0.1%の金属Tiが新たに添加された上で、Tiの総含有量を0.15% 以下とし、不純物として、Zr:0.01%以下、V:0.01% 以下、Hf:0.01%以下であって、かつ、これらZr、V 、Hfの総含有量でも0.01% 以下に規制し、残部Alおよび不可避的不純物からなるアルミニウム合金合金溶湯を、10℃/sec以上の冷却速度で鋳造し、アルミニウム合金鋳造材組織の平均結晶粒径を100 μm 以下とし、この鋳造材を250 ℃/h以下の加熱速度で加熱して500 〜550 ℃で均質化熱処理した後に、480 〜520 ℃の開始温度と380 ℃以上の終了温度で熱間鍛造し、その後、540 〜560 ℃で溶体化処理した後に70℃以下の温度に焼入れ処理し、更に170 〜200 ℃で人工時効硬化処理し、この人工時効硬化処理後の鍛造材組織の平均結晶粒径を100 μm 以下とするとともに、0.2%耐力が345MPa以上でシャルピー衝撃値が20J/cm以上とするか、0.2%耐力が370MPa以上でシャルピー衝撃値が12J/cm以上とすることを特徴とする輸送機構造材用アルミニウム合金鍛造材の製造方法。Mg: 0.6-1.8%, Si: 0.4-1.8%, Cu: 0.1-1.0%, Mn: 0.01-0.9%, Cr: 0 0.11% to 0.25%, and after addition of 0.05 to 0.1% of metallic Ti, the total content of Ti is set to 0.15% or less. As impurities, Zr: 0.01% or less, V: 0.01% or less, Hf: 0.01% or less, and the total content of Zr, V, and Hf is restricted to 0.01% or less. Then, a molten aluminum alloy alloy consisting of the balance of Al and inevitable impurities is cast at a cooling rate of 10 ° C./sec or more to reduce the average crystal grain size of the aluminum alloy cast material structure to 100 μm or less. / H and a homogenization heat treatment at 500 to 550 ° C. Hot forging at a starting temperature of 80 to 520 ° C and an ending temperature of 380 ° C or higher, then a solution treatment at 540 to 560 ° C, quenching to a temperature of 70 ° C or lower, and artificial aging at 170 to 200 ° C After the hardening treatment, the average crystal grain size of the forged material structure after the artificial age hardening treatment is reduced to 100 μm or less, and the 0.2% proof stress is 345 MPa or more and the Charpy impact value is 20 J / cm 2 or more. 2. A method for producing an aluminum alloy forging for a structural material of a transport machine, wherein a 2% proof stress is 370 MPa or more and a Charpy impact value is 12 J / cm 2 or more.
JP2003090662A 2003-03-28 2003-03-28 Aluminum alloy forging material for transport carrier structural material, and production method therefor Pending JP2004292937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090662A JP2004292937A (en) 2003-03-28 2003-03-28 Aluminum alloy forging material for transport carrier structural material, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090662A JP2004292937A (en) 2003-03-28 2003-03-28 Aluminum alloy forging material for transport carrier structural material, and production method therefor

Publications (1)

Publication Number Publication Date
JP2004292937A true JP2004292937A (en) 2004-10-21

Family

ID=33404232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090662A Pending JP2004292937A (en) 2003-03-28 2003-03-28 Aluminum alloy forging material for transport carrier structural material, and production method therefor

Country Status (1)

Country Link
JP (1) JP2004292937A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274415A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Aluminum alloy forging for high strength structural member
JP2007169699A (en) * 2005-12-21 2007-07-05 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
WO2007111325A1 (en) * 2006-03-28 2007-10-04 Showa Denko K.K. Process for production of liner-constituting members
WO2007114078A1 (en) 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same
JP2008223108A (en) * 2007-03-14 2008-09-25 Kobe Steel Ltd Forged material of aluminum alloy and manufacturing method therefor
JP2009148822A (en) 2007-11-27 2009-07-09 Nippon Steel Corp Warm press-forming method for high-strength aluminum alloy sheet
JP2013076167A (en) * 2012-11-27 2013-04-25 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, production method therefor, and suspension component
WO2013114928A1 (en) * 2012-02-02 2013-08-08 株式会社神戸製鋼所 Forged aluminum alloy material and method for producing same
CN103556009A (en) * 2013-11-05 2014-02-05 张家港市昊天金属科技有限公司 Magnesium-aluminum alloy and manufacturing method thereof
EP3018226A1 (en) * 2014-11-05 2016-05-11 Constellium Valais SA (AG, Ltd) Ultra high strength products forged from 6xxx aluminium alloys having excellent corrosion resistance
JP2016098412A (en) * 2014-11-21 2016-05-30 株式会社Uacj Method for producing aluminum alloy sheet
JP2017110238A (en) * 2015-12-14 2017-06-22 日本軽金属株式会社 Aluminum alloy extrusion material for cutting work excellent in fatigue strength property and manufacturing method therefor
EP2553131B1 (en) 2010-03-30 2019-05-08 Norsk Hydro ASA High temperature stable aluminium alloy
CN110042276A (en) * 2019-04-24 2019-07-23 安徽省金兰金盈铝业有限公司 A kind of processing technology of traffic lightweight Al-alloy material
JPWO2021230080A1 (en) * 2020-05-13 2021-11-18
CN115074583A (en) * 2021-03-16 2022-09-20 本田技研工业株式会社 Method for processing aluminum alloy and aluminum alloy processed part
CN115074556A (en) * 2021-03-16 2022-09-20 本田技研工业株式会社 Method for processing aluminum alloy and aluminum alloy processed part
CN116334460A (en) * 2021-12-23 2023-06-27 昭和电工株式会社 Aluminum alloy forging

