JPH11286758A - Production of forged product using aluminum casting material - Google Patents

Production of forged product using aluminum casting material

Info

Publication number
JPH11286758A
JPH11286758A JP8977598A JP8977598A JPH11286758A JP H11286758 A JPH11286758 A JP H11286758A JP 8977598 A JP8977598 A JP 8977598A JP 8977598 A JP8977598 A JP 8977598A JP H11286758 A JPH11286758 A JP H11286758A
Authority
JP
Japan
Prior art keywords
weight
forging
treatment
recrystallized grains
forged product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8977598A
Other languages
Japanese (ja)
Inventor
Hidenobu Kawai
秀信 河合
Hirotsugu Yunoki
裕嗣 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP8977598A priority Critical patent/JPH11286758A/en
Publication of JPH11286758A publication Critical patent/JPH11286758A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a forged product having a structure after T6-treatment controlled by a structure free from coarsely grown recrystallized grains and free from anisotropy in mechanical properties. SOLUTION: An aluminum ingot having a regulated compsn. of 8.0 to 13.5% Si, 0.5 to 4.0% Cu, 0.4 to 1.5% Mg, 0.1 to 1.5% Fe and <=0.5% Zn is subjected to a homogenizing treatment of 480 to 540 deg.C for 1 to 48 hr and is thereafter cut to a prescribed length. In hot forging, it is heated at a temp. of 300 to 400 deg.C by heating before forging and is forged so as to regulate the surface temp. of the stock directly after the forging to be a temp. of 270 to 370 deg.C by a die heated to 150 to 400 deg.C. If required, secondary forging is executed under similar heating conditions. Then, it is subjected to solution treatment at a temp. of 480 to 540 deg.C for 10 min to 48 hr, is water-cooled and is thereafter subjected to aging treatment at a temp. of 150 to 200 deg.C for 4 to 10 hr to suppress the coarse growth of recrystallized grains at the time of the solution treatment and is subsequently machined into a product shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、機械的強度及び耐摩耗
性に優れた車両用部品,家電部品等のアルミニウム鍛造
製品を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a forged aluminum product such as a vehicle part and a home electric appliance part having excellent mechanical strength and wear resistance.

【0002】[0002]

【従来の技術】車両や産業用機器等に使用されるピスト
ンやシリンダー,家電機器に使用されるスクロール等の
摺動部品としては、耐摩耗性や強度,伸びに優れた鉄系
の材料が多用されていた。しかし、軽量化,高性能化に
伴いアルミニウム合金の鍛造品が用いられるケースが増
加しつつある。アルミニウム合金としては、Al−Si
−Cu−Mg系合金が使用されている。
2. Description of the Related Art Iron-based materials having excellent wear resistance, strength, and elongation are frequently used as sliding parts such as pistons and cylinders used in vehicles and industrial equipment, and scrolls used in home appliances. It had been. However, the use of aluminum alloy forgings is increasing with the reduction in weight and performance. As the aluminum alloy, Al-Si
-A Cu-Mg based alloy is used.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来のAl
−Si系合金は、熱間鍛造又はその後の熱処理によって
加工組織が粗大な再結晶粒になったり、或いは再結晶粒
が急成長して二次再結晶組織が発生し、結果として十分
な強度及び靭性が得られない。本発明は、このような問
題を解消すべく案出されたものであり、使用するアルミ
ニウム合金の組成,均質化処理,鍛造及び熱処理を特定
された条件下で組み合わせることにより、全面微細な再
結晶粒にコントロールされた熱処理後の組織をもち、機
械的性質に異方性のない鍛造品を提供することを目的と
する。
However, the conventional Al
-Si-based alloys, the working structure becomes coarse recrystallized grains by hot forging or subsequent heat treatment, or the recrystallized grains grow rapidly to generate a secondary recrystallized structure, resulting in sufficient strength and The toughness cannot be obtained. The present invention has been devised to solve such a problem. By combining the composition of an aluminum alloy to be used, homogenizing treatment, forging and heat treatment under specified conditions, the entire surface can be recrystallized finely. It is an object of the present invention to provide a forged product having a grain-controlled structure after heat treatment and having no anisotropy in mechanical properties.

【0004】[0004]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、Si:8.0〜13.5重量
%,Cu:0.5〜4.0重量%,Mg:0.4〜1.
5重量%,Fe:0.1〜1.5重量%,Zn:0.5
重量%以下に規制したアルミニウム鋳塊に480〜54
0℃×1〜48時間の均質化処理を施した後、所定の長
さに切断する。一工程で鍛造する場合には、鍛造前の加
熱で300〜400℃に加熱し、150〜400℃に加
熱された金型で鍛造直後の素材表面温度が270〜37
0℃となるように鍛造する。次いで、480〜540℃
×10分〜48時間の溶体化処理を施し、水冷後、15
0〜220℃×4〜10時間の時効処理を施すことによ
り溶体化処理時の再結晶粒の粗大成長を抑えた後、製品
形状に機械加工することにより鋳造材鍛造製品が製造さ
れる。
In order to achieve the object, the production method of the present invention has a composition in which Si: 8.0-13.5% by weight, Cu: 0.5-4.0% by weight, and Mg: 0. .4-1.
5% by weight, Fe: 0.1 to 1.5% by weight, Zn: 0.5
480-54 for aluminum ingot regulated to less than weight%
After a homogenization treatment at 0 ° C. for 1 to 48 hours, it is cut into a predetermined length. When forging is performed in one step, the material is heated to 300 to 400 ° C. by heating before forging, and the material surface temperature immediately after forging is set to 270 to 37 in a mold heated to 150 to 400 ° C.
Forging to 0 ° C. Then, 480-540 ° C
× 10 minutes to 48 hours for solution treatment, after water cooling,
After performing aging treatment at 0 to 220 ° C. for 4 to 10 hours to suppress coarse growth of recrystallized grains during solution treatment, the cast material forged product is manufactured by machining into a product shape.

【0005】形状が複雑で多段階で鍛造する場合、切断
した鋳造材を鍛造前の加熱で300〜400℃に加熱
し、150〜400℃に加熱された金型で鍛造直後の素
材表面温度が270〜370℃となるように一次鍛造
し、一次鍛造品を鍛造前の加熱で300〜400℃に再
加熱し、150〜400℃に加熱された金型で鍛造直後
の素材表面温度が270〜370℃となるように二次鍛
造する。使用するアルミニウム合金は、Mn:0.1〜
1.5重量%,Cr:0.04〜0.3重量%,Ti:
0.005〜0.2重量%及びB:0.0001〜0.
02重量%の1種又は2種以上を、更にはNi:0.5
〜2.0重量%,Sb:0.05〜2.0重量%,S
r:0.005〜0.05重量%の1種又は2種以上を
含むことができる。
[0005] In the case of complicated shapes and forging in multiple stages, the cut cast material is heated to 300 to 400 ° C by heating before forging, and the surface temperature of the material immediately after forging in a mold heated to 150 to 400 ° C is reduced. The primary forging is performed at 270 to 370 ° C., and the primary forged product is reheated to 300 to 400 ° C. by heating before forging, and the material surface temperature immediately after forging with the mold heated to 150 to 400 ° C. is 270 to 370 ° C. Secondary forging is performed at 370 ° C. The aluminum alloy used is Mn: 0.1-
1.5% by weight, Cr: 0.04 to 0.3% by weight, Ti:
0.005-0.2% by weight and B: 0.0001-0.
02% by weight of one or more kinds, further, Ni: 0.5
To 2.0% by weight, Sb: 0.05 to 2.0% by weight, S
r: One or more of 0.005 to 0.05% by weight may be contained.

【0006】[0006]

【作用】本発明で使用するアルミニウム合金に含まれる
合金元素,含有量等について説明する。 Si:8.0〜13.5重量% アルミニウム合金の耐摩耗性を向上させる作用を呈する
合金成分であり、8.5重量%未満ではその効果が乏し
い。逆に13.5重量%を超える多量添加では、Sb等
を添加し半連続鋳造で凝固速度を速くしても、初晶Si
が生成して鍛造加工を困難にする。また、多量のSi添
加は、アルミニウム合金の強度を下げる原因ともなる。 Cu:0.5〜4.0重量% T6処理時の時効処理でCuAl2 ,Al−Cu−Mg
系金属間化合物を析出し、Mg2 Si析出による強度改
善作用を促進させ、強度改善に寄与する。このような効
果は、Cu含有量0.5重量%以上で顕著になる。しか
し、4.0重量%を超える多量のCuが含まれると、S
bを添加したとしてもCuが多量に含まれることによ
り、初晶Si及び共晶Siが粗大化し、鍛造加工が困難
になる。また、多量のCu含有は、耐食性を低下させ、
応力腐食割れを発生させ易くする。
The alloying elements and contents contained in the aluminum alloy used in the present invention will be described. Si: 8.0 to 13.5% by weight An alloy component exhibiting an effect of improving the wear resistance of an aluminum alloy, and if less than 8.5% by weight, the effect is poor. Conversely, when a large amount is added exceeding 13.5% by weight, even if Sb or the like is added and the solidification rate is increased by semi-continuous casting, primary Si
And make forging difficult. Further, the addition of a large amount of Si also causes a reduction in the strength of the aluminum alloy. Cu: 0.5 to 4.0 CuAl 2 in aging treatment at wt% T6 treatment, Al-Cu-Mg
It precipitates a system intermetallic compound, promotes the strength improving action by Mg 2 Si precipitation, and contributes to strength improvement. Such effects become remarkable when the Cu content is 0.5% by weight or more. However, when a large amount of Cu exceeding 4.0% by weight is contained, S
Even if b is added, since primary Cu and eutectic Si are coarsened by containing a large amount of Cu, forging becomes difficult. In addition, a large amount of Cu reduces the corrosion resistance,
It facilitates the occurrence of stress corrosion cracking.

【0007】Mg:0.4〜1.5重量% T6処理時の時効処理によりSiと反応しMg2 Si系
化合物となってマトリックスに析出し、アルミニウム合
金の強度を向上させる合金成分である。有効な析出硬化
を得るため、0.4重量%以上のMg含有量が必要であ
る。しかし、1.5重量%を超えるMgを含有させる
と、析出硬化作用が飽和するばかりでなく、焼入れ感受
性が高くなる。 Fe:0.1〜1.5重量% Al−Fe−Si系やAl−Fe系の金属間化合物とな
ってマトリックスに晶出し、アルミニウム合金の耐摩耗
性を向上させる。このような効果は、0.1重量%以上
のFe含有量で顕著になる。しかし、1.5重量%を超
える多量のFeが含まれると、Feを含む粗大化合物を
晶出し、アルミニウム合金の加工性を低下させる。
Mg: 0.4 to 1.5% by weight An alloy component which reacts with Si by aging treatment during T6 treatment to form an Mg 2 Si-based compound and precipitates in a matrix, thereby improving the strength of an aluminum alloy. To obtain effective precipitation hardening, a Mg content of 0.4% by weight or more is required. However, when the content of Mg exceeds 1.5% by weight, not only the precipitation hardening effect is saturated, but also the quenching sensitivity is increased. Fe: 0.1 to 1.5% by weight Al-Fe-Si-based or Al-Fe-based intermetallic compound is crystallized in a matrix to improve the wear resistance of the aluminum alloy. Such an effect becomes remarkable at a Fe content of 0.1% by weight or more. However, when a large amount of Fe exceeding 1.5% by weight is contained, a coarse compound containing Fe is crystallized, and the workability of the aluminum alloy is reduced.

【0008】Zn:0.5重量%以下 アルミスクラップ等から混入してくる不可避的な不純物
であり、少ない方が望ましい。0.5重量%を超える多
量のZnは、応力腐食割れの原因となりやすいので、Z
n含有量の上限を0.5重量%に規定した。 Mn:0.1〜1.5重量% 必要に応じて添加される合金成分であり、微細な分散粒
子を形成することにより再結晶粒の成長を抑制する。特
に、T6処理時の溶体化による再結晶粒の粗大化を抑制
する上で有効な合金成分であり、強度及び耐摩耗性の改
善にも有効に作用する。これらの効果は、0.1重量%
以上のMn含有量で顕著になる。しかし、1.5重量%
を超える多量のMnを含有させると、Mnを含む金属間
化合物が粗大に晶出し易くなり、加工性が悪くなる。
Zn: 0.5% by weight or less Zn is an unavoidable impurity mixed in from aluminum scrap or the like. A large amount of Zn exceeding 0.5% by weight tends to cause stress corrosion cracking.
The upper limit of the n content was set to 0.5% by weight. Mn: 0.1 to 1.5% by weight An alloy component added as necessary, and suppresses the growth of recrystallized grains by forming fine dispersed particles. In particular, it is an effective alloy component for suppressing coarsening of recrystallized grains due to solution during T6 treatment, and also effectively acts for improving strength and wear resistance. These effects are 0.1% by weight
The above Mn content becomes remarkable. However, 1.5% by weight
If a large amount of Mn is contained, the intermetallic compound containing Mn tends to crystallize coarsely, resulting in poor workability.

【0009】Cr:0.04〜0.3重量% 必要に応じて添加される合金成分であり、再結晶粒の粗
大化を抑制する作用を呈する。Crの効果は、0.04
重量%以上の含有量で顕著になる。Crが再結晶粒の成
長を抑制する作用は、特に鍛造後のT6処理時における
溶体化処理時に発揮され、溶体化による再結晶粒の粗大
化を抑制する。しかし、0.3重量%を超えてCrを含
有させるとき、加工性が低下する。Mn及びCrがT6
処理時の溶体化処理時に再結晶粒の粗大化を抑制する作
用は、その詳細な理由は不明であるが、加工による歪み
エネルギーと関係し、これらの化合物の特定の形態や分
布が再結晶粒の粒界成長を抑制していることに起因する
ものと推察される。
Cr: 0.04 to 0.3% by weight An alloy component added as required, and has an effect of suppressing coarsening of recrystallized grains. The effect of Cr is 0.04
It becomes remarkable at a content of not less than weight%. The effect of Cr suppressing the growth of recrystallized grains is exhibited particularly during the solution treatment during the T6 treatment after forging, and suppresses the coarsening of the recrystallized grains due to the solution. However, when Cr is contained in an amount exceeding 0.3% by weight, workability is reduced. Mn and Cr are T6
The effect of suppressing the coarsening of the recrystallized grains during the solution treatment during the treatment is unknown for the detailed reason, but it is related to the strain energy due to processing, and the specific morphology and distribution of these compounds are It is presumed to be due to the suppression of grain boundary growth.

【0010】Ti:0.005〜0.2重量% 必要に応じて添加される合金成分であり、鋳造組織を微
細化させる作用を呈する。鋳造組織微細化作用は、Ti
含有量が0.005重量%を超えると顕著になる。ま
た、Ti添加によって組織が微細化されたアルミニウム
合金は、ビレットに鋳造割れ等の欠陥が発生するのを抑
制している。しかし、多量のTi含有は、アルミニウム
合金の靭性を劣化させるので上限を0.2重量%に設定
した。 B:0.0001〜0.02重量% 必要に応じて添加される合金成分であり、Tiと同様に
鋳造組織の微細化に有効に作用する。Bの効果は、0.
0001重量%以上の含有量で顕著になる。また、B含
有量の上限は、Ti含有量と同様な理由から0.02重
量%に設定した。
[0010] Ti: 0.005 to 0.2 wt% Ti is an alloy component added as necessary, and has an effect of refining the cast structure. The effect of refining the cast structure is Ti
When the content exceeds 0.005% by weight, it becomes remarkable. In addition, the aluminum alloy whose structure has been refined by adding Ti suppresses occurrence of defects such as casting cracks in the billet. However, the upper limit was set to 0.2% by weight because a large amount of Ti contained deteriorates the toughness of the aluminum alloy. B: 0.0001 to 0.02% by weight An alloy component that is added as necessary, and effectively acts to refine the cast structure similarly to Ti. The effect of B is 0.
It becomes remarkable at a content of 0001% by weight or more. The upper limit of the B content was set to 0.02% by weight for the same reason as the Ti content.

【0011】Ni:0.5〜2.0重量% Niを含む金属間化合物を晶出させ、アルミニウム合金
の耐熱性及び耐摩耗性を改善する。このような効果は、
Ni含有量に比例して大きくなり、0.5重量%以上の
Ni含有量で顕著になる。しかし、2.0重量%を超え
る多量のNi含有量では、Niを含む粗大化合物が晶出
し、アルミニウム合金の加工性を劣化させる。 Sb:0.05〜2.0重量% 必要に応じて添加される合金成分であり、Cuの影響を
受けて粗大化し易い初晶Si及び共晶Siを微細化し、
引張強さ及び耐摩耗性を改善し、加工性を良好にする作
用を呈する。このような効果は、0.05重量%以上の
Sb含有で顕著になる。しかし、2.0重量%を超える
多量のSb含有では、Sbを含む金属間化合物が晶出し
易くなり、アルミニウム合金の加工性を低下させる。本
発明で使用するアルミニウム合金は、他の有効な元素と
してSrを含むことができる。
Ni: 0.5 to 2.0% by weight The intermetallic compound containing Ni is crystallized to improve the heat resistance and wear resistance of the aluminum alloy. These effects are
It increases in proportion to the Ni content, and becomes remarkable at a Ni content of 0.5% by weight or more. However, with a large Ni content exceeding 2.0% by weight, a coarse compound containing Ni is crystallized, thereby deteriorating the workability of the aluminum alloy. Sb: 0.05 to 2.0% by weight An alloy component that is added as necessary, and refines primary crystal eutectic Si and eutectic Si that are likely to be coarsened under the influence of Cu,
It has the effect of improving tensile strength and wear resistance and improving workability. Such effects become remarkable when Sb is contained at 0.05% by weight or more. However, when Sb is contained in a large amount exceeding 2.0% by weight, the intermetallic compound containing Sb is easily crystallized, and the workability of the aluminum alloy is reduced. The aluminum alloy used in the present invention can contain Sr as another effective element.

【0012】Sr:0.005〜0.05重量% Sbと同様に初晶Si及び共晶Siの微細化を図る目的
で単独又はSbと複合して添加される。0.005重量
%に達しない含有量では、Sr添加による微細化効果が
不十分である。逆に0.05重量%を超えるSr添加で
は、Srを含む粗大な金属間化合物が晶出し易くなり、
加工性が低下する。なお、本発明で使用されるアルミニ
ウム合金は、その他の主要な不可避不純物として0.1
重量%以下のPbやSnを含むことがある。
Sr: 0.005 to 0.05% by weight Like Sb, it is added alone or in combination with Sb for the purpose of miniaturizing primary crystal Si and eutectic Si. If the content does not reach 0.005% by weight, the refining effect by the addition of Sr is insufficient. Conversely, when Sr is added in an amount exceeding 0.05% by weight, a coarse intermetallic compound containing Sr is easily crystallized,
Workability decreases. The aluminum alloy used in the present invention is 0.1% as another major unavoidable impurity.
It may contain Pb or Sn in an amount of not more than% by weight.

【0013】以上のように成分調整されたアルミニウム
合金は、通常の半連続鋳造法で円柱状断面をもつビレッ
ト,最終製品形状に見合った断面形状をもつ鋳塊等に鋳
造される。 均質化処理 凝固によって生じたミクロ偏析を解消し、Cr,Mn等
の過飽和固溶成分を析出させるため、、480〜540
℃×1〜48時間の均質化処理を施した後、冷却し、鋳
造品を必要長さに切断する。
The aluminum alloy whose composition has been adjusted as described above is cast by ordinary semi-continuous casting into a billet having a cylindrical cross section, an ingot having a cross section corresponding to the shape of the final product, or the like. Homogenization treatment In order to eliminate micro-segregation caused by solidification and to precipitate supersaturated solid solution components such as Cr and Mn, 480 to 540
After performing homogenization treatment at 1 ° C. × 1 to 48 hours, the product is cooled and the casting is cut to a required length.

【0014】一次鍛造 一次鍛造に供する前に、切断された鋳造材を加熱炉に装
入し、鍛造前に300〜400℃に加熱する。このとき
の加熱温度は、最終製品のT6処理後の組織を微細にす
る上で重要である。加熱温度が300〜400℃の範囲
にないと、T6処理後の再結晶粒が粗大化し、均一で微
細な再結晶粒が得られない。加熱保持は、温度の均一化
を図るために1時間程度行うことが好ましい。300℃
に達しない加熱温度では、素材の変形抵抗が大きく、鍛
造が困難になる。逆に、400℃を超える加熱温度で
は、後工程の熱処理段階で結晶粒が粗大化し易くなる。
一次鍛造では、150〜400℃に加熱された金型が使
用される。金型温度は、一次鍛造中に素材が過度に冷却
することを防止する上で重要である。150〜400℃
に加熱された金型を使用することにより、一次鍛造直後
の素材温度が270〜370℃に維持され、T6処理後
の再結晶粒の成長が抑制される。
Primary Forging Before being subjected to primary forging, the cut cast material is charged into a heating furnace and heated to 300 to 400 ° C. before forging. The heating temperature at this time is important for refining the structure of the final product after the T6 treatment. If the heating temperature is not in the range of 300 to 400 ° C., the recrystallized grains after the T6 treatment become coarse, and uniform and fine recrystallized grains cannot be obtained. It is preferable that the heating and holding be performed for about one hour in order to make the temperature uniform. 300 ℃
If the heating temperature does not reach the above range, the deformation resistance of the material is large and forging becomes difficult. Conversely, if the heating temperature exceeds 400 ° C., the crystal grains are likely to become coarse in the heat treatment stage in the subsequent process.
In primary forging, a mold heated to 150 to 400 ° C. is used. Mold temperature is important to prevent the material from cooling excessively during primary forging. 150-400 ° C
The temperature of the raw material immediately after the primary forging is maintained at 270 to 370 ° C., and the growth of recrystallized grains after the T6 treatment is suppressed.

【0015】300〜400℃に加熱された素材を型鍛
造によって上下方向に潰し、一次鍛造品を製造する。或
いは、自由鍛造によって一次鍛造品を製造することもで
きる。このときの加熱温度が400℃を超えると、T6
処理での溶体化処理時に最終製品の再結晶粒が粗大化し
易くなり、逆に300℃に達しない加熱温度では鍛造時
の変形抵抗が大きくなり、鍛造品又は金型に割れが発生
し易くなる。一次鍛造は、次の製品形状に近い形を成形
するための工程であり、変形率が小さいと二次鍛造が難
しくなる。しかし、過度に大きな変形率では、鍛造割れ
が生じるばかりでなく、二次鍛造による成形も困難にな
る。そこで、[(初期の鋳造材長さ又は外径−鍛造後の
素材長さ又は外径)×((初期の鋳造材長さ又は外径)
-1×100]で定義される上下方向の変形率を好ましく
は50〜70%の範囲に設定する。変形率をこの範囲に
維持して一次鍛造すると、二次鍛造で最終製品形状に近
い形状に成形することが容易になる。
The material heated to 300 to 400 ° C. is crushed vertically by die forging to produce a primary forged product. Alternatively, a primary forged product can be manufactured by free forging. If the heating temperature at this time exceeds 400 ° C., T6
During solution heat treatment, the recrystallized grains of the final product tend to become coarse, and conversely, at heating temperatures below 300 ° C., the deformation resistance during forging increases, and cracks easily occur in the forged product or mold. . The primary forging is a process for forming a shape close to the next product shape. If the deformation ratio is small, the secondary forging becomes difficult. However, an excessively large deformation rate not only causes forging cracks but also makes it difficult to form by secondary forging. Then, [(initial cast material length or outer diameter-material length or outer diameter after forging) x ((initial cast material length or outer diameter)
−1 × 100] is preferably set in the range of 50 to 70%. When the primary forging is performed while maintaining the deformation rate in this range, it is easy to form the secondary forging into a shape close to the final product shape.

【0016】二次鍛造 一次鍛造された素材は、必要に応じて二次鍛造される。
素材は、二次鍛造に先立って300〜400℃に、好ま
しくは加熱保持1時間程度で加熱される。このときの加
熱温度も、一次鍛造と同様に最終製品のT6処理後の組
織を微細にする上で重要である。二次鍛造では、鍛造直
後の鍛造品温度が270〜370℃となるように、15
0〜400℃に加熱された金型が使用される。金型温度
は高いほど好ましいが、370℃を超える高温に加熱さ
れた金型では鍛造素材の温度上昇を招き、素材の表面温
度が420℃を超えるため結晶粒が粗大化し易くなる。
逆に、150℃に満たない金型温度では、過度に鍛造素
材が冷却されて変形能が小さくなるため、素材の割れや
金型の損傷が発生し易くなる。
Secondary forging The primary forged material is secondary forged as required.
Prior to secondary forging, the material is heated to 300 to 400 ° C., preferably for about one hour under heat. The heating temperature at this time is also important in refining the structure of the final product after the T6 treatment as in the primary forging. In the secondary forging, the forging temperature immediately after forging is adjusted to 15 to 270 to 370 ° C.
A mold heated to 0 to 400C is used. Although the mold temperature is preferably as high as possible, a mold heated to a high temperature exceeding 370 ° C. causes an increase in the temperature of the forged material, and since the surface temperature of the material exceeds 420 ° C., the crystal grains tend to become coarse.
Conversely, at a mold temperature of less than 150 ° C., the forging material is excessively cooled and its deformability is reduced, so that cracks in the material and damage to the mold are likely to occur.

【0017】熱処理 鍛造品又は二次鍛造品は、T6処理、すなわち480〜
540℃×10分〜48時間で溶体化処理し、水冷後、
150〜220℃×4〜10時間加熱する時効処理が施
される。480〜540℃×10分〜48時間の溶体化
処理は、Mg,Si,Cu等を固溶させる溶体化処理で
ある。固溶したMg,Siは、後の時効工程でMg2
iとなって析出し、強度を確保する。Cuは、マトリッ
クスを強化すると共に、一部がCuAl2 及びAl−C
u−Mg系の金属間化合物として時効処理時に析出し、
強度を更に向上させる。
Heat treatment The forged product or the secondary forged product is subjected to T6 treatment, ie, 480 to
Solution treatment at 540 ° C. × 10 minutes to 48 hours, after water cooling,
An aging treatment of heating at 150 to 220 ° C. for 4 to 10 hours is performed. The solution treatment at 480 to 540 ° C. × 10 minutes to 48 hours is a solution treatment in which Mg, Si, Cu, or the like is dissolved. The solid solution of Mg and Si is converted into Mg 2 S in a later aging step.
Precipitates as i and secures strength. Cu is to strengthen the matrix, partially CuAl 2 and Al-C
precipitated during aging treatment as a u-Mg intermetallic compound,
Further improve strength.

【0018】鍛造直後の素材温度が270〜370℃付
近のとき、熱間加工中に導入された歪みが多く残存し、
残存歪みが溶体化処理時に再結晶粒の成長エネルギーと
なり、一斉に多数の微細な鍛造後の再結晶粒を成長さ
せ、特定の少数の再結晶粒の粗大化が阻止されるものと
推察される。一方、270℃よりも低い温度で鍛造する
と、素材の変形能が小さくなり、鍛造そのものが困難に
なって健全な製品が得られ難くなる。逆に370℃より
も高い温度で鍛造すると、鍛造時に導入された歪みが冷
却途上における再結晶粒の成長で解放され、溶体化処理
前に鍛造品中に蓄積される歪みエネルギーが小さくな
る。そのため、溶体化処理時の再結晶の成長に利用でき
るエネルギーが小さくなるが、その反面一斉に再結晶粒
が成長するのではなく、ある特定の再結晶粒が優先的に
粗大な再結晶粒に成長し易くなる可能性があり、結果と
して粗大再結晶粒が出現するものと推察される。このと
きの歪みエネルギーは、変形率とも関係することから、
変形率が異なる部分をもつ同一試料内での再結晶粒の粗
大成長は均一でない。
When the material temperature immediately after forging is around 270 to 370 ° C., a large amount of strain introduced during hot working remains,
It is presumed that the residual strain becomes the growth energy of the recrystallized grains during the solution treatment, and simultaneously grows a large number of fine recrystallized grains after forging, preventing the coarsening of a specific small number of recrystallized grains. . On the other hand, when forging is performed at a temperature lower than 270 ° C., the deformability of the material becomes small, and forging itself becomes difficult, and it becomes difficult to obtain a sound product. Conversely, when forging is performed at a temperature higher than 370 ° C., the strain introduced during forging is released by the growth of recrystallized grains during cooling, and the strain energy accumulated in the forged product before the solution treatment is reduced. As a result, the energy available for recrystallization growth during the solution treatment is reduced, but on the other hand, recrystallization grains do not grow all at once, but certain recrystallized grains are preferentially turned into coarse recrystallized grains. It is likely that the grains grow easily, and as a result, coarse recrystallized grains appear. Since the strain energy at this time is also related to the deformation rate,
The coarse growth of recrystallized grains in the same sample having portions with different deformation rates is not uniform.

【0019】溶体化処理された製品は、水焼入れされ、
150〜220℃で4〜10時間加熱する時効処理が施
される。この時効処理により、Mg2 Si,CuAl2
及びAl−Cu−Mg系金属間化合物等が析出し、マト
リックスの強度が確保される。 機械加工 熱処理された製品は、各部の板厚調整やネジ孔加工等の
ために機械加工される。
The solution-treated product is water-quenched,
An aging treatment of heating at 150 to 220 ° C. for 4 to 10 hours is performed. By this aging treatment, Mg 2 Si, CuAl 2
And an Al-Cu-Mg intermetallic compound and the like are precipitated, and the strength of the matrix is secured. Machining The heat-treated product is machined to adjust the thickness of each part and drill holes.

【0020】[0020]

【実施例】実施例:表1に示す成分・組成をもつアルミ
ニウム合金を半連続鋳造し、直径84mmの小径丸棒を
鋳造した。この丸棒に520℃×6時間の均質化処理を
施した後、直径35mm,長さ90mmのテスト用鍛造
素材を切り出した。試料No.1〜3共に本発明で規定し
た範囲にある組成をもち、そのうち試料No.2はSb無
添加,試料No.3はMn,Cr,Ti,B及びSb無添
加のアルミニウム合金である。
Example: An aluminum alloy having the components and compositions shown in Table 1 was semi-continuously cast, and a small-diameter round bar having a diameter of 84 mm was cast. After subjecting this round bar to homogenization treatment at 520 ° C. for 6 hours, a forged material for testing having a diameter of 35 mm and a length of 90 mm was cut out. Samples Nos. 1 to 3 all have compositions within the range specified in the present invention, of which Sample No. 2 is an Sb-free aluminum alloy and Sample No. 3 is an aluminum alloy without Mn, Cr, Ti, B and Sb. .

【0021】 [0021]

【0022】得られた鍛造素材に400℃×1時間の熱
処理を施した後、金型温度200℃,素材各部の変形率
として平均変形率50%で長さ方向に対して垂直な方向
から鍛造し、図1の二次成形品に近い形状に先ず成形し
た。このときの鍛造直後の素材温度は、370℃であっ
た。一次鍛造品を380℃及び450℃に1時間加熱し
た後、金型温度200℃,平均変形率70%で長さ方向
に対して垂直な方向から鍛造し、図1に示す二次成形品
の形状に成形した。二次鍛造直後の素材温度は、380
℃加熱のときは350℃,450℃加熱のときは420
℃であった。
After subjecting the obtained forged material to a heat treatment of 400 ° C. × 1 hour, forging from a direction perpendicular to the length direction at a mold temperature of 200 ° C. and an average deformation rate of 50% as a deformation rate of each part of the material. Then, it was first molded into a shape close to the secondary molded article in FIG. The raw material temperature immediately after forging at this time was 370 ° C. After the primary forged product was heated to 380 ° C. and 450 ° C. for 1 hour, it was forged from a direction perpendicular to the length direction at a mold temperature of 200 ° C. and an average deformation rate of 70%. It was molded into a shape. Material temperature immediately after secondary forging is 380
350 ° C when heating at ℃, 420 when heating at 450 ° C
° C.

【0023】二次鍛造品に510℃×4時間→水焼入れ
の処理を施した後、上下方向の断面マクロ組織を観察し
た。マクロ組織は、二次鍛造温度が350℃のとき、図
2に示すように4000系の展伸材としては比較的微細
な再結晶組織になっており、試料内の変形率の差を示す
ように均一な再結晶粒ではないが、再結晶粒の粗大成長
が検出されなかった。他方、二次鍛造温度が450℃の
ものでは、図3に示すように再結晶粒が粗大に成長した
組織になっていた。これは、Mg2 Si系,CuAl2
系,Al−Cu−Mg系金属間化合物等の微細な第2相
化合物粒子がマトリックスに固溶し始め、第2相化合物
粒子の個数が増減することにより転位の移動を抑制する
作用が低下し、結果として再結晶粒が大きくなっている
ことを示している。特に試料No.3は、試料No.1,2
に比較して再結晶粒の粗大化が顕著に進行しており、共
晶Siの微細化効果をもつSbや再結晶粒の粗大化抑制
効果をもつMn,Crを添加していない結果であること
が窺われる。なお、何れの試料も、時効処理では再結晶
粒の成長が観察されなかった。
After subjecting the secondary forged product to quenching at 510 ° C. for 4 hours → water quenching, the vertical macrostructure of the cross section was observed. When the secondary forging temperature is 350 ° C., the macrostructure has a relatively fine recrystallized structure as a 4000-series wrought material as shown in FIG. 2 and indicates a difference in the deformation rate within the sample. Although the recrystallized grains were not uniform, coarse growth of the recrystallized grains was not detected. On the other hand, when the secondary forging temperature was 450 ° C., the structure was such that recrystallized grains grew coarsely as shown in FIG. This is made of Mg 2 Si, CuAl 2
, Second phase compound particles such as Al-Cu-Mg intermetallic compound begin to form a solid solution in the matrix, and the number of the second phase compound particles increases or decreases, thereby reducing the effect of suppressing dislocation movement. This indicates that the recrystallized grains are large as a result. In particular, the sample No. 3 is the sample No. 1,
In comparison with the case of (1), the coarsening of the recrystallized grains progressed remarkably, and this is the result that Sb, which has the effect of miniaturizing eutectic Si, and Mn, Cr, which has the effect of suppressing the coarsening of the recrystallized grains, were not added. It is suggested that In each of the samples, growth of recrystallized grains was not observed in the aging treatment.

【0024】[0024]

【発明の効果】以上に説明したように、本発明において
は、組成,押出し及び鍛造を特定条件下で組み合わせる
ことにより、T6処理での溶体化処理時に再結晶粒の粗
大化が抑制された再結晶組織となる。そのため、機械的
性質に異方性がなく、品質信頼性の高い高強度鍛造製品
が得られる。
As described above, in the present invention, by combining the composition, extrusion and forging under specific conditions, it is possible to prevent the recrystallized grains from being coarsened during the solution treatment in the T6 treatment. It becomes a crystal structure. Therefore, a high-strength forged product having high mechanical reliability and no anisotropy is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で製造したテスト用鍛造品FIG. 1 is a test forged product manufactured in Example 1.

【図2】 鍛造温度380℃で二次鍛造し溶体化処理し
たテスト用二次鍛造品のマクロ組織を示す写真
FIG. 2 is a photograph showing a macrostructure of a secondary forged product for test subjected to secondary forging and solution treatment at a forging temperature of 380 ° C.

【図3】 鍛造温度450℃で二次鍛造し溶体化処理し
たテスト用二次鍛造品のマクロ組織を示す写真
FIG. 3 is a photograph showing a macrostructure of a secondary forged product for test subjected to secondary forging and solution treatment at a forging temperature of 450 ° C.

【手続補正書】[Procedure amendment]

【提出日】平成10年4月7日[Submission date] April 7, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 604 C22F 1/00 604 630 630A 630D 630K 651 651B 682 682 683 683 691 691B 691C 694 694B ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identifications FI C22F 1/00 604 C22F 1/00 604 630 630A 630D 630K 651 651B 682 682 683 683 691 691B 691C 694 694B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si:8.0〜13.5重量%,Cu:
0.5〜4.0重量%,Mg:0.4〜1.5重量%,
Fe:0.1〜1.5重量%,Zn:0.5重量%以下
に規制したアルミニウム鋳塊を、480〜540℃×1
〜48時間の均質化処理を施した後、切断し、鍛造前の
加熱で300〜400℃に加熱し、150〜400℃に
加熱された金型で鍛造直後の素材表面温度が270〜3
70℃となるように鍛造し、次いで480〜540℃×
10分〜48時間の溶体化処理を施し、水冷後、150
〜220℃×4〜10時間の時効処理を施すことにより
溶体化処理時の再結晶粒の粗大化を抑制したアルミ鋳造
材を用いた鍛造製品の製造方法。
1. Si: 8.0 to 13.5% by weight, Cu:
0.5 to 4.0% by weight, Mg: 0.4 to 1.5% by weight,
An aluminum ingot regulated to Fe: 0.1 to 1.5% by weight and Zn: 0.5% by weight or less was subjected to 480 to 540 ° C × 1.
After subjected to homogenization treatment for ~ 48 hours, cut, heated to 300 to 400 ° C by heating before forging, and the material surface temperature immediately after forging in the mold heated to 150 to 400 ° C is 270 to 3
Forged to 70 ° C, then 480-540 ° C
A solution treatment for 10 minutes to 48 hours is performed, and after cooling with water, 150 minutes.
A method for producing a forged product using an aluminum cast material in which aging treatment at −220 ° C. × 4 to 10 hours is performed to suppress coarsening of recrystallized grains during solution treatment.
【請求項2】 Si:8.0〜13.5重量%,Cu:
0.5〜4.0重量%,Mg:0.4〜1.5重量%,
Fe:0.1〜1.5重量%,Zn:0.5重量%以下
に規制したアルミニウム鋳塊を、480〜540℃×1
〜48時間の均質化処理を施した後、切断し、鍛造前の
加熱で300〜400℃に加熱し、150〜400℃に
加熱された金型で鍛造直後の素材表面温度が270〜3
70℃となるように一次鍛造し、一次鍛造品を鍛造前の
加熱で300〜400℃に再加熱し、150〜400℃
に加熱された金型で鍛造直後の素材表面温度が270〜
370℃となるように二次鍛造し、次いで480〜54
0℃×10分〜48時間の溶体化処理を施し、水冷後、
150〜220℃×4〜10時間の時効処理を施すこと
により溶体化処理時の再結晶粒の粗大化を抑制したアル
ミ鋳造材を用いた鍛造製品の製造方法。
2. Si: 8.0 to 13.5% by weight, Cu:
0.5 to 4.0% by weight, Mg: 0.4 to 1.5% by weight,
An aluminum ingot regulated to Fe: 0.1 to 1.5% by weight and Zn: 0.5% by weight or less was subjected to 480 to 540 ° C × 1.
After subjected to homogenization treatment for ~ 48 hours, cut, heated to 300 to 400 ° C by heating before forging, and the material surface temperature immediately after forging in the mold heated to 150 to 400 ° C is 270 to 3
Primary forging to 70 ° C, reheating the primary forged product to 300 to 400 ° C by heating before forging, 150 to 400 ° C
The surface temperature of the material immediately after forging with the mold heated to
Secondary forging to 370 ° C, then 480-54
A solution treatment of 0 ° C. × 10 minutes to 48 hours is performed, and after cooling with water,
A method for producing a forged product using an aluminum casting material in which aging treatment at 150 to 220 ° C. for 4 to 10 hours is performed to suppress coarsening of recrystallized grains during solution treatment.
【請求項3】 更にMn:0.1〜1.5重量%,C
r:0.04〜0.3重量%,Ti:0.005〜0.
2重量%,B:0.0001〜0.02重量%の1種又
は2種以上を含むアルミニウム合金を使用する請求項1
又は2記載の溶体化処理時の再結晶粒の粗大化を抑制し
たアルミ鋳造材を用いた鍛造製品の製造方法。
3. Mn: 0.1-1.5% by weight, C
r: 0.04 to 0.3% by weight, Ti: 0.005 to 0.
2. An aluminum alloy containing one or more of 2% by weight and B: 0.0001 to 0.02% by weight.
Or a method for producing a forged product using an aluminum casting material in which coarsening of recrystallized grains during the solution treatment according to 2 is suppressed.
【請求項4】 更にNi:0.5〜2.0重量%,S
b:0.05〜2.0重量%,Sr:0.005〜0.
05重量%の1種又は2種以上を含むアルミニウム合金
を使用する請求項1〜3の何れかに記載の溶体化処理時
の再結晶粒の粗大化を抑制したアルミ鋳造材を用いた鍛
造製品の製造方法。
4. Ni: 0.5 to 2.0% by weight, S
b: 0.05 to 2.0% by weight, Sr: 0.005 to 0.
4. A forged product using an aluminum casting material in which recrystallization grains are suppressed from coarsening during solution treatment according to any one of claims 1 to 3, wherein an aluminum alloy containing at least one of 05% by weight is used. Manufacturing method.
JP8977598A 1998-04-02 1998-04-02 Production of forged product using aluminum casting material Pending JPH11286758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8977598A JPH11286758A (en) 1998-04-02 1998-04-02 Production of forged product using aluminum casting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8977598A JPH11286758A (en) 1998-04-02 1998-04-02 Production of forged product using aluminum casting material

Publications (1)

Publication Number Publication Date
JPH11286758A true JPH11286758A (en) 1999-10-19

Family

ID=13980063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8977598A Pending JPH11286758A (en) 1998-04-02 1998-04-02 Production of forged product using aluminum casting material

Country Status (1)

Country Link
JP (1) JPH11286758A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070666A (en) * 2005-09-05 2007-03-22 Showa Denko Kk Aluminum alloy bar, aluminum alloy blank for forging, method for manufacturing aluminum alloy bar, method for manufacturing aluminum alloy bar for forging, method for manufacturing aluminum alloy blank for forging, manufacturing line for aluminum alloy bar for forging, and cold forged product
CN100334242C (en) * 2005-05-20 2007-08-29 东北轻合金有限责任公司 Manufacturing method of aluminium alloy piston
EP1871555A2 (en) * 2005-03-22 2008-01-02 Contech, LLC Aluminum alloy
JP2011137233A (en) * 2011-01-07 2011-07-14 Showa Denko Kk Method for producing aluminum alloy bar
CN102363259A (en) * 2011-09-22 2012-02-29 哈尔滨哈飞工业有限责任公司 Molding method for casting and forging structure piece of wheelchair frame
CN103184375A (en) * 2013-03-01 2013-07-03 重庆奥博铝材制造有限公司 Faucet and manufacturing process thereof
CN110312811A (en) * 2017-02-17 2019-10-08 环宇先锋金属有限公司 High-strength aluminum alloy and high-strength aluminum alloy casting
CN112048649A (en) * 2020-09-18 2020-12-08 江西寰球新材料科技有限公司 Aluminum alloy, preparation method thereof and automobile casting

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1871555A2 (en) * 2005-03-22 2008-01-02 Contech, LLC Aluminum alloy
EP1871555A4 (en) * 2005-03-22 2010-08-18 Contech Llc Aluminum alloy
CN100334242C (en) * 2005-05-20 2007-08-29 东北轻合金有限责任公司 Manufacturing method of aluminium alloy piston
JP2007070666A (en) * 2005-09-05 2007-03-22 Showa Denko Kk Aluminum alloy bar, aluminum alloy blank for forging, method for manufacturing aluminum alloy bar, method for manufacturing aluminum alloy bar for forging, method for manufacturing aluminum alloy blank for forging, manufacturing line for aluminum alloy bar for forging, and cold forged product
JP2011137233A (en) * 2011-01-07 2011-07-14 Showa Denko Kk Method for producing aluminum alloy bar
CN102363259A (en) * 2011-09-22 2012-02-29 哈尔滨哈飞工业有限责任公司 Molding method for casting and forging structure piece of wheelchair frame
CN103184375A (en) * 2013-03-01 2013-07-03 重庆奥博铝材制造有限公司 Faucet and manufacturing process thereof
CN110312811A (en) * 2017-02-17 2019-10-08 环宇先锋金属有限公司 High-strength aluminum alloy and high-strength aluminum alloy casting
EP3569722A4 (en) * 2017-02-17 2020-05-20 Gam Co., Ltd. High-strength aluminum alloy and high-strength aluminum alloy casting
US11306374B2 (en) 2017-02-17 2022-04-19 Gam Co., Ltd. High-strength aluminum alloy and high- strength aluminum alloy casting
CN112048649A (en) * 2020-09-18 2020-12-08 江西寰球新材料科技有限公司 Aluminum alloy, preparation method thereof and automobile casting

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
JP2697400B2 (en) Aluminum alloy for forging
EP0587274A1 (en) Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness and product thereof
US5582659A (en) Aluminum alloy for forging, process for casting the same and process for heat treating the same
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
WO2005075692A1 (en) Aluminum alloy for producing high performance shaped castings
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JPH09249951A (en) Production of aluminum forged product having fine structure
CN108330360B (en) high-Zn-content high-strength-toughness extrusion deformation aluminum-lithium alloy and preparation method thereof
CN109136669B (en) Aluminum alloy forging and preparation method and application thereof
JPH11286759A (en) Production of forged product using aluminum extruded material
JPH11286758A (en) Production of forged product using aluminum casting material
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
JPH09249949A (en) Production of aluminum extruded material forged product
CN112626386B (en) High-strength corrosion-resistant Al-Mg-Si-Cu aluminum alloy and preparation method and application thereof
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
JPH07145440A (en) Aluminum alloy forging stock
CN111020321B (en) Al-Cu series casting alloy suitable for forging processing and preparation method thereof
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404