JP5367250B2 - Aluminum alloy plate for forming and method for producing the same - Google Patents

Aluminum alloy plate for forming and method for producing the same Download PDF

Info

Publication number
JP5367250B2
JP5367250B2 JP2007279043A JP2007279043A JP5367250B2 JP 5367250 B2 JP5367250 B2 JP 5367250B2 JP 2007279043 A JP2007279043 A JP 2007279043A JP 2007279043 A JP2007279043 A JP 2007279043A JP 5367250 B2 JP5367250 B2 JP 5367250B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
rolling
aluminum alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007279043A
Other languages
Japanese (ja)
Other versions
JP2009108342A (en
Inventor
旭 日比野
宣仁 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2007279043A priority Critical patent/JP5367250B2/en
Publication of JP2009108342A publication Critical patent/JP2009108342A/en
Application granted granted Critical
Publication of JP5367250B2 publication Critical patent/JP5367250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al alloy sheet for forming-coating and baking which is small in bending anisotropy, and elongation anisotropy, is satisfactory in the balance of press formability and bending workability, is excellent in ridging resistance, allows impartation of satisfactory baking hardenability, and high press formability, and is small in ambient temperature aging. <P>SOLUTION: The Al alloy sheet is made from Al-Mg-Si-based or Al-Ag-Si-Cu-based alloy as a raw material, and satisfies D1&gt;60, D2&gt;5, D2/D3&gt;1.2, D4&gt;5, when a cube orientation density is defined as D1, ND rotary cube orientation density as D2, a Goss orientation density as D3, and total of Cu, S, Bs orientation densities as D4, 0, and 90&deg; ear rate as &ge;3% and a crystal grain size ASTM No. &ge;4.5. Aa a manufacturing method, the Al alloy sheet is manufactured under conditions of performing cooling, after homogenization treatment, by rapid cooling at &ge;100&deg;C/h down to a temperature area of &ge;150 and &lt;450&deg;C, then in succession, allowing the sheet to stand for &ge;0.5 hour in this temperature area, and further subjecting the sheet to hot rolling at starting temperature of &le;460&deg;C at &ge;1 times of passes of &ge;40% in rolling rate in a stage of a sheet thickness 200 to 20 mm, then to cold rolling of &ge;30% without annealing and to solution heat treatment. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、自動車ボディシート、ボディパネルの如く各種自動車、船舶、航空機等の部材・部品、あるいは建築材料、構造材料、そのほか各種機械器具、家電製品やその部品等の素材として、成形加工および塗装焼付を施して使用されるAl−Mg−Si系もしくはAl−Mg−Si−Cu系のアルミニウム合金板およびその製造方法に関するものであり、曲げ異方性、強度異方性が小さく、プレス成形性と曲げ加工性のバランスが良好で、特に中間焼鈍を行なわなくても耐リジング性が優れ、さらには用途に応じて良好な焼付け硬化性および高いプレス成形性を付与することができ、また室温経時変化も小さい成形加工用アルミニウム合金板およびその製造方法に関するものである。   The present invention relates to parts and parts of various automobiles, ships, aircraft, etc., such as automobile body seats and body panels, or building materials, structural materials, various other machinery and equipment, home appliances, parts thereof, and the like. The present invention relates to an Al-Mg-Si-based or Al-Mg-Si-Cu-based aluminum alloy plate used by baking and a method for producing the same, and has low bending anisotropy and strength anisotropy, and press formability. The balance of bending workability is good, especially ridging resistance is excellent without intermediate annealing, and good bake hardenability and high press formability can be imparted depending on the application. The present invention relates to an aluminum alloy plate for forming and a method for producing the same with little change.

従来自動車のボディシートとしては、主として冷延鋼板を使用することが多かったが、最近では車体軽量化等の観点から、アルミニウム合金圧延板を使用することが多くなっている。ところで自動車のボディシートはプレス加工を施して使用するところから、成形加工性が優れていること、アウターパネルとインナーパネルとを接合して一体化させるためなどにヘム曲げ加工を施して使用することが多いところから、成形性のうちでもヘム加工性が優れていることが要求される。また、成形加工時におけるリューダースマークやリジングマーク、肌荒れが発生しないことも要求される。さらに、塗装焼付を施して使用するのが通常であることから、成形性と強度のバランスにおいて、強度を重視する場合には、塗装焼付後に高強度が得られること、逆に成形性を重視する場合には、塗装焼付後の強度を若干犠牲にしても高いプレス成形性が得られることが要求される。そしてまたアルミニウム合金圧延板は鋼板に比べてコストが高いことから、低コストの製造技術が強く求められている。   Conventionally, as a body sheet of an automobile, a cold-rolled steel sheet has been mainly used, but recently, an aluminum alloy rolled sheet is frequently used from the viewpoint of reducing the weight of the vehicle body. By the way, automobile body sheets are used after being pressed, so that they have excellent molding processability, and are used with hem bending to join and integrate the outer panel and inner panel. Therefore, it is required that the hemmability is excellent among the moldability. In addition, it is also required that no Luders mark, ridging mark, and rough skin occur during molding. In addition, since it is usually used after painting and baking, when emphasizing strength in the balance between moldability and strength, high strength can be obtained after painting and baking, conversely, emphasizing moldability. In some cases, high press formability is required even if the strength after baking is slightly sacrificed. And since an aluminum alloy rolled sheet is expensive compared with a steel plate, low-cost manufacturing technology is strongly demanded.

従来このような自動車用ボディシート向けのアルミニウム合金としては、Al−Mg系合金のほか、時効性を有するAl−Mg−Si系合金もしくはAl−Mg−Si−Cu系合金が主として使用されている。これらの時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金は、塗装焼付前の成形加工時においては比較的強度が低くて成形性が優れている一方、塗装焼付時の加熱によって時効されて塗装焼付後の強度が高くなる利点を有するほか、リューダースマークが発生しにくい等の長所を有する。   Conventionally, as an aluminum alloy for an automobile body sheet, in addition to an Al—Mg alloy, an Al—Mg—Si alloy or an Al—Mg—Si—Cu alloy having aging properties is mainly used. . These aging Al-Mg-Si alloys and aging Al-Mg-Si-Cu alloys have relatively low strength and excellent formability during molding before coating baking, while coating baking. In addition to the advantage that it is aged by heating at the time and the strength after baking is increased, it also has the advantage that the Ruders mark is less likely to occur.

なお、ヘム曲げ性などの曲げ加工性向上に関する従来技術としては、Mg−Si系化合物の粒径と数などを制御する特許文献1の技術、また結晶粒界の方位差が15°以下の結晶粒界の割合を規制する特許文献2の技術等がある。
特開2002−356730号公報 特開2003−171726号公報
In addition, as a prior art regarding bending workability improvement, such as hem bendability, the technique of patent document 1 which controls the particle size and number, etc. of a Mg-Si type compound, and the crystal | crystallization whose orientation difference of a grain boundary is 15 degrees or less There is a technique of Patent Document 2 that regulates the ratio of grain boundaries.
JP 2002-356730 A JP 2003-171726 A

前述のような自動車用ボディシート向けの時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板についての従来の製造方法により得られた板では、最近の自動車用ボディシートに要求される特性を充分に満足させることは困難であった。   In the plate obtained by the conventional manufacturing method for the aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates for automobile body sheets as described above, it is required for the recent automobile body sheets. It has been difficult to fully satisfy the properties obtained.

すなわち、最近ではコストの一層の低減や材質の一層の向上等のために、自動車用ボディシートについては、従来よりも高性能でありながら低コストで製造する技術の開発が強く要求されている。しかしながら低コストを図りながらも、強度ならびに成形性(特にプレス成形性、ヘム曲げ性)、焼付硬化性(時効硬化性、すなわちBH性)、リジングマーク発生の抑制、常温経時変化の抑制性能、耐食性などの種々の要求性能を満足させる点については、従来の一般的な製造方法によって得られたAl−Mg−Si系、Al−Mg−Si−Cu系合金板では未だ不充分であった。   That is, recently, in order to further reduce the cost and further improve the material, there has been a strong demand for the development of a technology for manufacturing an automobile body seat at a low cost while having higher performance than before. However, while aiming at low cost, strength and formability (especially press formability, hem bendability), bake hardenability (age hardening, ie, BH property), suppression of ridging marks, room temperature deterioration with time, corrosion resistance The Al—Mg—Si-based and Al—Mg—Si—Cu-based alloy plates obtained by the conventional general manufacturing method are still insufficient for satisfying various required performances.

ここで、低コスト化の方策としては製造工程の一部を省くことが最も簡単であるが、従来の製造プロセスの一部を単純に省略しただけでは、低コスト化は図られても、上記の諸性能のうちのいくつかの性能の低下が懸念されることは当然である。   Here, as a cost reduction measure, it is easiest to omit a part of the manufacturing process, but even if a part of the conventional manufacturing process is simply omitted, the cost can be reduced. Of course, there is a concern about a decrease in some of these performances.

またここで、成形加工、特にヘム曲げ加工は、曲げ内径が1mm以下の180°曲げという過酷な曲げ加工であるため、良好なヘム曲げ性とプレス成形性とを両立させることが困難であるという問題があり、特に低コストの製造プロセスでリジングマークや肌荒れの発生を抑制することは極めて困難であった。   Here, the molding process, particularly the hem bending process, is a severe bending process of 180 ° bending with a bending inner diameter of 1 mm or less, and thus it is difficult to achieve both good hem bendability and press formability. There is a problem, and it has been extremely difficult to suppress the occurrence of ridging marks and rough skin particularly in a low-cost manufacturing process.

さらに従来の製造方法では、熱間圧延後から溶体化処理までの間に焼鈍工程を取り入れることが殆どであり、このこともコスト低減の障害となっていた。   Furthermore, in the conventional manufacturing method, the annealing process is almost always taken after the hot rolling until the solution treatment, and this is also an obstacle to cost reduction.

また塗装焼付については、省エネルギおよび生産性の向上、さらには高温に曝されることが好ましくない樹脂等の材料との併用などの点から、最近では、従来よりも焼付温度を低温化し、また焼付時間も短時間化する傾向が強まっている。しかしながら従来の一般的な製法により得られた時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板の場合、低温・短時間の塗装焼付処理では、塗装焼付時の硬化(焼付硬化)が不足し、塗装焼付後に充分な高強度が得難くなる問題があった。   Also, with regard to paint baking, recently, from the viewpoint of energy saving and productivity improvement, and combined use with materials such as resins that are not preferred to be exposed to high temperatures, recently, the baking temperature has been made lower than before. There is an increasing tendency to shorten the baking time. However, in the case of aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates obtained by the conventional general manufacturing method, curing at the time of coating baking (baking) There is a problem that it is difficult to obtain sufficient strength after baking.

ここで、従来の一般的な製法により得られた時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板では、高いプレス成形性を得ようとすれば、曲げ加工性(特にヘム曲げ性)が低下し、また、単純な工程省略で低コストプロセスを図ろうとすれば、リジングマークや肌荒れの抑制に極めて困難となる問題が生じる。   Here, in the aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates obtained by a conventional general manufacturing method, if high press formability is to be obtained, bending workability (especially (Hemm bendability) is reduced, and if a low-cost process is attempted by omitting a simple process, there arises a problem that it is extremely difficult to suppress ridging marks and rough skin.

また前記各特許文献のうち、特許文献1では、均質化処理とその後の冷却速度などの規制によって、化合物分散状態、特にMg−Si系化合物の粒径と数を調整することにより曲げ加工性などを改善することが提案されているが、この特許文献1の方法では、化合物分散状態を上述のように調整することができたとしても、最近の曲げ性に対する厳しい要求を充分に満足させることは困難であった。またこの特許文献1に記載されているような化合物の分散状態の調整だけでは、良好なヘム曲げ性とプレス成形性とを両立させるには不充分であった。また、表面品質への配慮、特にリジングマーク、肌荒れの抑制には不充分であった。   Of the above-mentioned patent documents, Patent Document 1 discloses bending workability by adjusting the compound dispersion state, in particular, the particle diameter and number of Mg-Si based compounds by regulation such as homogenization and subsequent cooling rate. In the method of Patent Document 1, even if the compound dispersion state can be adjusted as described above, it is possible to sufficiently satisfy the recent severe requirements for bendability. It was difficult. Further, just adjusting the dispersion state of the compound as described in Patent Document 1 is insufficient to achieve both good hem bendability and press formability. In addition, it was insufficient for consideration of surface quality, particularly for preventing ridging marks and rough skin.

一方特許文献2では、結晶粒間の方位差が15°以下である結晶粒界の割合を規制することにより曲げ加工性などを改善することが提案されており、確かにこの提案の方法では、曲げ加工性についてはある程度の改善効果が図られるが、本発明者らが実験・検討を重ねた結果、この方法の場合も、圧延板のあらゆる方向の曲げ性がすべて改善されるわけではないことが判明した。例えば、圧延方向に対し平行な方向、あるいは圧延方向に対し直交する方向の曲げ性の改善が図られても、圧延方向に対し45°をなす方向の曲げ性は改善されず、いわゆる曲げ異方性が生じるという問題があることが判明した。また、圧延方向に対して45°方向の伸びが高くても、圧延方向と平行な方向もしくは直角な方向の伸びが低くなったりして、伸びの異方性も顕著になる場合があり、そのためプレス成形性の低下も懸念されている。   On the other hand, in Patent Document 2, it is proposed to improve the bending workability by regulating the ratio of crystal grain boundaries in which the orientation difference between crystal grains is 15 ° or less. Although some improvement effect can be achieved with respect to bending workability, as a result of repeated experiments and examinations by the present inventors, the bendability in all directions of the rolled sheet is not improved even in this method. There was found. For example, even if the bendability in the direction parallel to the rolling direction or the direction perpendicular to the rolling direction is improved, the bendability in the direction of 45 ° with respect to the rolling direction is not improved. It turns out that there is a problem that sex occurs. Also, even if the elongation in the 45 ° direction with respect to the rolling direction is high, the elongation in the direction parallel to the rolling direction or in the direction perpendicular to the rolling direction may be low, and the anisotropy of the elongation may be significant. There is also concern about a decrease in press formability.

この発明は以上の事情を背景としてなされたもので、適切な強度を有するとともに、曲げ異方性、強度異方性が小さく、プレス成形性と曲げ加工性のバランスが良好で、特に中間焼鈍を行なわない低コスト製造プロセスでも耐リジング性が優れ、かつ用途に応じて、良好な焼付け硬化性および高いプレス成形性を付与することができ、また室温経時変化も小さい成形加工用アルミニウム合金板、およびそのような板を量産的規模で確実かつ安定して低コストで製造し得る方法を提供することを目的とするものである。   This invention was made against the background of the above circumstances, and has appropriate strength, bending anisotropy and strength anisotropy are small, and has a good balance between press formability and bending workability. An aluminum alloy sheet for forming that has excellent ridging resistance even in a low-cost manufacturing process that is not performed, can impart good bake hardenability and high press formability, and has little room temperature aging, and It is an object of the present invention to provide a method capable of manufacturing such a plate reliably, stably and at a low cost on a mass production scale.