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274415A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Aluminum alloy forging for high strength structural member
JP2007169699A (en) * 2005-12-21 2007-07-05 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
WO2007111325A1 (en) * 2006-03-28 2007-10-04 Showa Denko K.K. Process for production of liner-constituting members
JP4940229B2 (en) * 2006-03-28 2012-05-30 昭和電工株式会社 Manufacturing method of liner component
US8152940B2 (en) 2006-03-31 2012-04-10 Kobe Steel, Ltd. Aluminum alloy forging member and process for producing the same
WO2007114078A1 (en) 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same
KR101148421B1 (en) 2007-03-14 2012-05-25 가부시키가이샤 고베 세이코쇼 Aluminum alloy forgings and process for production thereof
DE112008000587T5 (en) 2007-03-14 2010-01-07 Kabushiki Kaisha Kobe Seiko Sho Forgings made of an aluminum alloy and process for their production
WO2008114680A1 (en) * 2007-03-14 2008-09-25 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forgings and process for production thereof
JP2008223108A (en) * 2007-03-14 2008-09-25 Kobe Steel Ltd Forged material of aluminum alloy and manufacturing method therefor
US8372220B2 (en) 2007-03-14 2013-02-12 Kobe Steel, Ltd. Aluminum alloy forgings and process for production thereof
JP2009148822A (en) 2007-11-27 2009-07-09 Nippon Steel Corp Warm press-forming method for high-strength aluminum alloy sheet
EP2553131B1 (en) 2010-03-30 2019-05-08 Norsk Hydro ASA High temperature stable aluminium alloy
JP2013177672A (en) * 2012-02-02 2013-09-09 Kobe Steel Ltd Aluminum alloy forged material and method for producing the same
EP2811042B1 (en) 2012-02-02 2017-06-21 Kabushiki Kaisha Kobe Seiko Sho ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME
US20140367001A1 (en) * 2012-02-02 2014-12-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy forged material and method for manufacturing the same
WO2013114928A1 (en) * 2012-02-02 2013-08-08 株式会社神戸製鋼所 Forged aluminum alloy material and method for producing same
JP2013076167A (en) * 2012-11-27 2013-04-25 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, production method therefor, and suspension component
CN103556009A (en) * 2013-11-05 2014-02-05 张家港市昊天金属科技有限公司 Magnesium-aluminum alloy and manufacturing method thereof
WO2016071257A1 (en) * 2014-11-05 2016-05-12 Constellium Valais Sa ( Ltd) Ultra high strength 6xxx forged aluminium alloys
EP3018226A1 (en) * 2014-11-05 2016-05-11 Constellium Valais SA (AG, Ltd) Ultra high strength products forged from 6xxx aluminium alloys having excellent corrosion resistance
JP2016098412A (en) * 2014-11-21 2016-05-30 株式会社Uacj Method for producing aluminum alloy sheet
JP2017110238A (en) * 2015-12-14 2017-06-22 日本軽金属株式会社 Aluminum alloy extrusion material for cutting work excellent in fatigue strength property and manufacturing method therefor
CN110042276A (en) * 2019-04-24 2019-07-23 安徽省金兰金盈铝业有限公司 A kind of processing technology of traffic lightweight Al-alloy material
JPWO2021230080A1 (en) * 2020-05-13 2021-11-18
WO2021230080A1 (en) * 2020-05-13 2021-11-18 日本軽金属株式会社 Aluminum alloy forging material and method for manufacturing same
CN115074583A (en) * 2021-03-16 2022-09-20 本田技研工业株式会社 Method for processing aluminum alloy and aluminum alloy processed part
CN115074556A (en) * 2021-03-16 2022-09-20 本田技研工业株式会社 Method for processing aluminum alloy and aluminum alloy processed part
US11708628B2 (en) 2021-03-16 2023-07-25 Honda Motor Co., Ltd. Aluminum alloy processing method and aluminum alloy workpiece
CN116334460A (en) * 2021-12-23 2023-06-27 昭和电工株式会社 Aluminum alloy forging

Similar Documents

Publication Publication Date Title
JP5180496B2 (en) Aluminum alloy forging and method for producing the same
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
JP5110938B2 (en) Automotive undercarriage parts and manufacturing method thereof
TWI592498B (en) Aluminum alloy plastic processed products, manufacturing method thereof and automobile parts
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
EP3214191B1 (en) A high-strength al-mg-si aluminium alloy and its manufacturing process
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP5723192B2 (en) Aluminum alloy forging and method for producing the same
JP2013227652A (en) Aluminum alloy forged material for automobile and method for manufacturing the same
JP6182490B2 (en) Aluminum alloy forging
JP4801386B2 (en) Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP3766357B2 (en) Aluminum alloy forging material for strength member and forging material
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP5532462B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP2001011559A (en) High strength aluminum alloy extruded material excellent in corrosion resistance and its production
JPH11286758A (en) Production of forged product using aluminum casting material
JP2001181771A (en) High strength and heat resistant aluminum alloy material