JP5415016B2 - Aluminum alloy plate for forming and method for producing the same - Google Patents

Aluminum alloy plate for forming and method for producing the same Download PDF

Info

Publication number
JP5415016B2
JP5415016B2 JP2008106617A JP2008106617A JP5415016B2 JP 5415016 B2 JP5415016 B2 JP 5415016B2 JP 2008106617 A JP2008106617 A JP 2008106617A JP 2008106617 A JP2008106617 A JP 2008106617A JP 5415016 B2 JP5415016 B2 JP 5415016B2
Authority
JP
Japan
Prior art keywords
orientation
temperature
less
resistance
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008106617A
Other languages
Japanese (ja)
Other versions
JP2009256722A (en
Inventor
旭 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
UACJ Corp
Original Assignee
Nippon Steel Corp
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, UACJ Corp filed Critical Nippon Steel Corp
Priority to JP2008106617A priority Critical patent/JP5415016B2/en
Publication of JP2009256722A publication Critical patent/JP2009256722A/en
Application granted granted Critical
Publication of JP5415016B2 publication Critical patent/JP5415016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Description

この発明は、自動車ボディシート、ボディパネルの如く各種自動車、船舶、航空機等の部材・部品、あるいは建築材料、構造材料、そのほか各種機械器具、家電製品やその部品等の素材として、成形加工および塗装焼付を施して使用されるAl−Mg−Si系もしくはAl−Mg−Si−Cu系のアルミニウム合金板およびその製造方法に関するものであり、プレス成形性と曲げ加工性のバランスが良好で、特に耐肌荒れ性と耐リジング性が優れ、さらには用途に応じて、良好な焼付け硬化性、高いプレス成形性を付与することができ、また室温経時変化も小さい成形加工用アルミニウム合金板およびその製造方法に関するものである。   The present invention relates to parts and parts of various automobiles, ships, aircraft, etc., such as automobile body seats and body panels, or building materials, structural materials, various other machinery and equipment, home appliances, parts thereof, and the like. The present invention relates to an Al-Mg-Si-based or Al-Mg-Si-Cu-based aluminum alloy plate used by baking and a method for producing the same, and has a good balance between press formability and bending workability, and is particularly resistant. The present invention relates to an aluminum alloy plate for forming and having excellent skin roughness and ridging resistance, and capable of imparting good bake hardenability and high press formability according to the use, and having a small room temperature change over time, and a method for producing the same. Is.

従来自動車のボディシートとしては、主として冷延鋼板を使用することが多かったが、最近では車体軽量化等の観点から、アルミニウム合金圧延板を使用することが多くなっている。ところで自動車のボディシートはプレス加工を施して使用するところから、成形加工性が優れていること、アウターパネルとインナーパネルとを接合して一体化させるためなどにヘム曲げ加工を施して使用することが多いところから、成形性のうちでもヘム加工性が優れていることが要求される。また塗装焼付を施して使用するのが通常であることから、成形性と強度のバランスにおいて強度を重視する場合に、塗装焼付後に高強度が得られること、逆に成形性を重視する場合には、塗装焼付後に若干の強度を犠牲にする代わりに高いプレス成形性が得られることが要求される。さらに特に最近では、苛酷な成形加工が施されることが多くなっていること、また表面外観品質が重視されるようになっていることから、苛酷な成形加工時においてもリューダースマークが発生しないことはもちろん、肌荒れやリジングマークが発生しないことが、強く要求されている。   Conventionally, as a body sheet of an automobile, a cold-rolled steel sheet has been mainly used, but recently, an aluminum alloy rolled sheet is frequently used from the viewpoint of reducing the weight of the vehicle body. By the way, automobile body sheets are used after being pressed, so that they have excellent molding processability, and are used with hem bending to join and integrate the outer panel and inner panel. Therefore, it is required that the hemmability is excellent among the moldability. Also, since it is usually used after painting and baking, when emphasizing strength in the balance between formability and strength, high strength can be obtained after painting and baking, and conversely when molding is emphasized. It is required that high press formability be obtained instead of sacrificing some strength after coating baking. More recently, severe molding processing has been increasingly applied, and surface appearance quality has become more important, so there is no Luders mark even during severe molding processing. Needless to say, it is strongly required that no rough skin or ridging marks occur.

従来このような自動車用ボディシート向けのアルミニウム合金としては、Al−Mg系合金のほか、時効性を有するAl−Mg−Si系合金もしくはAl−Mg−Si−Cu系合金が主として使用されている。これらの時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金は、塗装焼付前の成形加工時においては比較的強度が低くて成形性が優れている一方、塗装焼付時の加熱によって時効されて塗装焼付後の強度が高くなる利点を有するほか、リューダースマークが発生しにくい等の長所を有する。   Conventionally, as an aluminum alloy for an automobile body sheet, in addition to an Al—Mg alloy, an Al—Mg—Si alloy or an Al—Mg—Si—Cu alloy having aging properties is mainly used. . These aging Al-Mg-Si alloys and aging Al-Mg-Si-Cu alloys have relatively low strength and excellent formability during molding before coating baking, while coating baking. In addition to the advantage that it is aged by heating at the time and the strength after baking is increased, it also has the advantage that the Ruders mark is less likely to occur.

ところでリジングマークは、板の成形加工時に現れる圧延方向に沿う筋模様のことであり、リジングマークの発生は材料の再結晶挙動と深く関わっていることから、リジングマークの発生を抑制(以下、リジングマークが発生しにくい性質を「耐リジング性」と記す)するためには、板製造過程での再結晶の制御が不可欠である。このような耐リジング性に関して従来から以特許文献1、特許文献2に示すような提案がなされている。
特許第2823797号公報 特許第3590685号公報
By the way, the ridging mark is a streak pattern along the rolling direction that appears during the forming process of the plate, and the generation of the ridging mark is deeply related to the recrystallization behavior of the material. Control of recrystallization during the plate manufacturing process is indispensable in order to make the property that marks are not easily generated (referred to as “riding resistance”). With respect to such ridging resistance, proposals as shown in Patent Document 1 and Patent Document 2 have been conventionally made.
Japanese Patent No. 2823797 Japanese Patent No. 3590685

前述のような自動車用ボディシート向けの時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板についての従来の製造方法により得られた板では、最近の自動車用ボディシートに要求される特性を充分に満足させることは困難であった。   In the plate obtained by the conventional manufacturing method for the aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates for automobile body sheets as described above, it is required for the recent automobile body sheets. It has been difficult to fully satisfy the properties obtained.

すなわち、最近では生産性とデザインの意匠性などから材質の一層の向上が求められ、自動車用ボディシートについては、従来より成形性(特にプレス成形性、ヘム加工性)ならびに強度(焼付硬化性、すなわちBH性)、耐リジング性、常温経時変化の抑制性能、耐食性などの種々の要求性能を満足させる点については、従来の一般的な製造方法によって得られたAl−Mg−Si系、Al−Mg−Si−Cu系合金板では未だ不充分であった。   That is, recently, further improvement in materials has been demanded due to productivity and design of the design, etc. For automobile body sheets, the moldability (especially press formability, hem workability) and strength (bake hardenability, That is, with respect to satisfying various required performances such as BH properties, ridging resistance, room temperature aging suppression performance, corrosion resistance, etc., Al—Mg—Si based, Al— An Mg—Si—Cu alloy plate is still insufficient.

またここで、成形加工のうち、ヘム加工は、曲げ内径が1mm以下の180°曲げという苛酷な曲げ加工であるため、良好なヘム加工性とプレス成形性とを両立させることが困難であるという問題があり、またプレス加工量の大きい部分のような苛酷な成形加工部位においては、肌荒れとリジングマーク発生を抑制することが極めて困難であった。   Here, among the forming processes, the hemming process is a severe bending process of 180 ° bending with a bending inner diameter of 1 mm or less, and it is difficult to achieve both good hemming workability and press formability. There is a problem, and it is extremely difficult to suppress rough skin and generation of ridging marks in a severely molded portion such as a portion where the amount of pressing is large.

また塗装焼付については、省エネルギおよび生産性の向上、さらには高温に曝されることが好ましくない樹脂等の材料との併用などの点から、従来よりも焼付温度を低温化し、また焼付時間も短時間化する傾向が強まっている。しかしながら従来の一般的な製法により得られた時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板の場合、低温・短時間の塗装焼付処理では、塗装焼付時の硬化(焼付硬化)が不足し、塗装焼付後に充分な高強度が得難くなる問題があった。   In addition, with regard to paint baking, the baking temperature is lower than before, and the baking time is also shortened from the standpoints of energy saving, productivity improvement, and combined use with materials such as resins that are not preferably exposed to high temperatures. There is an increasing tendency to shorten the time. However, in the case of aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates obtained by the conventional general manufacturing method, curing at the time of coating baking (baking) There is a problem that it is difficult to obtain sufficient strength after baking.

ここで、従来の一般的な製法により得られた時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板では、高いプレス成形性とヘム加工性のバランスが悪く、また苛酷な成形部位での肌荒れの発生(以下、肌荒れが発生しにくい性質「耐肌荒れ性」と記す)およびリジングマークの発生を抑制することが極めて困難であるという問題が生じている。   Here, in the aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates obtained by the conventional general manufacturing method, the balance between high press formability and hem workability is bad and severe. There is a problem that it is extremely difficult to suppress the occurrence of rough skin at the molding site (hereinafter referred to as “skin rough resistance”, a property in which rough skin hardly occurs) and the generation of ridging marks.

ところで前記各特許文献のうち、特許文献1に示されている方法では、熱間圧延の開始温度が350℃から450℃までの範囲とされており、この場合、熱間圧延中の粗大な結晶粒の形成はそれなりに抑制されるものの、未だその抑制が不充分であって、一部に粗大結晶粒が形成されてしまい、その結果、必ずしも充分な耐肌荒れ性が得られず、また耐リジング性も低下してしまうことがあることが本発明者等の実験により判明した。一方特許文献2の方法の場合、熱間圧延の開始温度を450℃以下としながらも、好ましくは350℃以上としており、しかも中間焼鈍は昇温速度の遅い(約30℃/h)バッチ方式との組み合わせを前提としており、そのため実際には結晶粒が粗くなり易く、特許文献1に記載の方法と同様に、耐肌荒れ性が充分に得られず、また耐リジング性も低下することが判明した。また、後に改めて詳細に説明するように、本発明者等は板の結晶方位を適切かつ厳密に制御することが耐肌荒れ性の確実な向上と耐リジング性の充分な向上に有効であることを見出したが、これらの特許文献1、2では、結晶方位制御を充分に行なっておらず、最近の耐肌荒れ性向上と耐リジング性向上の強い要求に対しては未だ不充分であった。   By the way, among the above-mentioned patent documents, in the method shown in Patent Document 1, the starting temperature of hot rolling is in the range of 350 ° C. to 450 ° C. In this case, coarse crystals during hot rolling are used. Although the formation of grains is suppressed as such, the suppression is still insufficient, and coarse crystal grains are formed in part, and as a result, sufficient skin resistance cannot be obtained, and ridging resistance is not necessarily obtained. It has been found by experiments by the present inventors that the properties may also be lowered. On the other hand, in the case of the method of Patent Document 2, the hot rolling start temperature is set to 450 ° C. or lower, preferably 350 ° C. or higher, and intermediate annealing is a batch method with a slow temperature increase rate (about 30 ° C./h). As a result, it has been found that, in practice, the crystal grains are likely to be coarse, and as in the method described in Patent Document 1, sufficient rough resistance cannot be obtained, and ridging resistance is also reduced. . Further, as will be described in detail later, the present inventors have found that appropriately and strictly controlling the crystal orientation of the plate is effective for surely improving the rough skin resistance and sufficiently improving the ridging resistance. As found, in these Patent Documents 1 and 2, the crystal orientation is not sufficiently controlled, and it is still insufficient for the recent strong demands for improving the rough skin resistance and improving the ridging resistance.

この発明は以上の事情を背景としてなされたもので、適切な強度を有するとともに、r値や機械的特性などの異方性が小さく、かつプレス成形性と曲げ加工性のバランスが良好で、特に材料の再結晶挙動を制御することにより耐肌荒れ性と耐リジング性が優れており、しかも用途に応じて、良好な焼付け硬化性およびより高いプレス成形性を付与することができ、なおかつ室温経時変化も小さい成形加工用アルミニウム合金板と、このような優れた性能を有する板を、量産的規模で確実かつ安定して低コストで製造し得る方法を提供することを目的とするものである。   This invention was made against the background described above, has an appropriate strength, has low anisotropy such as r value and mechanical properties, and has a good balance between press formability and bending workability, By controlling the recrystallization behavior of the material, it has excellent skin resistance and ridging resistance, and can provide good bake hardenability and higher press formability depending on the application, and also changes over time at room temperature. It is an object of the present invention to provide a method for producing a small aluminum alloy plate for forming and a plate having such excellent performance on a mass-production scale reliably and stably at a low cost.

前述のような課題を解決するべく本発明者等が種々実験・検討を重ねた結果、Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金の最終板の組織として、特定の方位、特にキューブ方位(立方体方位)の結晶方位密度を適切に抑えると同時に、キューブ方位の分散を図るべく、ND回転キューブ方位密度、RD回転方位密度をも、キューブ方位密度との関係のもとに適切なレベルに制御することによって、異方性を原因に生じるプレス加工性、ヘム加工性の劣化を防止することができ、また良好な焼付硬化性、耐室温経時変化性を損なうことなく、耐肌荒れ性と耐リジング性を確実かつ顕著に向上させ得ることを見出した。そしてまたこのような優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で確実かつ安定して低コストで製造し得るプロセス条件を見出し、この発明をなすに至ったのである。   As a result of repeated experiments and examinations by the present inventors to solve the above-mentioned problems, as a structure of the final plate of Al-Mg-Si-based or Al-Mg-Si-Cu-based alloy, a specific orientation, In particular, the crystal orientation density of the cube orientation (cube orientation) is appropriately suppressed, and at the same time, the ND rotational cube orientation density and the RD rotational orientation density are also appropriate based on the relationship with the cube orientation density in order to achieve dispersion of the cube orientation. By controlling to a certain level, deterioration of press workability and heme workability caused by anisotropy can be prevented, and good bake hardenability and room temperature aging resistance are not impaired, and rough skin resistance is prevented. And ridging resistance can be reliably and significantly improved. Further, the present inventors have found a process condition capable of manufacturing an aluminum alloy sheet for forming having such excellent performance on a mass production scale reliably, stably and at low cost, and has made the present invention.

具体的には、請求項1の発明のアルミニウム合金板は、Mg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Fe0.03〜1.0%、Ti0.005〜0.3%のうちから選ばれた1種または2種以上を含有し、さらにCuが1.5%以下に規制され、残部がAlおよび不可避的不純物よりなるアルミニウム合金が素材とされ、板に存在する結晶粒のキューブ方位密度をC、板面法線(以下「ND」と記す)を軸にキューブ方位から回転した方位のうち{001}<410>方位(以下「ND回転キューブ方位」と記す)の密度をNとして、圧延方向(以下「RD」と記す)を軸にキューブ方位から回転した方位のうち{027}<100>方位(以下「RD回転キューブ方位」と記す)の密度をGとして、次の(1)〜(5)式(各方位密度C、N、Gの数値はすべてランダム結晶方位密度に対する倍数で表す)
C≦7.1 ・・・(1)
N≦4.6 ・・・(2)
0.65≦N/C<1 ・・・(3)
G≦3.5 ・・・(4)
0.38≦G/C<1 ・・・(5)
を満たし、さらに耳率が7%以下、結晶粒度がASTMナンバーで5以上であることを特徴とするものである。
Specifically, the aluminum alloy sheet of the invention of claim 1 contains Mg 0.2 to 1.5% (mass%, the same shall apply hereinafter), Si 0.3 to 2.0%, and Mn 0.03 to 0 .6%, Cr 0.01-0.4%, Zr 0.01-0.4%, V 0.01-0.4%, Fe 0.03-1.0%, Ti 0.005-0.3% 1 or 2 or more types selected from the above, Cu is regulated to 1.5% or less, the balance is made of an aluminum alloy consisting of Al and inevitable impurities , and the crystal grain cubes present in the plate The orientation density is C, and the density of the {001} <410> orientation (hereinafter referred to as “ND rotating cube orientation”) among the orientations rotated from the cube orientation about the plate surface normal (hereinafter referred to as “ND”) is N. From the cube orientation around the rolling direction (hereinafter referred to as “RD”) The density of {027} <100> azimuth (hereinafter referred to as “RD rotating cube azimuth”) among the rotated azimuths is represented by G, and the following formulas (1) to (5) (the numerical values of the respective azimuth densities C, N, and G) Are all expressed in multiples of random crystal orientation density)
C ≦ 7.1 (1)
N ≦ 4.6 (2)
0.65 ≦ N / C <1 (3)
G ≦ 3.5 (4)
0.38 ≦ G / C <1 (5)
Further, the ear rate is 7% or less, and the crystal grain size is 5 or more by ASTM number.

またさらに請求項2の発明のアルミニウム合金板の製造方法は、請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、アルミニウム合金の鋳塊に480℃以上の温度で均質化処理を行ない、均質化処理後450℃未満の温度域に50℃/h以上の冷却速度で冷却し、続いて350℃未満、200℃以上の温度域で熱間圧延を開始し、その熱間圧延過程において、板厚200mmの段階から熱間圧延終了板厚の段階までの間で少なくとも1回は1パスの圧延率が40%以上の高圧下を施して、350℃未満の温度で熱間圧延を終了し、その後、冷間圧延を挟んで、もしくは冷間圧延を挟まずに、昇温速度が100℃/min以上でかつ材料到達温度が430℃以上の中間焼鈍を行ない、冷却後、さらに30%以上の圧延率で最終冷間圧延を施して所定の板厚とし、その後、480℃以上の温度での溶体化処理を行なってから、100℃/min以上の平均冷却速度で150℃未満の温度域まで冷却することを特徴とするものである。 Furthermore, in the method for producing an aluminum alloy plate according to the invention of claim 2 , in producing the aluminum alloy plate for forming according to claim 1 , the aluminum alloy ingot is homogenized at a temperature of 480 ° C. or higher. Then, after the homogenization treatment, it is cooled to a temperature range of less than 450 ° C. at a cooling rate of 50 ° C./h or more, and then hot rolling is started in a temperature range of less than 350 ° C. and 200 ° C. or more. The hot rolling is completed at a temperature of less than 350 ° C. at least once during the period from the thickness of 200 mm to the final thickness of the hot rolled sheet, with a one-pass rolling rate of 40% or higher. Thereafter, intermediate annealing is performed at a rate of temperature increase of 100 ° C./min or higher and a material temperature of 430 ° C. or higher with or without cold rolling, and further 30% after cooling. The highest rolling rate After cold rolling to a predetermined plate thickness, after performing solution treatment at a temperature of 480 ° C or higher, cooling to a temperature range of less than 150 ° C at an average cooling rate of 100 ° C / min or higher It is a feature.

この発明による成形加工用アルミニウム合金板は、機械的性質の異方性によるプレス成形性の低下を防ぐことができるとともに、プレス成形性と曲げ加工性のバランスが良好で、しかも中間焼鈍を施すことにより、従来より格段に耐肌荒れ性と耐リジング性の向上を図ることができ、さらには用途に応じて良好な塗装焼付硬化性、より高いプレス成形性を付与することができ、そしてまた室温での経時変化も少なく、したがってプレス加工やヘム加工を施して塗装焼付け後に使用される自動車用ボディシート等に最適である。またこの発明の成形加工用アルミニウム合金板の製造方法によれば、上述のように優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で確実かつ安定して製造することができる。   The aluminum alloy sheet for forming according to the present invention can prevent a decrease in press formability due to anisotropy of mechanical properties, has a good balance between press formability and bending workability, and is subjected to intermediate annealing. Can significantly improve rough skin resistance and ridging resistance than before, and can provide good paint bake hardenability, higher press formability according to the application, and also at room temperature. Therefore, it is most suitable for automobile body sheets and the like that are used after press baking and hem processing and after painting and baking. Moreover, according to the manufacturing method of the aluminum alloy plate for forming according to the present invention, the aluminum alloy plate for forming having excellent performance as described above can be manufactured reliably and stably on a mass production scale.

この発明の成形加工用アルミニウム合金板は、基本的にはAl−Mg−Si系合金もしくはAl−Mg−Si−Cu系合金として、請求項1で規定するような成分組成の合金を素材とする。 The aluminum alloy sheet for forming according to the present invention is basically made of an Al-Mg-Si-based alloy or an Al-Mg-Si-Cu-based alloy having an alloy composition as defined in claim 1 . The

上述のような請求項1で規定している素材合金の成分組成の限定理由について説明する。 The reason for limiting the component composition of the material alloy defined in claim 1 as described above will be described.

Mg:
Mgはこの発明で対象としている系の合金で基本となる合金元素であって、Siと共同して強度向上に寄与する。Mg量が0.2%未満では塗装焼付時に析出硬化によって強度向上に寄与するG.P.ゾーンの生成量が少なくなるため、充分な強度向上が得られず、一方1.5%を越えれば、粗大なMg−Si系の金属間化合物が生成され、プレス成形性、特に曲げ加工性が低下するから、Mg量は0.2〜1.5%の範囲内とした。なお最終板のプレス成形性、特に曲げ加工性をより良好にするためには、Mg量は0.3〜0.9%の範囲内が好ましい。
Mg:
Mg is an alloy element that is a basic alloy of the system targeted by the present invention, and contributes to strength improvement in cooperation with Si. If the amount of Mg is less than 0.2%, G. contributes to strength improvement by precipitation hardening during baking. P. Since the amount of zone formation is reduced, sufficient strength improvement cannot be obtained. On the other hand, if it exceeds 1.5%, a coarse Mg-Si intermetallic compound is produced, and press formability, particularly bending workability is improved. Since it falls, the amount of Mg was made into the range of 0.2 to 1.5%. In order to improve the press formability of the final plate, particularly bending workability, the Mg content is preferably in the range of 0.3 to 0.9%.

Si:
Siもこの発明の系の合金で基本となる合金元素であって、Mgと共同して強度向上に寄与する。またSiは、鋳造時に金属Siの晶出物として生成され、その金属Si粒子の周囲が加工によって変形されて、溶体化処理の際に再結晶核の生成サイトとなるため、再結晶組織の微細化にも寄与する。Si量が0.3%未満では上記の効果が充分に得られず、一方2.0%を越えれば粗大なSi粒子や粗大なMg−Si系の金属間化合物が生じて、プレス成形性、特に曲げ加工性の低下を招く。したがってSi量は0.3〜2.0%の範囲内とした。プレス成形性と曲げ加工性とのより良好なバランスを得るためには、Si量は0.5〜1.3%の範囲内が好ましい。
Si:
Si is also an alloy element that is fundamental in the alloy of the present invention, and contributes to strength improvement in cooperation with Mg. In addition, Si is produced as a crystallized product of metal Si at the time of casting, and the periphery of the metal Si particles is deformed by processing and becomes a recrystallization nucleus generation site during solution treatment. It also contributes to When the amount of Si is less than 0.3%, the above effects cannot be obtained sufficiently. On the other hand, when it exceeds 2.0%, coarse Si particles and coarse Mg-Si based intermetallic compounds are produced, and press formability, In particular, bending workability is reduced. Therefore, the Si amount is set in the range of 0.3 to 2.0%. In order to obtain a better balance between press formability and bending workability, the Si content is preferably in the range of 0.5 to 1.3%.

Mn、Cr、Zr、V、Fe、Ti:
これらの元素は、強度向上や結晶粒微細化、あるいは時効性(焼付硬化性)の向上や表面処理性の向上に有効であり、いずれか1種または2種以上を添加する。これらのうちMn、Cr、Zr、Vは強度向上と結晶粒の微細化および組織の安定化に効果がある元素であるが、Mnの含有量が0.03%未満、もしくはCr、Zr、Vの含有量がそれぞれ0.01%未満では、上記の効果が充分に得られず、一方Mnの含有量が0.6%を越えるか、あるいはCr、Zr、Vの含有量がそれぞれ0.4%を越えれば、上記の効果が飽和するばかりでなく、多数の金属間化合物が生成されて成形性、特にヘム曲げ性に悪影響を及ぼすおそれがあり、したがってMnは0.03〜0.6%の範囲内、Cr、Zr、Vはそれぞれ0.01〜0.4%の範囲内とした。またFeも強度向上と結晶粒微細化に有効な元素であるが、その含有量が0.03%未満では充分な効果が得られず、一方1.0%を越えれば、多数の金属間化合物が生成されて、プレス成形性、曲げ加工性が低下するおそれがあり、したがってFe量は0.03〜1.0%の範囲内とした。なお、曲げ加工性の低下を最小限に抑えたい場合、Fe量は0.03〜0.5%の範囲で好ましい。さらにTiは、鋳塊組織の微細化を通じて最終板の強度向上、肌荒れ防止、耐リジング性向上に効果があることから、鋳塊組織の微細化のために添加するが、その含有量が0.005%未満では充分な効果が得られず、一方0.3%を越えればTi添加の効果が飽和するばかりでなく、粗大な晶出物が生じるおそれがあるから、Ti量は0.005〜0.3%の範囲内とした。なおTiと同時にBを添加することもあり、BをTiとともに添加することによって、鋳塊組織の微細化と安定化の効果が一層顕著となるが、この発明の場合も、Tiとともに500ppm以下のBを添加することは許容される。
Mn, Cr, Zr, V, F e, T i:
These elements are effective for improving strength, crystal grain refinement, aging (bake hardenability) and surface treatment, and any one or more of them are added. Among these, Mn, Cr, Zr, and V are elements that are effective in improving the strength, refining crystal grains, and stabilizing the structure, but the Mn content is less than 0.03%, or Cr, Zr, V If the content of each is less than 0.01%, the above effects cannot be obtained sufficiently, while the content of Mn exceeds 0.6% or the contents of Cr, Zr, and V are each 0.4%. If the amount exceeds 50%, not only the above effects are saturated, but also a large number of intermetallic compounds may be produced, which may adversely affect the formability, particularly hem bendability. Therefore, Mn is 0.03 to 0.6%. And Cr, Zr, and V were each in the range of 0.01 to 0.4%. Fe is also an element effective for strength improvement and crystal grain refinement, but if its content is less than 0.03%, a sufficient effect cannot be obtained, while if it exceeds 1.0%, many intermetallic compounds are obtained. May be produced, and press formability and bending workability may be deteriorated. Therefore, the amount of Fe is set within a range of 0.03 to 1.0%. Incidentally, if you want to minimize the deterioration of bending workability, Fe amount is not preferable in the range of 0.03 to 0.5%. Ti in is found, the intensity of the final plate through refinement of ingot tissue enhancement, rough skin prevention, since it is effective in ridging resistance improvement, but added for finer ingot tissue, its content If it is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.3%, not only the effect of adding Ti is saturated but also coarse crystallized products may be formed. It was made into the range of 005-0.3%. In addition, B may be added simultaneously with Ti, and by adding B together with Ti, the effect of refining and stabilizing the ingot structure becomes more prominent. It is permissible to add B.

Cu:
Cuは強度向上および成形性向上のために添加されることがある元素であるが、その量が1.5%を越えれば耐食性(耐粒界腐食性、耐糸錆性)が劣化するから、Cuの含有量は1.5%以下に規制することとした。なお、より耐食性の改善を図りたい場合はCu量は1.0%以下が好ましく、さらに特に耐食性を重視する場合は、Cu量は0.05%以下に規制することが望ましい。
Cu:
Cu is an element that may be added to improve strength and formability, but if its amount exceeds 1.5%, corrosion resistance (intergranular corrosion resistance, yarn rust resistance) deteriorates. The Cu content was regulated to 1.5% or less. In addition, when it is desired to further improve the corrosion resistance, the Cu content is preferably 1.0% or less, and when the corrosion resistance is particularly important, it is desirable to regulate the Cu content to 0.05% or less.

以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良い。   In addition to the above elements, basically, Al and inevitable impurities may be used.

また時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金においては、高温時効促進元素あるいは室温時効抑制元素であるAg、In、Cd、Be、あるいはSnを微量添加することがあるが、この発明の場合も微量添加であればこれらの元素の添加も許容され、それぞれ0.3%以下であれば特に所期の目的を損なうことはない。   In addition, in an aging Al—Mg—Si alloy or an aging Al—Mg—Si—Cu alloy, a trace amount of Ag, In, Cd, Be, or Sn which is a high temperature aging promoting element or a room temperature aging inhibiting element is added. However, even in the case of the present invention, addition of these elements is permissible as long as it is added in a small amount, and if it is 0.3% or less, the intended purpose is not particularly impaired.

さらに、鋳塊組織の微細化にはScの添加も効果があるとされており、この発明の場合も微量のScを添加しても良く、Sc0.01〜0.2%の範囲内であれば特に支障はない。   Furthermore, it is said that the addition of Sc is effective for refining the ingot structure. In the case of this invention, a small amount of Sc may be added, and within the range of Sc 0.01 to 0.2%. There is no particular problem.

さらにこの発明の成形加工用アルミニウム合金板において、プレス成形性と曲げ加工性のバランスを最適にするためには、異方性を小さく抑制する必要があり、また、耐肌荒れ性と耐リジング性の向上に対しても、合金の成分組成を前述のように調整するばかりでなく、最終板であるアルミニウム合金板の集合組織、特に結晶方位密度を適切に制御することが極めて重要である。   Furthermore, in the aluminum alloy sheet for forming according to the present invention, in order to optimize the balance between press formability and bending workability, it is necessary to suppress the anisotropy to be small, and the resistance to rough skin and ridging resistance For improvement, it is very important not only to adjust the alloy composition as described above, but also to appropriately control the texture of the aluminum alloy plate as the final plate, particularly the crystal orientation density.

実際の材料では、種々の結晶方位が存在するが、本発明者らが鋭意検討を重ねた結果、種々の結晶方位のうちでも特にキューブ方位の方位密度、すなわちキューブ方位の理想方位である{001}<100>方位の方位密度を適切に抑制することが異方性の抑制に効果的であり、さらにキューブ方位の適切な分散を図るべく、キューブ方位密度とND回転キューブ方位密度との比率、およびキューブ方位密度とRD回転キューブ方位密度との比率を適切に制御することによって、高レベルの耐肌荒れ性と耐リジング性を実現することができた。
In an actual material, there are various crystal orientations. As a result of extensive investigations by the present inventors, the orientation density of cube orientations among various crystal orientations, that is, the ideal orientation of cube orientations {001 } It is effective to suppress the anisotropy to appropriately suppress the orientation density of the <100> orientation, and in order to further appropriately distribute the cube orientation , the ratio between the cube orientation density and the ND rotating cube orientation density , In addition, by appropriately controlling the ratio between the cube orientation density and the RD rotating cube orientation density , a high level of rough skin resistance and ridging resistance could be realized.

すなわち、請求項1で規定しているように、板に存在する結晶粒のキューブ方位密度をC、板面法線NDを軸にキューブ方位から回転したND回転キューブ方位、特に{001}<410>方位の密度をNとして、圧延方向RDを軸にキューブ方位から回転したRD回転キューブ方位、特に{027}<100>方位の密度をGとして、(1)〜(5)式
C≦7.1 ・・・(1)
N≦4.6 ・・・(2)
0.65≦N/C<1 ・・・(3)
G≦3.5 ・・・(4)
0.38≦G/C<1 ・・・(5)
を満たすように制御することによって、苛酷な成形加工が施される部位でも、肌荒れの発生を確実に防止できるとともに、リジングマークの発生を確実に防止することが可能となった。
That is, as defined in claim 1, the cube orientation density of the crystal grains existing in the plate is C, the ND rotation cube orientation rotated from the cube orientation about the plate surface normal ND, particularly {001} <410. > The density of the orientation is N, the RD rotation cube orientation rotated from the cube orientation about the rolling direction RD, especially the density of the {027} <100> orientation is G, and the equations (1) to (5)
C ≦ 7.1 (1)
N ≦ 4.6 (2)
0.65 ≦ N / C <1 (3)
G ≦ 3.5 (4)
0.38 ≦ G / C <1 (5)
By controlling so as to satisfy the above conditions, it is possible to reliably prevent the occurrence of rough skin and to prevent the generation of ridging marks even in a portion subjected to severe molding.

なおここで、ND回転キューブ方位は、上記のように、{001}<410>方位を代表方位とし、またRD回転キューブ方位は、{027}<100>方位を代表方位とし、上記各式における方位密度を、これらの代表方位の密度をもって測定したものである。またここで、(1)〜(5)式における各方位密度の数値は、すべてランダム結晶方位密度に対する倍数で表わす。
Here, as described above , the ND rotating cube direction is represented by the {001} <410> direction as the representative direction, and the RD rotating cube direction is represented by the {027} <100> direction as the representative direction . The orientation density is measured with the density of these representative orientations . Here, the numerical values of the orientation densities in the equations (1) to (5) are all expressed as multiples of the random crystal orientation density.

ここで、(1)式はキューブ方位密度Cそのものの値を低く規制していることを意味し、このキューブ方位密度Cはヘム加工性、プレス成形性、異方性、耐リジング性などに影響を与える。Cの値が7.1を超えれば、ヘム加工性には最も有利となるが、異方性が強くなってプレス成形性が低下するおそれがあり、さらにこのような特定の方位密度が高くなれば、耐リジング性も低下してしまう。一方、(2)式、(4)式は、板面法線NDもしくは圧延方向RDを軸にキューブ方位から回転した方位の密度N、Gを低い値に規制していることを意味し、これらのN、Gの各方位は、いずれもヘム加工性、プレス成形性、異方性、耐リジング性などに影響を与える。Nの値が4.6を超えるかもしくはGの値が3.5を超えれば、Cほどではないが、ヘム加工性に有利となるが、異方性が強くなってプレス成形性が低下するおそれがあり、さらにこのような特定の方位密度が高くなれば、耐リジング性も低下してしまう。さらに(3)式、(5)式は、キューブ方位の分散について規定したものであり、これらのN/CもしくはG/Cの値が1以上となれば、プレス成形性とヘム加工性のバランスが悪く、またN/Cの値が0.65未満もしくはG/Cの値が0.38未満となれば、Cの比率が相対的に高くなり、耐リジング性が低下する。なおN、Gが方位分散や耐リジング性の向上に与える影響はほぼ同程度であるが、NおよびGの両者を規制すれば、その規制による効果をより確実かつ顕著に得ることが可能となる。そこで本発明ではN、Gの両者について規制することとした。 Here, the equation (1) means that the value of the cube orientation density C itself is restricted to a low value, and this cube orientation density C has an effect on hem workability, press formability, anisotropy, ridging resistance, and the like. give. If the value of C exceeds 7.1, it is most advantageous for heme workability, but there is a risk that press formability may be reduced due to strong anisotropy, and such specific orientation density can be increased. In this case, the ridging resistance is also lowered. On the other hand, the formulas (2) and (4) mean that the density N and G of the orientation rotated from the cube orientation about the plate surface normal ND or the rolling direction RD are regulated to a low value. Each of the N and G orientations affects the hemmability, press formability, anisotropy, ridging resistance and the like. If the value of N exceeds 4.6 or the value of G exceeds 3.5, it is not as good as C, but it is advantageous for hem workability, but the anisotropy becomes strong and press formability decreases. If such a specific orientation density increases, the ridging resistance also decreases. Furthermore, formulas (3) and (5) are defined for cube orientation dispersion. If the value of N / C or G / C is 1 or more, the balance between press formability and hemmability is obtained. If the value of N / C is less than 0.65 or the value of G / C is less than 0.38 , the ratio of C is relatively high and ridging resistance is lowered. Note that N and G have almost the same effect on the improvement of azimuth dispersion and ridging resistance. However, if both N and G are regulated, the effect of the regulation can be obtained more reliably and significantly. . Therefore, in the present invention, both N and G are regulated.

さらにこの発明による成形加工用アルミニウム合金板では、板全体にわたって耳率(0°耳、90°耳)が7%以下であることも重要である。すなわち、前述のようにこの発明では、式(1)〜(5)で結晶方位密度を規定しているが、それ以外の結晶方位の方位密度もある程度は異方性と耐肌荒れ性、耐リジング性に影響を与える。しかしながら実際上は、これらの方位以外のすべての結晶方位の方位密度を厳密に規定することは困難である。一方、板のカッピング試験で絞ったカップの耳率によれば、材料の結晶方位をマクロ的に評価することができる。そこでこの発明では、式(1)〜(5)で規定した結晶方位以外の方位の密度の影響を耳率で評価、規制することとした。具体的には、圧延方向を基準にカップの0°、90°耳の耳率が7%以上では、たとえ前述の各式の条件が満足されていても、所要の異方性、良好な耐肌荒れ性と耐リジング性が得られないおそれがある。そこでこの発明では耳率に関して前述のように規制することとした。なお耳率は下限を限定していないが、通常は0〜7%の範囲が好ましい。   Furthermore, in the aluminum alloy plate for forming according to the present invention, it is also important that the ear rate (0 ° ear, 90 ° ear) is 7% or less over the entire plate. That is, as described above, in the present invention, the crystal orientation density is defined by the formulas (1) to (5), but the orientation density of other crystal orientations is also to some extent anisotropy, rough skin resistance, and ridging resistance. Affects sex. However, in practice, it is difficult to strictly define the orientation density of all crystal orientations other than these orientations. On the other hand, the crystal orientation of the material can be macroscopically evaluated based on the ear ratio of the cup squeezed by the plate cupping test. Therefore, in the present invention, the influence of the density of orientations other than the crystal orientations defined by the formulas (1) to (5) is evaluated and regulated by the ear rate. Specifically, when the ear degree of the 0 ° and 90 ° ears of the cup is 7% or more on the basis of the rolling direction, even if the conditions of the above-mentioned formulas are satisfied, the required anisotropy and good resistance to resistance are obtained. There is a risk that rough skin and ridging resistance may not be obtained. Therefore, in the present invention, the ear rate is regulated as described above. In addition, although the ear | edge rate does not limit the minimum, Usually, the range of 0 to 7% is preferable.

曲げ加工性の向上、プレス成形時の外観欠陥である肌荒れを防止するためには、結晶粒度を細かくする必要がある。そして本発明者等が実験・検討を重ねた結果、結晶粒度を、ASTMナンバーで5以上にすれば、曲げ加工性の向上や肌荒れ(外観欠陥)を防止する効果があることを見出し、その条件を規定したのである。さらに外観を重視する場合には、ASTMナンバーで6.0以上が好ましい。   In order to improve bending workability and prevent rough skin, which is an appearance defect during press molding, it is necessary to make the crystal grain size fine. As a result of repeated experiments and examinations by the present inventors, it has been found that if the crystal grain size is set to 5 or more in the ASTM number, it has the effect of improving bending workability and preventing rough skin (appearance defects), and the conditions Is stipulated. Further, when the appearance is important, the ASTM number is preferably 6.0 or more.

次にこの発明の成形加工用アルミニウム合金板の製造方法について説明する。   Next, a method for producing the aluminum alloy plate for forming according to the present invention will be described.

先ず前述のような成分組成の合金を常法に従って溶製し、DC鋳造法等の通常の鋳造法によって鋳造する。   First, an alloy having the component composition as described above is melted in accordance with a conventional method and cast by a normal casting method such as a DC casting method.

得られた鋳塊に対しては、480℃以上の温度で均質化処理を行なった後、450℃未満の温度域に50℃/h以上の冷却速度で冷却する。このように均質化処理および冷却の条件を規定した理由は次の通りである。   The resulting ingot is homogenized at a temperature of 480 ° C. or higher, and then cooled to a temperature range of less than 450 ° C. at a cooling rate of 50 ° C./h or higher. The reason why the conditions for the homogenization treatment and the cooling are defined in this way is as follows.

すなわち均質化処理は、鋳塊の添加元素の偏析を除去したり、鋳塊のセル・結晶粒の境界に存在する粗大な第2相粒子、晶出物などを母相に固溶させたりすることに効果があり、製品板性能のばらつきの低減、さらには熱間圧延工程、溶体化工程と有機的に結合して所要の結晶方位を得るにも重要な工程である。この均質化処理の温度が480℃未満では、上述の効果が不充分である。なお均質化処理温度の上限は特に規制しないが、共晶融解を避けるために、通常は590℃以下での処理とすることが好ましい。   In other words, the homogenization process removes segregation of added elements in the ingot, or dissolves coarse second-phase particles, crystallized materials, etc. existing at the boundaries between the ingot cells and crystal grains in the matrix. In particular, it is an important process for reducing the variation in product plate performance and for obtaining the required crystal orientation by organically combining with the hot rolling process and the solution forming process. If the homogenization temperature is less than 480 ° C., the above-described effects are insufficient. The upper limit of the homogenization temperature is not particularly limited, but it is usually preferable to perform the treatment at 590 ° C. or lower in order to avoid eutectic melting.

また均質化処理後の冷却に関しては、一般に高い焼付け硬化性を得るためには冷却過程で形成される析出物の粗大化を避けるべきであり、そこで450℃未満の温度域まで50℃/h以上の冷却速度で冷却することとした。ここで言う『冷却速度』は、すべて平均冷却速度を意味するものとする。なお析出物の大きさと分布は、材料の再結晶挙動にも影響を与えることから、この発明の効果を確実に得るためには、均質化処理後、450℃以下の温度域まで150℃/h以上の冷却速度で冷却することが好ましい。   As for cooling after the homogenization treatment, in general, in order to obtain a high bake hardenability, coarsening of precipitates formed in the cooling process should be avoided, so that a temperature range of less than 450 ° C. is 50 ° C./h or more. It was decided to cool at a cooling rate of. The “cooling rate” mentioned here means the average cooling rate. Note that the size and distribution of the precipitates also affect the recrystallization behavior of the material. Therefore, in order to reliably obtain the effects of the present invention, 150 ° C./h up to a temperature range of 450 ° C. or lower after the homogenization treatment. It is preferable to cool at the above cooling rate.

上述のようにして均質化処理後、450℃未満の温度域に冷却した後には熱間圧延を施すが、熱間圧延の開始温度が350℃未満であることから、熱間圧延開始までの過程においては、必要に応じて以下のいずれかの処理方法を適用することができる。すなわち、均質化処理後の冷却過程で常温もしくは常温近くまで冷却してしまい、再び熱間圧延の開始温度まで加熱して熱間圧延を開始するか、あるいは均質化処理後の冷却過程で熱間圧延の開始温度まで冷却し、そのまま熱間圧延を開始するか、さらには均質化処理後の冷却過程で450℃未満、350℃超の温度範囲内に一旦滞留、保持させた後、降温させて、350℃未満の温度域で熱間圧延を開始しても良い。   After the homogenization treatment as described above, after cooling to a temperature range of less than 450 ° C, hot rolling is performed, but since the start temperature of hot rolling is less than 350 ° C, the process until the start of hot rolling In, any of the following processing methods can be applied as needed. That is, it cools to normal temperature or near normal temperature in the cooling process after the homogenization treatment, and then starts the hot rolling again by heating to the start temperature of the hot rolling, or hot in the cooling process after the homogenization treatment. Cool to the starting temperature of rolling and start hot rolling as it is, or, in the cooling process after homogenization, once stayed and held in a temperature range of less than 450 ° C and more than 350 ° C, and then lowered the temperature The hot rolling may be started in a temperature range of less than 350 ° C.

これらの各処理方法は、いずれを適用してもこの発明の効果を損なうことはない。なお生産性などの観点から、冷却、滞留、保持過程は48時間以内とすることが好ましい。   Even if any of these processing methods is applied, the effect of the present invention is not impaired. From the viewpoint of productivity and the like, the cooling, staying and holding processes are preferably within 48 hours.

均質化処理、冷却後の熱間圧延は、次の(1)、(2)の条件を満たすように行なう必要がある。
(1)熱間圧延開始温度を350℃未満、200℃以上の温度範囲とする。
(2)熱間圧延過程において板厚が200mm以降の段階で少なくとも1回は1パスの圧延率が40%以上の高圧下のパスを施す。
The homogenization treatment and the hot rolling after cooling must be performed so as to satisfy the following conditions (1) and (2).
(1) The hot rolling start temperature is set to a temperature range of less than 350 ° C. and 200 ° C. or more .
(2) In the hot rolling process, at a stage where the plate thickness is 200 mm or more, at least one pass is subjected to a high pressure pass with a rolling rate of 40% or more.

これらの条件のうち、(1)の条件、すなわち熱間圧延開始温度を350℃未満、200℃以上とすることは、熱間圧延中の材料の再結晶を完全に抑制して、所要の結晶方位密度を得ると同時に、耐肌荒れ性と耐リジング性の改善を図るために不可欠な条件である。350℃以上の高温で熱間圧延を開始すれば、部分的に粗大な再結晶粒が形成し、充分な耐肌荒れ性と耐リジング性が得られなくなるおそれがある。なお熱間圧延開始温度が、200℃以下では熱間圧延自体が困難となるのが通常であるから、200〜350℃未満の範囲内とする。
Among these conditions, the condition (1), that is, setting the hot rolling start temperature to less than 350 ° C. and 200 ° C. or more completely suppresses recrystallization of the material during the hot rolling, and the required crystal This is an indispensable condition for improving the roughness resistance and ridging resistance as well as obtaining the orientation density. If hot rolling is started at a high temperature of 350 ° C. or more, partially coarse recrystallized grains are formed, and there is a possibility that sufficient skin resistance and ridging resistance cannot be obtained. Note the hot rolling start temperature is, that the hot rolling itself becomes difficult at 200 ° C. or less because it is usually in the range of less than 200 to 350 ° C..

次に(2)の条件は、(1)の条件と合わせて熱間圧延中の材料の再結晶を抑制し、所要の結晶方位密度を得るために不可欠な条件である。すなわち、熱間圧延工程における板厚200mm以降の段階のほぼ未再結晶の繊維上組織に、1パスの圧下で大変形を加えることによって、目的とする結晶回転を達成することができ、そのため、板厚200mm以降の段階で圧延率40%以上の高圧下のパスを適用することが必要である。なお好ましくは圧延率50%以上の高圧下のパスを適用することが望ましい。前述のように40%以上、好ましくは50%以上の高圧下のパスを適用することにより、中間焼鈍および溶体化処理と合わせて2回以上の再結晶を生起させることにより、最終板におけるキューブ方位の発達を抑制して、キューブ方位の分散を図ることにより異方性の低減を図ることができ、前記各式(1)〜(5)を満足するような方位分散による耐肌荒れ性と耐リジング性の改善に有効となる。   Next, the condition (2) is an indispensable condition for obtaining the required crystal orientation density by suppressing recrystallization of the material during hot rolling in combination with the condition (1). That is, the target crystal rotation can be achieved by applying a large deformation under the pressure of one pass to the substantially unrecrystallized on-fiber structure in the stage after the plate thickness of 200 mm in the hot rolling process. It is necessary to apply a high-pressure pass with a rolling rate of 40% or more at the stage after the plate thickness of 200 mm. It is preferable to apply a high-pressure pass with a rolling rate of 50% or more. By applying a pass under a high pressure of 40% or more, preferably 50% or more as described above, by causing two or more recrystallizations together with the intermediate annealing and solution treatment, the cube orientation in the final plate is obtained. By suppressing the development of the cube, dispersion of the cube orientation can be achieved to reduce the anisotropy, and the rough skin resistance and ridging resistance due to the orientation dispersion satisfying the above formulas (1) to (5). It is effective in improving sex.

なお熱間圧延の終了温度が350℃以上では、粗大な再結晶が発生して、耐肌荒れ性が低下するから、熱間圧延終了温度は350℃未満に規制することとした。なお積極的に粗大再結晶粒の発生を防止するためには、熱間圧延終了温度を150℃〜300℃の範囲内とすることが好ましい。   If the end temperature of the hot rolling is 350 ° C. or higher, coarse recrystallization occurs and the surface roughness resistance is lowered. Therefore, the end temperature of the hot rolling is limited to less than 350 ° C. In order to actively prevent the generation of coarse recrystallized grains, it is preferable to set the hot rolling end temperature within the range of 150 ° C to 300 ° C.

ここで、上述のような熱間圧延条件のうち、いずれか一つの条件でも外れれば、所要の結晶方位密度条件を満たす最終板が得難くなり、最終板の諸特性が低下するおそれがある。   Here, if any one of the hot rolling conditions as described above is not satisfied, it is difficult to obtain a final plate that satisfies the required crystal orientation density condition, and various properties of the final plate may be deteriorated.

以上のようにして熱間圧延を終了した後には、冷間圧延(一次冷間圧延)を挟んで、あるいは冷間圧延を挟まずに直ちに、中間焼鈍を施す。この中間焼鈍は、材料を再結晶させ、熱間圧延で形成された組織を分解・細分化する効果があり、また固溶度を高める効果もある。昇温速度が100℃/min以上、材料到達温度が430℃以上の条件で行なう。昇温速度が100℃/min未満では、粗大な結晶粒が形成されやすく、耐肌荒れと耐リジング性の劣化を招くおそれがある。材料到達温度が430℃未満では、固溶度を高める効果が少なく、成形性、焼付け硬化性が低下する。なお430℃上の材料到達温度での保持は特に限定しないが、保持なし、もしくは5分以下の保持とするのが通常である。さらに中間焼鈍後の冷却速度も特に限定しないが、通常は生産性などの視点から昇温速度と同様に100℃/min以上とすることが望ましい。   After hot rolling is completed as described above, intermediate annealing is performed immediately after cold rolling (primary cold rolling) or without cold rolling. This intermediate annealing has the effect of recrystallizing the material, decomposing and subdividing the structure formed by hot rolling, and also increasing the solid solubility. The temperature rise rate is 100 ° C./min or more and the material arrival temperature is 430 ° C. or more. If the rate of temperature increase is less than 100 ° C./min, coarse crystal grains are likely to be formed, and there is a risk of causing rough skin resistance and deterioration of ridging resistance. If material arrival temperature is less than 430 degreeC, there is little effect which raises a solid solubility and a moldability and bake hardenability will fall. The holding at the material arrival temperature above 430 ° C. is not particularly limited, but it is usually not holding or holding for 5 minutes or less. Further, the cooling rate after the intermediate annealing is not particularly limited, but it is usually desirable to set the cooling rate to 100 ° C./min or more in the same manner as the heating rate from the viewpoint of productivity.

熱間圧延後に冷間圧延(一次冷間圧延)を挟んで中間焼鈍を施す場合の一次冷間圧延の圧延率は特に限定しないが、通常は5〜85%程度が望ましい。   Although the rolling rate of primary cold rolling is not particularly limited when intermediate annealing is performed with cold rolling (primary cold rolling) sandwiched after hot rolling, it is usually preferably about 5 to 85%.

以上のようにして、熱間圧延後、冷間圧延を挟んでもしくは挟まずに中間焼鈍を施した後、さらに30%以上の圧延率で最終冷間圧延を施して所定の板厚とする。この最終冷間圧延は、板に歪みを蓄積させ、その後の溶体化処理における結晶粒の微細化に効果があるだけではなく、最終板の結晶方位の形成にも一定の影響を及ぼす。最終冷間の圧延率が30%未満では、この発明で規定する結晶粒度と結晶粒方位密度が得られないおそれがある。最終冷間圧延の圧下率上限は特に定めないが通常は50%程度である。 As described above, after hot rolling, intermediate annealing is performed with or without cold rolling, and then final cold rolling is performed at a rolling rate of 30% or more to obtain a predetermined plate thickness. This final cold rolling not only has an effect on accumulating strain in the plate and refines the crystal grains in the subsequent solution treatment, but also has a certain influence on the formation of crystal orientation of the final plate. If the final cold rolling ratio is less than 30%, the crystal grain size and grain orientation density specified in the present invention may not be obtained. Although the upper limit of the rolling reduction of the final cold rolling is not particularly defined, it is usually about 50%.

冷間圧延後には、溶体化処理を行なうが、この発明で対象とするAl−Mg−Si系もしくはAl−Mg−Si−Cu系合金では、480℃以上の温度での溶体化処理が必要である。この溶体化処理は、MgSi、単体Si等をマトリックスに固溶させ、これにより焼付硬化性を付与して塗装焼付後の強度向上を図るために重要な工程である。またこの工程は、MgSi、単体Si粒子等の固溶により第2相粒子の分布密度を低下させて、延性と曲げ性を向上させるためにも寄与し、さらには再結晶により最終的に所要の結晶方位を得て、良好な成形性、良好な耐肌荒れ性、良好な耐リジング性を得るためにも重要な工程である。 After cold rolling, a solution treatment is performed. However, a solution treatment at a temperature of 480 ° C. or higher is required for the Al—Mg—Si-based or Al—Mg—Si—Cu-based alloy targeted in the present invention. is there. This solution treatment is an important step for solid-dissolving Mg 2 Si, simple substance Si, etc. in the matrix, thereby imparting bake hardenability and improving the strength after paint baking. This process also contributes to lowering the distribution density of the second phase particles by solid solution of Mg 2 Si, simple substance Si particles, etc., improving ductility and bendability, and finally by recrystallization. This is an important step for obtaining a desired crystal orientation and obtaining good moldability, good skin roughness resistance and good ridging resistance.

なお特に溶体化効果を重視する場合は、溶体化処理温度は500℃以上とすることが好ましい。一方溶体化処理温度の上限は特に規定しないが、共晶融解の発生のおそれや再結晶粒粗大化等を考慮して、通常は590℃以下とすることが望ましい。また溶体化処理の時間は特に規制しないが、通常は5分を越えれば溶体化効果が飽和し、経済性を損なうばかりではなく、結晶粒の粗大化のおそれもあるから、溶体化処理の時間は5分以内が望ましい。   In particular, when emphasizing the solution effect, the solution treatment temperature is preferably 500 ° C. or higher. On the other hand, the upper limit of the solution treatment temperature is not particularly defined, but it is usually preferably 590 ° C. or less in consideration of the possibility of eutectic melting and coarsening of recrystallized grains. The solution treatment time is not particularly limited. However, if it exceeds 5 minutes, the solution effect is saturated, not only the economic efficiency is impaired, but also the crystal grains may be coarsened. Is preferably within 5 minutes.

溶体化処理後の冷却については、冷却中にMg2Siあるいは単体Siなどが粒界に多量に析出することを防止するため、100℃/min以上の冷却速度で、150℃以下の温度域まで冷却(焼入れ)する必要がある。ここで、溶体化処理後の冷却速度が100℃/min未満では、プレス成形性、特に曲げ加工性が低下すると同時に、焼付硬化性が低下して塗装焼付時の充分な強度向上が望めなくなる。 Regarding cooling after solution treatment, in order to prevent a large amount of Mg 2 Si or simple substance Si from being precipitated at the grain boundaries during cooling, the cooling rate is 100 ° C./min or higher and the temperature range is 150 ° C. or lower. It needs to be cooled (quenched). Here, when the cooling rate after the solution treatment is less than 100 ° C./min, press formability, particularly bending workability is lowered, and at the same time, bake hardenability is lowered, and sufficient strength improvement at the time of coating baking cannot be expected.

溶体化処理後、必要に応じて安定化処理を行なっても良い。すなわち、成形性よりも焼付け硬化性(BH性)を重視する場合には、溶体化処理後、100℃/min以上の冷却速度で50℃以上150℃未満の温度域内まで冷却(焼入れ)した後、50℃未満の温度域(室温)まで温度降下しないうちに、この温度範囲内(50〜150℃未満)で安定化処理を行なうことが好ましい。この安定化処理における50〜150℃未満の温度域での保持時間は特に限定しないが、通常は1時間以上保持することが望ましく、またその温度範囲内で1時間以上かけて冷却(徐冷)しても良い。   After the solution treatment, a stabilization treatment may be performed as necessary. That is, when bake hardenability (BH property) is more important than moldability, after solution treatment, after cooling (quenching) to a temperature range of 50 ° C. or more and less than 150 ° C. at a cooling rate of 100 ° C./min or more. The stabilization treatment is preferably performed within this temperature range (less than 50 to 150 ° C.) before the temperature falls to a temperature range (room temperature) of less than 50 ° C. The holding time in the temperature range of 50 to less than 150 ° C. in this stabilization treatment is not particularly limited, but normally it is desirable to hold for 1 hour or longer, and cooling (slow cooling) over 1 hour or more within that temperature range. You may do it.

一方、焼付け硬化性よりも成形性、特にプレス成形性を重視する場合には、安定化処理を行なうことなく、溶体化処理後の冷却過程で50℃未満の温度域まで冷却し、0〜50℃の温度域で放置することが好ましい。   On the other hand, when emphasizing formability, particularly press formability, rather than bake hardenability, the solution is cooled to a temperature range of less than 50 ° C. in the cooling process after solution treatment without performing stabilization treatment, and 0-50 It is preferable to leave in a temperature range of ° C.

ここで、溶体化処理後、100℃/min以上の高い平均冷却速度で50℃未満の室温に冷却した場合には、室温クラスターが生成されるが、この室温クラスターは強度に寄与するG.P.ゾーンに移行しにくいため、塗装焼付硬化性には不利となるが、延性の低下が小さくなるため、プレス成形性には有利となる。一方、溶体化処理後に150℃以上の温度範囲に冷却してそのまま保持した場合には、G.P.ゾーンあるいは安定相が生成され、成形前の素材強度が高くなり過ぎて、ヘム加工性やプレス成形性が劣化し、また耐室温経時変化性も劣化するおそれがある。したがってヘム加工性、プレス成形性と塗装焼付硬化性、および耐室温経時変化性のバランスの観点から、前記条件の溶体化処理−焼入れ、溶体化処理−焼入れ−安定化処理を選択する。   Here, after solution treatment, when cooled to a room temperature of less than 50 ° C. at a high average cooling rate of 100 ° C./min or more, a room temperature cluster is generated, and this room temperature cluster contributes to strength. P. Since it is difficult to shift to the zone, it is disadvantageous for paint bake hardenability, but since the decrease in ductility is small, it is advantageous for press formability. On the other hand, when the solution is cooled to a temperature range of 150 ° C. or higher and kept as it is after the solution treatment, P. A zone or a stable phase is generated, the strength of the material before molding becomes too high, and the hemmability and press formability may deteriorate, and the room temperature aging resistance may also deteriorate. Therefore, the solution treatment-quenching, solution treatment-quenching-stabilization treatment under the above conditions is selected from the viewpoint of balance between hemmability, press moldability, paint bake hardenability, and room temperature aging resistance.

さらに、溶体化処理を施して50℃未満の温度域に焼入れ、0〜50℃温度域で放置した後には、改めて180〜280℃で復元処理を行なっても良い。すなわち、50℃未満の室温に冷却して形成される室温クラスターは、強度に寄与するG.P.ゾーンに移行しにくいため、塗装焼付硬化性には不利となるが、180〜280℃の短時間(望ましくは5分以内)の熱処理(復元処理)を施すことにより、塗装焼付硬化性を回復させて、曲げ加工性を向上させる効果が得られる。   Furthermore, after performing solution treatment and quenching in a temperature range of less than 50 ° C. and leaving it in a temperature range of 0 to 50 ° C., a restoration treatment may be performed again at 180 to 280 ° C. That is, a room temperature cluster formed by cooling to a room temperature of less than 50 ° C. contributes to strength. P. Although it is difficult to shift to the zone, it is disadvantageous for paint bake hardenability, but by applying heat treatment (restoration treatment) for a short time (preferably within 5 minutes) at 180 to 280 ° C, the paint bake hardenability is recovered. Thus, the effect of improving the bending workability can be obtained.

以下にこの発明の実施例を比較例とともに記す。なお以下の実施例は、この発明の効果を説明するためのものであり、実施例記載のプロセスおよび条件がこの発明の技術的範囲を制限するものではない。   Examples of the present invention will be described below together with comparative examples. The following examples are for explaining the effects of the present invention, and the processes and conditions described in the examples do not limit the technical scope of the present invention.

表1に示すこの発明成分組成範囲内の合金記号A1、A2の合金について、それぞれ常法に従って溶製し、DC鋳造法によりスラブに鋳造した。
Alloys having the alloy symbols A1 and A2 within the composition range of the present invention shown in Table 1 were melted in accordance with conventional methods and cast into slabs by DC casting.

得られた各スラブに対して530℃、5hの条件で均質化処理を施した。均質化処理後、5℃/minの平均冷却速度でスラブを200℃以下に冷却した。その後、熱間圧延工程に供し、表2に示す条件で熱間圧延を行なった後、一次冷間圧延を行なってから、もしくは一次冷間圧延を行なわずに中間焼鈍を施し、さらに最終冷間圧延を行なってから、溶体化処理を行ない、800℃/minの平均冷却速度で冷却(焼入れ)した。その後、一部のものは安定化処理を施し、されに一部については復元処理を施した。   Each obtained slab was homogenized at 530 ° C. for 5 hours. After the homogenization treatment, the slab was cooled to 200 ° C. or lower at an average cooling rate of 5 ° C./min. Then, after subjecting to a hot rolling process and performing hot rolling under the conditions shown in Table 2, after performing primary cold rolling or without performing primary cold rolling, intermediate annealing is performed, and further, the final cold After rolling, solution treatment was performed, and cooling (quenching) was performed at an average cooling rate of 800 ° C./min. Thereafter, some were subjected to stabilization treatment, and some were subjected to restoration treatment.

最終的に得られたアルミニウム合金板(製品板)については、次のようにして集合組織(結晶方位密度)を調べた。   The finally obtained aluminum alloy plate (product plate) was examined for texture (crystal orientation density) as follows.

すなわち、厚さ1mmの板を用いて、表面から板厚1/4深さの位置をX線の測定面とし、X線回折装置を用いて、X線回折のシェルツ反射法により、{100}、{110}、{111}の不完全極点図を測定し、これらを元に三次元結晶方位解析(ODF)を行なって調べた。またこれらの解析においては、アルミニウム粉末から作られたランダム結晶方位を有する試料を測定して得たデータを{100}、{110}、{111}極点図の解析の際に使う規格化ファイルとし、これによりランダム方位を有する試料に対する倍数として各種方位密度を求めた。なおこの発明において、結晶方位密度は全て三次元結晶方位解析(ODF)に基づくものである。またここで、キューブ(Cube)方位は、{001}<100>を代表方位とし、N方位は、{001}<410>を代表方位とし、さらにG方位は、{027}<100>を代表方位とした。   That is, using a plate having a thickness of 1 mm, the position at a depth of ¼ from the surface is the X-ray measurement surface, and using an X-ray diffractometer, the X-ray diffraction Schertz reflection method is used to {100} , {110}, {111} incomplete pole figures were measured, and based on these, three-dimensional crystal orientation analysis (ODF) was performed and examined. In these analyses, the data obtained by measuring a sample having a random crystal orientation made from aluminum powder is used as a standardized file for analysis of {100}, {110}, {111} pole figures. Thus, various orientation densities were obtained as multiples of the sample having a random orientation. In this invention, the crystal orientation density is all based on three-dimensional crystal orientation analysis (ODF). Also, here, the cube orientation is represented by {001} <100>, the N orientation is represented by {001} <410>, and the G orientation is represented by {027} <100>. Orientation.

なお、通常は上記方位を中心に一定角度を持つ方位分散が存在するため、この発明では、上記方位まわり5°回転範囲の中にある最大方位密度を取ってそれぞれ上記方位密度の代表値とした。   In addition, since there is usually azimuth dispersion having a certain angle centered on the azimuth, in the present invention, the maximum azimuth density in the 5 ° rotation range around the azimuth is taken as a representative value of the azimuth density. .

このような各結晶方位密度測定結果を表4に示す。   Table 4 shows the measurement results of each crystal orientation density.

また最終板については、その結晶粒度を次のようにして調べた。   The final plate was examined for crystal grain size as follows.

すなわち、板の圧延方向RDと板面法線NDで構成するRD−ND断面においてEBSP(EBSD)法によってマッピングした画像をもとに切断法でASTMナンバーを算出した。ここで、ミスオリエンテーション5°以上の結晶境界線を結晶粒界とみなした。その結果を表4中に示す。   That is, the ASTM number was calculated by the cutting method based on the image mapped by the EBSP (EBSD) method in the RD-ND cross section constituted by the plate rolling direction RD and the plate surface normal ND. Here, a crystal boundary line with a misorientation of 5 ° or more was regarded as a crystal grain boundary. The results are shown in Table 4.

さらに前述のようにして得られた各板について、室温経時変化を考慮して室温(25℃)に1ヶ月放置した後、塗装焼付前の板について、引張試験による強度評価、カップ絞り試験による耳率、リジングマーク評価、曲げ試験によるヘム加工性評価を行なった。さらにそれぞれ2%ストレッチ後、170℃×20分の塗装焼付(ベーク)処理を施し、引張試験を行なって、機械的強度として0.2%耐力値を測定した。これらの結果を表4、表5中に示す。なお各測定方法、評価方法は次の通りである。   Further, each plate obtained as described above was left at room temperature (25 ° C.) for one month in consideration of room temperature aging, and then the strength of the plate before paint baking was evaluated by the tensile test and the ear by the cup drawing test. Rate, ridging mark evaluation, and hemmability evaluation by bending test. Further, after stretching each 2%, a coating baking (baking) treatment was performed at 170 ° C. for 20 minutes, a tensile test was performed, and a 0.2% proof stress value was measured as a mechanical strength. These results are shown in Tables 4 and 5. Each measurement method and evaluation method are as follows.

耳率測定:
板に潤滑油を塗布した後、ポンチ径φ32mm、ブランク径φ62mm、しわ押さえ100kgの条件でカップに絞り、そのカップの耳率を調べた。なおここで耳率の方向は、圧延方向を基準にした0°方向、90°方向で示す。
Ear rate measurement:
After applying lubricating oil to the plate, the cup was squeezed under the conditions of a punch diameter of 32 mm, a blank diameter of 62 mm, and a wrinkle holding force of 100 kg, and the ear ratio of the cup was examined. Here, the direction of the ear rate is indicated by a 0 ° direction and a 90 ° direction based on the rolling direction.

ヘム加工性の評価:
材料の圧延方向に対して板面内0°、45°、90°三方向に曲げ試験片を採取し、5%ストレッチしてから、曲げ半径R0.5mm、180°曲げを行ない、目視により割れの発生の有無を評価した。ここで○印は割れ無しを、また×印は割れ有りを示す。
Hem processability evaluation:
Bending specimens are collected in three directions of 0 °, 45 °, and 90 ° within the plate surface relative to the rolling direction of the material, stretched 5%, bent at a bending radius of 0.5 mm and 180 °, and visually cracked. The presence or absence of occurrence was evaluated. Here, a circle indicates that there is no crack, and a cross indicates that there is a crack.

リジング・マークと肌荒れの発生評価:
圧延方向に対して45°をなす方向に沿ってJIS5号引張試験を採取し、10%ストレッチを行ない、表面に形成される圧延方向に沿う筋(凹凸)と肌荒れを目視で判定した。○印は筋なし、肌荒れなし、△印は中程度の筋と肌荒れ状態を示し、×印は筋と肌荒れが強い状態を示す。ここで筋と肌荒れが中程度でも、自動車用外板の外観として不適となるおそれがある。
Ridging marks and rough skin evaluation:
A JIS No. 5 tensile test was taken along a direction forming 45 ° with respect to the rolling direction, 10% stretching was performed, and lines (unevenness) along the rolling direction formed on the surface and rough skin were visually determined. ○ indicates no streak and no rough skin, Δ indicates a medium streak and rough skin, and x indicates a strong streak and rough skin. Here, even if the lines and the roughness of the skin are moderate, there is a possibility that the appearance of the outer plate for automobiles becomes unsuitable.

Figure 0005415016
Figure 0005415016

Figure 0005415016
Figure 0005415016

Figure 0005415016
Figure 0005415016

Figure 0005415016
Figure 0005415016

Figure 0005415016
Figure 0005415016

製造番号1、2は、いずれも合金の成分組成がこの発明で規定する範囲内であって、かつ製造プロセス条件もこの発明で規定する範囲内であり、最終板の結晶方位密度条件等もすべてこの発明で規定する条件を満たしたものであるが、これらの場合は、強度、伸び異方性が小さく、ヘム加工性が優れ、耐肌荒れ性と耐リジング性が良好である。またこれらのうち、製造番号1で、焼付硬化性が高く、塗装焼付時に充分な焼付硬化性を示し、一方製造番号2では、焼付け硬化性が低いものの、成形性の指標である伸びが優れていた。なお、製造番号1は安定化処理を施す代わりに焼入れ温度100℃から50℃までの温度範囲を平均冷却速度5.5℃/h(すなわち100℃から50℃の間の滞留時間9.1時間)で冷却したものである。
Production numbers 1 and 2 are both within the range specified by the present invention for the component composition of the alloy, and the manufacturing process conditions are also within the range specified by the present invention. The conditions specified in the present invention are satisfied, but in these cases, the strength and elongation anisotropy are small, the heme workability is excellent, and the rough skin resistance and the ridging resistance are good. Also among these, the production number 1, high bake with curability, showed sufficient bake hardenability during baking, while the serial number 2, although low bake hardenability, elongation is an indicator of formability It was excellent. The production number 1 is a temperature range from a quenching temperature of 100 ° C. to 50 ° C. instead of a stabilization treatment, and an average cooling rate of 5.5 ° C./h (that is, a residence time between 100 ° C. and 50 ° C. is 9.1 hours). ).

これに対し製造番号3〜6は、いずれも合金の成分組成はこの発明で規定する範囲内であるが、製造プロセス条件のいずれかがこの発明の範囲外であったものである。そしてこれらのうち、製造番号3では、結晶方位密度、耳率がこの発明で規定する条件を満たさず、また肌荒れ不良、強度と伸びの異方性も認められた。また製造番号4、5の場合は、強度と伸びの異方性が小さいが、ヘム加工性が劣り、耐肌荒れ性と耐リジング特性が若干不良となった。さらに製造番号6の場合は、熱間圧延時の最大圧下が小さく、最終の冷間圧延率も低かったため、結晶粒が粗く、耐肌荒れ性が著しく劣化し、またヘム加工性も劣るとともに、耐リジング性もさほど良好ではなかった。 On the other hand, in production numbers 3 to 6 , all of the alloy component compositions are within the range defined in the present invention, but any of the production process conditions is out of the scope of the present invention. And among these, in the production number 3 , the crystal orientation density and the ear ratio did not satisfy the conditions specified in the present invention, and the rough skin and the anisotropy of strength and elongation were also observed. In the case of production numbers 4 and 5 , the anisotropy of strength and elongation was small, but the hem workability was inferior, and the rough skin resistance and ridging resistance were slightly poor. Further, in the case of production number 6 , since the maximum reduction during hot rolling was small and the final cold rolling rate was low, the crystal grains were rough, the rough skin resistance was remarkably deteriorated, the hemming property was inferior, and The ridging property was not so good.

Claims (2)

Mg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Fe0.03〜1.0%、Ti0.005〜0.3%のうちから選ばれた1種または2種以上を含有し、さらにCuが1.5%以下に規制され、残部がAlおよび不可避的不純物よりなるアルミニウム合金が素材とされ、板に存在する結晶粒のキューブ方位密度をC、板面法線(以下「ND」と記す)を軸にキューブ方位から回転した方位のうち{001}<410>方位(以下「ND回転キューブ方位」と記す)の密度をNとして、圧延方向(以下「RD」と記す)を軸にキューブ方位から回転した方位のうち{027}<100>方位(以下「RD回転キューブ方位」と記す)の密度をGとして、次の(1)〜(5)式(各方位密度C、N、Gの数値はすべてランダム結晶方位密度に対する倍数で表す)
C≦7.1 ・・・(1)
N≦4.6 ・・・(2)
0.65≦N/C<1 ・・・(3)
G≦3.5 ・・・(4)
0.38≦G/C<1 ・・・(5)
を満たし、さらに耳率が7%以下、結晶粒度がASTMナンバーで5以上であることを特徴とする、耐肌荒れ性と耐リジング性に優れた成形加工用アルミニウム合金板。
Mg 0.2-1.5% (mass%, the same shall apply hereinafter), Si 0.3-2.0%, Mn 0.03-0.6%, Cr 0.01-0.4%, Zr0.01 ~ 0.4%, V 0.01 ~ 0.4%, Fe 0.03 ~ 1.0%, Ti 0.005 ~ 0.3% one or more selected from among, further containing Cu Is controlled to 1.5% or less, and the balance is made of an aluminum alloy composed of Al and inevitable impurities. The cube orientation density of crystal grains existing in the plate is C, and the plate surface normal (hereinafter referred to as “ND”). ) With the density of {001} <410> orientation (hereinafter referred to as “ND rotating cube orientation”) as N, and the rolling direction (hereinafter referred to as “RD”) as the axis. Of the orientations rotated from the orientation, the {027} <100> orientation (hereinafter “ The density of D rotation described as cube orientation ") as G, all of the following (1) to (5) below (the orientation density C, N, figures G represents a multiple for a random crystal orientation density)
C ≦ 7.1 (1)
N ≦ 4.6 (2)
0.65 ≦ N / C <1 (3)
G ≦ 3.5 (4)
0.38 ≦ G / C <1 (5)
An aluminum alloy sheet for forming with excellent skin roughness resistance and ridging resistance, characterized by satisfying the above requirements, having an ear ratio of 7% or less and a crystal grain size of 5 or more in ASTM number.
請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、
アルミニウム合金の鋳塊に480℃以上の温度で均質化処理を行ない、均質化処理後450℃未満の温度域に50℃/h以上の冷却速度で冷却し、続いて350℃未満、200℃以上の温度域で熱間圧延を開始し、その熱間圧延過程において、板厚200mmの段階から熱間圧延終了板厚の段階までの間で少なくとも1回は1パスの圧延率が40%以上の高圧下を施して、350℃未満の温度で熱間圧延を終了し、その後、冷間圧延を挟んで、もしくは冷間圧延を挟まずに、昇温速度が100℃/min以上でかつ材料到達温度が430℃以上の中間焼鈍を行ない、冷却後、さらに30%以上の圧延率で最終冷間圧延を施して所定の板厚とし、その後、480℃以上の温度での溶体化処理を行なってから、100℃/min以上の平均冷却速度で150℃未満の温度域まで冷却することを特徴とする、耐肌荒れ性と耐リジング性に優れた成形加工用アルミニウム合金板の製造方法。
In manufacturing the aluminum alloy plate for forming according to claim 1 ,
The aluminum alloy ingot is homogenized at a temperature of 480 ° C. or higher, and after the homogenization, cooled to a temperature range of less than 450 ° C. at a cooling rate of 50 ° C./h or higher, followed by less than 350 ° C. and 200 ° C. or higher. In the hot rolling process, the rolling rate of one pass is 40% or more at least once from the stage of the sheet thickness 200 mm to the stage of the finished sheet thickness in the hot rolling process. Apply high pressure, finish hot rolling at a temperature of less than 350 ° C., and then reach the material with a temperature increase rate of 100 ° C./min or higher with or without cold rolling. Intermediate annealing at a temperature of 430 ° C. or higher is performed, and after cooling, a final cold rolling is performed at a rolling rate of 30% or higher to obtain a predetermined thickness, and then a solution treatment at a temperature of 480 ° C. or higher is performed. To an average cooling rate of 100 ° C./min or more In up to a temperature range below 0.99 ° C. characterized by cooling, surface roughening resistance and anti-ridging excellent production method of molding an aluminum alloy plate resistance.
JP2008106617A 2008-04-16 2008-04-16 Aluminum alloy plate for forming and method for producing the same Active JP5415016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106617A JP5415016B2 (en) 2008-04-16 2008-04-16 Aluminum alloy plate for forming and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106617A JP5415016B2 (en) 2008-04-16 2008-04-16 Aluminum alloy plate for forming and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009256722A JP2009256722A (en) 2009-11-05
JP5415016B2 true JP5415016B2 (en) 2014-02-12

Family

ID=41384503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106617A Active JP5415016B2 (en) 2008-04-16 2008-04-16 Aluminum alloy plate for forming and method for producing the same

Country Status (1)

Country Link
JP (1) JP5415016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040356A1 (en) * 2017-08-21 2019-02-28 Novelis Inc. Aluminum alloy products having selectively recrystallized microstructure and methods of making
JP6688828B2 (en) * 2018-03-30 2020-04-28 株式会社神戸製鋼所 Aluminum alloy plate for automobile structural member, automobile structural member and method for manufacturing aluminum alloy plate for automobile structural member
KR20240058902A (en) * 2021-09-09 2024-05-03 노벨리스 인크. Aluminum alloy article with low roping and method of making the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557953B2 (en) * 1999-05-25 2004-08-25 日本軽金属株式会社 Aluminum alloy sheet for precision machining and method of manufacturing the same
JP3845312B2 (en) * 2002-01-31 2006-11-15 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP2003268475A (en) * 2002-03-12 2003-09-25 Sky Alum Co Ltd Aluminum alloy sheet for forming, and manufacturing method therefor
JP4634249B2 (en) * 2005-08-05 2011-02-16 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP2007169740A (en) * 2005-12-22 2007-07-05 Kobe Steel Ltd Aluminum alloy sheet having excellent formability and its production method
JP2008231475A (en) * 2007-03-19 2008-10-02 Furukawa Sky Kk Aluminum alloy sheet for forming workpiece, and producing method therefor

Also Published As

Publication number Publication date
JP2009256722A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
JP6208389B1 (en) Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance
JP4634249B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2008303449A (en) Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming
JP4602195B2 (en) Method for producing aluminum alloy sheet for forming
JP2009173972A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4200082B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5415016B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2010116594A (en) Al-Mg-Si-BASED ALUMINUM ALLOY SHEET SUPERIOR IN BENDABILITY
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
JP4164437B2 (en) Method for producing aluminum alloy sheet for forming
JP6581347B2 (en) Method for producing aluminum alloy plate
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
JP6768568B2 (en) Aluminum alloy plate with excellent press formability, rigging mark property, and BH property
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP4263073B2 (en) Aluminum alloy plate for forming and method for producing the same
JP6383179B2 (en) Aluminum alloy plate excellent in ridging resistance and method for producing the same
JP2005082827A (en) Aluminum alloy sheet for forming and its production method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100604

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5415016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250