前述のような課題を解決するべく本発明者等が種々実験・検討を重ねた結果、Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金の最終板の組織として、特定の方位、特にキューブ方位(立方体方位)の結晶方位密度を適切に高めると同時に、キューブ方位密度のみならず、ND回転キューブ、ゴスおよび圧延集合組織のβファイバーに属するCu、S、Bsの結晶方位密度をも、相互の関係のもとに適切なレベルに制御することによって、異方性を原因に生じるプレス加工性、ヘム加工性の劣化を防止することができ、また良好な焼付硬化性、耐室温経時変化性を得ることができるばかりでなく、耐リジングマーク、耐肌荒れの性能をも向上させ得ることを見出した。そしてまたこのような優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で確実かつ安定して低コストで製造し得るプロセス条件を見出し、この発明をなすに至ったのである。   As a result of repeated experiments and examinations by the present inventors to solve the above-mentioned problems, as a structure of the final plate of Al-Mg-Si-based or Al-Mg-Si-Cu-based alloy, a specific orientation, In particular, the crystal orientation density of the cube orientation (cube orientation) is appropriately increased, and at the same time, not only the cube orientation density but also the crystal orientation density of Cu, S, and Bs belonging to the ND rotating cube, goth, and β fiber of the rolled texture. By controlling to an appropriate level based on the mutual relationship, deterioration of press workability and hem workability caused by anisotropy can be prevented, and good bake hardenability and aging resistance at room temperature It has been found that not only can change be obtained, but also ridging marks and rough skin resistance can be improved. Further, the present inventors have found a process condition capable of manufacturing an aluminum alloy sheet for forming having such excellent performance on a mass production scale reliably, stably and at low cost, and has made the present invention.

また請求項2の発明の成形加工用アルミニウム合金板は、Mg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつTi0.005〜0.3%を単独でもしくはB500ppm以下とともに含有し、さらにMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Fe0.03〜1.0%、Zn0.03〜0.05%のうちから選ばれた1種または2種以上を含有し、さらにCuが1.5%以下に規制され、残部がAlおよび不可避的不純物よりなるアルミニウム合金が素材とされ、板に存在する結晶粒のキューブ方位密度をD1、板面法線(以下「ND」と記す)を軸にキューブ方位から回転した方位のうち{001}<730>方位(以下「ND回転キューブ方位」と記す)の密度をD2とし、圧延方向を軸にキューブ方位から45°回転した方位(以下「ゴス方位」と記す)の密度をD3とし、さらに圧延集合組織のβファイバーに属するCu、S、Bs方位密度の合計をD4として、次の(1)〜(4)式(各方位密度のD1、D2、D3、D4の数値はすべてランダム結晶方位密度に対する倍数を表す)
D1≧168.4 ・・・(1)
D2≧18.9 ・・・(2)
D2/D3≧7.5 ・・・(3)
D4≧9.1 ・・・(4)
を満たし、さらに0、90°耳率が3%以上、結晶粒径がASTMでNo.4.5以上であることを特徴とするものである。
The aluminum alloy sheet for forming according to the invention of claim 2 contains Mg 0.2 to 1.5% (mass%, the same shall apply hereinafter), Si 0.3 to 2.0%, and Ti 0.005 to 0.00. 3% alone or together with B500ppm or less, Mn 0.03-0.6%, Cr 0.01-0.4%, Zr 0.01-0.4%, V 0.01-0.4%, Fe0 0.03 to 1.0%, Zn 0.03 to 0.05% , one or more selected from among them, further Cu is regulated to 1.5% or less, the balance is Al and unavoidable An aluminum alloy made of impurities is used as a material, and the cube orientation density of crystal grains existing on the plate is D1, and {001} <of the orientations rotated from the cube orientation about the plate surface normal (hereinafter referred to as “ND”) 730> orientation (hereinafter referred to as “ND rotating cube The density of the orientation) is denoted by D2, the density of the orientation rotated 45 ° from the cube orientation with respect to the rolling direction as an axis (hereinafter referred to as the “Goss orientation”) is denoted by D3, and Cu belonging to the β fiber of the rolling texture, The sum of the S and Bs orientation densities is D4, and the following formulas (1) to (4) (the values of D1, D2, D3, and D4 for each orientation density all represent multiples of the random crystal orientation density)
D1 ≧ 168.4 (1)
D2 ≧ 18.9 (2)
D2 / D3 ≧ 7.5 (3)
D4 ≧ 9.1 (4)
Further, the 0, 90 ° ear ratio is 3% or more, and the crystal grain size is ASTM No. It is characterized by being 4.5 or more.

さらに請求項2の発明の成形加工用アルミニウム合金板の製造方法は、請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、前記成分組成のアルミニウム合金の鋳塊に480〜590℃の範囲内の温度で1時間以上の均質化処理を施し、その冷却過程において、先ず150℃以上450℃未満の温度範囲内のある温度(以後「第1冷却ポイント」と呼ぶ)まで100℃/h以上の冷却速度で急冷し、引続いて第1冷却ポイントから、その第1冷却ポイントよりも低くかつ150℃以上450℃未満の温度範囲内のある温度(以後「第2冷却ポイント」と呼ぶ)までを、冷却速度100℃未満/hの冷却速度で徐冷することによって、150℃以上450℃未満の温度範囲内に少なくとも0.5時間以上滞留させ、次に250℃以上450℃未満の温度で熱間圧延を開始し、かつ熱間圧延過程中における板厚200mmから20mmまでの段階で1パス当りの圧延率が40%以上の高圧下の圧延パスを少なくとも1回施し、得られた熱間圧延板に対し、焼鈍を行なうことなく30%以上の圧延率で冷間圧延を施した後、480℃以上の温度で溶体化処理を行なってから、100℃/min以上の平均冷却速度で150℃未満、50℃以上の温度域まで冷却し、引き続いて150℃未満、50℃以上の温度域内で1時間以上の安定化処理を行なうことを特徴とするものである。 Furthermore, in the manufacturing method of the aluminum alloy plate for forming according to the invention of claim 2, when the aluminum alloy plate for forming according to claim 1 is manufactured, the ingot of the aluminum alloy having the above composition is 480 to 590 ° C. A homogenization treatment is performed at a temperature within the range for 1 hour or more, and in the cooling process, first, a temperature within a temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “first cooling point”) is 100 ° C./h. Rapid cooling at the above cooling rate, followed by a certain temperature within a temperature range from 150 ° C. to less than 450 ° C. from the first cooling point (hereinafter referred to as “second cooling point”) Is kept at a temperature range of 150 ° C. or higher and lower than 450 ° C. for at least 0.5 hour by slowly cooling at a cooling rate of less than 100 ° C./h. The hot rolling is started at a temperature of less than 450 ° C. and at least one rolling pass under a high pressure at a rolling rate of 40% or more per pass in the stage from a sheet thickness of 200 mm to 20 mm during the hot rolling process. The hot-rolled sheet thus obtained was subjected to cold rolling at a rolling rate of 30% or higher without annealing, and then subjected to a solution treatment at a temperature of 480 ° C. or higher, and then 100 ° C./min. Cooling to a temperature range of less than 150 ° C. and 50 ° C. or more at the above average cooling rate, followed by stabilizing treatment for 1 hour or more in a temperature range of less than 150 ° C. and 50 ° C. or more. .

また請求項3の発明の成形加工用アルミニウム合金板の製造方法は、請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、前記成分組成のアルミニウム合金の鋳塊に480〜590℃の範囲内の温度で1時間以上の均質化処理を施し、その冷却過程において、先ず150℃以上450℃未満の温度範囲内のある温度(以後「第1冷却ポイント」と呼ぶ)まで100℃/h以上の冷却速度で急冷し、引続いて150℃以上450℃未満の範囲内の温度で維持することによって、その温度範囲内に少なくとも0.5時間以上滞留させ、次に250℃以上450℃未満の温度で熱間圧延を開始し、かつ熱間圧延過程中における板厚200mmから20mmまでの段階で1パス当りの圧延率が40%以上の高圧下の圧延パスを少なくとも1回施し、得られた熱間圧延板に対し、焼鈍を行なうことなく30%以上の圧延率で冷間圧延を施した後、480℃以上の温度で溶体化処理を行なってから100℃/min以上の平均冷却速度で150℃未満、50℃以上の温度域まで冷却し、引き続いて150℃未満、50℃以上の温度域内で1時間以上の安定化処理を行なうことを特徴とするものである。 The production method of molding an aluminum alloy plate of the invention of claim 3, in producing a molded aluminum alloy plate according to claim 1, said composition of the aluminum alloy ingot to the 480 to 590 ° C. A homogenization treatment is performed at a temperature within the range for 1 hour or more, and in the cooling process, first, a temperature within a temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “first cooling point”) is 100 ° C./h. By rapidly cooling at the above cooling rate and subsequently maintaining at a temperature in the range of 150 ° C. or higher and lower than 450 ° C., it is allowed to stay in that temperature range for at least 0.5 hours, and then 250 ° C. or higher and lower than 450 ° C. The number of rolling passes under high pressure with a rolling rate of 40% or more per pass is reduced in the stage from the thickness of 200 mm to 20 mm in the hot rolling process. The hot-rolled sheet obtained is subjected to cold rolling at a rolling rate of 30% or higher without annealing, and then subjected to a solution treatment at a temperature of 480 ° C. or higher and then 100 ° C. Cooling to a temperature range of less than 150 ° C. and 50 ° C. or more at an average cooling rate of / min or more, and subsequently performing stabilization treatment for 1 hour or more in a temperature range of less than 150 ° C. and 50 ° C. or more It is.

さらに請求項4の発明の成形加工用アルミニウム合金板の製造方法は、請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、前記成分組成のアルミニウム合金の鋳塊に480〜590℃の範囲内の温度で1時間以上の均質化処理を施し、その冷却過程において、先ず150℃以上450℃未満の温度範囲内のある温度(以後「第1冷却ポイント」と呼ぶ)まで100℃/h以上の冷却速度で急冷し、引続いて第1冷却ポイントから、その第1冷却ポイントよりも低くかつ150℃以上450℃未満の温度範囲内のある温度(以後「第2冷却ポイント」と呼ぶ)までを、冷却速度100℃未満/hの冷却速度で徐冷することによって、150℃以上450℃未満の温度範囲内に少なくとも0.5時間以上滞留させ、次に250℃以上450℃未満の温度で熱間圧延を開始し、かつ熱間圧延過程中における板厚200mmから20mmまでの段階で1パス当りの圧延率が40%以上の高圧下の圧延パスを少なくとも1回施し、得られた熱間圧延板に対し、焼鈍を行なうことなく30%以上の圧延率で冷間圧延を施した後、480℃以上の温度で溶体化処理を行なってから100℃/min以上の平均冷却速度で50℃未満の温度域まで冷却して放置することを特徴とするものである。 Method of manufacturing a molding aluminum alloy strip for the invention of claim 4, in producing a molded aluminum alloy plate according to claim 1, said composition of the aluminum alloy ingot to the 480-590 ° C. A homogenization treatment is performed at a temperature within the range for 1 hour or more, and in the cooling process, first, a temperature within a temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “first cooling point”) is 100 ° C./h. Rapid cooling at the above cooling rate, followed by a certain temperature within a temperature range from 150 ° C. to less than 450 ° C. from the first cooling point (hereinafter referred to as “second cooling point”) Is kept at a temperature range of 150 ° C. or higher and lower than 450 ° C. for at least 0.5 hour by slowly cooling at a cooling rate of less than 100 ° C./h. The hot rolling is started at a temperature of less than 450 ° C. and at least one rolling pass under a high pressure at a rolling rate of 40% or more per pass in the stage from a sheet thickness of 200 mm to 20 mm during the hot rolling process. The hot-rolled sheet obtained is subjected to cold rolling at a rolling rate of 30% or higher without annealing, and then subjected to a solution treatment at a temperature of 480 ° C. or higher and then 100 ° C./min or higher. It cools to the temperature range below 50 degreeC with the average cooling rate of, and is left to stand.

そしてまた請求項5の発明の成形加工用アルミニウム合金板の製造方法は、請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、前記成分組成のアルミニウム合金の鋳塊に480〜590℃の範囲内の温度で1時間以上の均質化処理を施し、その冷却過程において、先ず150℃以上450℃未満の温度範囲内のある温度(以後「第1冷却ポイント」と呼ぶ)まで100℃/h以上の冷却速度で急冷し、引続いて150℃以上450℃未満の範囲内の温度で維持することによって、その温度範囲内に少なくとも0.5時間以上滞留させ、次に250℃以上450℃未満の温度で熱間圧延を開始し、かつ熱間圧延過程中における板厚200mmから20mmまでの段階で1パス当りの圧延率が40%以上の高圧下の圧延パスを少なくとも1回施し、得られた熱間圧延板に対し、焼鈍を行なうことなく30%以上の圧延率で冷間圧延を施した後、480℃以上の温度で溶体化処理を行なってから100℃/min以上の平均冷却速度で50℃未満の温度域まで冷却して放置することを特徴とするものである。 And the manufacturing method of the aluminum alloy plate for shaping | molding of invention of Claim 5 is 480-590 degreeC in the ingot of the aluminum alloy of the said component composition in manufacturing the aluminum alloy plate for shaping | molding processing of Claim 1. In the cooling process, a homogenization treatment is performed at a temperature within a range of 150 ° C. to a temperature within a temperature range of 150 ° C. to less than 450 ° C. (hereinafter referred to as “first cooling point”). Quenching at a cooling rate of h or higher, and subsequently maintaining at a temperature in the range of 150 ° C. or higher and lower than 450 ° C., allowing it to stay in that temperature range for at least 0.5 hours, then 250 ° C. or higher and 450 ° C. Rolling under high pressure with a rolling rate of 40% or more per pass is started at a stage from a thickness of 200 mm to 20 mm during the hot rolling process. The hot-rolled sheet obtained at least once is subjected to cold rolling at a rolling rate of 30% or higher without annealing, and then subjected to a solution treatment at a temperature of 480 ° C. or higher. It is characterized by cooling to a temperature range of less than 50 ° C. at an average cooling rate of at least ° C./min and leaving it to stand.

さらにまた請求項6の発明の成形加工用アルミニウム合金板の製造方法は、請求項4もしくは請求項5に記載の成形加工用アルミニウム合金板の製造方法において、前記溶体化処理を480℃以上の温度で行なってから、100℃/min以上の平均冷却速度で50℃未満の温度域まで冷却して放置したのち、さらに180〜280℃の範囲内の温度で復元処理を行なうことを特徴とするものである。 Furthermore, the manufacturing method of the aluminum alloy plate for forming according to the invention of claim 6 is the method for manufacturing the aluminum alloy plate for forming according to claim 4 or 5 , wherein the solution treatment is performed at a temperature of 480 ° C or higher. And after cooling to a temperature range of less than 50 ° C. at an average cooling rate of 100 ° C./min or more, and then performing a restoration treatment at a temperature within the range of 180 to 280 ° C. It is.

この発明による成形加工用アルミニウム合金板は、強度異方性によるプレス成形性の低下、曲げ異方性によるヘム加工性の低下が少なく、またプレス成形性と曲げ加工性のバランスが良好で、しかも中間焼鈍工程がなくてもリジングマークや肌荒れの発生が抑制でき、さらには用途に応じて良好な塗装焼付硬化性、さらなる高いプレス成形性を付与することができ、また室温での経時変化も少なく、したがってプレス加工やヘム加工を施して塗装焼付け後に使用される自動車用ボディシート等に最適である。またこの発明の成形加工用アルミニウム合金板の製造方法によれば、上述のように優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で確実かつ安定して低コストで製造することができる。   The aluminum alloy sheet for forming according to the present invention has a small decrease in press formability due to strength anisotropy, a decrease in hemmability due to bending anisotropy, and a good balance between press formability and bending workability. Even without an intermediate annealing step, it is possible to suppress the occurrence of ridging marks and rough skin, and in addition, good paint bake hardenability and higher press formability can be imparted depending on the application, and there is little change over time at room temperature. Therefore, it is most suitable for automobile body sheets and the like that are used after painting and baking by pressing or hem processing. Further, according to the method for manufacturing a forming aluminum alloy plate of the present invention, the forming aluminum alloy plate having excellent performance as described above can be manufactured reliably and stably at a low cost on a mass production scale. it can.

この発明の成形加工用アルミニウム合金板は、Al−Mg−Si系合金もしくはAl−Mg−Si−Cu系合金、すなわちMg0.2〜1.5%、Si0.3〜2.0%を含有し、かつTi0.005〜0.3%を単独でもしくはB500ppm以下とともに含有し、さらにMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Fe0.03〜1.0%、Zn0.03〜0.05%のうちから選ばれた1種または2種以上を含有し、さらにCuが1.5%以下に規制され、残部がAlおよび不可避的不純物よりなる合金を素材とする。 Molding an aluminum alloy plate of the invention, A l-Mg-Si-based alloy or Al-Mg-Si-Cu-based alloy, ie Mg0.2~1.5%, Si0.3~2.0 And 0.005 to 0.3% of Ti alone or together with B500ppm or less, and Mn 0.03 to 0.6%, Cr 0.01 to 0.4%, Zr 0.01 to 0.4 %, V 0.01 to 0.4%, Fe 0.03 to 1.0%, Zn 0.03 to 0.05%, or one or more selected from Cu, and further Cu is 1.5 % is regulated in the following, it shall be the material an alloy balance of Al and unavoidable impurities.

このような素材合金の成分組成の限定理由について説明する。 The reasons for limiting the component composition of such Material alloy will be described.

Mg:
Mgはこの発明で対象としている系の合金で基本となる合金元素であって、Siと共同して強度向上に寄与する。Mg量が0.2%未満では塗装焼付時に析出硬化によって強度向上に寄与するG.P.ゾーンの生成量が少なくなるため、充分な強度向上が得られず、一方1.5%を越えれば、粗大なMg−Si系の金属間化合物が生成され、キューブ方位密度を高めるために不利となり、プレス成形性、特に曲げ加工性が低下するから、Mg量は0.2〜1.5%の範囲内とした。なお最終板のプレス成形性、特に曲げ加工性をより良好にするためには、Mg量は0.3〜0.9%の範囲内が好ましい。
Mg:
Mg is an alloy element that is a basic alloy of the system targeted by the present invention, and contributes to strength improvement in cooperation with Si. If the amount of Mg is less than 0.2%, G. contributes to strength improvement by precipitation hardening during baking. P. Since the amount of zone formation decreases, sufficient strength improvement cannot be obtained. On the other hand, if it exceeds 1.5%, coarse Mg-Si based intermetallic compounds are generated, which is disadvantageous for increasing cube orientation density. Further, since the press formability, particularly bending workability is lowered, the amount of Mg is set to be in the range of 0.2 to 1.5%. In order to improve the press formability of the final plate, particularly bending workability, the Mg content is preferably in the range of 0.3 to 0.9%.

Si:
Siもこの発明の系の合金で基本となる合金元素であって、Mgと共同して強度向上に寄与する。またSiは、鋳造時に金属Siの晶出物として生成され、その金属Si粒子の周囲が加工によって変形されて、溶体化処理の際に再結晶核の生成サイトとなるため、再結晶組織の微細化にも寄与する。Si量が0.3%未満では上記の効果が充分に得られず、一方2.0%を越えれば粗大なSi粒子や粗大なMg−Si系の金属間化合物が生じてキューブ方位密度を高めるために不利となり、プレス成形性、特に曲げ加工性の低下を招く。したがってSi量は0.3〜2.0%の範囲内とした。なおプレス成形性と曲げ加工
性とのより良好なバランスを得るためには、Si量は0.5〜1.3%の範囲内が好ましい。
Si:
Si is also an alloy element that is fundamental in the alloy of the present invention, and contributes to strength improvement in cooperation with Mg. In addition, Si is produced as a crystallized product of metal Si at the time of casting, and the periphery of the metal Si particles is deformed by processing and becomes a recrystallization nucleus generation site during solution treatment. It also contributes to If the amount of Si is less than 0.3%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, coarse Si particles and coarse Mg-Si based intermetallic compounds are generated to increase the cube orientation density. For this reason, it becomes disadvantageous, and press formability, particularly bending workability is lowered. Therefore, the Si amount is set in the range of 0.3 to 2.0%. In order to obtain a better balance between press formability and bending workability, the Si content is preferably in the range of 0.5 to 1.3%.

Mn、Cr、Zr、V、Fe、Zn:
これらの元素は、強度向上や結晶粒微細化、あるいは時効性(焼付硬化性)の向上や表面処理性の向上に有効であり、いずれか1種または2種以上を添加する。これらのうちMn、Cr、Zr、Vは強度向上と結晶粒の微細化および組織の安定化に効果がある元素であるが、Mnの含有量が0.03%未満、もしくはCrの含有量が0.01%未満、またはZrの含有量が0.01%未満では、上記の効果が充分に得られず、一方Mnの含有量が0.6%を越えるか、あるいはCr、Zr、Vの含有量がそれぞれ0.4%を越えれば、上記の効果が飽和するばかりでなく、多数の金属間化合物が生成されて成形性、特にヘム曲げ性に悪影響を及ぼすおそれがあり、したがってMnは0.03〜0.6%の範囲内、Cr、Zr、Vはそれぞれ0.01〜0.4%の範囲内とした。またFeも強度向上と結晶粒微細化に有効な元素であるが、その含有量が0.03%未満では充分な効果が得られず、一方1.0%を越えれば、多数の金属間化合物が生成されて、プレス成形性、曲げ加工性が低下するおそれがあり、したがってFe量は0.03〜1.0%の範囲内とした。なお、曲げ加工性の低下を最小限に抑えたい場合、Fe量は0.03〜0.5%の範囲で好ましい。またZnは時効性向上を通じて強度向上に寄与するとともに表面処理性の向上に有効な元素であるが、Znの添加量が0.03%未満では上記の効果が充分に得られず、一方0.05%を越えれば成形性が低下するから、Zn量は0.03〜0.05%の範囲内とした。
Mn, Cr, Zr, V, Fe, Zn:
These elements are effective for improving strength, crystal grain refinement, aging (bake hardenability) and surface treatment, and any one or more of them are added. Among these, Mn, Cr, Zr, and V are elements that are effective in improving the strength, refining the crystal grains, and stabilizing the structure, but the Mn content is less than 0.03%, or the Cr content is If the content is less than 0.01% or the content of Zr is less than 0.01%, the above effects cannot be obtained sufficiently, while the content of Mn exceeds 0.6% or Cr, Zr, V If the content exceeds 0.4%, not only the above effects are saturated, but also a large number of intermetallic compounds may be produced, which may adversely affect the formability, particularly hem bendability. In the range of 0.03 to 0.6%, Cr, Zr, and V were each in the range of 0.01 to 0.4%. Fe is also an element effective for strength improvement and crystal grain refinement, but if its content is less than 0.03%, a sufficient effect cannot be obtained, while if it exceeds 1.0%, many intermetallic compounds are obtained. May be produced, and press formability and bending workability may be deteriorated. Therefore, the amount of Fe is set within a range of 0.03 to 1.0%. In addition, when it is desired to minimize a decrease in bending workability, the Fe content is preferably in the range of 0.03 to 0.5%. Further, Zn is an element that contributes to improvement of strength through improvement of aging and is effective for improvement of surface treatment properties. However, if the addition amount of Zn is less than 0.03%, the above effect cannot be obtained sufficiently . If the content exceeds 05% , the moldability deteriorates, so the Zn content is set in the range of 0.03 to 0.05% .

Ti、B:
Tiの添加は、鋳塊組織の微細化を通じて最終板の肌荒れ防止、耐リジング性向上に効果があることから、この発明でも鋳塊組織の微細化のためにTiを添加するが、その含有量が0.005%未満では充分な効果が得られず、一方0.3%を越えればTi添加の効果が飽和するばかりでなく、粗大な晶出物が生じるおそれがあるから、Ti量は0.005〜0.3%の範囲内とした。なおTi添加量は、通常は0.005以上〜0.05%未満の範囲内が好ましい。またTiは単独で添加しても良いが、Tiとともに微量のBを添加することによって、鋳塊組織の微細化と安定化の効果が一層顕著となる。そこでこの発明の場合も、Tiとともに500ppm以下のBを添加することは許容される。
Ti, B:
Since the addition of Ti is effective in preventing the rough surface of the final plate and improving ridging resistance through refinement of the ingot structure, this invention also adds Ti for refinement of the ingot structure. If less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.3%, not only the effect of addition of Ti is saturated but also a coarse crystallized product may be formed. Within the range of 0.005 to 0.3%. The Ti addition amount is usually preferably in the range of 0.005 to less than 0.05%. Ti may be added alone, but by adding a small amount of B together with Ti, the effect of refining and stabilizing the ingot structure becomes more remarkable. Therefore, also in the case of this invention, it is permissible to add 500 ppm or less of B together with Ti.

Cu:
Cuは強度向上および成形性向上のために添加されることがある元素であるが、その量が1.5%を越えれば耐食性(耐粒界腐食性、耐糸錆性)が劣化するから、Cuの含有量は1.5%以下に規制することとした。なお、より耐食性の改善を図りたい場合はCu量は1.0%以下が好ましく、さらに特に耐食性を重視する場合は、Cu量は0.05%以下に規制することが望ましい。
Cu:
Cu is an element that may be added to improve strength and formability, but if its amount exceeds 1.5%, corrosion resistance (intergranular corrosion resistance, yarn rust resistance) deteriorates. The Cu content was regulated to 1.5% or less. In addition, when it is desired to further improve the corrosion resistance, the Cu content is preferably 1.0% or less, and when the corrosion resistance is particularly important, it is desirable to regulate the Cu content to 0.05% or less.

以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良い。   In addition to the above elements, basically, Al and inevitable impurities may be used.

なお上記のMn、Cr、Zr、V、Fe、Znの含有量範囲は、それぞれ積極的に添加する場合の範囲として示したものであり、いずれも下限値より少ない量を不純物として含有する場合を排除するものではない。特に0.03%未満のFeは、通常のアルミ地金を用いれば不可避的に含有されるのが通常である。   In addition, said Mn, Cr, Zr, V, Fe, Zn content range is shown as the range in the case of adding each positively, and the case where all contain less than a lower limit as an impurity. It is not excluded. In particular, Fe of less than 0.03% is usually inevitably contained if a normal aluminum ingot is used.

また時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金においては、高温時効促進元素あるいは室温時効抑制元素であるAg、In、Cd、Be、あるいはSnを微量添加することがあるが、この発明の場合も微量添加であればこれらの元素の添加も許容され、それぞれ0.3%以下であれば特に所期の目的を損なうことはない。   In addition, in an aging Al—Mg—Si alloy or an aging Al—Mg—Si—Cu alloy, a trace amount of Ag, In, Cd, Be, or Sn which is a high temperature aging promoting element or a room temperature aging inhibiting element is added. However, even in the case of the present invention, addition of these elements is permissible as long as it is added in a small amount, and if it is 0.3% or less, the intended purpose is not particularly impaired.

さらに、鋳塊組織の微細化にはScの添加も効果があるとされており、この発明の場合も微量のScを添加しても良く、Sc0.01〜0.2%の範囲内であれば特に支障はない。   Furthermore, it is said that the addition of Sc is effective for refining the ingot structure. In the case of this invention, a small amount of Sc may be added, and within the range of Sc 0.01 to 0.2%. There is no particular problem.

さらにこの発明の成形加工用アルミニウム合金板において、プレス成形性と曲げ加工性のバランスを最適にするためには、強度異方性、曲げ異方性を小さく抑制する必要があり、また、耐リジング性の向上にも、合金の成分組成を前述のように調整するばかりではなく、最終板であるアルミニウム合金板の集合組織、特に結晶方位密度を適切に制御することが極めて重要である。   Furthermore, in the aluminum alloy sheet for forming according to the present invention, in order to optimize the balance between press formability and bending workability, it is necessary to reduce strength anisotropy and bending anisotropy, In order to improve the properties, it is extremely important not only to adjust the alloy composition as described above, but also to appropriately control the texture of the aluminum alloy plate as the final plate, particularly the crystal orientation density.

ここで、この発明において最終板の結晶方位密度を規制しているのは、粒界の性質(小角か大角か)を制御するためだけではなく、アルミニウム合金の塑性変形に伴う結晶のすべり変形全体を制御することを主目的としている。そして特に曲げ加工中に交差すべりが生じやすいような結晶方位の集積度を高めることが極めて重要であり、そのようにすることによって、加工による転位密度の増加を抑えて、加工硬化を抑制することが可能となるのである。さらにその結果、ヘム加工の際において、加工硬化の抑制により割れ限界強度に達するまで材料の大歪変形が可能となる。ここで、すべり変形挙動を、比較的ランダム
な結晶方位を有する従来の材料、言い換えれば比較的交差すべりが生じ難い従来材料と大きく異ならしめるためには、結晶方位の集積が必要である。一方実際の材料では、種々の結晶方位が存在するが、本発明者らが鋭意検討を重ねた結果、種々の結晶方位のうちでも特にキューブ方位の方位密度、すなわちキューブ方位の理想方位である(001)<100>方位の方位密度を高めることによって、すべり変形挙動を、従来材料とは大きく異ならしめることができることを見出した。すなわち、キューブ方位密度を高めることによって、加工変形中における交差すべりが活発となり、加工硬化が抑制され、曲げ加工性が改善されるのである。
Here, in the present invention, the crystal orientation density of the final plate is controlled not only for controlling the grain boundary properties (small angle or large angle), but also for the entire slip deformation of the crystal accompanying plastic deformation of the aluminum alloy. The main purpose is to control. In particular, it is extremely important to increase the degree of accumulation of crystal orientations that are likely to cause cross-slip during bending. By doing so, the increase in dislocation density due to processing is suppressed, and work hardening is suppressed. Is possible. Further, as a result, during hem processing, large strain deformation of the material is possible until the crack limit strength is reached by suppressing work hardening. Here, in order to make the slip deformation behavior greatly different from that of a conventional material having a relatively random crystal orientation, in other words, a conventional material that hardly causes cross-slip, it is necessary to accumulate crystal orientations. On the other hand, there are various crystal orientations in the actual material, but as a result of extensive studies by the present inventors, the orientation density of the cube orientation, that is, the ideal orientation of the cube orientation, in particular, among the various crystal orientations ( 001) It has been found that by increasing the orientation density of the <100> orientation, the sliding deformation behavior can be made significantly different from that of the conventional material. That is, by increasing the cube orientation density, cross-sliding during work deformation becomes active, work hardening is suppressed, and bending workability is improved.

ここで、単純にキューブ方位密度を高めるだけでは、むしろ曲げ異方性、強度異方性、リジングマークの形成が顕著となって材料特性のバランスが低下するおそれや板外観を損なうおそれがある。そこで本発明者等がさらに実験・検討を重ねたところ、キューブ方位密度を単純に高めるのではなく、キューブ方位密度を適切に高めると同時に、ND回転キューブ方位密度、ND回転キューブ方位密度とゴス方位密度との比、およびβファイバーと称する成分に属するCu、S、Bsの方位密度を適切なレベルに制御することによって、曲げ加工性を損なうことなく、強度異方性と曲げ異方性から生じるプレス成形性と曲げ加工性の低下を防止し、両者のバランスを最も適切に向上させ得ることを見出した。また、これらの制御によって、リジングマークや肌荒れの発生も抑制され、成形後の板外観性も改善され、実用上、問題のないレベルに達することが判明した。   Here, if the cube orientation density is simply increased, the formation of bending anisotropy, strength anisotropy, and ridging marks becomes remarkable, which may reduce the balance of material properties and may impair the plate appearance. Therefore, when the present inventors conducted further experiments and examinations, the cube orientation density was not simply increased, but the cube orientation density was appropriately increased, and at the same time, the ND rotation cube orientation density, the ND rotation cube orientation density, and the Goth orientation By controlling the ratio to the density and the orientation density of Cu, S, and Bs belonging to the component called β fiber to an appropriate level, the bending anisotropy results from the strength anisotropy and bending anisotropy. It has been found that the press formability and bending workability can be prevented from being lowered and the balance between the two can be improved most appropriately. Further, it has been found that by these controls, the occurrence of ridging marks and rough skin is suppressed, the appearance of the plate after molding is improved, and a practically satisfactory level is reached.

すなわち、板に存在する結晶粒のキューブ方位密度をD1、板面法線(以下「ND」と記す)を軸にキューブ方位から回転した方位のうち、{001}<730>方位(以下「ND回転キューブ方位」と記す)の密度をD2とし、圧延方向を軸にキューブ方位から45°回転した方位(以下「ゴス方位」と記す)の密度をD3とし、さらに圧延集合組織のβファイバーに属するCu、S、Bs方位密度の合計をD4として、次の(1)〜(4)式(各方位密度のD1、D2、D3、D4の数値はすべてランダム結晶方位密度に対する倍数を表す)
D1≧168.4 ・・・(1)
D2≧18.9 ・・・(2)
D2/D3≧7.5 ・・・(3)
D4≧9.1 ・・・(4)
を満たすように結晶方位密度を制御することによって、上記の作用・効果を得ることが可能となったのである。
That is, the cube orientation density of crystal grains existing in the plate is D1, and the {001} <730> orientation (hereinafter referred to as “ND”) among the orientations rotated from the cube orientation about the plate normal (hereinafter referred to as “ND”). D2 is the density of the rotating cube orientation), and D3 is the density of the orientation rotated 45 ° from the cube orientation about the rolling direction (hereinafter referred to as the “Goss orientation”). The total of Cu, S, and Bs orientation densities is D4, and the following formulas (1) to (4) (all numerical values of D1, D2, D3, and D4 of each orientation density represent multiples of random crystal orientation density)
D1 ≧ 168.4 (1)
D2 ≧ 18.9 (2)
D2 / D3 ≧ 7.5 (3)
D4 ≧ 9.1 (4)
By controlling the crystal orientation density so as to satisfy the above condition, the above-mentioned actions and effects can be obtained.

ここで、(1)、(2)式は、キューブ方位密度、ND回転キューブ方位密度D2を適切に高めることにより曲げ加工性の向上に効果がある。またゴス方位D3は、アルミニウム材料に出現することが多い方位であるが、このゴス方位は曲げ異方性を助長する方位であることが判明し、さらに実験・検討を進めたところ、(3)式で規定するように、ND回転キューブ方位密度D2とゴス方位密度D3との比D2/D3を7.5以上となるように規制することによって、曲げ異方性の抑制に効果があることが明らかとなった。また(4)式は、圧延集合組織と称されるβファイバー成分の残存レベルについての規定であるが、この(4)式によってβファイバー成分の残存レベルを規制することによって、キューブ方位密度の過度の発達によるプレス成形性の低下を抑制し、プレス成形性と曲げ加工性のバランスを改善する効果があり、さらに(4)式による規制は、方位分散によるリジングマークや肌荒れの発生を抑制することにも有効である。そしてこれらの(1)式、(2)式、(3)式、および(4)式による総合的な規制によって、強度異方性、曲げ異方性を低減するために効果があり、さらにこのような方位分散によって、リジングマークや肌荒れの発生を抑制することにも有効である。 Here, the expressions (1) and (2) are effective in improving the bending workability by appropriately increasing the cube orientation density and the ND rotating cube orientation density D2. The Goss orientation D3 is an orientation that often appears in aluminum materials, but it was found that this Goss orientation is an orientation that promotes bending anisotropy, and further experiments and studies were conducted. (3) As defined by the equation, by controlling the ratio D2 / D3 of the ND rotating cube orientation density D2 and the Goth orientation density D3 to be 7.5 or more , there is an effect in suppressing bending anisotropy. It became clear . Or (4) is a provision for the residual levels of β fiber component referred rolling texture, by regulating the residual levels of β fiber component by the equation (4), the cube orientation density It has the effect of suppressing the decrease in press formability due to excessive development and improving the balance between press formability and bending workability. Further, the regulation by equation (4) suppresses the occurrence of ridging marks and rough skin due to orientation dispersion. It is also effective. And by comprehensive regulation by these formulas (1), (2), (3), and (4), there is an effect to reduce the strength anisotropy and bending anisotropy. Such azimuth dispersion is also effective in suppressing the occurrence of ridging marks and rough skin.

さらにこの発明による成形加工用アルミニウム合金板では、板全体にわたって0°耳、90°耳の耳率が3%以上であることも重要である。すなわち、前述のようにこの発明では、(1)式〜(4)式によって結晶方位密度を規定しているが、それ以外の結晶方位の方位密度もある程度は曲げ加工性に影響を与える。しかしながら実際上は、これらの方位以外のすべての結晶方位の方位密度を厳密に規定することは困難である。一方、板のカッピング試験で絞ったカップの耳率によれば、材料の結晶方位をマクロ的に評価することができる。そこでこの発明では、(1)式〜(4)式以外の結晶方位の方位密度の影響を、0°耳、90°耳で評価、規制することとした。具体的には、圧延方向を基準にカップの0°、90°耳率が3%未満では、たとえ前述の各式の条件が満足されていても、良好な曲げ加工性が得られないおそれがある。そこでこの発明では耳率に関して前述のように規制することとした。なお0°、90°耳率は、上限を規定していないが、曲げ異方性、強度異方性抑制の観点から通常は30%以下が望ましい。なお、特にプレス成形性と曲げ加工性のバランスを最適に保つためには、耳率は5〜28%の範囲内が好ましい。   Further, in the aluminum alloy plate for forming according to the present invention, it is also important that the ear rate of the 0 ° ear and the 90 ° ear is 3% or more over the entire plate. That is, as described above, in the present invention, the crystal orientation density is defined by the equations (1) to (4), but the orientation density of other crystal orientations also affects the bending workability to some extent. However, in practice, it is difficult to strictly define the orientation density of all crystal orientations other than these orientations. On the other hand, the crystal orientation of the material can be macroscopically evaluated based on the ear ratio of the cup squeezed by the plate cupping test. Therefore, in the present invention, the influence of the orientation density of crystal orientations other than the formulas (1) to (4) is evaluated and regulated by the 0 ° ear and the 90 ° ear. Specifically, when the 0 ° and 90 ° ear ratio of the cup is less than 3% based on the rolling direction, there is a possibility that good bending workability may not be obtained even if the conditions of the above-described formulas are satisfied. is there. Therefore, in the present invention, the ear rate is regulated as described above. In addition, although 0 degree and 90 degree ear rate do not prescribe | regulate an upper limit, normally 30% or less is desirable from a viewpoint of bending anisotropy and intensity | strength anisotropy suppression. In particular, in order to keep the balance of press formability and bending workability optimal, the ear rate is preferably in the range of 5 to 28%.

さらに、曲げ加工性の向上、プレス成形時の外観欠陥である肌荒れを防止するためには、結晶粒度を細かくする必要がある。本発明者等が実験・検討を重ねた結果、結晶粒度をASTMナンバーで4.5以上にすれば、曲げ加工性の向上や肌荒れ(外観欠陥)を防止する効果があることを見出し、その条件をこの発明で規定したのである。なお、より一層外観を重視する場合には、ASTMナンバー6.0以上の範囲が好ましい。   Further, in order to improve bending workability and prevent rough skin, which is an appearance defect during press molding, it is necessary to make the crystal grain size fine. As a result of repeated experiments and examinations by the present inventors, it has been found that if the crystal grain size is 4.5 or more in terms of ASTM number, it has the effect of improving bending workability and preventing rough skin (appearance defects). Is defined in the present invention. In the case where the appearance is more important, a range of ASTM number 6.0 or more is preferable.

次にこの発明の成形加工用アルミニウム合金板の製造方法について説明する。   Next, a method for producing the aluminum alloy plate for forming according to the present invention will be described.

先ず前述のような成分組成の合金を常法に従って溶製し、DC鋳造法等の通常の鋳造法によって鋳造する。   First, an alloy having the component composition as described above is melted in accordance with a conventional method and cast by a normal casting method such as a DC casting method.

得られた鋳塊に対しては、均質化処理を行なって冷却する。ここで均質化処理は、鋳塊の添加元素の偏析を除去したり、鋳塊のセル・結晶粒の境界に存在する粗大な第2相粒子、晶出物などを母相に固溶させたりすることに効果があり、製品板性能のばらつきの低減、さらには熱間圧延工程、溶体化工程と有機的に結び付けて所要の結晶方位を得るにも重要な工程である。均質化処理の温度が480℃未満では、上述の効果が充分に得られず、一方590℃を越える高温では共晶融解のおそれがあるから、均質化処理は480〜590℃の範囲内の温度で行なうこととした。なお均質化処理の時間は、通常は1〜48時間の範囲内とすることが好ましい。1時間未満では均質化の効果が充分に得られず、一方48時間を越えればコスト増大を招くだけである。   The obtained ingot is cooled by performing a homogenization process. Here, the homogenization treatment removes segregation of additive elements in the ingot, or dissolves coarse second-phase particles, crystallized materials, etc. existing at the boundary between the cells and crystal grains of the ingot into the matrix phase. This is an important process for obtaining the required crystal orientation by organically combining with the hot rolling process and the solution forming process, and reducing the variation in product plate performance. When the temperature of the homogenization treatment is less than 480 ° C., the above-mentioned effects cannot be obtained sufficiently, while when the temperature exceeds 590 ° C., eutectic melting may occur, so the homogenization treatment is performed at a temperature in the range of 480 to 590 ° C. I decided to do it. The homogenization time is usually preferably in the range of 1 to 48 hours. If it is less than 1 hour, the effect of homogenization cannot be sufficiently obtained. On the other hand, if it exceeds 48 hours, only the cost is increased.

また均質化処理後の冷却については、一般に高い焼付け硬化性を得るためには冷却過程で形成される析出物の粗大化を避けることが望ましいとされ、そこで既に前述の特許文献1、特許文献2においては、均質化処理後の冷却を、1段で大きな冷却速度で行なうことが提案されているが、本発明者等が鋭意実験、検討を重ねた結果、冷却速度の増大は確かに高い焼付け硬化性を得るために有効ではあるものの、この方法を、中間焼鈍を省略したこの発明のプロセスに適用した場合には、板厚方向に結晶粒度が不安定となって、結晶粒度のばらつきが著しく大きくなってしまう問題が生じることが判明した。このようなばらつきが生じれば、製品板の耐肌荒れ性に問題が生じ、安定的に自動車パネルの高い外観品質が確保できないおそれがある。   As for cooling after the homogenization treatment, it is generally desirable to avoid coarsening of precipitates formed in the cooling process in order to obtain high bake hardenability. Has been proposed that the cooling after the homogenization process is performed at a large cooling rate in one stage, but as a result of repeated extensive experiments and studies by the present inventors, the increase in the cooling rate is certainly high. Although effective for obtaining curability, when this method is applied to the process of the present invention in which intermediate annealing is omitted, the crystal grain size becomes unstable in the plate thickness direction, and the variation in crystal grain size is remarkably large. It turns out that the problem which becomes large arises. If such a variation occurs, there is a problem in the rough skin resistance of the product plate, and there is a possibility that the high appearance quality of the automobile panel cannot be secured stably.

そこでこの発明の製造方法では、高い焼付け硬化性と肌荒れの確実な抑制とを両立させるために、請求項2〜請求項5において規定しているように、均質化処理後の冷却過程として、特殊な態様の2段冷却を適用することとした。すなわち、請求項2、請求項4で規定するように、均質化処理後の冷却過程において、先ず第1段の冷却として、150℃以上450℃未満の温度域内のある温度(第1冷却ポイント)まで100℃/h以上の冷却速度で急冷し、続いてその第1冷却ポイントよりも低くかつ150℃以上450℃未満の温度範囲内のある温度(第2冷却ポイント)まで冷却速度100℃/h未満の冷却速度で徐冷し、これによって、150℃以上450℃未満の温度範囲内に少なくとも0.5時間以上滞留させるか、あるいは請求項3、請求項5において規定しているように、前記同様に第1冷却ポイントまで急冷した後、続いて150℃以上450℃未満の温度範囲内で維持して、その150℃以上450℃未満の温度範囲内に少なくとも0.5時間以上滞留させることとしており、このような2段の冷却過程の組合せにより、高い焼付け硬化性と肌荒れの抑制を両立させることが可能となった。 Therefore, in the manufacturing method of the present invention, in order to achieve both high bake hardenability and reliable suppression of rough skin, as specified in claims 2 to 5 , as a cooling process after homogenization treatment, a special process is performed. Thus, the two-stage cooling in this embodiment was applied. That is, as defined in claims 2 and 4 , in the cooling process after the homogenization treatment, first, as a first stage cooling, a temperature within a temperature range of 150 ° C. or higher and lower than 450 ° C. (first cooling point) And then rapidly cooled at a cooling rate of 100 ° C./h or higher, and subsequently to a temperature lower than the first cooling point and within a temperature range of 150 ° C. or higher and lower than 450 ° C. (second cooling point) 100 ° C./h Slow cooling is performed at a cooling rate of less than 150 ° C., thereby allowing it to stay in a temperature range of 150 ° C. or more and less than 450 ° C. for at least 0.5 hours, or as defined in claims 3 and 5 , Similarly, after rapidly cooling to the first cooling point, the temperature is continuously maintained within a temperature range of 150 ° C. or higher and lower than 450 ° C., and the temperature range of 150 ° C. or higher and lower than 450 ° C. is maintained for at least 0.5 hour or longer. And the letting distillates, by a combination of such two-stage cooling process, it becomes possible to achieve both high bake hardenability and surface roughening inhibiting.

なおここで、請求3もしくは請求項5において規定している第1段目の冷却ポイントまでの100℃/h以上の冷却速度による急冷に引続いて、「150℃以上450℃未満の温度範囲内で維持して、その温度範囲内に0.5時間以上滞留させる」とは、その温度範囲内においてほぼ一定の温度に保持するケース、またその温度範囲内の異なる2段階以上の温度で保持するケース、あるいはその温度範囲内で徐冷するケース、さらにはその温度範囲内で再加熱して徐昇温させるケースなどのいずれのケースをも含むのであり、要は熱履歴の形式は問わず、その温度範囲内に0.5時間以上滞留されていれば良いものとする。但し、実際の生産現場においては、経済性の点から徐冷が好ましい。 Here, following the rapid cooling at a cooling rate of 100 ° C./h or higher up to the first stage cooling point defined in claim 3 or claim 5 , “in the temperature range of 150 ° C. or higher and lower than 450 ° C. `` Retain for 0.5 hour or longer within the temperature range '' means that the temperature is maintained at a substantially constant temperature within the temperature range, or is maintained at two or more different temperatures within the temperature range. This includes any case such as a case, a case where the temperature is slowly cooled within the temperature range, and a case where the temperature is reheated within the temperature range to gradually raise the temperature. It is only necessary to stay within the range for 0.5 hour or more. However, it is have you in the actual production site, slow cooling is preferred from the viewpoint of economy.

ここで、以上の説明では、第1冷却ポイントとして規定しかつその後の0.5時間以上滞留させるとした温度域を、150℃以上450℃未満としているが、より一層安定的に高い焼付け硬化性と肌荒れの抑制とを両立させるためには、その温度域は、200℃以上450℃未満が好ましい。またその温度域に滞留させる時間は、1.5時間以上が好ましく、さらには2時間以上がより好ましい。これらの好ましい条件を適用することによって、確実に高い焼付け硬化性を確保しながら、より一層安定的に結晶粒度ASTMナンバー4.5以上を達成することができる。   Here, in the above description, the temperature range which is defined as the first cooling point and is retained for 0.5 hours or more after that is 150 ° C. or more and less than 450 ° C., but more stably high bake hardenability. Is preferably 200 ° C. or higher and lower than 450 ° C. in order to achieve both the prevention of skin roughness and the rough skin. Further, the residence time in the temperature range is preferably 1.5 hours or more, and more preferably 2 hours or more. By applying these preferable conditions, the grain size ASTM number 4.5 or more can be achieved more stably while ensuring high bake hardenability.

以上のように、均質化処理後、150℃以上450℃未満の第1冷却ポイントまで100℃/h以上の冷却速度で急冷した後に、第2段目の冷却過程として、150℃以上450℃未満の温度域内において100℃/h未満の冷却速度で徐冷するかまたはその温度域内で少なくとも0.5時間以上、好ましくは1.5時間以上、より好ましくは2時間以上滞留(徐冷や保持、あるいは加熱などの種々の温度履歴を含む)させることによって、単体Si、Mg−Si、Mg−Si−Cu系化合物のサイズと分布を適切に得ることが可能となるのである。   As described above, after the homogenization treatment, the first cooling point of 150 ° C. or higher and lower than 450 ° C. is rapidly cooled at a cooling rate of 100 ° C./h or higher, and then the second stage cooling process is 150 ° C. or higher and lower than 450 ° C. Or at least 0.5 hour or more, preferably 1.5 hours or more, more preferably 2 hours or more within the temperature range (slow cooling or holding, or (Including various temperature histories such as heating) makes it possible to appropriately obtain the size and distribution of the simple Si, Mg—Si, and Mg—Si—Cu based compounds.

なお、第1冷却ポイントまでの冷却速度が100℃/h未満では、高温域で析出物が粗大化しやすく、単体Si、Mg−Si、Mg−Si−Cu系化合物のサイズと分布が不適切となって焼付硬化性と成形性の低下を招くおそれがあるから、第1段目の冷却は100℃/h以上とした。またそれに続いての第2段目の150℃以上450℃未満での温度域での滞留時間が0.5時間未満では、前述の効果が充分に得られないから、その滞留時間は0.5時間以上、好ましくは1.5時間以上、より好ましくは2時間以上とした。なおその滞留時間の上限は特に規制しないが、焼付け硬化性への影響と生産性などを考慮して通常48時間以内とすることが好ましい。   In addition, when the cooling rate to the first cooling point is less than 100 ° C./h, precipitates are likely to be coarsened in a high temperature range, and the size and distribution of simple substance Si, Mg—Si, Mg—Si—Cu based compounds are inappropriate. Therefore, there is a concern that the bake hardenability and the moldability may be lowered, so that the first stage cooling is set to 100 ° C./h or more. Further, if the residence time in the temperature range of 150 ° C. or more and less than 450 ° C. in the second stage is less than 0.5 hours, the above-mentioned effect cannot be obtained sufficiently, so that the residence time is 0.5 It was set to more than time, preferably 1.5 hours or more, more preferably 2 hours or more. The upper limit of the residence time is not particularly restricted, but it is usually preferably within 48 hours in consideration of the influence on bake hardenability and productivity.

以上のようにして、鋳塊に対する均質化処理の後に2段階冷却法による冷却を行なった後には、熱間圧延を施すのが通常である。ここで、熱間圧延は、後述するように250℃以上450℃未満の温度域で開始させるが、均質化処理後の2段の冷却過程を経た鋳塊に対して、150℃未満に冷却することなく、熱間圧延の開始温度250℃以上450℃未満に合わせて直ちに熱間圧延を開始しても、あるいはまた一旦150℃未満に冷却して必要に応じて常温放置、面削などを施してから再度加熱して、250℃以上450℃未満とし、その温度で熱間圧延を開始しても良い。   As described above, after performing the two-stage cooling method after the homogenization treatment for the ingot, it is usual to perform hot rolling. Here, the hot rolling is started in a temperature range of 250 ° C. or higher and lower than 450 ° C. as described later, but the ingot that has undergone the two-stage cooling process after the homogenization treatment is cooled to less than 150 ° C. Even if the hot rolling is started immediately after the hot rolling start temperature of 250 ° C. or more and less than 450 ° C., or once cooled to less than 150 ° C., it is allowed to stand at room temperature and be chamfered as necessary. Then, it may be heated again to 250 ° C. or higher and lower than 450 ° C., and hot rolling may be started at that temperature.

ここで、一旦150℃未満に冷却して必要に応じて常温放置、面削などを施してから、再加熱する場合、昇温過程での150〜450℃未満温度域での滞留時間については、この発明の請求項3、4、5、6で規定する滞留時間に算入しないこととする。その理由は、150℃未満の温度域から加熱昇温させる場合、必然的に低温時効によって高密度な時効組織が形成されやすく、このように一旦先に低温域で高密度な時効組織が形成されてしまえば、たとえ、その後の150〜450℃温度域での滞留時間が0.5時間以上であっても、適切な単体Si、Mg−Si、Mg−Si−Cu系化合物のサイズと分布が得られなくなるおそれがあるからである。   Here, when it is cooled to less than 150 ° C. and subjected to standing at room temperature, chamfering, etc. as necessary, and then reheating, for the residence time in the temperature range of 150 to 450 ° C. in the temperature rising process, The residence time specified in claims 3, 4, 5, and 6 of the present invention is not counted. The reason for this is that when the temperature is raised from a temperature range of less than 150 ° C., a high-density aging structure is inevitably formed by low-temperature aging, and thus a high-density aging structure is once formed in the low-temperature range. For example, even if the subsequent residence time in the temperature range of 150 to 450 ° C. is 0.5 hours or more, the size and distribution of the appropriate simple substance Si, Mg—Si, Mg—Si—Cu based compound are This is because it may not be obtained.

なお、熱間圧延工程を必要としない薄板連続鋳造材においても、高い焼付け硬化と肌荒れの抑制を両立させるためには、この発明の方法と同様に、150℃以上450℃未満の温度域までの急冷とそれに続いてのその温度範囲内での徐冷、あるいは150℃以上450℃未満の温度域までの急冷とその温度範囲内での滞留が必要であり、その場合は、その後に一旦150℃未満に冷却して、必要に応じて常温放置などをしてから冷間圧延を実施すれば良い。   In addition, even in a thin continuous casting material that does not require a hot rolling process, in order to achieve both high bake hardening and suppression of rough skin, as in the method of the present invention, up to a temperature range of 150 ° C. or higher and lower than 450 ° C. Rapid cooling and subsequent slow cooling within the temperature range, or rapid cooling to a temperature range of 150 ° C. or higher and lower than 450 ° C. and residence in the temperature range are necessary. It may be cooled to less than that and allowed to stand at room temperature if necessary before cold rolling.

さらに均質化処理を行なって2段冷却した鋳塊に対してのプロセスについて詳細に説明する。   Further, the process for the ingot that has been subjected to homogenization and cooled in two stages will be described in detail.

この発明の方法の場合、均質化処理・2段冷却後の鋳塊に対しては、次の(a)、(b)、(c)のいずれかのプロセスで処理して、最終板に仕上げる。
(a)請求項2、請求項3で規定するプロセス:熱間圧延−冷間圧延−溶体化処理−冷却(150℃未満、50℃以上)−安定化処理、
(b)請求項4、請求項5で規定するプロセス:熱間圧延−冷間圧延−溶体化処理―冷却(50℃未満)−常温放置
(c)請求項6で規定するプロセス:熱間圧延−冷間圧延−溶体化処理−冷却(50℃未満)−常温放置−復元処理
In the case of the method of the present invention, the ingot after homogenization and two-stage cooling is processed by any one of the following processes (a), (b), and (c) to finish the final plate. .
(A) Process defined in claims 2 and 3 : hot rolling-cold rolling-solution treatment-cooling (less than 150 ° C, 50 ° C or more)-stabilization treatment,
(B) Process defined in claims 4 and 5 : hot rolling-cold rolling-solution treatment-cooling (less than 50 ° C.)-Standing at room temperature (c) process defined in claim 6 : hot rolling -Cold rolling-Solution treatment-Cooling (less than 50 ° C)-Standing at room temperature-Restoration treatment

ここで、上記の(a)〜(c)のいずれのプロセスにおいても、熱間圧延は、次の(1)、(2)の条件を満たすように行なう必要がある。(1)熱間圧延開始温度を250℃以上、450℃未満の温度範囲とすること。(2)熱間圧延過程中における板厚200mmから20mmまでの段階で、少なくとも1回は、1パスの圧延率が40%以上の高圧下のパスを実施すること。   Here, in any of the processes (a) to (c), the hot rolling needs to be performed so as to satisfy the following conditions (1) and (2). (1) The hot rolling start temperature is set to a temperature range of 250 ° C. or higher and lower than 450 ° C. (2) At least one pass at a stage from a sheet thickness of 200 mm to 20 mm during the hot rolling process, and a pass under a high pressure with a rolling rate of 40% or more is performed.

上記の熱間圧延条件のうち、先ず(1)の条件、すなわち熱間圧延開始温度を450℃未満とすることは、熱間圧延中の材料の再結晶を抑制して、所要の結晶方位密度を得ると同時に、耐リジング性の改善を図るために不可欠な条件である。熱間圧延を450℃以上の高温で開始すれば、耐リジング性の改善が図られず、また所要の最終板強度が得られなくなるおそれがある。一方熱間圧延開始温度が250℃未満では、熱間圧延自体が困難となる。そこで熱間圧延開始温度は250℃以上、450℃未満とした。なおより好ましい熱間圧延開始温度は250〜400℃の範囲内である。   Of the above hot rolling conditions, first, the condition (1), that is, setting the hot rolling start temperature to less than 450 ° C., suppresses recrystallization of the material during hot rolling, and the required crystal orientation density. This is an indispensable condition for improving ridging resistance at the same time. If hot rolling is started at a high temperature of 450 ° C. or higher, the ridging resistance cannot be improved, and the required final plate strength may not be obtained. On the other hand, if the hot rolling start temperature is less than 250 ° C., the hot rolling itself becomes difficult. Therefore, the hot rolling start temperature was set to 250 ° C. or higher and lower than 450 ° C. A more preferable hot rolling start temperature is in the range of 250 to 400 ° C.

(2)の条件は、(1)の条件と合わせて熱間圧延中の材料の再結晶を抑制し、所要の結晶方位密度を得るために不可欠な条件である。すなわち(2)の条件は、ほぼ未再結晶状態の繊維状組織に対して1パスの圧下で大変形を加えることに意味があり、それによって目的とした結晶回転を達成することが可能となる。さらに、この発明で規定した均質化処理後の2段冷却により単体Si、Mg−Si、Mg−Si−Cu系化合物のサイズと分布を適切化することと併せて、熱間圧延時の加工組織と回復、再結晶挙動を制御し、これにより最終板にキューブ方位のみならず、キューブ方位と異なる方位の適切な集積も得られることとなる。すなわち請求項1に規定した方位密度と比率が得られ、このような方位分散により耐リジング性、肌荒れ、曲げ異方性、強度異方性の改善に有効となる。 The condition (2) is an indispensable condition for suppressing the recrystallization of the material during hot rolling and obtaining the required crystal orientation density in combination with the condition (1). In other words, the condition (2) is meaningful in that a large deformation is applied to the fibrous structure in an almost non-recrystallized state under a one-pass pressure, and thereby the intended crystal rotation can be achieved. . Furthermore, in addition to optimizing the size and distribution of simple substance Si, Mg—Si, Mg—Si—Cu based compounds by two-stage cooling after the homogenization treatment defined in the present invention, the working structure during hot rolling Thus, the recovery and recrystallization behavior are controlled, whereby not only cube orientation but also proper accumulation of orientation different from cube orientation can be obtained on the final plate. That is, the orientation density and ratio defined in claim 1 are obtained, and such orientation dispersion is effective in improving ridging resistance, rough skin, bending anisotropy, and strength anisotropy.

またここで、板厚が200〜20mmの段階でいずれのパスも圧延率が40%未満では、上記の効果が得られなくなるから、その板厚段階で少なくとも1パスは圧延率40%以上とする必要がある。なおより好ましくは、上記の段階での少なくとも1パスの圧延率を50%以上とする。なおまた熱間圧延の終了温度については特に規定しないが、通常は150℃〜350℃の範囲であれば、この発明の効果を損なうことがない。   Also, here, if the rolling rate is less than 40% when the plate thickness is 200 to 20 mm, the above effect cannot be obtained. Therefore, at least one pass is set to a rolling rate of 40% or more in the plate thickness step. There is a need. More preferably, the rolling rate of at least one pass in the above stage is 50% or more. The end temperature of the hot rolling is not particularly specified, but usually the effect of the present invention is not impaired as long as it is in the range of 150 ° C to 350 ° C.

ここで、上述のような熱間圧延条件のうち、いずれか一つの条件でも外れれば、所要の結晶方位密度条件を満たす最終板が得難くなって、最終板の諸特性が低下するおそれがある。   Here, if any one of the above hot rolling conditions is not satisfied, it is difficult to obtain a final plate satisfying the required crystal orientation density condition, and various properties of the final plate may be deteriorated. .

上述のようにして熱間圧延を行なった後には、前記(a)、(b)、(c)のいずれのプロセスにおいても、中間焼鈍を施すことなく、圧延率30%以上の冷間圧延で所要の製品板厚とする。   After performing hot rolling as described above, in any of the processes (a), (b), and (c), cold rolling with a rolling rate of 30% or more is performed without performing intermediate annealing. Use the required product thickness.

この冷間圧延は板に歪みを蓄積させ、その後の溶体化処理で結晶粒を微細化させるために効果があるだけではなく、最終板の結晶方位の形成にも一定の影響を及ぼす。冷間圧延の圧延率30%未満では、この発明で規定する結晶粒度と結晶粒方位密度が得られないおそれがある。   This cold rolling not only has an effect of accumulating strain in the plate and refines the crystal grains by the subsequent solution treatment, but also has a certain influence on the formation of the crystal orientation of the final plate. If the rolling rate of cold rolling is less than 30%, the crystal grain size and grain orientation density specified in the present invention may not be obtained.

冷間圧延後には、前記(a)〜(c)のいずれのプロセスにおいても、480℃以上の温度で溶体化処理を行う。この溶体化処理は、Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金において、Mg−Si系、Mg−Si−Cu系化合物、単体Si等をマトリックスに固溶させ、これにより焼付硬化性を付与して塗装焼付後の強度向上を図るために重要な工程である。またこの工程は、Mg−Si系、Mg−Si−Cu系化合物、単体Si粒子等の固溶により第2相粒子の分布密度を低下させて、延性と曲げ性を向上させるためにも寄与し、さらには再結晶により最終的に所要の結晶方位を得て、良好な成形性(曲げ加工性、プレス成形性)を得るためにも重要な工程である。ここで、溶体化処理温度が480℃未満では上記の効果が充分に得られない。   After the cold rolling, the solution treatment is performed at a temperature of 480 ° C. or higher in any of the processes (a) to (c). This solution treatment is carried out by dissolving Mg-Si, Mg-Si-Cu compounds, elemental Si, etc. in a matrix in an Al-Mg-Si or Al-Mg-Si-Cu alloy and baking it. This is an important process for imparting curability and improving strength after baking. This process also contributes to improving the ductility and bendability by lowering the distribution density of the second phase particles by solid solution of Mg-Si, Mg-Si-Cu compounds, simple substance Si particles, etc. Further, it is an important step for obtaining a desired crystal orientation finally by recrystallization and obtaining good formability (bending workability, press formability). Here, when the solution treatment temperature is less than 480 ° C., the above effect cannot be obtained sufficiently.

なお特に溶体化効果を重視する場合は、溶体化処理温度は500℃以上とすることが好ましい。一方溶体化処理温度の上限は特に規定しないが、共晶融解の発生のおそれや再結晶粒粗大化等を考慮して、通常は590℃以下とすることが望ましい。また溶体化処理の時間は特に規制しないが、通常は5分を越えれば溶体化効果が飽和し、経済性を損なうばかりではなく、結晶粒の粗大化のおそれもあるから、溶体化処理の時間は5分以内が望ましい。   In particular, when emphasizing the solution effect, the solution treatment temperature is preferably 500 ° C. or higher. On the other hand, the upper limit of the solution treatment temperature is not particularly defined, but it is usually preferably 590 ° C. or less in consideration of the possibility of eutectic melting and coarsening of recrystallized grains. The solution treatment time is not particularly limited. However, if it exceeds 5 minutes, the solution effect is saturated, not only the economic efficiency is impaired, but also the crystal grains may be coarsened. Is preferably within 5 minutes.

溶体化処理後の冷却については、冷却中にMg−Si系、Mg−Si−Cu系化合物あるいは単体Siなどが粒界に多量に析出することを防止するため、通常100℃/min以上の冷却速度での冷却により、150℃以下の温度域まで冷却(焼入れ)する。焼き入れ温度域の下限は、プロセスによって異なり、(a)のプロセスでは、50℃以上とし、(b)、(c)のプロセスでは50℃未満とする。ここで、溶体化処理後の冷却速度が100℃/min未満では、プレス成形性、特に曲げ加工性が低下すると同時に、焼付硬化性が低下して塗装焼付時の充分な強度向上が望めなくなる。   As for cooling after solution treatment, cooling is usually performed at 100 ° C./min or more in order to prevent a large amount of Mg—Si, Mg—Si—Cu compounds, or simple substance Si from being precipitated at grain boundaries during cooling. Cooling (quenching) to a temperature range of 150 ° C. or lower by cooling at a speed. The lower limit of the quenching temperature range varies depending on the process, and is set to 50 ° C. or higher in the process (a) and lower than 50 ° C. in the processes (b) and (c). Here, when the cooling rate after the solution treatment is less than 100 ° C./min, press formability, particularly bending workability is lowered, and at the same time, bake hardenability is lowered, and sufficient strength improvement at the time of coating baking cannot be expected.

上述のように溶体化処理後、焼付け硬化性(BH性)を重視する場合には、請求項2、請求項3で規定する前記(a)のプロセスに従って、安定化処理を施す。すなわち480℃以上の温度で溶体化処理して、100℃/min以上の冷却速度で50℃以上150℃未満の温度域内まで冷却(焼入れ)した後には、50℃未満の温度域(いわゆる室温)まで温度降下しないうちに、この温度範囲内(50〜150℃未満)で安定化処理を行なう。この安定化処理における50〜150℃未満の温度域での保持時間は特に限定しないが、通常は1時間以上保持することが望ましく、またその温度範囲内で1時間以上かけて冷却(徐冷)しても良い。 When the bake hardenability (BH property) is emphasized after the solution treatment as described above, the stabilization treatment is performed according to the process (a) defined in claims 2 and 3 . That is, after solution treatment at a temperature of 480 ° C. or higher and cooling (quenching) to a temperature range of 50 ° C. or higher and lower than 150 ° C. at a cooling rate of 100 ° C./min or higher, a temperature range of less than 50 ° C. (so-called room temperature) The stabilization treatment is performed within this temperature range (less than 50 to 150 ° C.) before the temperature drops to the upper limit. The holding time in the temperature range of 50 to less than 150 ° C. in this stabilization treatment is not particularly limited, but normally it is desirable to hold for 1 hour or longer, and cooling (slow cooling) over 1 hour or more within that temperature range. You may do it.

一方、焼付け硬化性よりも成形性、特にプレス成形性を重視する場合には、溶体化処理後に前述のような安定化処理を行なわない。これが請求項4、請求項5で規定する前記(b)のプロセスである。すなわちこの場合は、480℃以上での溶体化処理の後、100℃/min以上の冷却速度で50℃未満の温度域(通常は0℃以上)に冷却し、0〜50℃未満の温度域(室温)で放置する。 On the other hand, when emphasis is placed on formability, especially press formability, rather than bake hardenability, the stabilization treatment as described above is not performed after the solution treatment. This is the process (b) defined in claims 4 and 5 . That is, in this case, after the solution treatment at 480 ° C. or more, the solution is cooled to a temperature range of less than 50 ° C. (usually 0 ° C. or more) at a cooling rate of 100 ° C./min or more, and a temperature range of 0 to less than 50 ° C. Leave at room temperature.

上述のように溶体化処理して50〜150℃未満の温度域、あるいは50℃未満の温度域に焼入れた後、それぞれの温度域で保持、徐冷、放置を行なう理由は次の通りである。   The reasons for performing the solution treatment as described above and quenching in a temperature range of 50 to less than 150 ° C. or in a temperature range of less than 50 ° C. and then holding, annealing, and leaving in each temperature range are as follows. .

すなわち、溶体化処理後、特に100℃/min以上の平均冷却速度で50℃未満の室温に冷却した場合には、室温クラスターが生成される。この室温クラスターは強度に寄与するG.P.ゾーンに移行しにくいため、塗装焼付硬化性に不利となるが、延性の低下が小さいため、プレス成形に有利である。一方、溶体化処理後に150℃以上の温度範囲に冷却してそのまま保持した場合には、G.P.ゾーンあるいは安定相が生成され、成形前の素材強度が高くなり過ぎて、ヘム加工性やプレス成形性が劣化する。また、耐室温経時変化性も劣化するおそれがある。したがってヘム加工性、プレス成形性と塗装焼付硬化性、および耐室温経時変化性のバランスの観点から、溶体化処理−焼入れ(プロセス(b))、溶体化処理−焼入れ−安定化処理(プロセス(a))が上記の条件を満たすことが必要であり、用途、要求特性に応じていずれのプロセスを適用するかを決定すれば良い。   That is, after solution treatment, a room temperature cluster is generated particularly when cooling to room temperature below 50 ° C. at an average cooling rate of 100 ° C./min or more. This room temperature cluster contributes to strength. P. Since it is difficult to shift to the zone, it is disadvantageous for paint bake hardenability, but since the decrease in ductility is small, it is advantageous for press molding. On the other hand, when the solution is cooled to a temperature range of 150 ° C. or higher and kept as it is after the solution treatment, P. Zones or stable phases are generated, the strength of the material before molding becomes too high, and the hemmability and press formability deteriorate. In addition, the room temperature aging resistance may deteriorate. Therefore, from the viewpoint of balance between hemmability, press formability, paint bake hardenability, and room temperature aging resistance, solution treatment-quenching (process (b)), solution treatment-quenching-stabilization treatment (process ( It is necessary for a)) to satisfy the above conditions, and it is only necessary to determine which process is to be applied according to the application and required characteristics.

さらに、前記(b)のプロセスとして示したように、480℃以上で溶体化処理して50℃未満の温度域に焼入れ、必要に応じて0〜50℃の温度域で放置した後には、180〜280℃で復元処理を行っても良く、これが請求項7で規定するプロセス(c)である。このようにプロセス(c)において復元処理を行なう理由は次の通りである。すなわち、50℃未満の室温に冷却して形成される室温クラスターは強度に寄与するG.P.ゾーンに移行しにくいため、塗装焼付硬化性に不利となるが、180〜280℃での短時間(通常は5分以内が好ましい)の熱処理で塗装焼付硬化性を回復させ、曲げ加工性を向上させる効果がある。従って塗装焼付硬化性、曲げ加工性を重視する場合はこのプロセス(c)を適用する。   Furthermore, as shown as the process (b) above, after a solution treatment at 480 ° C. or higher and quenching to a temperature range of less than 50 ° C., and if allowed to stand in a temperature range of 0 to 50 ° C., 180 ° C. The restoration process may be performed at ˜280 ° C., which is the process (c) defined in claim 7. The reason why the restoration process is performed in the process (c) is as follows. That is, a room temperature cluster formed by cooling to a room temperature of less than 50 ° C. contributes to strength. P. Difficult to paint bake hardenability because it is difficult to shift to the zone, but the bake hardenability is restored by heat treatment at 180 to 280 ° C for a short time (usually within 5 minutes is preferable), and bending workability is improved. There is an effect to make. Therefore, this process (c) is applied when emphasizing the bake hardenability and bending workability.

以上のように、用途(要求特性)、生産設備に合わせてプロセス(a)、(b)、(c)のいずれかを選択することにより、最適な量産製造体制を構築することができる。   As described above, an optimal mass production manufacturing system can be constructed by selecting one of the processes (a), (b), and (c) in accordance with the application (required characteristics) and production equipment.

ここで、この発明の方法に係わる重要な測定法、表示法について以下に述べるが、その他は、実施例の方法に準ずる。   Here, an important measurement method and display method related to the method of the present invention will be described below, but the others are based on the method of the embodiment.

請求項1で規定している結晶方位密度の測定と計算方法は以下の通りである。 The crystal orientation density measurement and calculation method defined in claim 1 is as follows.

板表面から板厚1/10の位置のキューブ方位密度(C1/10)、1/4の位置のキューブ方位密度(C1/4)、1/2の位置のキューブ方位密度(C1/2)を求め、その合計をD1とした。ND回転キューブ方位密度D2についても、同様に板表面から板厚1/10の位置のND回転キューブ方位密度N1/10、1/4の位置のND回転キューブ方位密度N1/4、1/2の位置のND回転キューブ方位密度N1/2の合計とした。ゴス方位密度D3についても、同様に板表面から板厚1/10の位置のゴス方位密度G1/10、1/4の位置のゴス方位密度G1/4、1/2の位置のゴス方位密度G1/2の合計とした。さらにβファイバーに属するCu方位、S方位、Bs方位の各密度の合計D4についても、同様に板表面から板厚1/10の位置の各方位の密度Cu1/10、S1/10、Bs1/10、板表面から1/4の位置の各方位の密度Cu1/4、S1/4、B1/4、板表面から1/2の位置の各方位の密度Cu1/2、S1/2、B1/2の合計から求めた。すなわち、 D1=C1/10+C1/4+C1/2 D2=N1/10+N1/4+N1/2 D3=G1/10+G1/4+G1/2 D4=(Cu1/10+S1/10+Bs1/10)+(Cu1/4+S1/4+Bs1/4)+(Cu1/2+S1/2+Bs1/2)とした。 Cube orientation density (C 1/10 ) at a position 1/10 of the plate thickness from the plate surface, cube orientation density at a position 1/4 (C 1/4 ), cube orientation density at a position 1/2 (C 1 / 2 ) was determined, and the total was defined as D1. Similarly, for the ND rotating cube orientation density D2, the ND rotating cube orientation density N 1/10 at the position 1/10 of the plate thickness from the plate surface, and the ND rotating cube orientation density N 1/4 at the position of 1/4 , 1 / The total of the ND rotating cube orientation density N 1/2 at position 2 was used. Similarly for the Goth orientation density D3, the Goth orientation density G 1/10 at a position 1/10 of the thickness from the plate surface, the Goth orientation density G 1/4 at a position 1/4 , and the Goth orientation at a position 1/2. It was set as the sum of density G1 / 2 . Further, regarding the total density D4 of Cu orientation, S orientation, and Bs orientation belonging to the β fiber, the density Cu 1/10 , S 1/10 , Bs of each orientation at a position 1/10 of the plate thickness from the plate surface is similarly applied. 1/10 , density Cu 1/4 in each orientation at a position 1/4 from the plate surface, S 1/4 , B 1/4 , density Cu 1/2 in each orientation at a position 1/2 from the plate surface, It calculated | required from the sum total of S1 / 2 and B1 / 2 . That is, D1 = C 1/10 + C 1/4 + C 1/2 D2 = N 1/10 + N 1/4 + N 1/2 D3 = G 1/10 + G 1/4 + G 1/2 D4 = (Cu 1 / 10 + S 1/10 + Bs 1/10 ) + (Cu 1/4 + S 1/4 + Bs 1/4 ) + (Cu 1/2 + S 1/2 + Bs 1/2 ).

なおこれらの測定には、X線回折装置を用い、X線回折のシェルツ反射法により、{100}、{110}、{111}の不完全極点図を測定し、これらを元に三次元結晶方位解析(ODF)を行なって調べた。またこれらの解析においては、アルミニウム粉末から作られたランダム結晶方位を有する試料を測定して得たデータを{100}、{110}、{111}極点図の解析の際に使う規格化ファイルとし、これによりランダム方位を有する試料に対する倍数として各種方位密度を求めた。なおこの発明において、結晶方位密度は全て三次元結晶方位解析(ODF)に基づくものである。   For these measurements, an incomplete pole figure of {100}, {110}, {111} is measured by the X-ray diffraction Schertz reflection method using an X-ray diffractometer. An orientation analysis (ODF) was performed and examined. In these analyses, the data obtained by measuring a sample having a random crystal orientation made from aluminum powder is used as a standardized file for analysis of {100}, {110}, {111} pole figures. Thus, various orientation densities were obtained as multiples of the sample having a random orientation. In this invention, the crystal orientation density is all based on three-dimensional crystal orientation analysis (ODF).

ここで、キューブ(Cube)方位は{001}<100>を代表方位とし、ゴス(Goss)方位は{011}<100>を代表方位とし、Cu方位は{112}<111>を代表方位とし、S方位は{123}<634>を代表方位とし、Bs方位は{011}<211>を代表方位とした。なおND回転キューブ方位は種々存在するが、この発明では、後述する実施例に示すように、そのうちの{001}<730>方位を代表方位としている。なおまた、通常は上記方位を中心に一定角度を持つ方位分散が存在するため、この発明では、上記方位廻りの15°の回転範囲内にある最大方位密度をとり、それぞれ上記方位密度の代表値とした。
Here, the cube orientation is {001} <100> as the representative orientation, the Goss orientation is {011} <100> as the representative orientation, and the Cu orientation is {112} <111> as the representative orientation. , S orientation is {123} <634> as the representative orientation, and Bs orientation is {011} <211> as the representative orientation. Although there are various ND rotating cube orientations, in the present invention, as shown in the embodiments described later, the {001} <730> orientation is the representative orientation. In addition, since there is usually an azimuth dispersion having a certain angle centered on the azimuth, the present invention takes the maximum azimuth density within a rotation range of 15 ° around the azimuth, and each represents a representative value of the azimuth density. It was.

結晶粒度:板の圧延面(板の表皮)においてEBSP(EBSD)法によってマッピングした画像をもとに切断法でASTMナンバーを算出した。ミスオリエンテーション5°以上の結晶境界線を結晶粒界とみなした。   Crystal grain size: ASTM number was calculated by the cutting method based on the image mapped by the EBSP (EBSD) method on the rolled surface of the plate (skin skin). A crystal boundary with a misorientation of 5 ° or more was regarded as a grain boundary.

以下にこの発明の実施例を比較例とともに記す。なお以下の実施例は、この発明の効果を説明するためのものであり、実施例記載のプロセスおよび条件がこの発明の技術的範囲を制限するものではない。   Examples of the present invention will be described below together with comparative examples. The following examples are for explaining the effects of the present invention, and the processes and conditions described in the examples do not limit the technical scope of the present invention.

表1に示すこの発明成分組成範囲内の合金記号A1〜A5の合金について、それぞれ常法に従って溶製し、DC鋳造法によりスラブに鋳造した。得られた各スラブに対して540℃、5hの条件で均質化処理を施した。均質化処理後、2段冷却を行い、その後、熱間圧延工程に供し、さらに冷間圧延(最終冷間圧延)を施した。均質化処理後の2段冷却から熱間圧延、冷間圧延までの条件について表2〜表3の製造番号1〜8に示す。   Alloys of alloy symbols A1 to A5 within the composition range of the present invention shown in Table 1 were melted in accordance with conventional methods and cast into slabs by DC casting. Each obtained slab was homogenized at 540 ° C. for 5 hours. After the homogenization treatment, two-stage cooling was performed, and then subjected to a hot rolling process, and further cold rolling (final cold rolling) was performed. The production numbers 1 to 8 in Tables 2 to 3 show the conditions from the two-stage cooling after the homogenization treatment to hot rolling and cold rolling.

ここで、均質化処理後の2段冷却については、次のように行なった。   Here, the two-stage cooling after the homogenization treatment was performed as follows.

すなわち、製造番号1では、第2冷却終了温度340℃から直ちに熱間圧延に供した。また製造番号2では、第2冷却終了温度300℃からさらに300℃×2時間300℃保持処理を行ない、続いて熱間圧延に供した。さらに製造番号3では、第2冷却終了温度305℃から15℃/hの昇温速度で320℃に昇温して、この温度で1時間保持処理を行なってから熱間圧延に供した。また製造番号4では、第2冷却終了温度150℃から一旦室温に空冷した後、再び300℃に昇温してから熱間圧延に供した。なおこの製造番号4における150℃以上450℃未満の温度域での総滞留時間(6.00時間)には、150℃未満からの再昇温時において150℃以上450℃未満の温度域を通過する時間を算入していない。一方製造番号5〜8では、それぞれ第1冷却終了温度から一旦室温に空冷した後、再び表3の熱間圧延開始温度まで昇温して熱間圧延に供した。なおこれらの製造番号5〜8のそれぞれにおける150℃以上450℃未満の温度域での総滞留時間としては、室温から熱間圧延開始温度までの再昇温時における150℃以上450℃未満の温度域を通過する時間を算入しないこととした。   That is, in production number 1, it was subjected to hot rolling immediately from the second cooling end temperature of 340 ° C. In production number 2, a 300 ° C. × 2 hour 300 ° C. holding treatment was further performed from the second cooling end temperature of 300 ° C., followed by hot rolling. Further, in production number 3, the temperature was raised from the second cooling end temperature of 305 ° C. to 320 ° C. at a rate of 15 ° C./h, a holding treatment was performed at this temperature for 1 hour, and then subjected to hot rolling. In production number 4, after the second cooling end temperature of 150 ° C. was once air-cooled to room temperature, the temperature was raised again to 300 ° C. and then subjected to hot rolling. In addition, the total residence time (6.00 hours) in the temperature range of 150 ° C. or higher and lower than 450 ° C. in the production number 4 passes the temperature range of 150 ° C. or higher and lower than 450 ° C. at the time of reheating from less than 150 ° C. Time is not counted. On the other hand, in production numbers 5 to 8, after air-cooling once from the first cooling end temperature to room temperature, the temperature was raised again to the hot rolling start temperature shown in Table 3 and subjected to hot rolling. The total residence time in the temperature range of 150 ° C. or more and less than 450 ° C. in each of these production numbers 5 to 8 is a temperature of 150 ° C. or more and less than 450 ° C. at the time of reheating from room temperature to the hot rolling start temperature. The time to pass through the area was not counted.

なおここで、製造番号5、6、7、8は、いずれも第1冷却終了温度を150℃未満とし、また製造番号8は第1段冷却の速度を遅くし、いずれもこの発明で規定する範囲から外れたものである。   Here, production numbers 5, 6, 7, and 8 all have a first cooling end temperature of less than 150 ° C., and production number 8 slows down the first stage cooling rate, and all are defined in the present invention. It is out of range.

さらに、表3中に示しているように溶体化処理を行なった後、製造番号1、2、5、6の例では安定化処理を行ない、また製造番号3、7の例では安定化処理を行なわずに、溶体化処理後の冷却(焼入れ)のまま放置した後、復元処理を行なった。さらに製造番号4、8の例では、溶体化処理―冷却の後に、安定化処理を行なわずに。溶体化処理後の冷却(焼入れ)のまま常温に放置した。   Further, after the solution treatment as shown in Table 3, the stabilization process is performed in the examples of production numbers 1, 2, 5, and 6, and the stabilization process is performed in the examples of production numbers 3 and 7. Without performing, it was allowed to stand as it was after cooling (quenching) after the solution treatment, and then the restoration treatment was performed. Furthermore, in the examples of production numbers 4 and 8, no stabilization treatment is performed after solution treatment-cooling. The solution was left at room temperature with cooling (quenching) after the solution treatment.

以上のようにして得られたアルミニウム合金板(製品板)について、次のようにして結晶粒度、および集合組織(結晶方位密度)を調べた。   The aluminum alloy plate (product plate) obtained as described above was examined for crystal grain size and texture (crystal orientation density) as follows.

結晶粒度:板の圧延面においてEBSP(EBSD)法によってマッピングした画像をもとに切断法でASTMナンバーを算出した。ミスオリエンテーション5°以上の結晶境界線を結晶粒界と見なした。   Crystal grain size: ASTM number was calculated by cutting method based on image mapped by EBSP (EBSD) method on rolled surface of plate. A crystal boundary line with a misorientation of 5 ° or more was regarded as a grain boundary.

集合組織(結晶方位密度):厚さ1mmの板について、NaOH水溶液で表面から板厚中央に向けて種々の深さまでエッチングしたものをそれぞれ測定サンプルとした。そして板表面から100μmの位置のキューブ方位密度(C1/10)、250μmの位置のキューブ方位密度(C1/4)、500μmの位置のキューブ方位密度(C1/2)を求め、その合計をD1とした。ND回転キューブ方位密度D2についても、同様に板表面から100μmの位置のND回転キューブ方位密度N1/10、250μmの位置のND回転キューブ方位密度N1/4、500μmの位置のND回転キューブ方位密度N1/2の合計とした。ゴス方位密度D3についても、同様に板表面から板厚1/10の位置のゴス方位密度G1/10、1/4の位置のゴス方位密度G1/4、1/2の位置のゴス方位密度G1/2の合計とした。さらにβファイバーに属するCu方位、S方位、Bs方位の各密度の合計D4についても、同様に板表面から100μmの位置の各方位の密度Cu1/10、S1/10、Bs1/10、板表面から250μmの位置の各方位の密度Cu1/4、S1/4、B1/4、板表面から500μmの位置の各方位の密度Cu1/2、S1/2、B1/2の合計から求めた。すなわち、
D1=C1/10+C1/4+C1/2
D2=N1/10+N1/4+N1/2
D3=G1/10+G1/4+G1/2
D4=(Cu1/10+S1/10+Bs1/10)+(Cu1/4+S1/4+Bs1/4)+(Cu1/2+S1/2+Bs1/2
とした。
Texture (crystal orientation density): A plate having a thickness of 1 mm and etched to various depths from the surface toward the center of the plate thickness with an aqueous NaOH solution was used as a measurement sample. Then, the cube orientation density (C 1/10 ) at a position of 100 μm from the plate surface, the cube orientation density (C 1/4 ) at a position of 250 μm, and the cube orientation density (C 1/2 ) at a position of 500 μm are obtained, and the total Was set to D1. Similarly for the ND rotating cube orientation density D2, the ND rotating cube orientation density N 1/10 at a position of 100 μm from the plate surface, the ND rotating cube orientation density N 1/4 at a position of 250 μm, and the ND rotating cube orientation at a position of 500 μm. The total density N 1/2 was used. Similarly for the Goth orientation density D3, the Goth orientation density G 1/10 at a position 1/10 of the thickness from the plate surface, the Goth orientation density G 1/4 at a position 1/4 , and the Goth orientation at a position 1/2. It was set as the sum of density G1 / 2 . Further, regarding the total density D4 of Cu orientation, S orientation, and Bs orientation belonging to β fiber, the density Cu 1/10 , S 1/10 , Bs 1/10 , of each orientation at a position of 100 μm from the surface of the plate is similarly applied. Densities Cu 1/4 , S 1/4 , B 1/4 at positions 250 μm from the plate surface, densities Cu 1/2 , S 1/2 , B 1 / at positions 500 μm from the plate surface Obtained from the sum of two . That is,
D1 = C 1/10 + C 1/4 + C 1/2
D2 = N 1/10 + N 1/4 + N 1/2
D3 = G 1/10 + G 1/4 + G 1/2
D4 = (Cu 1/10 + S 1/10 + Bs 1/10 ) + (Cu 1/4 + S 1/4 + Bs 1/4 ) + (Cu 1/2 + S 1/2 + Bs 1/2 )
It was.

なおND回転キューブ方位は種々存在するが、本実施例においては、ND回転キューブ方位のうちで{001}<730>を代表方位とした。そのまわり15°範囲内の最大値を取り、表示した。 Although there are various ND rotating cube orientations, in this embodiment , {001} <730> is set as the representative orientation among the ND rotating cube orientations. The maximum value within the 15 ° range was taken and displayed.

これらの各方位密度測定結果を表4に示す。   These orientation density measurement results are shown in Table 4.

さらに前述のようにして得られた各板について、室温経時変化を考慮して室温(25℃)に3ヶ月放置した後、塗装焼付前の板について、引張試験による強度評価、カップ絞り試験による耳率、ポンチ張出し試験による張出高さ、リジングマーク評価、曲げ試験によるヘム加工性評価を行なった。さらにそれぞれ2%ストレッチ後、170℃×20分の塗装焼付(ベーク)処理を施し、引張試験を行なって、機械的強度として0.2%耐力値を測定した。具体的な各測定法、評価法は次の通りである。   Further, each plate obtained as described above was left at room temperature (25 ° C.) for 3 months in consideration of the aging of the room temperature, and then the strength of the plate before paint baking was evaluated by the tensile test and the ear by the cup drawing test. Rate, overhang height by punch overhang test, ridging mark evaluation, and hem workability evaluation by bending test. Further, after stretching each 2%, a coating baking (baking) treatment was performed at 170 ° C. for 20 minutes, a tensile test was performed, and a 0.2% proof stress value was measured as a mechanical strength. Specific measurement methods and evaluation methods are as follows.

耳率測定:板に潤滑油を塗布した後、ポンチ径φ32mm、ブランク径φ62mm、しわ押さえ100kgの条件でカップに絞り、そのカップの耳率を調べた。なおここで耳率の方向は、圧延方向を基準にした0°方向、90°方向で示す。   Ear ratio measurement: After applying lubricating oil to the plate, the cup was squeezed under the conditions of a punch diameter of 32 mm, a blank diameter of 62 mm, and a wrinkle holding force of 100 kg, and the ear ratio of the cup was examined. Here, the direction of the ear rate is indicated by a 0 ° direction and a 90 ° direction based on the rolling direction.

ヘム加工性の評価:材料の圧延方向に対して板面内0°、45°、90°三方向に曲げ試験片を採取し、10%ストレッチしてから、180°に密着曲げを行ない、目視により割れの発生の有無を観察した。ここで○印は割れ無しを、また×印は割れ有りを示す。   Evaluation of hem workability: Bending specimens are collected in three directions of 0 °, 45 °, and 90 ° within the plate surface with respect to the rolling direction of the material, stretched by 10%, and then tightly bent at 180 °, visually. Thus, the occurrence of cracks was observed. Here, a circle indicates that there is no crack, and a cross indicates that there is a crack.

リジング・マークの発生評価:直径100mmの球頭ポンチで高さ30mmまで張出成形を行ない、表面に形成される圧延方向に沿う筋(凹凸)を目視で判定した。○印は筋なしあるいは筋が弱い状態を示し、×印は筋が強い状態を示す。ここで筋が強ければ、自動車用外板の外観として不適当となる。   Evaluation of generation of ridging mark: An overhang was formed to a height of 30 mm with a spherical head punch having a diameter of 100 mm, and the streaks (unevenness) along the rolling direction formed on the surface were visually determined. A circle indicates no muscle or a weak muscle, and a cross indicates a strong muscle. If the streak is strong here, the appearance of the automobile outer plate is inappropriate.

肌荒れの発生評価:直径100mmの球頭ポンチで高さ30mmまで張出成形を行ない、表面の荒れを目視で判定した。○印は荒れなしの状態を示し、×印は荒れが強い状態を示す。ここで肌荒れが強ければ、自動車用外板の外観として不適当となる。   Evaluation of occurrence of rough skin: Overhang molding was performed up to a height of 30 mm with a spherical punch having a diameter of 100 mm, and the roughness of the surface was visually determined. A circle indicates a non-rough state, and a cross indicates a strong rough state. If the skin is rough, it is inappropriate as the appearance of the automobile outer plate.

張出し試験:200mm×200mmの大きさの1mm板の両面にマスキングフィルムを貼り、さらに潤滑を高めるため、ジョンソンワックス(商品名)を塗った状態で張出し試験に供し、最大張出し高さを調べた。なおポンチとしては球頭ポンチ径100mmのものを使用した。   Overhang test: A masking film was applied to both sides of a 1 mm plate having a size of 200 mm × 200 mm, and in order to further improve lubrication, it was subjected to an overhang test with Johnson wax (trade name) applied, and the maximum overhang height was examined. A punch having a ball head punch diameter of 100 mm was used.

これらの試験結果、評価結果を表5、表6に示す。   These test results and evaluation results are shown in Tables 5 and 6.

Figure 0005367250
Figure 0005367250

Figure 0005367250
Figure 0005367250

Figure 0005367250
Figure 0005367250

Figure 0005367250
Figure 0005367250

Figure 0005367250
Figure 0005367250

Figure 0005367250
Figure 0005367250

製造番号1〜4の例は、いずれも合金の成分組成がこの発明で規定する範囲内であって、かつ製造プロセス条件もこの発明で規定する範囲内であり、最終板の結晶方位密度条件等もすべてこの発明で規定する条件を満たしたものであるが、これらの場合は、結晶粒が微細で、肌荒れがなく、耐リジング性が良好で、成形性の指標である張出し高さが高く、曲げ異方性が小さく、ヘム加工性が優れた。このうち、製造番号1〜3の例では、焼付硬化性が高く、塗装焼付時に充分な焼付硬化性を示し、製造番号4は、焼付け硬化性は若干低いものの、張出し性が優れた。   In the examples of production numbers 1 to 4, the alloy component composition is within the range defined by the present invention, and the production process conditions are also within the range defined by the present invention. All satisfy the conditions specified in the present invention, but in these cases, the crystal grains are fine, there is no rough skin, the ridging resistance is good, and the overhang height which is an index of moldability is high, Bend anisotropy is small and hemmability is excellent. Among these, the examples of production numbers 1 to 3 have high bake hardenability and exhibited sufficient bake hardenability during paint baking, while production number 4 was slightly low in bake hardenability but excellent in overhanging properties.

これに対し製造番号5〜8の例は、いずれも合金の成分組成はこの発明で規定する範囲内であるが、製造プロセス条件のいずれかがこの発明の範囲外であって、結晶方位密度、結晶粒度条件等のいずれかがこの発明で規定する条件を満たさなかったものである。これらのうち、製造番号5の場合は結晶粒が粗く、肌荒れが発生した。張出し高さも劣った。また45°方向のヘム加工性が劣った。また製造番号6の場合は、結晶粒が粗く、肌荒れが発生した。張出高さ、45°方向のヘム加工性が劣った。さらに製造番号7の場合は、結晶粒が粗く、肌荒れが発生した。張出高さ、全方向のヘム加工性が劣った。そしてまた製造番号8の場合は、結晶粒度、肌荒れなどに問題がなく、ヘム加工性も良好であるが、耐リジング性、張出高さが劣っており、さらに強度全般も低く、また三方向の強度異方性も認められた。   On the other hand, in the examples of production numbers 5 to 8, the alloy component composition is within the range specified in the present invention, but any of the production process conditions is outside the range of the present invention, and the crystal orientation density, Any of the crystal grain size conditions or the like did not satisfy the conditions specified in the present invention. Among these, in the case of the production number 5, the crystal grains were coarse and rough skin was generated. The overhang height was also inferior. Further, the hemmability in the 45 ° direction was inferior. In the case of production number 6, the crystal grains were rough and rough skin was generated. Overhang height and hem workability in 45 ° direction were inferior. Further, in the case of production number 7, the crystal grains were rough and rough skin was generated. Overhang height and hem workability in all directions were inferior. In the case of production number 8, there is no problem in crystal grain size, rough skin, etc., heme workability is good, but ridging resistance and overhang height are inferior, and overall strength is low, and three directions Strength anisotropy was also observed.

Claims (6)

Mg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつTi0.005〜0.3%を単独でもしくはB500ppm以下とともに含有し、さらにMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Fe0.03〜1.0%、Zn0.03〜0.05%のうちから選ばれた1種または2種以上を含有し、さらにCuが1.5%以下に規制され、残部がAlおよび不可避的不純物よりなるアルミニウム合金が素材とされ、板に存在する結晶粒のキューブ方位密度をD1、板面法線(以下「ND」と記す)を軸にキューブ方位から回転した方位のうち{001}<730>方位(以下「ND回転キューブ方位」と記す)の密度をD2とし、圧延方向を軸にキューブ方位から45°回転した方位(以下「ゴス方位」と記す)の密度をD3とし、さらに圧延集合組織のβファイバーに属するCu、S、Bs方位密度の合計をD4として、次の(1)〜(4)式(各方位密度のD1、D2、D3、D4の数値はすべてランダム結晶方位密度に対する倍数を表す)
D1≧168.4 ・・・(1)
D2≧18.9 ・・・(2)
D2/D3≧7.5 ・・・(3)
D4≧9.1 ・・・(4)
を満たし、さらに0、90°耳率が3%以上、結晶粒径がASTMでNo.4.5以上であることを特徴とする、成形加工用アルミニウム合金板。
Mg 0.2-1.5% (mass%, the same shall apply hereinafter), Si 0.3-2.0%, Ti 0.005-0.3% alone or with B500 ppm or less, and Mn 0. 03~0.6%, Cr0.01~0.4%, Zr0.01~0.4% , V0.01~0.4%, Fe0.03~1.0%, Zn0.03~ 0.05 contain one or two or more species selected from among%, more Cu is regulated to 1.5% or less, an aluminum alloy and the balance of Al and unavoidable impurities is a material present in the plate crystals Of the orientations rotated from the cube orientation around the plane normal (hereinafter referred to as “ND”) with D1 as the cube orientation density of the grains, the {001} <730> orientation (hereinafter referred to as “ND rotated cube orientation”) The density is set to D2, and the cue is set with the rolling direction as the axis. The density of an orientation rotated 45 ° from the orientation (hereinafter referred to as the “Goss orientation”) is D3, and the total density of Cu, S, Bs orientations belonging to the β fiber of the rolling texture is D4, and the following (1) Formula (4) (All numerical values of D1, D2, D3, and D4 in each orientation density represent multiples of random crystal orientation density)
D1 ≧ 168.4 (1)
D2 ≧ 18.9 (2)
D2 / D3 ≧ 7.5 (3)
D4 ≧ 9.1 (4)
Further, the 0, 90 ° ear ratio is 3% or more, and the crystal grain size is ASTM No. An aluminum alloy plate for forming, which is 4.5 or more.
請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、前記成分組成のアルミニウム合金の鋳塊に480〜590℃の範囲内の温度で1時間以上の均質化処理を施し、その冷却過程において、先ず150℃以上450℃未満の温度範囲内のある温度(以後「第1冷却ポイント」と呼ぶ)まで100℃/h以上の冷却速度で急冷し、引続いて第1冷却ポイントから、その第1冷却ポイントよりも低くかつ150℃以上450℃未満の温度範囲内のある温度(以後「第2冷却ポイント」と呼ぶ)までを、冷却速度100℃未満/hの冷却速度で徐冷することによって、150℃以上450℃未満の温度範囲内に少なくとも0.5時間以上滞留させ、次に250℃以上450℃未満の温度で熱間圧延を開始し、かつ熱間圧延過程中における板厚200mmから20mmまでの段階で1パス当りの圧延率が40%以上の高圧下の圧延パスを少なくとも1回施し、得られた熱間圧延板に対し、焼鈍を行なうことなく30%以上の圧延率で冷間圧延を施した後、480℃以上の温度で溶体化処理を行なってから、100℃/min以上の平均冷却速度で150℃未満、50℃以上の温度域まで冷却し、引き続いて150℃未満、50℃以上の温度域内で1時間以上の安定化処理を行なうことを特徴とする、成形加工用アルミニウム合金板の製造方法。 In producing the aluminum alloy sheet for forming according to claim 1, the aluminum alloy ingot of the above component composition is subjected to a homogenization treatment for 1 hour or more at a temperature in the range of 480 to 590 ° C., and its cooling process First, rapid cooling is performed at a cooling rate of 100 ° C./h or higher to a certain temperature within the temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “first cooling point”), and then from the first cooling point, Slowly cool to a temperature lower than the first cooling point and within a temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “second cooling point”) at a cooling rate of less than 100 ° C./h. To hold in the temperature range of 150 ° C. or higher and lower than 450 ° C. for at least 0.5 hour, and then start hot rolling at a temperature of 250 ° C. or higher and lower than 450 ° C., and during the hot rolling process At least one rolling pass under a high pressure with a rolling rate of 40% or more per pass at a stage from a thickness of 200 mm to 20 mm is performed, and the obtained hot rolled plate is 30% or more without annealing. After performing cold rolling at a rolling rate of 480 ° C. or higher, solution treatment is performed at a temperature of 480 ° C. or higher, and then cooled to a temperature range of less than 150 ° C. and 50 ° C. or higher at an average cooling rate of 100 ° C./min or higher, A method for producing an aluminum alloy sheet for forming, characterized by subsequently performing a stabilization treatment for 1 hour or more in a temperature range of less than 150 ° C. and 50 ° C. or more. 請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、前記成分組成のアルミニウム合金の鋳塊に480〜590℃の範囲内の温度で1時間以上の均質化処理を施し、その冷却過程において、先ず150℃以上450℃未満の温度範囲内のある温度(以後「第1冷却ポイント」と呼ぶ)まで100℃/h以上の冷却速度で急冷し、引続いて150℃以上450℃未満の範囲内の温度で維持することによって、その温度範囲内に少なくとも0.5時間以上滞留させ、次に250℃以上450℃未満の温度で熱間圧延を開始し、かつ熱間圧延過程中における板厚200mmから20mmまでの段階で1パス当りの圧延率が40%以上の高圧下の圧延パスを少なくとも1回施し、得られた熱間圧延板に対し、焼鈍を行なうことなく30%以上の圧延率で冷間圧延を施した後、480℃以上の温度で溶体化処理を行なってから100℃/min以上の平均冷却速度で150℃未満、50℃以上の温度域まで冷却し、引き続いて150℃未満、50℃以上の温度域内で1時間以上の安定化処理を行なうことを特徴とする、成形加工用アルミニウム合金板の製造方法。 In producing the aluminum alloy sheet for forming according to claim 1 , the aluminum alloy ingot of the above component composition is subjected to a homogenization treatment for 1 hour or more at a temperature in the range of 480 to 590 ° C., and its cooling process First, it is rapidly cooled at a cooling rate of 100 ° C./h or higher to a temperature within a temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “first cooling point”), and subsequently 150 ° C. or higher and lower than 450 ° C. By maintaining at a temperature within the range, the sheet is allowed to stay within the temperature range for at least 0.5 hours, and then hot rolling is started at a temperature of 250 ° C. or higher and lower than 450 ° C., and the plate is in the process of hot rolling A rolling pass under a high pressure at a rolling rate of 40% or more per pass at a stage from a thickness of 200 mm to 20 mm is performed at least once, and the obtained hot rolled sheet is subjected to 3 without annealing. After performing cold rolling at a rolling rate of not less than 100%, solution treatment is performed at a temperature of 480 ° C or higher, and then cooled to a temperature range of less than 150 ° C and 50 ° C or higher at an average cooling rate of 100 ° C / min or higher. Then, a method for producing an aluminum alloy plate for forming, characterized by performing a stabilization treatment for 1 hour or more in a temperature range of less than 150 ° C. and 50 ° C. or more. 請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、前記成分組成のアルミニウム合金の鋳塊に480〜590℃の範囲内の温度で1時間以上の均質化処理を施し、その冷却過程において、先ず150℃以上450℃未満の温度範囲内のある温度(以後「第1冷却ポイント」と呼ぶ)まで100℃/h以上の冷却速度で急冷し、引続いて第1冷却ポイントから、その第1冷却ポイントよりも低くかつ150℃以上450℃未満の温度範囲内のある温度(以後「第2冷却ポイント」と呼ぶ)までを、冷却速度100℃未満/hの冷却速度で徐冷することによって、150℃以上450℃未満の温度範囲内に少なくとも0.5時間以上滞留させ、次に250℃以上450℃未満の温度で熱間圧延を開始し、かつ熱間圧延過程中における板厚200mmから20mmまでの段階で1パス当りの圧延率が40%以上の高圧下の圧延パスを少なくとも1回施し、得られた熱間圧延板に対し、焼鈍を行なうことなく30%以上の圧延率で冷間圧延を施した後、480℃以上の温度で溶体化処理を行なってから100℃/min以上の平均冷却速度で50℃未満の温度域まで冷却して放置することを特徴とする、成形加工用アルミニウム合金板の製造方法。 In producing the aluminum alloy sheet for forming according to claim 1 , the aluminum alloy ingot of the above component composition is subjected to a homogenization treatment for 1 hour or more at a temperature in the range of 480 to 590 ° C., and its cooling process First, rapid cooling is performed at a cooling rate of 100 ° C./h or higher to a certain temperature within the temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “first cooling point”), and then from the first cooling point, Slowly cool to a temperature lower than the first cooling point and within a temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “second cooling point”) at a cooling rate of less than 100 ° C./h. To hold in the temperature range of 150 ° C. or higher and lower than 450 ° C. for at least 0.5 hour, and then start hot rolling at a temperature of 250 ° C. or higher and lower than 450 ° C., and during the hot rolling process At least one rolling pass under a high pressure with a rolling rate of 40% or more per pass at a stage from a thickness of 200 mm to 20 mm is performed, and the obtained hot rolled plate is 30% or more without annealing. After performing cold rolling at a rolling rate of 480 ° C., solution treatment is performed at a temperature of 480 ° C. or higher, and then cooled to a temperature range of less than 50 ° C. at an average cooling rate of 100 ° C./min or more and left to stand. A method for producing an aluminum alloy sheet for forming. 請求項1に記載の成形加工用アルミニウム合金板を製造するにあたり、前記成分組成のアルミニウム合金の鋳塊に480〜590℃の範囲内の温度で1時間以上の均質化処理を施し、その冷却過程において、先ず150℃以上450℃未満の温度範囲内のある温度(以後「第1冷却ポイント」と呼ぶ)まで100℃/h以上の冷却速度で急冷し、引続いて150℃以上450℃未満の範囲内の温度で維持することによって、その温度範囲内に少なくとも0.5時間以上滞留させ、次に250℃以上450℃未満の温度で熱間圧延を開始し、かつ熱間圧延過程中における板厚200mmから20mmまでの段階で1パス当りの圧延率が40%以上の高圧下の圧延パスを少なくとも1回施し、得られた熱間圧延板に対し、焼鈍を行なうことなく30%以上の圧延率で冷間圧延を施した後、480℃以上の温度で溶体化処理を行なってから100℃/min以上の平均冷却速度で50℃未満の温度域まで冷却して放置することを特徴とする、成形加工用アルミニウム合金板の製造方法。 In producing the aluminum alloy sheet for forming according to claim 1 , the aluminum alloy ingot of the above component composition is subjected to a homogenization treatment for 1 hour or more at a temperature in the range of 480 to 590 ° C., and its cooling process First, it is rapidly cooled at a cooling rate of 100 ° C./h or higher to a temperature within a temperature range of 150 ° C. or higher and lower than 450 ° C. (hereinafter referred to as “first cooling point”), and subsequently 150 ° C. or higher and lower than 450 ° C. By maintaining at a temperature within the range, the sheet is allowed to stay within the temperature range for at least 0.5 hours, and then hot rolling is started at a temperature of 250 ° C. or higher and lower than 450 ° C., and the plate is in the process of hot rolling A rolling pass under a high pressure at a rolling rate of 40% or more per pass at a stage from a thickness of 200 mm to 20 mm is performed at least once, and the obtained hot rolled sheet is subjected to 3 without annealing. After cold rolling at a rolling rate of at least%, solution treatment is performed at a temperature of 480 ° C or higher, and then cooled to a temperature range of less than 50 ° C at an average cooling rate of 100 ° C / min or higher and left to stand. A method for producing an aluminum alloy plate for forming, characterized in that 請求項4もしくは請求項5に記載の成形加工用アルミニウム合金板の製造方法において、
前記溶体化処理を480℃以上の温度で行なってから、100℃/min以上の平均冷却速度で50℃未満の温度域まで冷却して放置したのち、さらに180〜280℃の範囲内の温度で復元処理を行なうことを特徴とする、成形加工用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for shaping | molding of Claim 4 or Claim 5 ,
After the solution treatment is performed at a temperature of 480 ° C. or higher, after cooling to a temperature range of less than 50 ° C. at an average cooling rate of 100 ° C./min or higher, the solution is further treated at a temperature in the range of 180 to 280 ° C. A method for producing an aluminum alloy sheet for forming, characterized by performing a restoration process.
JP2007279043A 2007-10-26 2007-10-26 Aluminum alloy plate for forming and method for producing the same Expired - Fee Related JP5367250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007279043A JP5367250B2 (en) 2007-10-26 2007-10-26 Aluminum alloy plate for forming and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007279043A JP5367250B2 (en) 2007-10-26 2007-10-26 Aluminum alloy plate for forming and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009108342A JP2009108342A (en) 2009-05-21
JP5367250B2 true JP5367250B2 (en) 2013-12-11

Family

ID=40777149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279043A Expired - Fee Related JP5367250B2 (en) 2007-10-26 2007-10-26 Aluminum alloy plate for forming and method for producing the same

Country Status (1)

Country Link
JP (1) JP5367250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024097460A1 (en) * 2022-11-04 2024-05-10 Novelis Inc. High recycle content 6xxx series aluminum alloys and methods for preparing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865582B2 (en) * 2010-09-30 2016-02-17 株式会社Uacj Aluminum alloy plate for forming process excellent in bending workability and manufacturing method thereof
JP5758676B2 (en) * 2011-03-31 2015-08-05 株式会社神戸製鋼所 Aluminum alloy plate for forming and method for producing the same
CN102682921B (en) * 2012-05-14 2013-08-07 广西平果博导铝镁线缆有限公司 Continuous two-stage annealing method for aluminum-magnesium alloy
CN116676501B (en) * 2023-06-02 2023-10-17 南京工程学院 High-performance aluminum alloy and manufacturing method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557953B2 (en) * 1999-05-25 2004-08-25 日本軽金属株式会社 Aluminum alloy sheet for precision machining and method of manufacturing the same
JP3845312B2 (en) * 2002-01-31 2006-11-15 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP2003268475A (en) * 2002-03-12 2003-09-25 Sky Alum Co Ltd Aluminum alloy sheet for forming, and manufacturing method therefor
JP4634249B2 (en) * 2005-08-05 2011-02-16 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP2007169740A (en) * 2005-12-22 2007-07-05 Kobe Steel Ltd Aluminum alloy sheet having excellent formability and its production method
JP2008231475A (en) * 2007-03-19 2008-10-02 Furukawa Sky Kk Aluminum alloy sheet for forming workpiece, and producing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024097460A1 (en) * 2022-11-04 2024-05-10 Novelis Inc. High recycle content 6xxx series aluminum alloys and methods for preparing the same

Also Published As

Publication number Publication date
JP2009108342A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4634249B2 (en) Aluminum alloy plate for forming and method for producing the same
WO2018012532A1 (en) Method for producing aluminum alloy rolled material for molding processing having superior bending workability and ridging resistance
JP2008303449A (en) Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2012077318A (en) Aluminum alloy rolled sheet for molding process having excellent ridging resistance and method for producing the same
JP4602195B2 (en) Method for producing aluminum alloy sheet for forming
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5813358B2 (en) Highly formable Al-Mg-Si alloy plate and method for producing the same
JP4200082B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
TW202120707A (en) Aluminum alloy material
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
JP4164437B2 (en) Method for producing aluminum alloy sheet for forming
JP2003268475A (en) Aluminum alloy sheet for forming, and manufacturing method therefor
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP5415016B2 (en) Aluminum alloy plate for forming and method for producing the same
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4263073B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5495538B2 (en) Warm press forming method of bake hardening type aluminum alloy plate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Ref document number: 5367250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees