JP2016098412A - Method for producing aluminum alloy sheet - Google Patents

Method for producing aluminum alloy sheet Download PDF

Info

Publication number
JP2016098412A
JP2016098412A JP2014236885A JP2014236885A JP2016098412A JP 2016098412 A JP2016098412 A JP 2016098412A JP 2014236885 A JP2014236885 A JP 2014236885A JP 2014236885 A JP2014236885 A JP 2014236885A JP 2016098412 A JP2016098412 A JP 2016098412A
Authority
JP
Japan
Prior art keywords
ingot
aluminum alloy
hot rolling
crystal grain
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014236885A
Other languages
Japanese (ja)
Other versions
JP6581347B2 (en
Inventor
遼 蔵本
Ryo Kuramoto
遼 蔵本
晋也 安田
Shinya Yasuda
晋也 安田
日比野 旭
Akira Hibino
旭 日比野
貴司 久保
Takashi Kubo
貴司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2014236885A priority Critical patent/JP6581347B2/en
Publication of JP2016098412A publication Critical patent/JP2016098412A/en
Application granted granted Critical
Publication of JP6581347B2 publication Critical patent/JP6581347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an aluminum alloy sheet excellent in ridging mark resistance without providing the restrictions of the production method and further without increasing production costs.SOLUTION: The method for producing an aluminum alloy sheet is a method for producing Al-Mg-Si series or Al-Mg-Si-Cu series aluminum alloy sheet for an automobile panel, and the aluminum alloy sheet is produced by performing uniformization treatment, hot rolling and cold rolling using an ingot in which the average crystal grain size in the central part of the ingot is 150 μm or lower. The crystal grain size of the ingot 10 is measured, e.g., at the 5 points of measurement points 11 in the central part of the ingot with a low cooling velocity in general.SELECTED DRAWING: Figure 1

Description

本発明は、自動車用ボディシート、ボディパネルの如く各種自動車、船舶、航空機等の部材・部品として、建築材料若しくは構造材料として、又は各種機械器具、家電製品若しくはその部品等の素材として、成形加工及び塗装焼付を施して使用されるAl−Mg−Si系又はAl−Mg−Si−Cu系のアルミニウム合金板の製造方法に関するものである。   The present invention is a molding process as a member / part of various automobiles, ships, airplanes, etc., such as body sheets and body panels for automobiles, as a building material or structural material, or as a raw material for various machinery / equipment, home appliances or parts thereof. And an Al-Mg-Si-based or Al-Mg-Si-Cu-based aluminum alloy plate used for coating and baking.

従来、自動車用ボディシートとしては、主として冷延鋼板を使用していたが、最近では車体軽量化等の観点から、アルミニウム合金板を使用することが多くなっている。また、自動車用ボディシートはプレス成形又は高温高速成形を施して使用するところから、成形加工性が優れていることが要求される。   Conventionally, cold rolled steel sheets have been mainly used as body sheets for automobiles. Recently, however, aluminum alloy sheets have been increasingly used from the viewpoint of weight reduction of the vehicle body. In addition, since body sheets for automobiles are used after being subjected to press molding or high-temperature high-speed molding, they are required to have excellent moldability.

このような自動車用ボディシート向けとしては、時効性を有するAl−Mg−Si系合金、Al−Mg−Si−Cu系のアルミニウム合金板が主として使用されている。   For such body sheets for automobiles, Al-Mg-Si based alloys and Al-Mg-Si-Cu based aluminum alloy plates having aging properties are mainly used.

近年、生産性とデザインの意匠性などから苛酷な成形加工の必要な成形品の形状が多くなっていることから、苛酷な成形部位での肌荒れの発生及びリジングマークの発生を抑制することが極めて困難であるという問題が生じている。リジングマークは、板の成形加工時に現れる圧延方向に沿う筋模様のことであり、構造体の大型化、形状の複雑化、又は薄肉化等、成形条件が厳しくなった場合に特に生じ易い。   In recent years, the shape of molded products that require severe molding due to productivity and design design has increased, so it is extremely difficult to suppress the occurrence of rough skin and ridging marks at severe molding sites. The problem is difficult. A ridging mark is a streak pattern along the rolling direction that appears during the forming process of a plate, and is particularly likely to occur when the forming conditions become severe, such as an increase in the size of the structure, a complicated shape, or a reduction in thickness.

このようなリジングマークの問題に対し、従来から、鋳塊を500℃以上の温度で均質化熱処理後に冷却して、又は室温に冷却後再加熱して、350〜450℃の比較的低温で熱間圧延を開始することにより、過剰Si型6000系アルミニウム合金板のリジングマークを防止することが公知である(特許文献1参照)。   Conventionally, the ingot is cooled after homogenization heat treatment at a temperature of 500 ° C. or higher, or reheated after cooling to room temperature, and heated at a relatively low temperature of 350 to 450 ° C. It is known to prevent ridging marks on the excess Si-type 6000 series aluminum alloy sheet by starting hot rolling (see Patent Document 1).

また、特許文献2、3のように6000系アルミニウム合金板の結晶方位を制御することでリジングマークを改善する方法も種々提案されている。   Also, various methods for improving the ridging mark by controlling the crystal orientation of the 6000 series aluminum alloy plate as in Patent Documents 2 and 3 have been proposed.

特開平08−232052号公報Japanese Patent Application Laid-Open No. 08-232052 特開2009−263781号公報JP 2009-263781 A 特開2010−242215号公報JP 2010-242215 A 特開2003−226926号公報JP 2003-226926 A

しかしながら、上記のような自動車用ボディシート向けのAl−Mg−Si系、Al−Mg−Si−Cu系合金板について従来の製造方法により得られた板では、最近の自動車用ボディシートで要求される耐リジングマーク性を十分に満足させることは困難であった。   However, the plate obtained by the conventional manufacturing method for the Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates for automobile body sheets as described above is required in recent automobile body sheets. It was difficult to sufficiently satisfy the ridging mark resistance.

すなわち、特許文献1に示されている方法では、熱間圧延の開始温度を350℃から450℃までの範囲としているため、熱間圧延中の粗大な結晶粒の形成はそれなりに抑制されるものの、未だその抑制効果が不充分であった。特に最近の自動車ボディシート材は、意匠性の観点からより過酷な成形加工が適用される場合が増えており、このような場合、リジングマークの発生を防止することは困難であった。   That is, in the method shown in Patent Document 1, since the hot rolling start temperature is in the range from 350 ° C. to 450 ° C., the formation of coarse crystal grains during hot rolling is moderately suppressed. However, the suppression effect was still insufficient. In particular, recent automobile body sheet materials are increasingly subjected to more severe molding from the viewpoint of design, and in such cases, it has been difficult to prevent the generation of ridging marks.

また、特許文献2、3に記載のように板の特定の結晶方位を制御する方法では、耐リジングマーク性の向上に一定の効果はあるものの、最近の耐リジングマーク性向上の強い要求に対しては、その効果が未だ不充分であった。また、これらの結晶方位の制御は基本的に、結晶方位をランダム化させ、リジングマーク発生の原因となる圧延方向に並んだ結晶方位が近い結晶粒の集まりを解消させるものである。このような結晶方位の制御は、近年の研究で明らかになりつつある、特定の結晶方位を強く発達させることで特性を向上させる手法を用いることが困難となる。例えば、特許文献4ではキューブ方位を発達させることで自動車ボディシート材に重要な特性である曲げ加工性を向上させることが提案されているが、耐リジングマーク性向上については、検討されていない。   In addition, the method of controlling the specific crystal orientation of the plate as described in Patent Documents 2 and 3 has a certain effect in improving the ridging mark resistance, but in response to the recent strong demand for improving the ridging mark resistance. The effect was still inadequate. In addition, the control of these crystal orientations basically randomizes the crystal orientations and eliminates the collection of crystal grains having similar crystal orientations aligned in the rolling direction that cause ridging marks. Such control of crystal orientation makes it difficult to use a technique for improving characteristics by strongly developing a specific crystal orientation, which is becoming apparent in recent studies. For example, Patent Document 4 proposes improving the bending workability, which is an important characteristic for an automobile body sheet material, by developing a cube orientation, but no improvement in ridging mark resistance has been studied.

以上のように、従来の方法では、近年の耐リジングマーク性向上の強い要求に対し、十分な効果を得ることはできず、また、耐リジングマーク性を向上させるために、曲げ加工性のような重要な特性を犠牲にする工程を選択する場合があった。   As described above, the conventional method cannot obtain a sufficient effect against the recent strong demand for improving the ridging mark resistance, and in order to improve the ridging mark resistance, In some cases, a process is selected that sacrifices important characteristics.

本発明は以上の事情を鑑み、これまで耐リジングマーク性向上に対して検討の行われていなかった、鋳塊組織の影響を明らかにすることで、製造方法の制約を設けず、また、製造コストを上げることなく、耐リジングマーク性に優れたアルミニウム合金板の製造方法を提供することを目的とする。   In view of the above circumstances, the present invention has not been studied for improving the ridging mark resistance so far, by clarifying the influence of the ingot structure, without restricting the manufacturing method, and manufacturing It aims at providing the manufacturing method of the aluminum alloy plate excellent in ridging mark resistance, without raising cost.

上記目的を達成するため、本発明に係るアルミニウム合金板の製造方法は、
自動車パネル用のAl−Mg−Si系又はAl−Mg−Si−Cu系のアルミニウム合金板の製造方法であって、
鋳塊中心部の平均結晶粒径が150μm以下である鋳塊を用いて、均質化処理、熱間圧延、及び冷間圧延を施して製造する、
ことを特徴とする。
In order to achieve the above object, a method for producing an aluminum alloy plate according to the present invention comprises:
A method for producing an Al-Mg-Si-based or Al-Mg-Si-Cu-based aluminum alloy plate for automobile panels,
Using an ingot having an average crystal grain size of 150 μm or less at the center of the ingot, it is manufactured by homogenization, hot rolling, and cold rolling.
It is characterized by that.

前記熱間圧延の開始温度を400℃以下とするとともに、前記熱間圧延の終了温度を300℃以下とし、
得られた熱間圧延板に対し、焼鈍を行なうことなく所定の板厚まで冷間圧延を施す、
こととしてもよい。
The start temperature of the hot rolling is 400 ° C. or less, and the end temperature of the hot rolling is 300 ° C. or less,
The obtained hot-rolled sheet is cold-rolled to a predetermined thickness without being annealed.
It is good as well.

前記アルミニウム合金板は、mass%でMg:0.20〜1.5%、Si:0.30〜2.0%を含有し、かつMn:0.03〜0.60%、Cr:0.01〜0.40%、Zr:0.01〜0.40%、Fe:0.03〜1.0%、Ti:0.005〜0.30%、Zn:0.03〜2.5%のうちから選ばれた1種又は2種以上を含有し、さらにCuが1.5%以下に規制され、残部がAl及び不可避的不純物よりなる、
こととしてもよい。
The aluminum alloy plate contains mass: Mg: 0.20 to 1.5%, Si: 0.30 to 2.0%, Mn: 0.03 to 0.60%, Cr: 0.00. 01-0.40%, Zr: 0.01-0.40%, Fe: 0.03-1.0%, Ti: 0.005-0.30%, Zn: 0.03-2.5% 1 or 2 or more types selected from among them, further Cu is regulated to 1.5% or less, the balance consists of Al and inevitable impurities,
It is good as well.

本発明は、アルミニウム合金板の製造方法において、微細な結晶組織を有する鋳塊を使用して適切な条件で熱間圧延を施すことにより、中間焼鈍処理工程を施すか否かにかかわらずアルミニウム合金板を製造し、かつ、当該アルミニウム合金をパネル成形する際に、パネル成形時に発生するリジングマークを再現性よく抑制するものである。これにより、複雑な形状のパネル成形品、特に自動車外板に使用されるAl−Mg−Si、Al−Mg−Si−Cu系合金において、従来のものに対し、製造方法の制約を設けず、また、製造コストを上げることなく、耐リジングマーク性に優れたアルミニウム合金板の製造方法を提供し、外観を良好なものとすることができる。   The present invention relates to a method for producing an aluminum alloy plate, in which an aluminum alloy is subjected to hot rolling under appropriate conditions using an ingot having a fine crystal structure, regardless of whether an intermediate annealing treatment step is performed or not. When producing a plate and panel-molding the aluminum alloy, ridging marks generated during panel molding are suppressed with good reproducibility. Thereby, in the panel-shaped article of complicated shape, in particular Al-Mg-Si used for an automobile outer plate, Al-Mg-Si-Cu-based alloy, with no restrictions on the manufacturing method, compared to the conventional one, Moreover, the manufacturing method of the aluminum alloy plate excellent in ridging mark resistance can be provided without increasing the manufacturing cost, and the appearance can be improved.

鋳塊と結晶粒径の測定位置とを模式的に示す断面図である。It is sectional drawing which shows typically an ingot and the measurement position of a crystal grain diameter. 鋳型と超音波振動印加用のホーンの挿入位置とを模式的に示す斜視図である。It is a perspective view which shows typically a casting_mold | template and the insertion position of the horn for ultrasonic vibration application.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

上記目的を達成すべく、本発明者等が種々実験、検討を重ねた結果、常法により得られる鋳塊に比べて微細な結晶組織を有する鋳塊を得ることができ、この鋳塊を使用し、均質化処理を施し、熱間圧延においてはできる限り再結晶を抑制し、続いて冷間圧延、溶体化処理を施すことにより、従来以上に耐リジングマーク性に優れたアルミニウム合金板が得られることを見出し、本発明をなすに至ったのである。   In order to achieve the above object, the inventors have conducted various experiments and studies, and as a result, an ingot having a fine crystal structure can be obtained as compared with an ingot obtained by a conventional method. Then, homogenization treatment is performed, and recrystallization is suppressed as much as possible in hot rolling, followed by cold rolling and solution treatment, thereby obtaining an aluminum alloy plate having better ridging mark resistance than before. As a result, the present invention has been made.

すなわち、自動車パネル用Al−Mg−Si系又はAl−Mg−Si−Cu系のアルミニウム合金板であって、鋳塊中心部の平均結晶粒径が150μm以下である鋳塊を用いて、均質化処理、熱間圧延、及び冷間圧延を施して製造することを特徴とするものである。   That is, using an ingot having an average crystal grain size of 150 μm or less at the center of the ingot, which is an Al—Mg—Si based or Al—Mg—Si—Cu based aluminum alloy plate for automobile panels It is characterized by being manufactured by performing treatment, hot rolling, and cold rolling.

(アルミニウム合金板の化学成分組成)
本発明のアルミニウム合金板は、基本的にはAl−Mg−Si系合金又はAl−Mg−Si−Cu系合金からなるものであれば良く、その具体的な成分組成は特に制約されるものではないが、通常は、mass%でMg:0.20〜1.5%、Si:0.30〜2.0%を含有し、かつMn:0.03〜0.60%、Cr:0.01〜0.40%、Zr:0.01〜0.40%、Fe:0.03〜1.0%、Ti:0.005〜0.30%、Zn:0.03〜2.5%のうちから選ばれた1種又は2種以上を含有し、さらにCuが1.5%以下に規制され、残部がAl及び不可避的不純物よりなる成分組成とすることが好ましい。
(Chemical composition of aluminum alloy sheet)
The aluminum alloy plate of the present invention may basically be made of an Al-Mg-Si alloy or an Al-Mg-Si-Cu alloy, and its specific composition is not particularly limited. Usually, however, it contains Mg: 0.20 to 1.5%, Si: 0.30 to 2.0% in mass%, and Mn: 0.03 to 0.60%, Cr: 0.00. 01-0.40%, Zr: 0.01-0.40%, Fe: 0.03-1.0%, Ti: 0.005-0.30%, Zn: 0.03-2.5% It is preferable to have a component composition that contains one or more selected from among them, Cu is further regulated to 1.5% or less, and the balance is composed of Al and inevitable impurities.

次に、各元素の組成の好ましい範囲について、その限定理由を説明する。   Next, the reason for limitation of the preferable range of the composition of each element will be described.

Mg:
Mgは本発明で対象としている系の合金で基本となる合金元素であって、Siと共同して強度向上に寄与する。Mg量が0.20%未満では塗装焼付時に析出硬化によって強度向上に寄与するG.P.ゾーンの生成量が少なくなるため、充分な強度向上が得られず、一方1.5%を越えれば、粗大なMg−Si系の金属間化合物が生成され、キューブ方位密度を高めるために不利となり、結果、プレス成形性、特に曲げ加工性が低下する。したがって、Mg量は0.20〜1.5%の範囲内とした。なお最終板のプレス成形性、特に曲げ加工性をより良好にするためには、Mg量は0.30〜0.90%の範囲内が好ましい。
Mg:
Mg is an alloy element which is a basic alloy of the system targeted by the present invention, and contributes to strength improvement in cooperation with Si. If the amount of Mg is less than 0.20%, G. contributes to strength improvement by precipitation hardening during baking. P. Since the amount of zone formation decreases, sufficient strength improvement cannot be obtained. On the other hand, if it exceeds 1.5%, coarse Mg-Si based intermetallic compounds are generated, which is disadvantageous for increasing cube orientation density. As a result, press formability, particularly bending workability, decreases. Therefore, the Mg content is set in the range of 0.20 to 1.5%. In order to improve the press formability of the final plate, particularly bending workability, the Mg content is preferably in the range of 0.30 to 0.90%.

Si:
Siは本発明の系の合金で基本となる合金元素であって、Mgと共同して強度向上に寄与する。またSiは、鋳造時に金属Siの晶出物(以下、Si粒子)として生成されるため、加工を加えた際に、そのSi粒子の周囲が加工によって変形されて、溶体化処理の際に再結晶核の生成サイトとなるため、Siを添加することは再結晶組織の微細化にも寄与する。Si量が0.30%未満では上記の効果が充分に得られず、一方2.0%を越えれば粗大なSi粒子又は粗大なMg−Si系の金属間化合物が生じてキューブ方位密度を高めるために不利となり、結果、プレス成形性、特に曲げ加工性の低下を招く。したがって、Si量は0.30〜2.0%の範囲内とした。なおプレス成形性と曲げ加工性とのより良好なバランスを得るためには、Si量は0.50〜1.3%の範囲内が好ましい。
Si:
Si is an alloy element that is a basic alloy of the system of the present invention, and contributes to strength improvement in cooperation with Mg. In addition, since Si is produced as a metal Si crystallized product (hereinafter referred to as Si particles) during casting, when processing is performed, the periphery of the Si particles is deformed by processing and is regenerated during solution treatment. Since it becomes a generation site of crystal nuclei, addition of Si contributes to refining of the recrystallized structure. If the amount of Si is less than 0.30%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, coarse Si particles or coarse Mg-Si-based intermetallic compounds are generated to increase the cube orientation density. As a result, the press formability, particularly the bending workability, is reduced. Therefore, the Si amount is set in the range of 0.30 to 2.0%. In order to obtain a better balance between press formability and bending workability, the Si content is preferably in the range of 0.50 to 1.3%.

Mn、Cr、Zr、Fe、Zn:
これらの元素は、強度向上、結晶粒微細化、時効性(焼付硬化性)の向上及び/又は表面処理性の向上に有効であり、いずれか1種又は2種以上を添加する。これらのうちMn、Cr、Zrは強度向上と結晶粒の微細化及び組織の安定化に効果がある元素であるが、Mnの含有量が0.03%未満、Crの含有量が0.01%未満、又はZrの含有量が0.01%未満では、上記の効果が充分に得られない。一方、Mnの含有量が0.60%を越えるか、又はCr、Zrの含有量がそれぞれ0.40%を越えれば、上記の効果が飽和するばかりでなく、多数の金属間化合物が生成されて成形性、特にヘム曲げ性に悪影響を及ぼすおそれがある。したがってMnは0.03〜0.60%の範囲内、Cr、Zrはそれぞれ0.01〜0.40%の範囲内とした。またFeも強度向上と結晶粒微細化に有効な元素であるが、その含有量が0.03%未満では充分な効果が得られず、一方1.0%を越えれば、多数の金属間化合物が生成されて、プレス成形性、曲げ加工性が低下するおそれがある。したがってFe量は0.03〜1.0%の範囲内とした。なお、曲げ加工性の低下を最小限に抑えたい場合、Fe量は0.03〜0.50%の範囲が好ましい。またZnは時効性向上を通じて強度向上に寄与するとともに表面処理性の向上に有効な元素であるが、Znの添加量が0.03%未満では上記の効果が充分に得られず、一方2.5%を越えれば成形性が低下するため、Zn量は0.03〜2.5%の範囲内とした。
Mn, Cr, Zr, Fe, Zn:
These elements are effective in improving the strength, refining crystal grains, improving aging (bake hardenability) and / or improving surface treatment properties, and any one or more of them are added. Among these, Mn, Cr, and Zr are elements that are effective in improving the strength, refining crystal grains, and stabilizing the structure. However, the Mn content is less than 0.03% and the Cr content is 0.01%. If the Zr content is less than 0.01% or less than 0.01%, the above effects cannot be obtained sufficiently. On the other hand, if the Mn content exceeds 0.60% or the Cr and Zr contents exceed 0.40%, not only the above effects are saturated, but a large number of intermetallic compounds are produced. This may adversely affect moldability, especially hem bendability. Therefore, Mn is within the range of 0.03 to 0.60%, and Cr and Zr are within the range of 0.01 to 0.40%. Fe is also an element effective for strength improvement and crystal grain refinement, but if its content is less than 0.03%, a sufficient effect cannot be obtained, while if it exceeds 1.0%, many intermetallic compounds are obtained. May be produced, and press formability and bending workability may be reduced. Therefore, the amount of Fe is set in the range of 0.03 to 1.0%. In addition, when it is desired to minimize a decrease in bending workability, the Fe content is preferably in the range of 0.03 to 0.50%. Zn is an element that contributes to improvement of strength through improvement of aging and is effective for improvement of surface treatment. However, if the amount of Zn is less than 0.03%, the above effect cannot be obtained sufficiently. If the content exceeds 5%, the moldability deteriorates, so the Zn content is set in the range of 0.03 to 2.5%.

Ti:
Tiの添加は、鋳塊組織の微細化を通じて最終板の肌荒れ防止、耐リジングマーク性向上に効果があることから、本発明でも鋳塊組織の微細化のためにTiを添加するが、その含有量が0.005%未満では充分な効果が得られず、一方0.30%を越えればTi添加の効果が飽和するばかりでなく、粗大な晶出物が生じるおそれがある。したがって、Ti量は0.005〜0.30%の範囲内とした。また、Tiは単独で添加しても良いが、Tiとともに微量のBを添加することによって、鋳塊組織の微細化と安定化の効果が一層顕著となる。そこで本発明の場合も、Tiとともに500ppm以下のBを添加することは許容される。
Ti:
Since the addition of Ti is effective in preventing the rough surface of the final plate through the refinement of the ingot structure and improving the ridging mark resistance, the present invention also adds Ti for refinement of the ingot structure. If the amount is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.30%, not only the effect of adding Ti is saturated but also a coarse crystallized product may be formed. Therefore, the Ti content is within the range of 0.005 to 0.30%. Ti may be added alone, but by adding a small amount of B together with Ti, the effect of refining and stabilizing the ingot structure becomes more remarkable. Therefore, also in the present invention, it is allowed to add 500 ppm or less of B together with Ti.

Cu:
Cuは強度向上及び成形性向上のために添加されることがある元素であるが、その量が1.5%を越えると耐食性(耐粒界腐食性、耐糸錆性)が低下するため、Cuの含有量は1.5%以下に規制することとした。なお、より耐食性の改善を図りたい場合はCu量は1.0%以下が好ましく、さらに特に耐食性を重視する場合は、Cu量は0.05%以下に規制することが望ましい。
Cu:
Cu is an element that may be added to improve strength and formability, but if its amount exceeds 1.5%, corrosion resistance (intergranular corrosion resistance, yarn rust resistance) decreases. The Cu content was regulated to 1.5% or less. In addition, when it is desired to further improve the corrosion resistance, the Cu content is preferably 1.0% or less, and when the corrosion resistance is particularly important, it is desirable to regulate the Cu content to 0.05% or less.

以上の各元素のほかは、基本的にはAl及び不可避的不純物とすれば良い。その含有量は、本発明材料に影響を与えない範囲である、各々0.05%未満、合計で0.15%未満であれば良い。   In addition to the above elements, basically, Al and inevitable impurities may be used. The content may be a range that does not affect the material of the present invention, each less than 0.05%, and may be less than 0.15% in total.

なお上記のMn、Cr、Zr、Fe、Znの含有量範囲は、それぞれ積極的に添加する場合の範囲として示したものであり、いずれも下限値より少ない量を不純物として含有する場合を排除するものではない。特に0.03%未満のFeは、通常のアルミ地金を用いれば不可避的に含有されるのが通常である。   In addition, said Mn, Cr, Zr, Fe, Zn content range is shown as the range in the case of adding each positively, and excludes the case where all contain less than a lower limit as an impurity. It is not a thing. In particular, Fe of less than 0.03% is usually inevitably contained if a normal aluminum ingot is used.

さらに、本発明のアルミニウム合金板において特に耐リジングマーク性を確実かつ安定して向上させるためには、合金の成分組成を前述のように調整するばかりでなく、鋳塊の結晶粒径を適切に制御することが極めて重要である。   Further, in order to reliably and stably improve the ridging mark resistance particularly in the aluminum alloy plate of the present invention, not only the alloy composition is adjusted as described above, but also the crystal grain size of the ingot is appropriately set. It is extremely important to control.

リジングマークは、圧延板を成形加工したときに、圧延板表面に圧延方向と平行な方向に筋状に生じる微小な凹凸模様である。発明者らの研究によれば、このようなリジングマークは、熱間圧延及び冷間圧延工程において圧延方向に引き伸ばされた結晶粒が形成するバンド状組織(筋状組織)が起源であり、リジングマークの太さはこのバンド状組織の太さと相関があることが分かっている。すなわち、このバンド状組織を微細化させることがリジングマークの低減に有効である。発明者らがさらに検討を重ねた結果、バンド状組織を微細化させるためには、鋳塊の粒径を微細化させることが有効であることが明らかとなった。   The ridging mark is a fine uneven pattern generated in a streak pattern on the surface of the rolled plate in a direction parallel to the rolling direction when the rolled plate is formed. According to the inventors' research, such ridging marks originate from a band-like structure (stripe structure) formed by crystal grains stretched in the rolling direction in the hot rolling and cold rolling processes. It is known that the thickness of the mark has a correlation with the thickness of the band-like structure. That is, it is effective for reducing the ridging marks to make the band-like structure finer. As a result of further studies by the inventors, it has become clear that it is effective to reduce the particle size of the ingot in order to refine the band-like structure.

すなわち、結晶粒径が微細な鋳塊を用いた場合、その後の熱間圧延、冷間圧延後の組織は鋳塊粒径を引きずった細いバンド状組織となり、成形後のリジングマークは細くなり、リジングマークとして視認されにくくなる。一方、結晶粒径が粗大な鋳塊を用いた場合、その後の熱間圧延、冷間圧延後の組織は太いバンド状組織となり、成形後のリジングマークは太く視認されやすくなる。発明者らの実験によれば、鋳塊粒径を150μm以下、好ましくは100μm以下、さらに好ましくは80μm以下とすることでリジングマークを防止できる。   That is, when an ingot having a fine crystal grain size is used, the structure after the subsequent hot rolling and cold rolling becomes a thin band-like structure that drags the ingot grain size, and the ridging mark after molding becomes thin, It becomes difficult to be visually recognized as a ridging mark. On the other hand, when an ingot having a large crystal grain size is used, the structure after subsequent hot rolling and cold rolling becomes a thick band-like structure, and the ridging mark after forming becomes thick and easily visible. According to the inventors' experiment, ridging marks can be prevented by setting the ingot particle size to 150 μm or less, preferably 100 μm or less, and more preferably 80 μm or less.

また、熱間圧延温度が400℃〜450℃を超える場合、熱間圧延時の再結晶組織が粗大になりやすく、鋳塊粒径よりも粗大なバンド状組織を形成することが知られている。しかしながら、発明者らの実験によれば、結晶粒径が微細な鋳塊を用いた場合、熱間圧延温度が400℃〜450℃よりも高い温度であっても熱間圧延中に形成するバンド状組織も微細になりやすく、耐リジングマーク性を向上させられることが判明した。また、400℃以下の温度で熱間圧延を行うことで、形成するバンド状組織をさらに微細にでき、耐リジングマーク性をより高められ、結果、過酷な成形加工が施される部位でも、リジングマークの発生を防止することが可能となる。発明者らの検討によれば、熱間圧延開始温度を400℃以下とするとともに、熱間圧延終了温度を300℃以下とすることで形成するバンド状組織を微細化できる。   Further, when the hot rolling temperature exceeds 400 ° C. to 450 ° C., it is known that the recrystallized structure at the time of hot rolling tends to be coarse and forms a band-like structure coarser than the ingot particle size. . However, according to experiments by the inventors, when an ingot having a fine crystal grain size is used, a band formed during hot rolling even when the hot rolling temperature is higher than 400 ° C to 450 ° C. It has been found that the texture is likely to become fine and the ridging mark resistance can be improved. In addition, by performing hot rolling at a temperature of 400 ° C. or lower, the band-like structure to be formed can be further refined, and the ridging mark resistance can be further improved. Generation of marks can be prevented. According to the study by the inventors, the band-like structure formed by setting the hot rolling start temperature to 400 ° C. or lower and the hot rolling end temperature to 300 ° C. or lower can be refined.

また、本発明以外の鋳塊、つまり鋳塊の結晶粒径が150μmを超える通常製造される鋳塊において、リジングマークを防止する場合、通常の結晶粒径を持つ鋳塊に対し、熱間圧延を実施した場合は、熱間圧延後、又はそれに続く冷間圧延後に中間焼鈍が行われる。これにより、バンド状組織の分解を促し、リジングマークを防止する。しかし、上記のように結晶粒径が微細な鋳塊を用いた場合には、この中間焼鈍工程を省略することができ、より低コストに製造することが可能となる。   In addition, in the ingots other than the present invention, that is, ingots having a crystal grain size of more than 150 μm that are normally manufactured, when preventing ridging marks, ingots having a normal crystal grain size are hot-rolled. Is carried out, the intermediate annealing is performed after hot rolling or subsequent cold rolling. This promotes the decomposition of the band-like tissue and prevents ridging marks. However, when an ingot having a fine crystal grain size is used as described above, this intermediate annealing step can be omitted, and it becomes possible to manufacture at a lower cost.

このように、耐リジングマーク性向上のために、鋳塊の結晶粒径を微細化することで、リジングマークの発生を防止することが可能となる。さらに、熱間圧延温度を適切に制御することで、過酷な成形条件でもリジングマークの発生を防止できるアルミニウム合金板をより低コストに製造することができる。   As described above, it is possible to prevent the generation of ridging marks by reducing the crystal grain size of the ingot in order to improve the ridging mark resistance. Furthermore, by appropriately controlling the hot rolling temperature, it is possible to produce an aluminum alloy plate that can prevent generation of ridging marks even under severe forming conditions at a lower cost.

次に、鋳塊とリジングマークの発生の関係について説明する。リジングマークは圧延方向に伸長した結晶粒に起因するため、そもそも圧延方向に結晶粒が伸長しない製造条件の場合にはリジングマークが発生しない。現実的に問題となるリジングマークの長さは10mmを超えるものである場合が多いことから、仮にリジングマークを5mm以上の長さを持つものと定義すると、鋳塊粒径をD(mm)、鋳塊板厚をT1(mm)、圧延後の製品板厚をT2(mm)としたとき、リジングマークの発生する可能性のある条件は、下記の式1により求められる。
5≦D×T1/T2 ・・・(式1)
Next, the relationship between the generation of ingots and ridging marks will be described. Since the ridging mark is caused by crystal grains extending in the rolling direction, the ridging mark does not occur in the manufacturing conditions in which the crystal grains do not extend in the rolling direction. Since the length of a ridging mark that is a practical problem often exceeds 10 mm, if the ridging mark is defined as having a length of 5 mm or more, the ingot particle size is D (mm), When the ingot plate thickness is T1 (mm) and the product plate thickness after rolling is T2 (mm), the conditions under which the ridging mark may be generated are obtained by the following formula 1.
5 ≦ D × T1 / T2 (Formula 1)

次に、鋳塊の結晶粒径の測定方法について説明する。   Next, a method for measuring the crystal grain size of the ingot will be described.

上述のように、耐リジングマーク性向上には、鋳塊全体の結晶粒径が150μm以下の微細であることが求められるが、リジングマークは鋳塊の最も結晶粒径の粗大な部位で強く発生すると考えられる。鋳塊は一般的に冷却速度の低い鋳塊中心部の結晶粒径が最も粗大になる。そこで、図1に示すように、結晶粒径の測定位置11は、例えば鋳塊10の幅方向を6等分する線と板厚方向を2等分する線の交点の5点とし、これらの部位から測定用のサンプルを数cm角状に切出し、鋳塊長さ方向−鋳塊幅方向断面に対して、機械研磨、バフ研磨、電解研磨を行う。研磨面において、走査電子顕微鏡に付属の後方散乱電子回折測定装置(SEM−EBSD)で測定することによって集合組織の方位情報を取得する。測定は2000μm×2000μm以上の領域で行い、測定ステップ間隔は結晶粒径の1/10程度としてやればよい。1視野で2000μm×2000μm以上の測定が困難な場合は、複数視野の合計領域が2000μm×2000μm以上となるように測定すればよい。   As described above, to improve the ridging mark resistance, it is required that the crystal grain size of the entire ingot is as fine as 150 μm or less. However, the ridging mark is strongly generated at the coarsest part of the ingot. It is thought that. Ingots generally have the largest crystal grain size at the center of the ingot where the cooling rate is low. Therefore, as shown in FIG. 1, the measurement position 11 of the crystal grain size is, for example, five points of intersections of a line that divides the width direction of the ingot 10 into 6 and a line that bisects the plate thickness direction. A sample for measurement is cut out from the part into a square of several centimeters, and mechanical polishing, buffing, and electrolytic polishing are performed on the ingot length direction-ingot width direction cross section. On the polished surface, texture orientation information is obtained by measuring with a backscattered electron diffraction measurement device (SEM-EBSD) attached to the scanning electron microscope. The measurement is performed in an area of 2000 μm × 2000 μm or more, and the measurement step interval may be about 1/10 of the crystal grain size. When it is difficult to measure 2000 μm × 2000 μm or more in one field of view, the measurement may be performed so that the total area of the plurality of fields of view becomes 2000 μm × 2000 μm or more.

得られた方位データから、EBSD解析ソフト(TSL社製の「OIM Analysis」)を使用して結晶粒径を測定する。このときミスオリエンテーションが5°以上の結晶境界線を結晶粒界とみなし、円相当として算出した直径を平均結晶粒径とする。このように図1に示す5点の平均結晶粒径のうち、最も大きい値を請求項1で規定する鋳塊中心部の平均結晶粒径とする。   From the obtained orientation data, the crystal grain size is measured using EBSD analysis software (“OIM Analysis” manufactured by TSL). At this time, a crystal boundary line having a misorientation of 5 ° or more is regarded as a crystal grain boundary, and a diameter calculated as a circle is defined as an average crystal grain size. Thus, among the five average crystal grain sizes shown in FIG. 1, the largest value is the average crystal grain size at the center of the ingot defined in claim 1.

次に、本発明の成形加工用アルミニウム合金板の製造方法について説明する。   Next, the manufacturing method of the aluminum alloy plate for shaping | molding processing of this invention is demonstrated.

(鋳造)
先ず前述のような成分組成の合金を常法に従って溶製する。鋳造方法については特に限定されるものではなく、鋳塊の結晶粒径が前述の規定を満足すればよい。そのための方法としては特に限定しないが、例えば以下のような超音波振動印加を用いたDC(Direct Chill)鋳造法が挙げられる。
(casting)
First, an alloy having the above component composition is melted in accordance with a conventional method. The casting method is not particularly limited as long as the crystal grain size of the ingot satisfies the above-mentioned rules. Although it does not specifically limit as a method for that, For example, the DC (Direct Chill) casting method using the following ultrasonic vibration application is mentioned.

超音波振動印加を用いた鋳塊の微細化は古くから知られており、溶湯に超音波振動を印加することで発生する超音波キャビテーションによる効果と考えられている。超音波振動を印加する場合は、700℃以上で溶融した溶湯に対して、窒化珪素製円柱型ホーンを挿入し、初晶αが形成し始める液相線温度から、固相線温度に到達するまでの間、連続的に超音波を印加することで微細化を図る。   Ingot refinement using ultrasonic vibration application has been known for a long time and is considered to be an effect of ultrasonic cavitation generated by applying ultrasonic vibration to a molten metal. When applying ultrasonic vibration, a cylindrical nitride horn made of silicon nitride is inserted into the molten metal melted at 700 ° C. or higher, and reaches the solidus temperature from the liquidus temperature at which the primary crystal α starts to form. Until then, miniaturization is achieved by applying ultrasonic waves continuously.

鋳塊の結晶粒径は鋳造時の冷却速度にも関係がある。超音波を印加しない場合の鋳造時の冷却速度は、最も冷却速度が遅く、結晶粒径が粗大になりやすい鋳塊中心部において、0.50℃/sec以上、好ましくは1.0℃/sec以上に制御する。0.50℃/sec未満であると、冷却速度が遅いために、鋳塊の結晶粒径が粗大化しやすく、150μm以下の微細な結晶粒を得ることが困難となる。   The crystal grain size of the ingot is also related to the cooling rate during casting. The cooling rate during casting without applying ultrasonic waves is 0.50 ° C./sec or more, preferably 1.0 ° C./sec at the center of the ingot where the cooling rate is the slowest and the crystal grain size tends to be coarse. Control above. If it is less than 0.50 ° C./sec, the cooling rate is slow, so that the crystal grain size of the ingot is likely to become coarse, and it becomes difficult to obtain fine crystal grains of 150 μm or less.

(均質化処理)
以上のようにして得られた結晶粒径が微細な鋳塊に対して、常法に従って均質化処理を行なって冷却する。均質化処理は、鋳塊の添加元素の偏析を除去したり、鋳塊のセル・結晶粒の境界に存在する粗大な第2相粒子、晶出物などを母相に固溶させたりすることに効果があり、製品板の性能のばらつきの低減、さらには熱間圧延工程、溶体化工程と有機的に結び付けて所要の結晶方位を得るにも重要な工程である。均質化処理の温度が480℃未満では、上述の効果が不充分であるため、通常は480℃以上の温度で均質化処理を行なうことが好ましく、また共晶融解を避けるために、590℃以下での処理が好ましい。
(Homogenization treatment)
The ingot having a fine crystal grain size obtained as described above is subjected to homogenization treatment according to a conventional method and cooled. Homogenization treatment removes segregation of added elements in the ingot, or dissolves coarse second-phase particles and crystallized materials present at the boundary between the ingot cell and crystal grains in the matrix. This is an important process for reducing the variation in the performance of the product plate and for obtaining the required crystal orientation by organically combining with the hot rolling process and the solution forming process. When the temperature of the homogenization treatment is less than 480 ° C., the above-mentioned effects are insufficient. Therefore, it is usually preferable to perform the homogenization treatment at a temperature of 480 ° C. or higher, and 590 ° C. or lower to avoid eutectic melting. Is preferable.

(熱間圧延)
熱間圧延は、通常の条件に従えばよく、例えば熱間圧延開始温度を580℃未満、250℃以上とし、熱間圧延終了温度を150℃以上として熱間圧延が可能な温度に制御すればよい。しかしながら、熱間圧延温度を高くしすぎると、熱間圧延中に再結晶がおき、粗大なバンド状組織が形成しやすくなる。そのため、特に耐リジングマーク性に優れる製品を得るためには、熱間圧延開始温度を400℃以下、250℃以上とし、熱間圧延終了温度を300℃以下、150℃以上とすることが好ましい。
(Hot rolling)
The hot rolling may be performed according to normal conditions. For example, if the hot rolling start temperature is less than 580 ° C. and 250 ° C. or higher, and the hot rolling end temperature is 150 ° C. or higher and controlled to a temperature at which hot rolling is possible. Good. However, if the hot rolling temperature is too high, recrystallization occurs during hot rolling, and a coarse band-like structure is easily formed. Therefore, in order to obtain a product having particularly excellent ridging mark resistance, it is preferable that the hot rolling start temperature is 400 ° C. or lower and 250 ° C. or higher, and the hot rolling end temperature is 300 ° C. or lower and 150 ° C. or higher.

(冷間圧延)
熱間圧延に続いては、冷間圧延を施す。この冷間圧延の圧延率は特に限定しないが、5.0〜85%程度が好ましい。冷間圧延を施すにあたり、冷間圧延のパス間に中間焼鈍を施す、つまり熱間圧延に続いて一次冷間圧延を施し、その後中間焼鈍、二次冷間圧延を実施してもよいが、製造コストの面から、省略することが好ましい。中間焼鈍を施す場合の中間焼鈍条件は特に限定されるものではないが、対象とする合金種に応じて、好ましい条件で実施すればよい。例えば、バッチ式焼鈍の場合、材料到達温度を300℃以上、450℃以下とし、その材料到達温度での保持時間を0.5時間以上、5時間以下とすることが好ましく、連続式焼鈍の場合は350℃以上、580℃以下で5分以内とすることが好ましい。また、中間焼鈍を施す場合の一次冷間圧延と二次冷間圧延の圧延率は、特に限定しないが、5.0〜85%程度が好ましい。
(Cold rolling)
Following hot rolling, cold rolling is performed. The rolling rate of this cold rolling is not particularly limited, but is preferably about 5.0 to 85%. In performing cold rolling, intermediate annealing is performed between passes of cold rolling, that is, hot rolling is followed by primary cold rolling, and then intermediate annealing and secondary cold rolling may be performed. It is preferable to omit from the viewpoint of manufacturing cost. The intermediate annealing conditions in the case of performing the intermediate annealing are not particularly limited, but may be performed under preferable conditions depending on the target alloy type. For example, in the case of batch annealing, the material arrival temperature is preferably 300 ° C. or more and 450 ° C. or less, and the holding time at the material arrival temperature is preferably 0.5 hours or more and 5 hours or less. Is preferably 350 ° C. or higher and 580 ° C. or lower and within 5 minutes. Moreover, the rolling rate of the primary cold rolling and the secondary cold rolling when performing the intermediate annealing is not particularly limited, but is preferably about 5.0 to 85%.

(溶体化処理)
冷間圧延の後に続いては、溶体化処理を行う。溶体化処理は、材料到達温度480℃以上590℃以下とし、保持時間は特に決まりはないが、生産性を考慮し5分以内とすることが好ましい。溶体化処理後の冷却については、100℃/分以上の冷却速度で150℃以下の温度域まで冷却することで、十分な成形性、焼付硬化性を得ることができる。
(Solution treatment)
Following the cold rolling, a solution treatment is performed. The solution treatment is performed at a material arrival temperature of 480 ° C. or higher and 590 ° C. or lower, and the holding time is not particularly limited, but is preferably within 5 minutes in consideration of productivity. About cooling after solution treatment, sufficient moldability and bake hardenability can be obtained by cooling to a temperature range of 150 ° C. or less at a cooling rate of 100 ° C./min or more.

なお、さらに良好な焼付け硬化性を得るためには、溶体化処理後に、直ちに50〜150℃の温度範囲で1時間以上保持する予備時効処理を行うのが好ましい。この予備時効処理は、結晶粒径に対しては本質的な影響は与えるものではなく、本発明において、予備時効処理を行うか否かは本質的な要件ではない。   In order to obtain better bake hardenability, it is preferable to perform a pre-aging treatment immediately after the solution treatment for 1 hour or more in a temperature range of 50 to 150 ° C. This preliminary aging treatment does not essentially affect the crystal grain size, and whether or not the preliminary aging treatment is performed is not an essential requirement in the present invention.

以下に本発明の実施例を比較例とともに記す。なお以下の実施例は、本発明の効果を説明するためのものであり、実施例記載のプロセス及び条件が本発明の技術的範囲を制限するものではない。   Examples of the present invention will be described below together with comparative examples. The following examples are for explaining the effects of the present invention, and the processes and conditions described in the examples do not limit the technical scope of the present invention.

表1に示す本発明成分組成範囲内の合金記号A〜Mの合金について、それぞれ常法に従って溶解した。表1において、“−”は無添加を表す。次に、図2に示すように、厚さ80mm及び図示例の150mm、幅300mmの上部が開放された鋳型20内へ700℃のアルミ溶湯を注湯し、降下速度50mm/分にて連続的にDC鋳造した。まず、鋳塊厚さの違いによる冷却速度の違いを確認するため、合金記号Bに熱電対を鋳塊中心部に挿入したまま鋳造し、板厚80mm及び150mmでの冷却速度を測定した。測定した冷却速度を表2に示す。   The alloys of alloy symbols A to M within the composition range of the present invention shown in Table 1 were dissolved in accordance with ordinary methods. In Table 1, “-” represents no addition. Next, as shown in FIG. 2, molten aluminum at 700 ° C. is poured into the mold 20 having an open top of 80 mm in thickness, 150 mm in the illustrated example, and 300 mm in width, and continuously at a descending speed of 50 mm / min. DC casted. First, in order to confirm the difference in the cooling rate due to the difference in the ingot thickness, the alloy symbol B was cast with the thermocouple inserted in the center of the ingot, and the cooling rates at the plate thickness of 80 mm and 150 mm were measured. The measured cooling rate is shown in Table 2.

次に、超音波振動を印加するものには、鋳造開始から5分後に直径40mmで長さ500mmの窒化珪素製円柱型ホーンを鋳型20内の挿入位置21に挿入し、超音波振動を印加した。ホーンの挿入位置21は鋳型の1/2厚さ及び1/4幅のラインが交差する中央以外の2カ所であり、ホーンの浸漬深さは100mmとした。ホーンの超音波周波数は20kHz、ホーン先端の振幅は20μm、出力は500Wとした。また、合金記号Aについては鋳塊の結晶粒径を制御するため、微細化効果のあるTi量を表3に記載の通り調整した。   Next, for those applying ultrasonic vibration, a silicon nitride cylindrical horn having a diameter of 40 mm and a length of 500 mm was inserted into the insertion position 21 in the mold 20 5 minutes after the start of casting, and ultrasonic vibration was applied. . The insertion positions 21 of the horn were two places other than the center where the ½ thickness and ¼ width lines of the mold intersect, and the immersion depth of the horn was 100 mm. The ultrasonic frequency of the horn was 20 kHz, the amplitude of the horn tip was 20 μm, and the output was 500 W. For alloy symbol A, the amount of Ti having a refinement effect was adjusted as shown in Table 3 in order to control the crystal grain size of the ingot.

また、超音波振動を印加せず、またホーンも挿入せずに鋳造した比較材も製造した。表3において、超音波鋳造したものを「○」、超音波鋳造をしなかったものを「−」とした。   In addition, a comparative material cast without applying ultrasonic vibration and without inserting a horn was also manufactured. In Table 3, what was ultrasonically cast was set to "(circle)", and what was not ultrasonically cast was set to "-".

Figure 2016098412
Figure 2016098412

Figure 2016098412
Figure 2016098412

得られた各鋳塊に対して、全面に各5mmの面削を行い、530℃×5時間の均質化処理を施した後、室温付近まで放冷した。表3に示す熱間圧延開始温度及び熱間圧延終了温度にて板厚4mmまで熱間圧延を施し、次いで冷間圧延を板厚1.0mmまで施した。溶体化処理は560℃で30秒保持する処理を行い、室温付近までファンにて強制空冷後、直ちに80℃、5時間の予備時効処理を施した。
また、製造プロセス番号23は、上記の熱間圧延終了後、冷間圧延を板厚2.0mmまで施し、大気炉にて材料到達温度400℃×2時間の中間焼鈍を施した後、冷間圧延を板厚1.0mmまで実施した。
The obtained ingots were each subjected to 5 mm chamfering on the entire surface, homogenized at 530 ° C. for 5 hours, and then allowed to cool to near room temperature. Hot rolling was performed to a sheet thickness of 4 mm at the hot rolling start temperature and hot rolling end temperature shown in Table 3, and then cold rolling was performed to a sheet thickness of 1.0 mm. The solution treatment was performed by holding at 560 ° C. for 30 seconds. After forced air cooling with a fan to near room temperature, a preliminary aging treatment was performed immediately at 80 ° C. for 5 hours.
In addition, after the above hot rolling, the manufacturing process number 23 is cold-rolled to a sheet thickness of 2.0 mm, subjected to an intermediate annealing at a material reaching temperature of 400 ° C. for 2 hours in an atmospheric furnace, and then cold-rolled. Rolling was carried out to a plate thickness of 1.0 mm.

Figure 2016098412
Figure 2016098412

以上のようにして得られた鋳塊及び板厚1mmの各板材について、次のように評価を行った。評価結果を表4に示す。   The ingot obtained as described above and each plate material having a plate thickness of 1 mm were evaluated as follows. The evaluation results are shown in Table 4.

Figure 2016098412
Figure 2016098412

(鋳塊の結晶粒径の評価)
得られた鋳塊について、前述した方法で結晶粒径を測定した。いずれの条件でも測定した5点のうち、板幅中心位置の結晶粒径が最も大きかった。結晶粒径の最も大きかった値を表3に示す。
(Evaluation of crystal grain size of ingot)
About the obtained ingot, the crystal grain diameter was measured by the method mentioned above. Of the five points measured under any condition, the crystal grain size at the center position of the plate width was the largest. Table 3 shows the largest value of the crystal grain size.

(リジングマークの評価)
前述のようにして得られた各板材について、従来から行われている簡便な評価手法を用いて耐リジングマーク性の評価を行った。具体的には、圧延方向に対し90°をなす方向に沿って、板幅方向中心部を含む平行部50mmのJIS5号試験片を採取し、5%及び15%ストレッチを行い、表面に圧延方向に沿って生じた筋模様(筋状凹凸模様)をリジングマークとして、その発生の有無を目視で判定した。5%ストレッチは通常のプレス成形を想定したひずみ量であり、15%ストレッチは特に成形の厳しい成形を想定したひずみ量である。本実施例では、通常プレスを想定した5%ストレッチでの耐リジングマーク性評価に主眼を置き評価基準とし、15%ストレッチにおいてはより効果の得られたものとの判断とした。○印はリジングマークなし、×印はリジングマーク発生を示す。
(Evaluation of ridging marks)
About each board | plate material obtained as mentioned above, the ridging mark resistance was evaluated using the conventional simple evaluation method. Specifically, along the direction forming 90 ° with respect to the rolling direction, a JIS No. 5 test piece having a parallel part of 50 mm including the central part in the plate width direction is sampled, stretched by 5% and 15%, and the rolling direction is applied to the surface. As a ridging mark, the presence or absence of the streak pattern (striated uneven pattern) generated along the line was visually determined. The 5% stretch is the amount of strain assuming normal press forming, and the 15% stretch is the amount of strain assuming particularly severe forming. In this example, the evaluation criteria were focused on ridging mark resistance evaluation with 5% stretch assuming a normal press, and it was determined that more effective was obtained with 15% stretch. A circle indicates no ridging mark, and a cross indicates that a ridging mark is generated.

さらにまた、前述のようにして得られた各板材について、溶体化処理を行った日から7日後において、圧延方向と平行な方向にJIS5号試験片を切り出し、引張試験により0.2%耐力(ASYS)と伸び(ASEL)を評価した。また、塗装焼付けを想定し、それぞれ2%ストレッチ後、オイルバスを用いて塗装焼付け処理時の加熱条件と同等の170℃×20分の熱処理を施した0.2%耐力値(BHYS)も測定した。
本明細書では、成形性及び強度の判断基準として、自動車ボディシート材として要求される基準を元に、ASYSが90MPa以上、ASELが25%以上、BHYSが160MPa以上を特に好ましい範囲とする。
Furthermore, for each plate obtained as described above, 7 days after the solution treatment, a JIS No. 5 test piece was cut out in a direction parallel to the rolling direction, and 0.2% proof stress ( ASYS) and elongation (ASEL) were evaluated. Assuming paint baking, after measuring 2% stretch, 0.2% proof stress (BHYS) was measured using an oil bath and heat-treated at 170 ° C for 20 minutes, equivalent to the heating conditions during paint baking. did.
In this specification, as criteria for determining formability and strength, ASYS is 90 MPa or more, ASEL is 25% or more, and BHYS is 160 MPa or more, based on standards required for automobile body sheet materials.

製造プロセス番号1〜7は、いずれも鋳塊の結晶粒径が本発明の範囲内である。また、製造プロセス番号1〜7は、合金の成分組成、及び製造プロセスのうち熱間圧延温度が、それぞれ上述の好ましい範囲内である。これらは、鋳塊の結晶粒径が微細で、熱間圧延温度が低いため、形成するバンド状組織が微細であり、過酷な成形を模擬した15%ストレッチの条件でもリジングマークが発生しなかった。   In any of production process numbers 1 to 7, the crystal grain size of the ingot is within the scope of the present invention. Moreover, as for the manufacturing process numbers 1-7, the hot rolling temperature among the component composition of an alloy and a manufacturing process is in the above-mentioned preferable range, respectively. Since the crystal grain size of the ingot is fine and the hot rolling temperature is low, the band-like structure to be formed is fine, and no ridging marks are generated even under the condition of 15% stretch simulating severe forming. .

製造プロセス番号8〜11は、いずれも鋳塊の結晶粒径が本発明の範囲内である。また、製造プロセス番号8〜11は、合金の成分組成は上述の好ましい範囲内であるが、製造プロセスのうち熱間圧延温度が上述の好ましい範囲から外れている。これらは、鋳塊の結晶粒径が微細なため、形成するバンド状組織が通常よりも微細であり、通常のプレス成形を模擬した5%ストレッチではリジングマークが発生しなかったが、15%ストレッチではリジングマークが発生した。   In any of the production process numbers 8 to 11, the crystal grain size of the ingot is within the scope of the present invention. In addition, in the manufacturing process numbers 8 to 11, the component composition of the alloy is within the above-mentioned preferable range, but the hot rolling temperature is out of the above-mentioned preferable range in the manufacturing process. Since the ingot crystal grain size is fine, the band-like structure to be formed is finer than usual, and ridging marks did not occur in 5% stretch simulating ordinary press molding, but 15% stretch Then a ridging mark occurred.

製造プロセス番号12〜16は、いずれも鋳塊の結晶粒径が本発明の範囲内である。また、製造プロセス番号12〜16は、合金の成分組成が上述の好ましい範囲内であり、鋳塊厚さを80mmとしたものである。これらは表で示したように、鋳塊中心部の冷却速度が速いため、超音波鋳造を行った場合も、行わなかった場合も鋳塊の結晶粒径が本発明の規定を満たしていた。これらのうち、12、13、15は熱間圧延温度が上述の好ましい範囲内にあるため、過酷な成形を模擬した15%ストレッチの条件でもリジングマークが発生しなかった。また、14、16は熱間圧延温度が上述の好ましい範囲から外れており、通常のプレス成形を模擬した5%ストレッチではリジングマークが発生しなかったが、15%ストレッチではリジングマークが発生した。   In any of the manufacturing process numbers 12 to 16, the crystal grain size of the ingot is within the scope of the present invention. In addition, in the production process numbers 12 to 16, the alloy component composition is within the above-described preferable range, and the ingot thickness is 80 mm. As shown in the table, since the cooling rate of the center part of the ingot is high, the crystal grain size of the ingot satisfies the provisions of the present invention both when ultrasonic casting is performed and when it is not performed. Among these, since 12, 13 and 15 have a hot rolling temperature within the above-mentioned preferable range, no ridging marks were generated even under conditions of 15% stretch simulating severe forming. 14 and 16, the hot rolling temperature was out of the above-mentioned preferable range, and no ridging mark was generated in 5% stretch simulating normal press forming, but ridging mark was generated in 15% stretch.

製造プロセス番号17〜22は、いずれも超音波鋳造を行わなかったため、鋳塊の結晶粒径が本発明の規定を満たさなかった。なお、製造プロセス番号17〜22の合金の成分組成は本発明で規定する範囲内である。これらは、熱間圧延の温度によらず粗大なバンド状組織が形成した結果、5%ストレッチでもリジングマークが発生した。   Production process numbers 17 to 22 did not perform ultrasonic casting, so the crystal grain size of the ingot did not satisfy the provisions of the present invention. In addition, the component composition of the alloy of manufacturing process numbers 17-22 is in the range prescribed | regulated by this invention. As a result of forming a coarse band-like structure regardless of the hot rolling temperature, ridging marks were generated even with 5% stretch.

製造プロセス番号23は製造プロセス番号5と同じ鋳塊を用いており、熱間圧延後に中間焼鈍を施したものである。中間焼鈍を行わない5と同じく、15%ストレッチでもリジングマークは発生せず、機械的性質にも問題ない。このように、本発明は中間焼鈍を実施せず、製造コストを低減した場合でも、中間焼鈍を実施した場合と同等の特性を得ることができる。   The production process number 23 uses the same ingot as the production process number 5 and is subjected to intermediate annealing after hot rolling. As in the case of 5 without intermediate annealing, ridging marks are not generated even with 15% stretch, and there is no problem in mechanical properties. As described above, the present invention can obtain the same characteristics as the case where the intermediate annealing is performed even if the manufacturing cost is reduced without performing the intermediate annealing.

製造プロセス番号24〜30は、いずれも鋳塊の結晶粒径が本発明の範囲内である。また、製造プロセス番号24〜30は、製造プロセスのうち熱間圧延温度が上述の好ましい範囲内であるが、合金の成分組成が上述の好ましい範囲から外れている。これらは、15%ストレッチでもリジングマークは発生しなかったが、伸び等の機械的特性がやや低い結果となった。   In any of the production process numbers 24 to 30, the crystal grain size of the ingot is within the scope of the present invention. In addition, in the manufacturing process numbers 24 to 30, the hot rolling temperature in the manufacturing process is within the above-described preferable range, but the alloy component composition is out of the above-described preferable range. These did not generate ridging marks even when stretched 15%, but mechanical properties such as elongation were somewhat low.

10 鋳塊
11 測定位置
20 鋳型
21 挿入位置
10 Ingot 11 Measurement position 20 Mold 21 Insertion position

Claims (3)

自動車パネル用のAl−Mg−Si系又はAl−Mg−Si−Cu系のアルミニウム合金板の製造方法であって、
鋳塊中心部の平均結晶粒径が150μm以下である鋳塊を用いて、均質化処理、熱間圧延、及び冷間圧延を施して製造する、
ことを特徴とするアルミニウム合金板の製造方法。
A method for producing an Al-Mg-Si-based or Al-Mg-Si-Cu-based aluminum alloy plate for automobile panels,
Using an ingot having an average crystal grain size of 150 μm or less at the center of the ingot, it is manufactured by homogenization, hot rolling, and cold rolling.
A method for producing an aluminum alloy plate characterized by the above.
前記熱間圧延の開始温度を400℃以下とするとともに、前記熱間圧延の終了温度を300℃以下とし、
得られた熱間圧延板に対し、焼鈍を行なうことなく所定の板厚まで冷間圧延を施す、
ことを特徴とする請求項1に記載のアルミニウム合金板の製造方法。
The start temperature of the hot rolling is 400 ° C. or less, and the end temperature of the hot rolling is 300 ° C. or less,
The obtained hot-rolled sheet is cold-rolled to a predetermined thickness without being annealed.
The method for producing an aluminum alloy plate according to claim 1.
前記アルミニウム合金板は、mass%でMg:0.20〜1.5%、Si:0.30〜2.0%を含有し、かつMn:0.03〜0.60%、Cr:0.01〜0.40%、Zr:0.01〜0.40%、Fe:0.03〜1.0%、Ti:0.005〜0.30%、Zn:0.03〜2.5%のうちから選ばれた1種又は2種以上を含有し、さらにCuが1.5%以下に規制され、残部がAl及び不可避的不純物よりなる、
ことを特徴とする請求項1又は2に記載のアルミニウム合金板の製造方法。
The aluminum alloy plate contains mass: Mg: 0.20 to 1.5%, Si: 0.30 to 2.0%, Mn: 0.03 to 0.60%, Cr: 0.00. 01-0.40%, Zr: 0.01-0.40%, Fe: 0.03-1.0%, Ti: 0.005-0.30%, Zn: 0.03-2.5% 1 or 2 or more types selected from among them, further Cu is regulated to 1.5% or less, the balance consists of Al and inevitable impurities,
The manufacturing method of the aluminum alloy plate of Claim 1 or 2 characterized by the above-mentioned.
JP2014236885A 2014-11-21 2014-11-21 Method for producing aluminum alloy plate Expired - Fee Related JP6581347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014236885A JP6581347B2 (en) 2014-11-21 2014-11-21 Method for producing aluminum alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236885A JP6581347B2 (en) 2014-11-21 2014-11-21 Method for producing aluminum alloy plate

Publications (2)

Publication Number Publication Date
JP2016098412A true JP2016098412A (en) 2016-05-30
JP6581347B2 JP6581347B2 (en) 2019-09-25

Family

ID=56076313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236885A Expired - Fee Related JP6581347B2 (en) 2014-11-21 2014-11-21 Method for producing aluminum alloy plate

Country Status (1)

Country Link
JP (1) JP6581347B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834835A (en) * 2016-11-28 2017-06-13 佛山市尚好门窗有限责任公司 A kind of high-strength aluminum alloy material
WO2018003709A1 (en) * 2016-06-29 2018-01-04 株式会社Uacj Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
CN109266924A (en) * 2018-11-28 2019-01-25 中铝瑞闽股份有限公司 A kind of anodic oxidation Aluminum curtain wall plate aluminium base and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596874A (en) * 1991-04-25 1993-04-20 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy material for lithographic printing plate
JPH09287042A (en) * 1996-04-19 1997-11-04 Nippon Steel Corp Aluminum alloy sheet excellent in impact characteristic and its production
JP2001262264A (en) * 2000-03-21 2001-09-26 Kobe Steel Ltd Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY
JP2004084058A (en) * 2002-06-27 2004-03-18 Kobe Steel Ltd Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004292937A (en) * 2003-03-28 2004-10-21 Kobe Steel Ltd Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2012237061A (en) * 2011-04-27 2012-12-06 Nippon Light Metal Co Ltd Aluminum alloy excellent in rigidity and manufacturing method therefor
JP2015208748A (en) * 2014-04-23 2015-11-24 日本軽金属株式会社 Manufacturing method of aluminum alloy billet and aluminum alloy billet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596874A (en) * 1991-04-25 1993-04-20 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy material for lithographic printing plate
JPH09287042A (en) * 1996-04-19 1997-11-04 Nippon Steel Corp Aluminum alloy sheet excellent in impact characteristic and its production
JP2001262264A (en) * 2000-03-21 2001-09-26 Kobe Steel Ltd Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY
JP2004084058A (en) * 2002-06-27 2004-03-18 Kobe Steel Ltd Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004292937A (en) * 2003-03-28 2004-10-21 Kobe Steel Ltd Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2012237061A (en) * 2011-04-27 2012-12-06 Nippon Light Metal Co Ltd Aluminum alloy excellent in rigidity and manufacturing method therefor
JP2015208748A (en) * 2014-04-23 2015-11-24 日本軽金属株式会社 Manufacturing method of aluminum alloy billet and aluminum alloy billet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
アルミニウムハンドブック, vol. 第7版, JPN6019009548, 31 January 2007 (2007-01-31), JP, pages 18, ISSN: 0004000076 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003709A1 (en) * 2016-06-29 2018-01-04 株式会社Uacj Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
CN109415781A (en) * 2016-06-29 2019-03-01 株式会社Uacj Wrinkle resistance and the excellent aluminium alloy plate and its manufacturing method of crimping bendability
JPWO2018003709A1 (en) * 2016-06-29 2019-08-08 株式会社Uacj Aluminum alloy plate excellent in ridging resistance and hem bendability and method for producing the same
CN106834835A (en) * 2016-11-28 2017-06-13 佛山市尚好门窗有限责任公司 A kind of high-strength aluminum alloy material
CN109266924A (en) * 2018-11-28 2019-01-25 中铝瑞闽股份有限公司 A kind of anodic oxidation Aluminum curtain wall plate aluminium base and preparation method thereof

Also Published As

Publication number Publication date
JP6581347B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6208389B1 (en) Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP5985165B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5683193B2 (en) Aluminum alloy rolled sheet for forming with excellent ridging resistance and method for producing the same
JP4634249B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
JP6581347B2 (en) Method for producing aluminum alloy plate
JP4602195B2 (en) Method for producing aluminum alloy sheet for forming
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2012237035A (en) HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
JP2014234542A (en) Aluminum alloy sheet having excellent ridging resistance
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2005139530A (en) Method of producing aluminum alloy sheet for forming
JP6383179B2 (en) Aluminum alloy plate excellent in ridging resistance and method for producing the same
JP5415016B2 (en) Aluminum alloy plate for forming and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190830

R150 Certificate of patent or registration of utility model

Ref document number: 6581347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees