JP4200086B2 - Aluminum alloy plate for forming and method for producing the same - Google Patents

Aluminum alloy plate for forming and method for producing the same Download PDF

Info

Publication number
JP4200086B2
JP4200086B2 JP2003410480A JP2003410480A JP4200086B2 JP 4200086 B2 JP4200086 B2 JP 4200086B2 JP 2003410480 A JP2003410480 A JP 2003410480A JP 2003410480 A JP2003410480 A JP 2003410480A JP 4200086 B2 JP4200086 B2 JP 4200086B2
Authority
JP
Japan
Prior art keywords
temperature
plate
less
rolling
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003410480A
Other languages
Japanese (ja)
Other versions
JP2005171295A5 (en
JP2005171295A (en
Inventor
旭 日比野
俊雄 小松原
雅路 青野
健 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Furukawa Sky Aluminum Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Furukawa Sky Aluminum Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Furukawa Sky Aluminum Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2003410480A priority Critical patent/JP4200086B2/en
Publication of JP2005171295A publication Critical patent/JP2005171295A/en
Publication of JP2005171295A5 publication Critical patent/JP2005171295A5/ja
Application granted granted Critical
Publication of JP4200086B2 publication Critical patent/JP4200086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

この発明は、自動車ボディシートやそのほか各種自動車部品、各種機械器具、家電製品やその部品等の素材として、成形加工および塗装焼付を施して使用されるAl−Mg−Si系のアルミニウム合金板およびその製造方法に関するものであり、成形性、特にヘム曲げ性およびプレス加工性が良好であるとともに、塗装焼付後の強度が高く、かつ室温での経時変化が少ない成形加工用アルミニウム合金板およびその製造方法に関するものである。   The present invention relates to an Al-Mg-Si-based aluminum alloy plate used as a material for an automobile body sheet, other various automobile parts, various machinery and equipment, home appliances and parts thereof, and the like, and subjected to forming and baking. The present invention relates to a manufacturing method, which has good formability, particularly hem bendability and press workability, has high strength after baking, and has little change over time at room temperature, and its manufacturing method It is about.

従来自動車のボディシートとしては、主として冷延鋼板を使用することが多かったが、最近では車体軽量化等の観点から、アルミニウム合金圧延板を使用することが多くなっている。ところで自動車のボディシートはプレス加工を施して使用するところから、成形加工性が優れていること、また成形加工時におけるリューダースマークが発生しないことが要求され、また高強度を有することも必須であって、塗装焼付を施して使用するのが通常であるため、塗装焼付後に高強度が得られることが要求される。そしてまた成形性が良好であることが要求されるのはもちろんであるが、自動車用ボディシートとしては、アウターパネルとインナーパネルとを接合して一体化させるためなどにヘム曲げ加工を施して使用することが多いところから、成形性のうちでも特にヘム曲げ性が優れていることが強く要求される。   Conventionally, as a body sheet of an automobile, a cold-rolled steel sheet has been mainly used, but recently, an aluminum alloy rolled sheet is frequently used from the viewpoint of reducing the weight of the vehicle body. By the way, since the body sheet of an automobile is used after being pressed, it is required that it has excellent molding processability, that no Ruders mark is generated during the molding process, and that it must have high strength. Since it is usually used after being baked, it is required to obtain high strength after baking. And of course, it is required to have good moldability, but as a body sheet for automobiles, it is used by applying hem bending to join the outer panel and inner panel together. In many cases, it is strongly required that hem bendability is particularly excellent among moldability.

従来このような自動車用ボディシート向けのアルミニウム合金としては、Al−Mg系合金のほか、時効性を有するAl−Mg−Si系合金が主として使用されている。この時効性Al−Mg−Si系合金は、塗装焼付前の成形加工時においては比較的強度が低くて成形性が優れている一方、塗装焼付時の加熱によって時効されて塗装焼付後の強度が高くなる利点を有するほか、リューダースマークが発生しない等の利点を有する。   Conventionally, as an aluminum alloy for an automobile body sheet, an Al—Mg—Si alloy having aging properties is mainly used in addition to an Al—Mg alloy. This aging Al-Mg-Si alloy has a relatively low strength and excellent formability during molding before coating baking, while it is aged by heating during coating baking and has a strength after coating baking. In addition to the advantage that it becomes higher, it has the advantage that a Ruders mark does not occur.

なお、ヘム曲げ性などの曲げ加工性向上に関する従来技術としては、MgSi化合物の粒径と数、あるいは粒界析出物、第2相粒子の分散密度などを制御する特許文献1、特許文献2の技術、また結晶粒界の方位差が15°以下あるいは20°以下の結晶粒界の割合を規制する特許文献3、特許文献4の技術、さらに集合組織の{200}面あるいは{400}面の積分強度を規制する特許文献5、特許文献6等がある。また本発明者等も既に特許文献7に示される提案を行なっている。 As the prior art relating to the bending workability improvement, such as heme bendability, particle size and the number of Mg 2 Si compound or grain boundary precipitates, Patent Document 1 that controls the dispersion density of the second phase particles, JP 2 and the techniques of Patent Document 3 and Patent Document 4 for regulating the ratio of crystal grain boundaries whose crystal grain boundary orientation difference is 15 ° or less or 20 ° or less, and the {200} plane or {400} of the texture There are Patent Literature 5, Patent Literature 6, and the like that regulate the integrated intensity of a surface. The present inventors have already made a proposal shown in Patent Document 7.

特開2003−105471JP 2003-105471 A 特開2003−268472JP 2003-268472 A 特開2003−171726JP2003-171726 特開2003−166029JP 2003-166029 A 特開2003−226926JP 2003-226926 A 特開2003−226927JP2003-226927A 特開2003−268475JP 2003-268475 A

前述のような自動車用ボディシート向けの時効性Al−Mg−Si系合金板についての従来の製造方法により得られた板では、最近の自動車用ボディシートに要求される特性を充分に満足させることは困難であった。   The plate obtained by the conventional manufacturing method for the aging Al-Mg-Si alloy plate for an automobile body sheet as described above sufficiently satisfies the characteristics required for the recent automobile body sheet. Was difficult.

すなわち、最近ではコストの一層の低減や自動車車体の軽量化等のために、自動車用ボディシートについてさらに薄肉化することが強く要求されており、そのため薄肉でも充分な強度が得られるように、一層の高強度化が求められると同時に、成形性、特にヘム曲げ性の改善が強く要求されているが、これらの性能をバランスよく満足させる点について従来の一般的な製造方法によって得られたAl−Mg−Si系合金板では不充分であった。特にヘム曲げ加工は、曲げ内径が1mm以下の180°曲げという過酷な曲げ加工であるため、良好なヘム曲げ性と強度とを両立させることが困難であるという問題があった。   That is, recently, in order to further reduce the cost and reduce the weight of the automobile body, it has been strongly demanded to further reduce the thickness of the body sheet for automobiles, so that even a thin wall can obtain sufficient strength. In addition to the demand for higher strength, improvement in formability, particularly hem bendability, is strongly demanded. Al—obtained by a conventional general production method in terms of satisfying these performances in a balanced manner. An Mg—Si alloy plate was insufficient. In particular, the hem bending process is a severe bending process of 180 ° bending with a bending inner diameter of 1 mm or less, and thus there is a problem that it is difficult to achieve both good hem bendability and strength.

また塗装焼付については、省エネルギおよび生産性の向上、さらには高温に曝されることが好ましくない樹脂等の材料との併用などの点から、従来よりも焼付温度を低温化し、また焼付時間も短時間化する傾向が強まっている。しかしながら従来の一般的な製法により得られた時効性Al−Mg−Si系合金板の場合、低温・短時間の塗装焼付処理では、塗装焼付時の硬化(焼付硬化)が不足し、塗装焼付後に充分な高強度が得難くなる問題があった。   In addition, with regard to paint baking, the baking temperature is lower than before, and the baking time is also shortened from the standpoints of energy saving, productivity improvement, and combined use with materials such as resins that are not preferably exposed to high temperatures. There is an increasing tendency to shorten the time. However, in the case of an aging Al-Mg-Si alloy plate obtained by a conventional general manufacturing method, the coating baking process at a low temperature and a short time lacks the curing at the time of coating baking (baking hardening), and after coating baking There was a problem that it was difficult to obtain a sufficiently high strength.

ここで、従来の一般的な製法により得られた時効性Al−Mg−Si系合金板では、塗装焼付後に高強度を得るために焼付硬化性を高めようとすれば、素材の延性と曲げ加工性(特にヘム曲げ性)が低下し、また板製造後に室温に放置した場合に自然時効により硬化が生じやすくなり、そのため成形性、特にヘム曲げ性が阻害されがちとなるという問題が生じている。   Here, in the aging Al-Mg-Si alloy plate obtained by a conventional general manufacturing method, if it is intended to increase the bake hardenability in order to obtain high strength after coating baking, the ductility and bending of the material (Especially hem bendability) decreases, and when it is allowed to stand at room temperature after the plate is manufactured, it tends to be hardened by natural aging, so that the formability, particularly hem bendability, tends to be hindered. .

また前記各特許文献のうち、特許文献1、特許文献2では、化合物分散状態、特にMgSiの粒径と数、あるいは粒界析出物、第2相粒子の分散状態などを規制することにより曲げ加工性などを改善することが提案されているが、その効果は未だ充分ではなかった。 Of the above patent documents, Patent Document 1 and Patent Document 2 regulate the compound dispersion state, in particular, the particle size and number of Mg 2 Si, or the grain boundary precipitates and the dispersion state of the second phase particles. Although it has been proposed to improve bending workability, the effect has not been sufficient.

一方特許文献3、特許文献4においては、結晶粒間の方位差が15°以下あるいは20°以下である結晶粒界の割合を規制することにより曲げ加工性などを改善することが提案されており、確かにこの方法では、曲げ加工性についてある程度の改善効果が図られるが、本発明者らが実験・検討を重ねた結果、結晶粒間の方位差が15°以下あるいは20°以下である結晶粒界の割合が20%を越えても、圧延板のあらゆる方向の曲げ性がすべて改善されるわけではないことが判明した。例えば、圧延方向に対し平行な方向、あるいは圧延方向に対し直交する方向の曲げ性の改善が図られても、圧延方向に対し45°をなす方向の曲げ性は改善されず、所謂、曲げ異方性という問題が生じてしまうことが判明した。   On the other hand, in Patent Document 3 and Patent Document 4, it is proposed to improve bending workability by regulating the ratio of crystal grain boundaries in which the orientation difference between crystal grains is 15 ° or less or 20 ° or less. Certainly, in this method, a certain degree of improvement in bending workability can be achieved. However, as a result of repeated experiments and examinations by the present inventors, a crystal whose orientation difference between crystal grains is 15 ° or less or 20 ° or less. It has been found that even if the grain boundary ratio exceeds 20%, the bendability in all directions of the rolled sheet is not improved. For example, even if the bendability in the direction parallel to the rolling direction or the direction perpendicular to the rolling direction is improved, the bendability in the direction of 45 ° with respect to the rolling direction is not improved. It turns out that the problem of directionality occurs.

さらに特許文献5、特許文献6においては、圧延集合組織制御として、{200}面と{400}面の積分強度を規制してフラットヘム加工性を改善することが提案されており、また本願出願人等による特許文献7では、キューブ方位密度、ND回転キューブ方位密度と耳率を規制してヘム曲げ性を改善することを提案している。これらの方法でも確かに曲げ性の一定の改善効果が得られるが、本発明者等がさらに実験・検討を重ねた結果、これらの方法では、ヘム曲げ性は改善されても、成形加工時における加工硬化量の指標となるn値(加工効果指数)が面内各方向で不均一となるという異方性(以下このような加工硬化指数n値の面内での異方性について“n値異方性”と称することとする)が顕著となり、また同時に深絞り性の指標とされるランクフォード値(r値;塑性ひずみ値)が板面内各方向で不均一となるという異方性(以下このような塑性ひずみ値についての板面内での異方性を単に“面内異方性”と称することとする)が顕著となり、その結果プレス加工における成形性(プレス加工性)が低下するおそれがあることが判明した。このようなn値異方性や面内異方性の問題は、特許文献5〜7では全く考慮されていなかったが、自動車用ボディシート等においては、深絞りを伴なうプレス加工が多用されているところから、ヘム曲げ性で代表される曲げ加工性が良好であっても、プレス加工性が低下すれば、加工用素材としての価値が低くなり、したがってn値異方性や面内異方性を適切に制御して、曲げ加工性とプレス加工性とのバランスが良好な材料とすることも自動車用ボディシート等においては極めて重要である。   Further, in Patent Document 5 and Patent Document 6, it is proposed that the integrated strength of the {200} plane and the {400} plane is regulated to improve the flat hem workability as rolling texture control. In Patent Document 7 by humans and others, it is proposed to improve the hem bendability by regulating the cube orientation density, the ND rotating cube orientation density and the ear rate. Even with these methods, it is possible to obtain a certain improvement effect in bendability. However, as a result of further experiments and examinations by the present inventors, these methods have improved the hem bendability, but at the time of molding processing. Anisotropy that n value (working effect index) that is an index of work hardening amount is non-uniform in each direction in the plane (hereinafter, “n value for anisotropy in the plane of such work hardening index n value” Anisotropy), and at the same time, the rankford value (r value; plastic strain value), which is an index of deep drawability, becomes non-uniform in each direction in the plate surface. (Hereinafter, the in-plane anisotropy for such a plastic strain value is simply referred to as “in-plane anisotropy”), and as a result, the formability (press workability) in the press work is improved. It was found that there was a risk of decline. Such problems of n-value anisotropy and in-plane anisotropy were not considered at all in Patent Documents 5 to 7, but press working with deep drawing is frequently used in automobile body sheets and the like. Therefore, even if the bending workability represented by hem bendability is good, if the press workability is lowered, the value as a processing material is lowered, and therefore n-value anisotropy and in-plane It is also extremely important for automobile body sheets and the like to appropriately control the anisotropy so that the material has a good balance between bending workability and press workability.

この発明は以上の事情を背景としてなされたもので、曲げ加工性とプレス加工性とのバランスが優れていて、曲げ加工性とプレス加工性がともに良好であり、また曲げ異方性も小さく、さらには焼付硬化性が優れていて、塗装焼付時における強度上昇が大きく、しかも板製造後の室温での経時的な変化が少ない成形加工用アルミニウム合金板を提供するとともに、このように優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で確実かつ安定して製造し得る方法を提供することを目的とするものである。   This invention was made against the background described above, has a good balance between bending workability and press workability, has good bending workability and press workability, and has low bending anisotropy, Furthermore, it offers excellent bake hardenability, a large increase in strength during baking, and an aluminum alloy plate for forming that has little change over time at room temperature after the plate is manufactured. The object of the present invention is to provide a method capable of reliably and stably producing an aluminum alloy plate for forming having a mass production scale.

前述のような課題を解決するべく本発明者等が種々実験・検討を重ねた結果、Al−Mg−Si系合金の成分組成を適切に調整するばかりでなく、結晶組織として、特定の方位、特にキューブ方位(立方体方位)の結晶方位密度を高めると同時にそのキューブ方位密度分布を板厚方向に適切に規制することによって、曲げ加工性、特にヘム曲げ性を向上させ得ると同時に、その異方性(曲げ異方性)を小さくすることができるとともに、良好な焼付硬化性、室温での経時変化性を得ることができ、さらにそればかりでなく、特に面内異方性を小さくすると同時にn値異方性を適切に規制することによって、曲げ加工性を損なうことなく良好なプレス加工性を得ることができることを見出した。そしてまたこのような優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で安定して製造し得るプロセス条件を見出し、この発明をなすに至ったのである。   As a result of repeating various experiments and studies by the present inventors in order to solve the above-mentioned problems, not only appropriately adjusting the component composition of the Al-Mg-Si-based alloy, but also a specific orientation, In particular, by increasing the crystal orientation density of the cube orientation (cube orientation) and at the same time appropriately regulating the cube orientation density distribution in the plate thickness direction, it is possible to improve bending workability, especially hem bendability, and at the same time (Bend anisotropy) can be reduced, good bake hardenability and aging at room temperature can be obtained, and not only that, but also in-plane anisotropy is reduced and n It has been found that by appropriately regulating the value anisotropy, good press workability can be obtained without impairing the bending workability. Furthermore, the present inventors have found a process condition capable of stably producing such an aluminum alloy sheet for forming having such excellent performance on a mass-production scale, and have made the present invention.

具体的には、請求項1の発明の成形加工用アルミニウム合金板は、Mg0.4〜0.7%、Si0.8〜1.2%を含有し、かつMn0.03〜0.4%、Cr0.01〜0.4%、Fe0.03〜0.5%、Ti0.005〜0.2%、Zn0.03〜2.5%のうちから選ばれた1種または2種以上を含有し、さらにCuが0.1%以下に規制され、残部がAlおよび不可避的不純物よりなる合金が素材とされ、板表面のキューブ方位密度をC、板表面から板厚方向に板厚の1/4の位置におけるキューブ方位密度をC1/4、板表面から板厚方向に板厚の1/2の位置におけるキューブ方位密度をC1/2として、次の(1)式および(2)式
<C1/4>C1/2 ・・・(1)
20<{(C+C1/4+C1/2)/3}<200 ・・・(2)
を満たし、かつ0°、90°耳率が5%以上であり、さらに板面内において圧延方向と平行な方向の加工硬化指数をn、板面内において圧延方向に対し45°をなす方向の加工硬化指数をn45、板面内において圧延方向に対し90°をなす方向の加工硬化指数をn90として、次の(3)式および(4)式
<n45>n90 ・・・(3)
0<n45−(n+n90)/2<0.40 ・・・(4)
を満たし、しかも圧延方向と平行な方向のランクフォード値をr、板面内において圧延方向に対し45°をなす方向のランクフォード値をr45、板面内において圧延方向に対し直交する方向のランクフォード値をr90として、次の(5)式により規定されるΔr値
Δr=(r+r90)/2−r45 ・・・(5)
が1.2未満であることを特徴とするものである。
Specifically, the aluminum alloy sheet for forming according to the invention of claim 1 contains Mg 0.4 to 0.7%, Si 0.8 to 1.2%, and Mn 0.03 to 0.4%, Contains one or more selected from Cr 0.01-0.4%, Fe 0.03-0.5%, Ti 0.005-0.2%, Zn 0.03-2.5% Further, Cu is restricted to 0.1% or less, the balance is made of an alloy composed of Al and inevitable impurities, the cube orientation density on the plate surface is C 0 , and the plate thickness is 1 / th of the plate thickness in the plate thickness direction. The cube orientation density at the position 4 is C 1/4 , and the cube orientation density at the position ½ of the plate thickness from the plate surface to the plate thickness direction is C 1/2 , and the following equations (1) and (2) C 0 <C 1/4 > C 1/2 (1)
20 <{(C 0 + C 1/4 + C 1/2 ) / 3} <200 (2)
In which the work hardening index in the direction parallel to the rolling direction is n 0 in the plate surface and 45 ° to the rolling direction in the plate surface. work hardening exponent n 45, as n 90 and work hardening coefficient in a direction forming a 90 ° to the rolling direction in the plate surface, the following (3) and (4) n 0 <n 45> n 90 · (3)
0 <n 45 − (n 0 + n 90 ) / 2 <0.40 (4)
In the direction parallel to the rolling direction is r 0 , the rank ford value in the direction of 45 ° with respect to the rolling direction in the plate surface is r 45 , and the direction in the plate surface is orthogonal to the rolling direction. the Lankford value as r 90 of, [Delta] r value Δr = (r 0 + r 90 ) which is defined by the following equation (5) / 2-r 45 ··· (5 )
Is less than 1.2.

また請求項2の発明の成形加工用アルミニウム合金板は、請求項1に記載の成形加工用アルミニウム合金板において、結晶粒度がASTMナンバーで4.0以上であることを特徴とするものである。   An aluminum alloy sheet for forming according to the invention of claim 2 is the aluminum alloy sheet for forming according to claim 1, characterized in that the crystal grain size is 4.0 or more in terms of ASTM number.

さらに請求項3の発明の成形加工用アルミニウム合金板の製造方法は、請求項1もしくは請求項2に記載の成形加工用アルミニウム合金板を製造する方法において、Mg0.4〜0.7%、Si0.8〜1.2%を含有し、かつMn0.03〜0.4%、Cr0.01〜0.4%、Fe0.03〜0.5%、Ti0.005〜0.2%、Zn0.03〜2.5%のうちから選ばれた1種または2種以上を含有し、さらにCuが0.1%以下に規制され、残部がAlおよび不可避的不純物よりなる合金の鋳塊に対して、490〜590℃の範囲内の温度で均質化処理を行なって、450℃以下の温度に平均冷却速度3℃/min以上で冷却し、その後熱間圧延を行なうにあたり、
(1)熱間圧延温度を300〜450℃の範囲内、
(2)1パス当りの最大圧下量を80mm以下、
(3)各パスの歪み速度を350/秒以下、
(4)熱間圧延中途の板厚が150〜50mmの段階における熱間圧延板の温度を250〜430℃の範囲内、
(5)熱間圧延開始から熱間圧延中途の板厚が150〜50mmの段階までの熱間圧延板の温度降下量を150℃以下、
(6)熱間圧延終了温度を200〜300℃の範囲内、
(7)熱間圧延終了温度から100℃までの平均冷却速度を100℃/hr以下、
にそれぞれ制御し、熱間圧延終了後、熱間圧延板に対し圧延率30%以上の冷間圧延を施して製品板厚とし、さらに480℃以上の温度で溶体化処理を行ない、直ちに100℃/min以上の平均冷却速度で50℃以上150℃未満の温度域まで冷却し、続いてその温度域内で1時間以上の安定化処理を行なうことを特徴とするものである。
Furthermore, the manufacturing method of the aluminum alloy plate for forming according to the invention of claim 3 is the method for manufacturing the aluminum alloy plate for forming according to claim 1 or 2, wherein Mg 0.4 to 0.7%, Si0 0.8 to 1.2%, and Mn 0.03 to 0.4%, Cr 0.01 to 0.4%, Fe 0.03 to 0.5%, Ti 0.005 to 0.2%, Zn 0. For an ingot of an alloy containing one or more selected from 03 to 2.5%, further Cu being restricted to 0.1% or less, and the balance being Al and inevitable impurities , In the range of 490 to 590 ° C., homogenized at a temperature of 450 ° C. or lower at an average cooling rate of 3 ° C./min or higher, and then hot rolled.
(1) Hot rolling temperature in the range of 300-450 ° C,
(2) The maximum reduction amount per pass is 80 mm or less,
(3) The distortion rate of each path is 350 / sec or less,
(4) The temperature of the hot rolled sheet in the stage where the sheet thickness during hot rolling is 150 to 50 mm is within the range of 250 to 430 ° C.
(5) The temperature drop amount of the hot rolled sheet from the start of hot rolling to the stage where the sheet thickness during hot rolling is 150 to 50 mm is 150 ° C. or less,
(6) The hot rolling end temperature is in the range of 200 to 300 ° C.
(7) The average cooling rate from the hot rolling end temperature to 100 ° C. is 100 ° C./hr or less,
After the hot rolling is completed, the hot rolled plate is cold rolled at a rolling rate of 30% or more to obtain a product plate thickness, and further subjected to a solution treatment at a temperature of 480 ° C. or higher. It is characterized by cooling to a temperature range of 50 ° C. or higher and lower than 150 ° C. at an average cooling rate of / min or higher, and then performing a stabilization treatment for 1 hour or longer in that temperature range.

なおこの発明においてキューブ方位密度とは、キューブ理想方位である(100)<001>方位の結晶方位密度を意味する。すなわち、一般の工業用材料では、上記のキューブ理想方位を中心に15°まで回転させた範囲内の結晶方位密度をキューブ方位密度と称することが多いが、この発明では上述のようにキューブ理想方位の方位密度と、そのキューブ理想方位の周辺方位の方位密度(圧延方向軸RDを基準としてキューブ理想方位を10°回転させた結晶方位の方位密度、および板面法線軸NDを基準としてキューブ理想方位を10°回転させた結晶方位の方位密度)とを明確に区別するため、キューブ理想方位の方位密度をもってキューブ方位密度と称することとしている。   In the present invention, the cube orientation density means a crystal orientation density of (100) <001> orientation which is a cube ideal orientation. That is, in general industrial materials, the crystal orientation density within the range rotated up to 15 ° around the cube ideal orientation is often referred to as cube orientation density. Orientation density and the orientation density of the peripheral orientation of the ideal cube orientation (the orientation density of the crystal orientation obtained by rotating the cube ideal orientation by 10 ° with reference to the rolling direction axis RD, and the ideal cube orientation based on the plate surface normal axis ND) In order to distinguish clearly from the orientation density of the crystal orientation obtained by rotating the angle of 10 °, the orientation density of the cube ideal orientation is referred to as the cube orientation density.

またこの発明において、キューブ方位密度の数値(式(2)の右辺、左辺の数値)は、ランダム方位試料に対する倍数であらわしている。   In the present invention, the numerical values of the cube orientation density (the numerical values on the right side and the left side of Equation (2)) are expressed as multiples of the random orientation sample.

さらにこの発明において、各方向の加工硬化指数(n、n45、n90)は、各方向に沿って採取した試験片について引張試験を施して伸びが10%のときのn値であらわしたものとする。ここでn値は、σを真応力、εを真歪、Fを係数、nをn値とすれば、次の(6)式
σ=Fε ・・・(6)
によって求められる値である。
Furthermore, in this invention, the work hardening index (n 0 , n 45 , n 90 ) in each direction is represented by an n value when the tensile test is performed on the test piece taken along each direction and the elongation is 10%. Shall. Here, the n value is expressed by the following equation (6) when σ is a true stress, ε is a true strain, F is a coefficient, and n is an n value: σ = Fε n (6)
Is a value obtained by.

この発明の成形加工用アルミニウム合金板は、成形性、特にヘム曲げ性が優れていると同時にプレス加工性も優れており、また曲げ異方性も小さく、さらには塗装焼付硬化性が良好で塗装焼付後の強度が高く、また室温での経時変化も少なく、したがってプレス加工やヘム曲げ加工の後に塗装を施して使用される自動車用ボディシート等に最適である。またこの発明の製造方法によれば、上述のように優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で確実かつ安定して得ることができる。 The aluminum alloy sheet for forming according to the present invention is excellent in formability, particularly hem bendability, press workability, bend anisotropy, and paint bake hardenability. strength after baking is high, also less change over time at room temperature is optimal for automotive body sheet or the like used by painted after the flop-less processing and hem bending machining follow. Moreover, according to the manufacturing method of this invention, the aluminum alloy plate for shaping | molding which has the outstanding performance as mentioned above can be obtained reliably and stably on a mass-production scale.

先ずこの発明の成形加工用アルミニウム合金板における成分組成の限定理由について説明する。   First, the reasons for limiting the component composition in the aluminum alloy sheet for forming according to the present invention will be described.

Mg:
Mgはこの発明で対象としている系の合金で基本となる合金元素であって、Siと共同して強度向上に寄与する。Mg量が0.4%未満では塗装焼付時に析出硬化によって強度向上に寄与するG.P.ゾーンの生成量が少なくなるため、充分な強度向上が得られず、一方0.7%を越えれば、粗大なMg−Si系の金属間化合物が生成され、キューブ方位密度を高めるために不利となり、成形性、特に曲げ加工性が低下するから、Mg量は0.4〜0.7%の範囲内とした。
Mg:
Mg is an alloy element that is a basic alloy of the system targeted by the present invention, and contributes to strength improvement in cooperation with Si. If the Mg content is less than 0.4%, G. contributes to strength improvement by precipitation hardening during baking. P. Since the amount of zone formation is reduced, sufficient strength improvement cannot be obtained. On the other hand, if it exceeds 0.7%, coarse Mg-Si based intermetallic compounds are produced, which is disadvantageous for increasing cube orientation density. Further, since the formability, particularly the bending workability is lowered, the Mg amount is set in the range of 0.4 to 0.7%.

Si:
Siもこの発明の系の合金で基本となる合金元素であって、Mgと共同して強度向上に寄与する。またSiは、鋳造時に金属Siの晶出物として生成され、その金属Si粒子の周囲が加工によって変形されて、溶体化処理の際に再結晶核の生成サイトとなるため、再結晶組織の微細化にも寄与する。Si量が0.8%未満では上記の効果が充分に得られず、一方1.2%を越えれば粗大なSi粒子や粗大なMg−Si系の金属間化合物が生じてキューブ方位密度を高めるために不利となり、成形性、特に曲げ加工性の低下を招く。したがってSi量は0.8〜1.2%の範囲内とした。
Si:
Si is also an alloy element that is fundamental in the alloy of the present invention, and contributes to strength improvement in cooperation with Mg. In addition, Si is produced as a crystallized product of metal Si at the time of casting, and the periphery of the metal Si particles is deformed by processing and becomes a recrystallization nucleus generation site during solution treatment. It also contributes to If the amount of Si is less than 0.8%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 1.2%, coarse Si particles and coarse Mg-Si based intermetallic compounds are produced to increase the cube orientation density. For this reason, it becomes disadvantageous, and the formability, particularly bending workability, is reduced. Therefore, the Si amount is set in the range of 0.8 to 1.2%.

Mn、Cr、Fe、Ti、Zn:
これらの元素は、強度向上や結晶粒微細化、あるいは時効性の向上や表面処理性の向上に有効であり、いずれか1種または2種以上を添加する。これらのうちMn、Crは強度向上と結晶粒の微細化および組織の安定化に効果があり、またキューブ方位密度を高めるとともに0°耳、90°耳の耳率を高めることに寄与する元素であるが、Mnの含有量が0.03%未満、もしくはCrの含有量が0.01%未満では、上記の効果が充分に得られず、一方Mn、Crの含有量がそれぞれ0.4%を越えれば、上記の効果が飽和するばかりでなく、多数の金属間化合物が生成されて成形性、特にヘム曲げ性に悪影響を及ぼすおそれがあり、したがってMnは0.03〜0.4%の範囲内、Crは0.01〜0.4%の範囲内とした。またFeも強度向上と結晶粒微細化に有効な元素であるが、その含有量が0.03%未満では充分な効果が得られず、一方0.5%を越えれば、キューブ方位密度を高める上において不利となるとともに、0°、90°耳率を高くするために不利となって、成形性、特に曲げ加工性、プレス成形性が低下するおそれがあり、したがってFe量は0.03〜0.5%の範囲内とした。さらにTiも強度向上と鋳塊組織の微細化に有効な元素であるが、その含有量が0.005%未満では充分な効果が得られず、一方0.2%を越えればTi添加の効果が飽和するばかりでなく、粗大な晶出物が生じるおそれがあるから、Ti量は0.005〜0.2%の範囲内とした。またZnは時効性向上を通じて強度向上に寄与するとともに表面処理性の向上に有効な元素であるが、Znの添加量が0.03%未満では上記の効果が充分に得られず、一方2.5%を越えれば成形性が低下するから、Zn量は0.03〜2.5%の範囲内とした。
Mn, Cr, Fe, Ti, Zn:
These elements are effective for improving the strength, refining crystal grains, improving aging properties, and improving surface treatment properties, and any one or more of them are added. Among these, Mn and Cr are elements that are effective in improving the strength, refining the crystal grains, and stabilizing the structure, and contribute to increasing the cube orientation density and increasing the ear rate of the 0 ° ear and the 90 ° ear. However, if the Mn content is less than 0.03% or the Cr content is less than 0.01%, the above effects cannot be obtained sufficiently, while the Mn and Cr contents are each 0.4%. If it exceeds, not only the above effects are saturated, but also a large number of intermetallic compounds may be produced, which may adversely affect the formability, particularly hem bendability. Therefore, Mn is 0.03 to 0.4%. Within the range, Cr was within a range of 0.01 to 0.4%. Fe is also an element effective for strength improvement and grain refinement, but if its content is less than 0.03%, sufficient effects cannot be obtained, while if it exceeds 0.5%, the cube orientation density is increased. In addition to being disadvantageous in the above, it is disadvantageous to increase the 0 °, 90 ° ear ratio, and there is a possibility that the formability, particularly bending workability and press formability may be lowered. Within the range of 0.5%. Furthermore, Ti is an element effective for improving the strength and refining the ingot structure, but if its content is less than 0.005%, a sufficient effect cannot be obtained, while if it exceeds 0.2%, the effect of adding Ti In addition to being saturated, there is a possibility that coarse crystallized matter may be formed, so the Ti content is set in the range of 0.005 to 0.2%. Zn is an element that contributes to improvement of strength through improvement of aging and is effective for improvement of surface treatment. However, if the amount of Zn is less than 0.03%, the above effect cannot be obtained sufficiently. If the content exceeds 5%, the moldability deteriorates, so the Zn content is set in the range of 0.03 to 2.5%.

Cu:
Cuは強度向上および成形性向上のために添加されることがある元素であるが、その量が0.1%を越えれば耐食性(耐粒界腐食性、耐糸錆性)が劣化するから、Cuの含有量は0.1%以下に規制することとした。なお特に耐食性を重視する場合は、Cu量は0.05%以下に規制することが望ましい。
Cu:
Cu is an element that may be added to improve strength and formability, but if the amount exceeds 0.1%, corrosion resistance (intergranular corrosion resistance, yarn rust resistance) deteriorates. The Cu content is restricted to 0.1% or less. In particular, when emphasizing corrosion resistance, it is desirable to limit the amount of Cu to 0.05% or less.

以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良い。   In addition to the above elements, basically, Al and inevitable impurities may be used.

なお上記のMn、Cr、Fe、Ti、Znの含有量範囲は、それぞれ積極的に添加する場合の範囲として示したものであり、いずれも下限値より少ない量を不純物として含有する場合を排除するものではない。特に0.03%未満のFeは、通常のアルミ地金を用いれば不可避的に含有されるのが通常である。   In addition, the above-mentioned content ranges of Mn, Cr, Fe, Ti, and Zn are shown as ranges in the case where each is positively added, and all exclude cases where the content is less than the lower limit as impurities. It is not a thing. In particular, Fe of less than 0.03% is usually inevitably contained if a normal aluminum ingot is used.

また時効性Al−Mg−Si系合金においては、高温時効促進元素あるいは室温時効抑制元素であるAg、In、Cd、Be、あるいはSnを微量添加することがあるが、この発明の場合も微量添加であればこれらの元素の添加も許容され、それぞれ0.3%以下であれば特に所期の目的を損なうことはない。   In addition, in an aging Al—Mg—Si alloy, a trace amount of Ag, In, Cd, Be, or Sn, which is a high temperature aging promoting element or a room temperature aging inhibiting element, may be added. If so, the addition of these elements is allowed, and if the content is 0.3% or less, the intended purpose is not particularly impaired.

なおまた、一般のAl合金においては、鋳塊組織の微細化のために前述のTiと同時にBを添加することもあり、この発明の場合もTiとともに800ppm以下のBを添加することは許容される。   In addition, in a general Al alloy, B may be added at the same time as the above-mentioned Ti for refining the ingot structure. In this invention, addition of 800 ppm or less of B together with Ti is permitted. The

そしてまた、強度向上および結晶粒の微細化、および組織の安定化に効果があると思われるZr、Vを添加しても良く、その場合それぞれ0.3%以下であれば特に性能面に悪影響を与えることはない。   Further, Zr and V, which are considered to be effective in improving the strength, refining the crystal grains, and stabilizing the structure, may be added. Never give.

さらにこの発明の成形加工用アルミニウム合金板において、良好な曲げ加工性、特に良好なヘム曲げ性を得ると同時に、曲げ異方性、面内異方性を小さく抑制するためには、合金の成分組成を前述のように調整するばかりではなく、板の集合組織、特に結晶方位密度およびその板厚方向分布を適切に制御することが極めて重要である。   Further, in the aluminum alloy sheet for forming according to the present invention, in order to obtain good bending workability, particularly good hem bendability, and at the same time, to suppress bending anisotropy and in-plane anisotropy, In addition to adjusting the composition as described above, it is extremely important to appropriately control the texture of the plate, particularly the crystal orientation density and its thickness direction distribution.

すなわちこの発明において、結晶方位密度を規制しているのは、粒界の性質(小角か大角か)を制御するためだけではなく、アルミニウム合金の塑性変形に伴う結晶のすべり変形全体を制御することを主目的としている。そして特に曲げ加工中に交差すべりが生じやすいような結晶方位の集積度を高めることが極めて重要であり、そのようにすることによって、加工による転位密度の増加を抑えて、加工硬化を抑制することが可能となるのである。さらにその結果、ヘム曲げ加工の際において、加工硬化の抑制により割れ限界強度に達するまで材料の大歪変形が可能となる。ここで、すべり変形挙動を、比較的ランダムな結晶方位を有する従来の材料、言い換えれば比較的交差すべりが生じ難い従来材料と大きく異ならしめるためには、結晶方位の集積が必要である。一方実際の材料では、種々の結晶方位が存在するが、本発明者らが鋭意検討を重ねた結果、種々の結晶方位のうちでも特にキューブ方位の方位密度、すなわち(001)<100>方位の方位密度を高めることによって、すべり変形挙動を、従来材料とは大きく異ならしめることができることを見出した。すなわち、キューブ方位密度を高めることによって、加工変形中における交差すべりが活発となり、加工硬化が抑制され、曲げ加工性が改善されるのである。   In other words, in this invention, the crystal orientation density is controlled not only to control the grain boundary properties (small angle or large angle) but also to control the overall slip deformation of the crystal accompanying the plastic deformation of the aluminum alloy. Is the main purpose. In particular, it is extremely important to increase the degree of accumulation of crystal orientations that are likely to cause cross-slip during bending. By doing so, the increase in dislocation density due to processing is suppressed, and work hardening is suppressed. Is possible. As a result, during hem bending, large strain deformation of the material is possible until the crack limit strength is reached by suppressing work hardening. Here, in order to make the slip deformation behavior greatly different from that of a conventional material having a relatively random crystal orientation, in other words, a conventional material that hardly causes cross-slip, it is necessary to accumulate crystal orientations. On the other hand, there are various crystal orientations in the actual material, but as a result of extensive studies by the present inventors, the orientation density of the cube orientation, that is, the (001) <100> orientation, in particular, among the various crystal orientations. It has been found that by increasing the orientation density, the sliding deformation behavior can be greatly different from that of conventional materials. That is, by increasing the cube orientation density, cross-sliding during work deformation becomes active, work hardening is suppressed, and bending workability is improved.

ここで、単純にキューブ方位密度を高めるだけでは、プレス加工性が低下してしまうなど、材料特性のバランスが低下するおそれがある。そこで本発明者等がさらに実験・検討を重ねたところ、キューブ方位密度を単純に高めるのではなく、板厚方向におけるキューブ方位密度分布を適切に規制することによって、プレス加工性を損なうことなく曲げ加工性を向上させ得ることを見出した。   Here, simply increasing the cube orientation density may reduce the balance of material properties, for example, press workability may deteriorate. Therefore, when the present inventors conducted further experiments and examinations, the cube orientation density was not simply increased, but by appropriately regulating the cube orientation density distribution in the plate thickness direction, bending was performed without impairing press workability. It has been found that processability can be improved.

すなわち、板表面の位置におけるキューブ方位密度をC、板表面から板厚方向に板厚の1/4の位置におけるキューブ方位密度をC1/4、板表面から板厚方向に板厚の1/2の位置におけるキューブ方位密度をC1/2とすれば、次の(1)式、(2)式
<C1/4>C1/2 ・・・(1)
20<{(C+C1/4+C1/2)/3}<200 ・・・(2)
を満たすことによって、プレス加工性を損なうことなく曲げ加工性を向上させ得ることを見出し、そこでこれらの(1)式、(2)式を規定した。
That is, the cube orientation density at the position of the plate surface is C 0 , the cube orientation density at the position of 1/4 of the plate thickness in the plate thickness direction from the plate surface is C 1/4 , and the plate thickness is 1 in the plate thickness direction from the plate surface. If the cube orientation density at the position of / 2 is C 1/2 , the following formula (1), formula (2) C 0 <C 1/4 > C 1/2 (1)
20 <{(C 0 + C 1/4 + C 1/2 ) / 3} <200 (2)
By satisfying the above, it has been found that the bending workability can be improved without impairing the press workability, and therefore, the equations (1) and (2) are defined.

ここで(1)式は、板表面から板厚の1/4の位置のキューブ方位密度が、板表面のキューブ方位密度および板表面から板厚の1/2の位置のキューブ方位密度より高いことをあらわし、したがってこの(1)式は、板表面側および板厚方向中心部側よりもその中間部分の方がキューブ方位密度が高いことを意味する。また(2)式は、板厚方向の平均キューブ方位密度がランダム方位試料の20倍を越え、200倍未満であることを意味する。これらの(1)式、(2)式が満たされない場合には、曲げ異方性を含めた曲げ加工性とプレス加工性とのバランスに優れた材料が得られなくなる。   Here, the formula (1) indicates that the cube orientation density at a position 1/4 of the plate thickness from the plate surface is higher than the cube orientation density at the plate surface and the cube orientation density at a position 1/2 of the plate thickness from the plate surface. Therefore, this equation (1) means that the cube orientation density is higher in the intermediate portion than in the plate surface side and the plate thickness direction center portion side. Further, the formula (2) means that the average cube orientation density in the thickness direction is more than 20 times and less than 200 times that of the random orientation sample. When these formulas (1) and (2) are not satisfied, a material having an excellent balance between bending workability including bending anisotropy and press workability cannot be obtained.

さらにこの発明の成形加工用アルミニウム合金板では、板全体にわたって0°耳、90°耳の耳率が5%以上であることも重要である。すなわち、前述のようにこの発明では良好な曲げ加工性を確保しかつ曲げ異方性を抑制するためにキューブ方位密度およびその板厚方向分布を規定しているが、それ以外の結晶方位の方位密度もある程度は曲げ加工性に影響を与える。しかしながら実際上は、これらの方位以外のすべての結晶方位の方位密度を厳密に規定することは困難である。一方、板のカッピング試験で絞ったカップの耳率によれば、材料の結晶方位をマクロ的に評価することができる。そこでこの発明では、キューブ方位やその周辺方位以外の結晶方位の方位密度の影響を、0°耳、90°耳で評価、規制することとした。具体的には、圧延方向を基準にカップの0°、90°耳率が5%未満では、たとえ前述のキューブ方位密度およびその板厚方向分布の条件が満足されていても、良好な曲げ加工性、曲げ異方性が得られないおそれがある。そこでこの発明では耳率に関して前述のように規制することとした。   Further, in the aluminum alloy plate for forming according to the present invention, it is also important that the ear rate of the 0 ° ear and the 90 ° ear is 5% or more over the entire plate. That is, as described above, in the present invention, in order to ensure good bending workability and to suppress bending anisotropy, the cube orientation density and its thickness direction distribution are defined, but the orientation of other crystal orientations Density also affects bending workability to some extent. However, in practice, it is difficult to strictly define the orientation density of all crystal orientations other than these orientations. On the other hand, the crystal orientation of the material can be macroscopically evaluated based on the ear ratio of the cup squeezed by the plate cupping test. Therefore, in the present invention, the influence of the orientation density of the crystal orientation other than the cube orientation and the peripheral orientation is evaluated and regulated by 0 ° ear and 90 ° ear. Specifically, when the 0 ° and 90 ° ear ratio of the cup is less than 5% based on the rolling direction, even if the above-mentioned cube orientation density and its thickness direction distribution conditions are satisfied, good bending And bending anisotropy may not be obtained. Therefore, in the present invention, the ear rate is regulated as described above.

そしてまたこの発明の成形加工用アルミニウム合金板においては、面内加工硬化異方性の指標として、製品板の板面内における各方向の加工硬化指数(n値)を規定している。すなわち圧延方向と平行な方向のn値をn、板面内において圧延方向に対し45°をなす方向のn値をn45、板面内において圧延方向に対し直交する方向(90°方向)のn値をn90として、次の(3)式、(4)式を満たすことを規定している。
<n45>n90 ・・・(3)
0<n45−(n+n90)/2<0.40 ・・・(4)
In the aluminum alloy plate for forming according to the present invention, the work hardening index (n value) in each direction in the plate surface of the product plate is defined as an index of in-plane work hardening anisotropy. That is, the n value in the direction parallel to the rolling direction is n 0 , the n value in the direction forming 45 ° with respect to the rolling direction in the plate surface is n 45 , and the direction orthogonal to the rolling direction in the plate surface (90 ° direction). It is defined that the following formulas (3) and (4) are satisfied, where n value of n is n 90 .
n 0 <n 45 > n 90 (3)
0 <n 45 − (n 0 + n 90 ) / 2 <0.40 (4)

このように(3)式、(4)式を規定した理由は次の通りである。   The reason why the expressions (3) and (4) are defined in this way is as follows.

加工硬化指数(n値)は、材料に対する加工を与えたときの加工硬化の程度の指標となる値であって、一般には合金の化学成分、溶質元素の固溶量などと密接に関係すると言われているが、本発明者等が実験・検討を重ねた結果、同一合金板でも、板面内の各方向によってn値が異なる現象、すなわちn値異方性が存在することが判明したが、さらに実験・検討を重ねたところ、n値の板面内各方向の値は、材料の結晶方位の集積度と強い相関があることを見出した。またこのn値は、前述のようにそれ自体が加工硬化の程度の指標であることから、n値の大きさはプレス成形性に関係する。そして面内各方向のn値、特に板面内の各方向を代表する3方向、すなわち圧延方向に対し0°の方向、45°の方向、90°の方向のn値(n、n45、n90)を考慮した場合のこれらのn、n45、n90の値の相互関係を適切に規制することによって、安定的に良好なプレス加工性、ヘム曲げ性が得られることが判明し、前記(3)式、(4)式を規定したのである。 The work hardening index (n value) is a value that serves as an index of the degree of work hardening when the material is processed, and is generally closely related to the chemical composition of the alloy, the solid solution amount of the solute element, and the like. However, as a result of repeated experiments and examinations by the present inventors, it has been found that even in the same alloy plate, there is a phenomenon in which the n value varies depending on each direction in the plate surface, that is, n-value anisotropy exists. As a result of further experiments and examinations, it has been found that the value of n in each direction within the plate surface has a strong correlation with the degree of integration of the crystal orientation of the material. Since the n value itself is an index of the degree of work hardening as described above, the magnitude of the n value is related to press formability. Then, n values in each direction in the plane, in particular, three directions representing each direction in the plate plane, that is, n values (n 0 , n 45 in the 0 ° direction, 45 ° direction, 90 ° direction with respect to the rolling direction). , N 90 ), and properly controlling the mutual relationship between the values of n 0 , n 45 , and n 90 , it is found that stable press workability and hem bendability can be obtained stably. Then, the above formulas (3) and (4) are defined.

上記の(3)式は、板面内で圧延方向と平行な方向(0°方向)のn値(n)、圧延方向に直角な方向(90°方向)のn値(n90)がいずれも圧延方向に対し45°の方向のn値(n45)よりも低いことを表わしている。一方(4)式は、45°方向のn値(n45)と、0°方向のn値(n)および90°方向のn値(n90)の平均値との差(Δn)を、
Δn=n45−(n+n90)/2
とすれば、そのΔnが0より大きくかつ0.40より小さいことを表わしている。言い換えれば、45°方向のn値を0°方向、90°方向のn値よりも大きくして、板面内にn値の異方性が存在することを許容してはいるが、その異方性の程度(Δn)をさほど大きくはない適切な範囲内に規制していることを意味している。
In the above formula (3), the n value (n 0 ) in the direction parallel to the rolling direction (0 ° direction) in the plate surface and the n value (n 90 ) in the direction perpendicular to the rolling direction (90 ° direction) are Both represent lower than the n value (n 45 ) in the direction of 45 ° with respect to the rolling direction. On the other hand, the equation (4) expresses the difference (Δn) between the n value (n 45 ) in the 45 ° direction and the average value of the n value (n 0 ) in the 0 ° direction and the n value (n 90 ) in the 90 ° direction. ,
Δn = n 45 − (n 0 + n 90 ) / 2
This means that Δn is larger than 0 and smaller than 0.40. In other words, the n value in the 45 ° direction is made larger than the n value in the 0 ° direction and the 90 ° direction to allow the n value anisotropy to exist in the plate surface. This means that the degree of directivity (Δn) is regulated within an appropriate range that is not so large.

ここで、n値の異方性が存在すること自体は、曲げ加工性の向上に有利である。しかしながらn値の異方性が大き過ぎればプレス成形性が低下する。したがってプレス加工性と曲げ加工性とを両立させるためには適切な範囲内でn値の異方性が存在することが重要であり、その観点からn値の異方性を規制したのが(3)式、(4)式である。各方向のn値が(3)式、(4)式を満たさない場合には、プレス加工性、曲げ加工性のいずれかが損なわれて、バランスの良い材料が得られなくなる。なお前述のようにn値の異方性が存在する方が曲げ加工性に有利である理由は未だ定かではないが、加工中に転位の集積度が緩和されるためと思われる。   Here, the existence of n-value anisotropy is advantageous for improving the bending workability. However, if the n-value anisotropy is too large, the press formability is lowered. Therefore, in order to achieve both press workability and bending workability, it is important that n-value anisotropy exists within an appropriate range. From this viewpoint, the n-value anisotropy is regulated ( 3) and (4). When the n value in each direction does not satisfy the expressions (3) and (4), either the press workability or the bending workability is impaired, and a well-balanced material cannot be obtained. Although the reason why the presence of n-value anisotropy is advantageous in bending workability is not yet clear as described above, it is considered that the accumulation degree of dislocations is relaxed during processing.

なお前記(4)式ではΔn=n45−(n+n90)/2の値を0<Δn<0.40と規定しているが、より安定してプレス加工性および曲げ加工性のバランスに優れた材料を得るためには、
0.02<Δn<0.30
の範囲内とすることが望ましい。
In the above equation (4), the value of Δn = n 45 − (n 0 + n 90 ) / 2 is defined as 0 <Δn <0.40, but the balance between press workability and bending workability is more stable. In order to obtain an excellent material,
0.02 <Δn <0.30
It is desirable to be within the range.

そしてまたこの発明の成形加工用アルミニウム合金板においては、プレス加工性とヘム曲げ性で代表される曲げ加工性との良好なバランスをより一層安定的に得るため、面内塑性ひずみ異方性の指標としての製品板のランクフォード値(r値)の異方性(Δr値)を規定している。すなわち圧延方向と平行な方向のランクフォード値をr、板面内において圧延方向に対し45°をなす方向のランクフォード値をr45、板面内において圧延方向に対し直交する方向のランクフォード値をr90として、次の(5)式により規定されるΔr値
Δr=(r+r90)/2−r45 ・・・(5)
が1.2未満であることを規定している。すなわちΔr<1.2であることが必要である。このようにΔr値<1.2を規定した理由は次の通りである。
In addition, in the aluminum alloy sheet for forming according to the present invention, in order to obtain a more stable balance between press workability and bending workability represented by hem bendability, an in-plane plastic strain anisotropy is obtained. The anisotropy (Δr value) of the Rankford value (r value) of the product plate as an index is defined. That is, the Rankford value in the direction parallel to the rolling direction is r 0 , the Rankford value in the direction forming 45 ° with respect to the rolling direction in the plate surface is r 45 , and the Rankford value in the direction orthogonal to the rolling direction in the plate surface. values as r 90, [Delta] r value Δr = (r 0 + r 90 ) which is defined by the following equation (5) / 2-r 45 ··· (5 )
Is less than 1.2. That is, Δr <1.2 is required. The reason why Δr value <1.2 is defined as follows.

(5)式で表わされるΔr値は、塑性ひずみ値(r値)の板面内各方向でのばらつき、すなわち面内塑性ひずみ異方性を表わす指標であって、Δr値が大き過ぎれば、プレス加工などの深絞り時において板面内各方向での塑性変形に差が生じて、プレス加工性などが低下するおそれがあり、材料の特性バランス、特にプレス加工性とヘム曲げ性とのバランスにとっては好ましくない。   The Δr value represented by the equation (5) is an index representing the variation in each direction in the plate surface of the plastic strain value (r value), that is, the in-plane plastic strain anisotropy, and if the Δr value is too large, There may be a difference in plastic deformation in each direction in the plate surface during deep drawing such as press work, which may reduce press workability, etc., and balance of material characteristics, especially balance between press workability and hem bendability. Is not preferable.

さらに請求項2の発明の成形加工用アルミニウム合金板においては、その結晶粒サイズがASTMナンバーで4.0以上であることを規定している。このように規定した理由は次の通りである。   Further, in the aluminum alloy sheet for forming according to the invention of claim 2, it is specified that the crystal grain size is 4.0 or more in terms of ASTM number. The reason for this definition is as follows.

すなわち、曲げ加工性の向上、プレス成形時の外観欠陥である肌荒れを防止するためには、結晶粒度を細かくする必要がある。そして本発明者等が実験・検討を重ねた結果、結晶粒度をASTMナンバー4.0以上にすれば、曲げ加工性の向上や肌荒れ(外観欠陥)を防止する効果があることを見出し、その条件を規定したのである。   That is, in order to improve bending workability and prevent rough skin, which is an appearance defect during press molding, it is necessary to make the crystal grain size fine. As a result of repeated experiments and examinations by the present inventors, it has been found that if the crystal grain size is set to ASTM number 4.0 or more, there is an effect of improving bending workability and preventing rough skin (appearance defects). Is stipulated.

次にこの発明の成形加工用アルミニウム合金板の製造方法について説明する。   Next, a method for producing the aluminum alloy plate for forming according to the present invention will be described.

先ず前述のような成分組成の合金を常法に従って溶製し、DC鋳造法等の通常の鋳造法によって鋳造する。   First, an alloy having the component composition as described above is melted in accordance with a conventional method and cast by a normal casting method such as a DC casting method.

得られた鋳塊に対しては、490〜590℃の範囲内の温度で均質化処理を行なった後、450℃以下の温度域まで3℃/min以上の冷却速度で冷却する。このように均質化処理条件およびその後の冷却条件を規定した理由は次の通りである。   The obtained ingot is homogenized at a temperature in the range of 490 to 590 ° C., and then cooled to a temperature range of 450 ° C. or lower at a cooling rate of 3 ° C./min or higher. The reason why the conditions for the homogenization treatment and the subsequent cooling conditions are defined in this way is as follows.

すなわち均質化処理は、鋳塊の添加元素の偏析を除去したり、鋳塊のセル・結晶粒の境界に存在する粗大な第2相粒子、晶出物などを母相に固溶させる効果があり、製品板の性能のばらつきの低減、さらには熱間圧延工程、冷延工程、溶体化工程と有機的に結び付けて所要の結晶方位を得るにも重要な工程である。この均質化処理の温度が490℃未満では、上述の効果が不充分であり、一方590℃を越えれば、共晶融解のおそれがあるため、均質化処理温度は490〜590℃の範囲内とした。   In other words, the homogenization treatment has the effect of removing segregation of the additive elements in the ingot, and dissolving the coarse second phase particles and crystallized substances present at the boundaries between the ingot cells and crystal grains in the matrix. In addition, it is an important process for obtaining a required crystal orientation by organically coupling with a reduction in performance variation of the product plate and further organically connecting with a hot rolling process, a cold rolling process, and a solution forming process. If the temperature of this homogenization treatment is less than 490 ° C, the above-mentioned effect is insufficient. On the other hand, if it exceeds 590 ° C, eutectic melting may occur, so the homogenization treatment temperature is in the range of 490 to 590 ° C. did.

また均質化処理後、450℃以下の温度域まで3℃/min以上の冷却速度で冷却することは、高い焼付け硬化性を得るために不可欠である。450℃以下の温度域への冷却速度が3℃/minより遅ければ、冷却過程において析出物の粗大化が起こり、その後の450℃以下で開始される熱間圧延では、その粗大化の解消にならず、それに伴ない、熱間圧延−冷間圧延後の短時間の溶体化処理工程では、充分なMgとSiの固溶量を確保できず、その結果高い焼付け硬化性を得ることが困難となる。   Further, after the homogenization treatment, cooling to a temperature range of 450 ° C. or lower at a cooling rate of 3 ° C./min or more is indispensable for obtaining high bake hardenability. If the cooling rate to a temperature range of 450 ° C. or lower is slower than 3 ° C./min, coarsening of precipitates occurs in the cooling process, and in subsequent hot rolling started at 450 ° C. or lower, the coarsening is eliminated. Not only that, but in the short-time solution treatment process after hot rolling-cold rolling, a sufficient amount of Mg and Si cannot be secured, and as a result, it is difficult to obtain high bake hardenability. It becomes.

上述のように均質化処理後に450℃以下の温度域に3℃/min以上で冷却した後には、後述するように300〜450℃の範囲内の温度で熱間圧延を開始するが、この場合、均質化処理後300〜450℃の温度範囲内まで3℃/min以上の冷却速度で冷却して、直ちにその300〜450℃の温度範囲内で熱間圧延を開始しても、あるいは均質化処理後に300℃以下まで3℃/min以上の冷却速度で冷却した後、改めて300〜450℃の範囲内の温度に予備加熱して、その温度範囲内で熱間圧延を開始しても良く、これらのいずれを選択しても特に性能面に影響はない。   As described above, after cooling to a temperature range of 450 ° C. or lower at 3 ° C./min or higher after the homogenization treatment, hot rolling is started at a temperature within a range of 300 to 450 ° C. as described later. After the homogenization treatment, the steel sheet is cooled at a cooling rate of 3 ° C./min or more to a temperature range of 300 to 450 ° C., and hot rolling is immediately started within the temperature range of 300 to 450 ° C. or homogenization. After cooling to 300 ° C. or less after the treatment at a cooling rate of 3 ° C./min or more, preheating to a temperature in the range of 300 to 450 ° C. may be performed again, and hot rolling may be started within that temperature range, Selecting any of these will not affect the performance.

なお均質化処理後の鋳塊の組織は可及的に微細であることが望ましく、具体的には鋳塊結晶粒度がASTMナンバー00以上であることが望ましい。すなわち、鋳塊組織の微細化は、製品板の成形時における板表面の筋状の外観欠陥(リジング)の発生防止、すなわち耐リジング性の改善に有効であり、そのためには鋳塊組織微細化剤として既に述べたように、Ti、もしくはTiおよびBを添加しておくことが望ましい。   The ingot structure after homogenization is desirably as fine as possible. Specifically, the ingot crystal grain size is desirably ASTM number 00 or more. In other words, the refinement of the ingot structure is effective in preventing the occurrence of streak-like appearance defects (riding) on the surface of the product plate during molding, that is, improving the ridging resistance. As already described as the agent, it is desirable to add Ti or Ti and B.

均質化処理後には、前述のように熱間圧延を行なうが、この熱間圧延は、次の(1)〜(7)の条件を満たすように行なう必要がある。
(1)熱間圧延開始温度を300〜450℃の範囲内の温度。
(2)1パス当りの最大圧下量を80mm以下。
(3)各パスの歪み速度を350/秒以下。
(4)熱間圧延中途の板厚が150〜50mmの段階における熱間圧延板の温度を250〜430℃の範囲内。
(5)熱間圧延開始から熱間圧延中途の板厚が150〜50mmの段階までの熱間圧延板の温度降下量を150℃以下。
(6)熱間圧延終了温度を200〜300℃の範囲内。
(7)熱間圧延終了温度から100℃までの平均冷却速度を100℃/hr以下。
After the homogenization treatment, hot rolling is performed as described above. This hot rolling needs to be performed so as to satisfy the following conditions (1) to (7).
(1) The temperature within the range of 300 to 450 ° C. for the hot rolling start temperature.
(2) The maximum reduction amount per pass is 80 mm or less.
(3) The distortion speed of each path is 350 / sec or less.
(4) The temperature of the hot-rolled sheet in the stage where the plate thickness during hot rolling is 150 to 50 mm is in the range of 250 to 430 ° C.
(5) The temperature drop amount of the hot rolled sheet from the start of hot rolling to the stage where the sheet thickness during hot rolling is 150 to 50 mm is 150 ° C. or less.
(6) The hot rolling end temperature is in the range of 200 to 300 ° C.
(7) The average cooling rate from the hot rolling end temperature to 100 ° C. is 100 ° C./hr or less.

これらの熱間圧延条件を規定した理由は次の通りである。   The reasons for defining these hot rolling conditions are as follows.

すなわち先ず(1)の条件、すなわち熱間圧延開始温度を300〜450℃の範囲内とすることは、熱間圧延中の材料の再結晶を抑制して、所要の結晶方位密度を得ると同時に、耐リジング性の改善を図るために不可欠な条件である。熱間圧延開始温度が300℃以下では、熱間圧延自体が困難となり、一方450℃を越える高温で熱間圧延を開始すれば、耐リジング性の改善が得られなくなるから、熱間圧延開始温度は300〜450℃の範囲内とした。   That is, first, setting the condition of (1), that is, the hot rolling start temperature within the range of 300 to 450 ° C., suppresses recrystallization of the material during hot rolling, and at the same time obtains the required crystal orientation density. It is an indispensable condition for improving ridging resistance. When the hot rolling start temperature is 300 ° C. or less, hot rolling itself becomes difficult. On the other hand, if hot rolling is started at a high temperature exceeding 450 ° C., ridging resistance cannot be improved. Was in the range of 300-450 ° C.

さらに前記(2)〜(7)の条件、すなわち1パス当りの最大圧下量を80mm以下とし、各パスの歪み速度を350/秒以下とし、熱間圧延中途の板厚が150〜50mmの段階の材料温度を250〜430℃の範囲内に制御するとともに、熱間圧延開始からその板厚段階までの熱間圧延板の温度降下量を150℃以内に制御し、熱間圧延終了温度を180〜330℃の範囲内に制御し、さらに熱間圧延終了温度から100℃までの平均冷却速度を5℃/min以下にすることも、結晶方位密度の適切な制御とリジング性の改善に必要である。すなわち本発明者等が実験・検討を重ねた結果、熱間圧延の開始温度の制御だけでは、結晶方位密度およびその板厚方向分布、面内各方向n値の適切な制御とリジング性の改善が図れないことが判明した。そしてさらに鋭意実験・検討を重ねたところ、熱間圧延過程の再結晶を抑制して所要の結晶方位密度、板厚方向結晶方位密度分布、n値条件を得るとともに耐リジング性の改善を図るためには、熱間圧延開始温度のほかに、各パスの最大圧下量、各パスの歪み速度、熱間圧延中途における板厚100〜50mmの段階での熱間圧延板の温度、および熱間圧延開始からその板厚段階までの熱間圧延板の温度降下量、さらには熱間圧延終了温度も適切に規制する必要があることを見出した。また特に板厚方向に所定の結晶方位密度分布を安定的に得るとともに所要のn値条件を満たすためには、熱間圧延終了温度からその後の100℃までの平均冷却速度を5℃/min以下にする必要があることを見出し、これらの(2)〜(7)の条件を規定したのである。これらの(2)〜(7)の条件のいずれかが満たされなければ、所要の結晶方位密度およびその板厚方向分布条件もしくはn値条件が満たされなくなるかまたは耐リジング性の充分な改善を図ることが困難となる。   Further, the above conditions (2) to (7), that is, the maximum reduction amount per pass is set to 80 mm or less, the strain rate of each pass is set to 350 / sec or less, and the plate thickness during hot rolling is 150 to 50 mm. The material temperature is controlled within the range of 250 to 430 ° C., the temperature drop of the hot rolled plate from the start of hot rolling to the plate thickness stage is controlled within 150 ° C., and the hot rolling end temperature is 180 ° C. It is also necessary for proper control of crystal orientation density and improvement of ridging property to control within the range of ~ 330 ° C and to further reduce the average cooling rate from the hot rolling end temperature to 100 ° C to 5 ° C / min or less. is there. That is, as a result of repeated experiments and examinations by the present inventors, appropriate control of crystal orientation density and its thickness direction distribution, n value in each in-plane direction, and improvement of ridging by only controlling the hot rolling start temperature. It became clear that it was not possible. After further diligent experiments and examinations, in order to obtain the required crystal orientation density, thickness direction crystal orientation density distribution, n-value conditions by suppressing recrystallization during the hot rolling process, and to improve ridging resistance In addition to the hot rolling start temperature, the maximum reduction amount of each pass, the strain rate of each pass, the temperature of the hot rolled plate at the stage of a plate thickness of 100 to 50 mm during hot rolling, and hot rolling It has been found that it is necessary to appropriately regulate the temperature drop amount of the hot rolled sheet from the start to the sheet thickness stage, and further the hot rolling end temperature. Further, in order to stably obtain a predetermined crystal orientation density distribution in the sheet thickness direction and satisfy the required n-value condition, the average cooling rate from the hot rolling end temperature to the subsequent 100 ° C. is 5 ° C./min or less. It was found that it was necessary to make these, and the conditions (2) to (7) were defined. If any one of these conditions (2) to (7) is not satisfied, the required crystal orientation density and its distribution in the thickness direction or the n-value condition will not be satisfied, or sufficient ridging resistance will be improved. It becomes difficult to plan.

上述のようにして熱間圧延を行なってコイルに巻取った後には、中間焼鈍を行なわずに圧延率30%以上で冷間圧延を施して所要の板厚(製品板厚)とする。このように30%以上の圧延率で冷間圧延することにより、既に述べたような結晶方位密度条件を有する製品板を得ることができる。またここで、冷間圧延率を30%以上にすることによって、材料に高い歪みエネルギーが蓄積され、熱間圧延後の溶体化処理−焼入れ時に形成された結晶粒が細かくなって、成形加工後に良好な表面外観品質を得ることが可能となる。冷間圧延率が30%未満では、成形時に肌荒れ等の表面欠陥が発生するおそれがある。なお特に外観品質を重視する場合には、冷間圧延率は50%以上とすることが好ましい。   After hot rolling as described above and winding the coil, cold rolling is performed at a rolling rate of 30% or more without intermediate annealing to obtain a required thickness (product thickness). Thus, by cold rolling at a rolling rate of 30% or more, a product plate having the crystal orientation density conditions as described above can be obtained. Further, here, by setting the cold rolling rate to 30% or more, high strain energy is accumulated in the material, and the crystal grains formed during solution treatment and quenching after hot rolling become finer, after forming processing. Good surface appearance quality can be obtained. If the cold rolling rate is less than 30%, surface defects such as rough skin may occur during molding. In particular, when the appearance quality is important, the cold rolling rate is preferably 50% or more.

上述のようにして所要の製品板厚とした後には、480℃以上の温度で溶体化処理を行なう。この溶体化処理は、MgSi、単体Si等をマトリックスに固溶させ、これにより焼付硬化性を付与して塗装焼付後の強度向上を図るために重要な工程である。またこの工程は、MgSi、単体Si粒子等の固溶により第二相粒子の分布密度を低下させて、延性と曲げ性を向上させるためにも寄与し、さらには再結晶により最終的に所要の結晶方位を得て、良好な曲げ加工性とプレス加工性を得るためにも重要な工程である。 After the required product thickness is obtained as described above, solution treatment is performed at a temperature of 480 ° C. or higher. This solution treatment is an important step for solid-dissolving Mg 2 Si, simple substance Si, etc. in the matrix, thereby imparting bake hardenability and improving the strength after paint baking. This process also contributes to lowering the distribution density of the second phase particles by solid solution of Mg 2 Si, simple substance Si particles, etc., improving ductility and bendability, and finally by recrystallization. This is an important process for obtaining a desired crystal orientation and obtaining good bending workability and press workability.

溶体化処理温度が480℃未満の場合、室温での経時変化の抑制に対しては有利と考えられるが、その場合MgSi、Siなどの固溶量が少なくなって、充分な焼付硬化性が得られなくなるばかりでなく、延性と曲げ性も著しく悪化するから、溶体化処理温度は480℃以上とする必要がある。なお特に溶体化効果を重視する場合は、溶体化処理温度は500℃以上とすることが好ましい。一方溶体化処理温度の上限は特に規定しないが、共晶融解の発生のおそれや再結晶粒粗大化等を考慮して、通常は580℃以下とすることが望ましい。また溶体化処理の時間は特に規制しないが、通常は5分を越えれば溶体化効果が飽和し、経済性を損なうばかりではなく、結晶粒の粗大化のおそれもあるから、溶体化処理の時間は5分以内が望ましい。 When the solution treatment temperature is less than 480 ° C., it is considered advantageous for suppressing the change over time at room temperature, but in that case, the amount of solid solution of Mg 2 Si, Si, etc. is reduced and sufficient bake hardenability is obtained. Not only cannot be obtained, but also ductility and bendability are significantly deteriorated. Therefore, the solution treatment temperature must be 480 ° C. or higher. In particular, when emphasizing the solution effect, the solution treatment temperature is preferably 500 ° C. or higher. On the other hand, the upper limit of the solution treatment temperature is not particularly specified, but it is usually preferably 580 ° C. or less in consideration of the possibility of eutectic melting and coarsening of recrystallized grains. The solution treatment time is not particularly limited. However, if it exceeds 5 minutes, the solution effect is saturated, not only the economic efficiency is impaired, but also the crystal grains may be coarsened. Is preferably within 5 minutes.

溶体化処理後には、100℃/min以上の冷却速度で、50℃以上150℃未満の温度域まで冷却(焼入れ)する。ここで、溶体化処理後の冷却速度が100℃/min未満では、冷却中にMgSiあるいは単体Siが粒界に多量に析出してしまい、成形性、特にヘム曲げ性が低下すると同時に、焼付硬化性が低下して塗装焼付時の充分な強度向上が望めなくなる。 After the solution treatment, it is cooled (quenched) to a temperature range of 50 ° C. or higher and lower than 150 ° C. at a cooling rate of 100 ° C./min or higher. Here, if the cooling rate after the solution treatment is less than 100 ° C./min, Mg 2 Si or simple substance Si precipitates in the grain boundary during cooling, and at the same time, the formability, particularly the hem bendability decreases, The bake hardenability is lowered, and a sufficient strength improvement at the time of baking is not expected.

上述のように480℃以上の温度での溶体化処理を行なって100℃/min以上の冷却速度で50℃以上150℃未満の温度域内まで冷却(焼入れ)した後には、50℃未満の温度域(室温)まで温度降下しないうちに、この温度範囲内(50〜150℃未満)で1時間以上の安定化処理を行なう。この安定化処理は、50〜150℃未満の温度範囲内の一定温度で1時間以上保持しても、あるいはその温度範囲内で1時間以上かけて冷却(徐冷)しても良い。   After performing solution treatment at a temperature of 480 ° C. or higher as described above and cooling (quenching) to a temperature range of 50 ° C. or higher and lower than 150 ° C. at a cooling rate of 100 ° C./min or higher, a temperature range of less than 50 ° C. Before the temperature drops to (room temperature), stabilization treatment is performed for 1 hour or longer within this temperature range (less than 50 to 150 ° C.). This stabilization treatment may be held at a constant temperature within a temperature range of 50 to 150 ° C. for 1 hour or longer, or may be cooled (slowly cooled) over 1 hour within the temperature range.

このように溶体化処理して50〜150℃未満の温度域に焼入れた後、50℃未満の温度域まで冷却することなくそのまま50〜150℃未満の温度で安定化処理を行なう理由は次の通りである。すなわち、溶体化処理後、特に100℃/min以上の平均冷却速度で50℃未満の室温に冷却した場合には、室温クラスターが生成される。この室温クラスターは強度に寄与するG.P.ゾーンに移行しにくいため、塗装焼付硬化性に不利となる。一方、溶体化処理後に150℃以上の温度範囲に冷却してそのまま保持した場合には、G.P.ゾーンあるいは安定相が生成され、成形前の素材強度が高くなり過ぎて、曲げ加工性やその他の成形性が劣化する。したがって曲げ加工性およびプレス加工性と塗装焼付硬化性とのバランスの観点からは、溶体化処理−焼入れ−安定化処理が上記の条件を満たすことが必要である。   The reason for performing the stabilization treatment at a temperature of 50 to less than 150 ° C. without cooling to a temperature range of less than 50 ° C. after the solution treatment and quenching to a temperature range of less than 50 to 150 ° C. is as follows. Street. That is, after solution treatment, a room temperature cluster is generated particularly when cooling to room temperature below 50 ° C. at an average cooling rate of 100 ° C./min or more. This room temperature cluster contributes to strength. P. Since it is difficult to shift to the zone, it is disadvantageous for paint bake hardenability. On the other hand, when the solution is cooled to a temperature range of 150 ° C. or higher and kept as it is after the solution treatment, P. Zones or stable phases are generated, the strength of the material before molding becomes too high, and bending workability and other moldability deteriorate. Therefore, from the viewpoint of the balance between bending workability, press workability and paint bake hardenability, it is necessary that the solution treatment-quenching-stabilization treatment satisfy the above conditions.

表1に示すこの発明の成分組成範囲内の合金記号A1〜A4の合金について、それぞれ常法に従って溶製し、DC鋳造法によりスラブに鋳造し、得られたスラブに対して種々の条件で均質化処理を施した。均質化処理後は、一部のもの(製造番号2)については367℃まで冷却してから熱間圧延に供し、その他のものについては水冷により種々の冷却速度で200℃以下まで冷却してその後室温まで放冷し、その後2℃/hr以上の加熱速度で種々の温度に再加熱して、その温度で熱間圧延を開始した。熱間圧延では、スラブ厚(250mm以上)から、5mm(製造番号2、3)もしくは3mm(製造番号1、4〜9)まで圧延した。またこの熱間圧延においては、中間板厚150〜50mmの段階の代表板厚として100mm、60mmで材料温度の測定を行なうとともに、その板厚段階における熱間圧延開始からの温度降下量が150℃以内となるように制御し、さらに熱間圧延終了温度を測定した。熱間圧延終了後コイルに巻取り、その後、冷間圧延途中に中間焼鈍を施すことなく、1mmの板厚まで冷間圧延した。さらに一部のもの(製造番号7)については250℃×2時間保持の低温焼鈍を行なってから溶体化処理を行ない、その他のもの(製造番号1〜6、8、9)については、上記の低温焼鈍を行なうことなく溶体化処理を行なった。溶体化処理は、加熱により種々の溶体化処理温度に到達した後、保持時間なしで直ちに100℃/min以上の冷却速度で種々の温度まで冷却(焼入れ)し、引き続いて種々の安定化処理を行なった。これらの製造プロセスの詳細な条件を表2、表3の製造番号1〜9に示す。   Alloys of alloy symbols A1 to A4 within the component composition range of the present invention shown in Table 1 are melted in accordance with conventional methods, cast into slabs by DC casting method, and homogenized under various conditions for the obtained slabs Was applied. After homogenization, some products (Product No. 2) are cooled to 367 ° C. and then subjected to hot rolling, and others are cooled to 200 ° C. or less at various cooling rates by water cooling. The mixture was allowed to cool to room temperature, then reheated to various temperatures at a heating rate of 2 ° C./hr or higher, and hot rolling was started at that temperature. In the hot rolling, rolling was performed from a slab thickness (250 mm or more) to 5 mm (manufacturing numbers 2, 3) or 3 mm (manufacturing numbers 1, 4-9). In this hot rolling, the material temperature is measured at 100 mm and 60 mm as the representative plate thickness at the stage of intermediate plate thickness of 150 to 50 mm, and the temperature drop from the start of hot rolling at the plate thickness stage is 150 ° C. And the hot rolling end temperature was measured. After completion of hot rolling, the coil was wound up, and then cold rolled to a plate thickness of 1 mm without intermediate annealing during the cold rolling. Further, some of them (manufacturing number 7) are subjected to solution treatment after low-temperature annealing at 250 ° C. × 2 hours, and others (manufacturing numbers 1 to 6, 8, 9) Solution treatment was performed without performing low-temperature annealing. In the solution treatment, after reaching various solution treatment temperatures by heating, the solution is immediately cooled (quenched) to various temperatures at a cooling rate of 100 ° C./min or more without holding time, and subsequently various stabilization treatments are performed. I did it. Detailed conditions of these production processes are shown in production numbers 1 to 9 in Tables 2 and 3.

なお表2、表3において、製造番号1〜3、6、8、9は、安定化処理を一定温度保持で行なったもの、一方製造番号4、5、7は、安定化処理として、一定温度の保持を行なう代りに100℃から60℃までの間を冷却速度2〜15℃/hの範囲で徐冷したものである。   In Tables 2 and 3, production numbers 1 to 3, 6, 8, and 9 are those in which the stabilization process was performed at a constant temperature, while production numbers 4, 5, and 7 were the constant temperature as the stabilization process. Instead of holding the temperature, the temperature was gradually cooled from 100 ° C. to 60 ° C. at a cooling rate of 2 to 15 ° C./h.

以上のようにして得られた各板について、室温に3ヶ月放置したのち、それぞれ2%ストレッチ後、170℃×20分の塗装焼付(ベーク)処理を施し、かつその焼付前の板について各方向に引張試験を行なって、各方向の加工硬化指数およびΔr値を調べるとともに、機械的強度として0.2%耐力値を測定した。また同じく焼付前の板について、板厚方向各位置における集合組織(結晶方位密度)を調べるとともに、結晶粒度を調べた。さらに塗装焼付後の板について各方向に引張試験を行なって0.2%耐力を調べるとともに、塗装焼付前の板について、カップ絞り試験による耳率と、プレス成形性評価として角頭絞り高さを調べ、またヘム曲げ試験によるヘム曲げ加工性評価と、ポンチ張出し試験によるリジング・マーク発生評価を行なった。これらの結果を表4、表5に示す。 Each plate obtained as described above is left at room temperature for 3 months, then stretched by 2%, and then subjected to a coating baking (baking) treatment at 170 ° C. for 20 minutes, and the plate before baking in each direction. A tensile test was conducted to examine the work hardening index and Δr value in each direction, and 0.2% proof stress was measured as mechanical strength. Similarly, regarding the plate before baking, the texture (crystal orientation density) at each position in the plate thickness direction was examined, and the crystal grain size was examined. In addition, a tensile test is conducted on the plate after paint baking in each direction to check the 0.2% proof stress, and the edge ratio in the cup drawing test and the corner head drawing height are evaluated for press formability evaluation of the plate before paint baking. In addition, heme bending workability evaluation by hem bending test and ridging mark generation evaluation by punch overhang test were performed. These results are shown in Tables 4 and 5.

各測定、試験の具体的手法を次に示す。   Specific methods for each measurement and test are shown below.

引張試験(加工硬化指数n、n45、n90、Δr値、耐力):
板の圧延方向に対し板面内0°、45°、90°の3方向にJIS5号引張試験片を採取し、それぞれについて引張試験に供した。そして0°方向の0.2%耐力値を調べるとともに、各方向について、伸びが10%となるときのn値(n、n45、n90)を調べ、さらにランクフォード値(r値)として、各方向とも伸びが7.5%となるときのr値を求め、各方向のr値(r、r45、r90)から前記(5)式に従ってΔr値を求めた。
Tensile test (work hardening index n 0 , n 45 , n 90 , Δr value, yield strength):
JIS No. 5 tensile test pieces were sampled in three directions of 0 °, 45 °, and 90 ° in the plate surface with respect to the rolling direction of the plate, and each was subjected to a tensile test. Then, in addition to examining the 0.2% proof stress value in the 0 ° direction, in each direction, the n value (n 0 , n 45 , n 90 ) when the elongation becomes 10% is examined, and the Rankford value (r value) As described above, the r value when the elongation is 7.5% in each direction was obtained, and the Δr value was obtained from the r value (r 0 , r 45 , r 90 ) in each direction according to the above equation (5).

集合組織(結晶方位密度)の測定:
厚さ1mmの板について、10%NaOH水溶液で表面から板厚中央に向けて種々の深さまでエッチングしたもの、およびエッチングしないものをそれぞれ測定サンプルとした。そして板表面のキューブ方位密度(C)、板表面から250μmの位置のキューブ方位密度(C1/4)、500μmの位置のキューブ方位密度(C1/2)を求めた。測定装置としては、リガク(株)のX線回折装置を用い、X線回折のシェルツ反射法により、{200}、{220}、{111}の不完全極点図を測定し、これらを元に三次元結晶方位解析(ODF)を行なって調べた。またこれらの解析においては、アルミニウム粉末から作られたランダム結晶方位を有する試料を測定して得たデータを{200}、{220}、{111}極点図の解析の際に使う規格化ファイルとし、これによりランダム方位を有する試料に対する倍数としてキューブ方位密度、すなわち{100}<001>方位の密度を求めた。なおこの発明において、結晶方位密度は全て三次元結晶方位解析(ODF)に基づくものである。
Measurement of texture (crystal orientation density):
A sample having a thickness of 1 mm was etched with a 10% NaOH aqueous solution from the surface toward the center of the plate thickness to various depths, and a sample that was not etched was used as a measurement sample. The cube orientation density (C 0 ) on the plate surface, the cube orientation density (C 1/4 ) at a position 250 μm from the plate surface, and the cube orientation density (C 1/2 ) at a position 500 μm were obtained. As a measuring device, an incomplete pole figure of {200}, {220}, {111} is measured by the X-ray diffraction Schertz reflection method using the Rigaku Corporation X-ray diffractometer. A three-dimensional crystal orientation analysis (ODF) was performed and examined. In these analyses, data obtained by measuring a sample having a random crystal orientation made from aluminum powder is used as a standardized file used in the analysis of {200}, {220}, {111} pole figures. Thus, the cube orientation density, that is, the density of {100} <001> orientation, was obtained as a multiple of the sample having a random orientation. In this invention, the crystal orientation density is all based on three-dimensional crystal orientation analysis (ODF).

耳率:
板に潤滑油を塗布した後、ポンチ径φ32mm、ブランク径φ62mm、しわ押さえ100kgの条件でカップに絞り、そのカップの耳率を調べた。なおここで耳率の方向は、圧延方向を基準にした0°方向、90°方向で示す。
Ear rate:
After applying lubricating oil to the plate, the cup was squeezed under the conditions of a punch diameter of 32 mm, a blank diameter of 62 mm, and a wrinkle holding force of 100 kg, and the ear ratio of the cup was examined. Here, the direction of the ear rate is indicated by a 0 ° direction and a 90 ° direction based on the rolling direction.

ヘム加工性の評価:
約25℃の室温に3ヶ月放置した材料を、予め100℃の電気炉で時効させて、圧延方向に対し垂直な方向の0.2%耐力が145MPaとなった時点で、その材料から圧延方向に対して板面内0°、45°、90°三方向に曲げ試験片を採取し、15%ストレッチしてから、板厚0.5mmの中板を挿入して180°の曲げ試験を行ない、目視により割れの発生の有無を観察した。ここで○印は割れ無しを、また×印は割れ有りを示す。
Hem processability evaluation:
A material left at room temperature of about 25 ° C. for 3 months is pre-aged in an electric furnace at 100 ° C., and when the 0.2% proof stress in the direction perpendicular to the rolling direction becomes 145 MPa, the material is rolled in the rolling direction. Bending test specimens are collected in three directions at 0 °, 45 °, and 90 ° in the plate surface, stretched by 15%, and then a 180 ° bending test is performed by inserting an intermediate plate having a thickness of 0.5 mm. The presence or absence of cracks was observed visually. Here, a circle indicates that there is no crack, and a cross indicates that there is a crack.

リジング・マークの発生評価:
直径100mmの球頭ポンチで高さ30mmまで張出成形を行ない、表面に形成される圧延方向に沿う筋(凹凸)を目視で判定した。○印は筋なしあるいは筋が弱い状態を示し、×印は筋が強い状態を示す。ここで筋が強ければ、自動車用外板の外観として不適当となる。
Evaluation of generation of ridging marks:
Overhanging was performed up to a height of 30 mm with a spherical head punch having a diameter of 100 mm, and the streaks (unevenness) along the rolling direction formed on the surface were visually determined. A circle indicates no muscle or a weak muscle, and a cross indicates a strong muscle. If the streak is strong here, the appearance of the automobile outer plate is inappropriate.

角頭絞り高さ(プレス加工性評価):
板に防錆油を塗布した後、寸法200mm×300mm・コーナーR10mmの角頭ポンチを用いて、しわ押さえ3tonにより角頭絞り試験を行ない、成形高さ(成形性)を評価した。
Square head drawing height (press workability evaluation):
After applying rust preventive oil to the plate, a square head punch test was performed using a wrinkle presser 3 ton using a square head punch having dimensions of 200 mm × 300 mm and a corner R of 10 mm, and the molding height (moldability) was evaluated.

最終板の結晶粒度:
板の圧延方向と平行な断面において光学顕微鏡で撮影した写真をもとにASTMナンバーを判定した。
Final grain size:
The ASTM number was determined based on a photograph taken with an optical microscope in a cross section parallel to the rolling direction of the plate.

Figure 0004200086
Figure 0004200086

Figure 0004200086
Figure 0004200086

Figure 0004200086
Figure 0004200086

Figure 0004200086
Figure 0004200086

Figure 0004200086
Figure 0004200086

製造番号1〜5は、いずれも合金の成分組成がこの発明で規定する範囲内であって、かつ製造プロセス条件もこの発明で規定する範囲内であり、最終板の結晶方位密度条件等もすべてこの発明で規定する条件を満たしたものであるが、これらの場合は、ヘム加工性(曲げ加工性)が優れていると同時に、角頭絞り高さが充分に高くプレス加工性が優れており、また焼付硬化性が高く、塗装焼付時に充分な焼付硬化性を示し、さらにΔr値で表わされる面内異方性も小さく、またリジングマークの発生も認められなかった。   Production numbers 1 to 5 are all within the range specified by the present invention for the component composition of the alloy, and the production process conditions are also within the range specified by the present invention. The conditions specified in this invention are satisfied. In these cases, the hemmability (bending workability) is excellent, and at the same time, the corner head drawing height is sufficiently high and the press workability is excellent. Further, the bake hardenability was high, the bake hardenability was sufficiently exhibited during paint baking, the in-plane anisotropy represented by the Δr value was small, and the generation of ridging marks was not observed.

これに対し製造番号6〜9は、合金の成分組成はこの発明で規定する範囲内であるが、製造プロセス条件のいずれかがこの発明の範囲外であって、結晶方位密度条件等のいずれかがこの発明で規定する条件を満たさなかったものである。これらのうち、製造番号6の場合は耐リジング性が悪く、またn値の条件が外れてヘム曲げ性が劣るとともに、角頭絞り高さ(プレス加工性)も劣り、さらに焼付け硬化性も劣り、結晶粒も粗かった。製造番号7の場合は、n値の条件が外れて、角頭絞り高さが低くてプレス加工性に劣るとともに、面内異方性Δrが大きく、また焼付け硬化性が劣り、さらに結晶粒が粗かった。また製造番号8の場合は、耐リジング性が悪く、また45°方向のヘム曲げ性が劣っていた。さらに製造番号9の場合は、45°方向のヘム曲げ性が劣るとともに、塗装焼付け硬化性が劣っていた。   On the other hand, in the production numbers 6 to 9, although the component composition of the alloy is within the range specified in the present invention, any of the production process conditions is out of the scope of the present invention, and any of the crystal orientation density conditions, etc. Does not satisfy the conditions defined in the present invention. Among these, in the case of production number 6, ridging resistance is poor, the n-value condition is removed, the hem bendability is inferior, the corner head drawing height (press workability) is also inferior, and the bake hardenability is also inferior. The crystal grains were also coarse. In the case of production number 7, the n-value condition is removed, the corner head drawing height is low and the press workability is inferior, the in-plane anisotropy Δr is large, and the bake hardenability is inferior. It was rough. In the case of production number 8, the ridging resistance was poor and the hem bendability in the 45 ° direction was poor. Furthermore, in the case of production number 9, the hem bendability in the 45 ° direction was inferior and the paint bake hardenability was inferior.

なお以上の実施例は、この発明の効果を説明するためのものであり、実施例記載のプロセスおよび条件がこの発明の技術的範囲を制限するものではない。   In addition, the above Example is for demonstrating the effect of this invention, and the process and conditions as described in an Example do not restrict | limit the technical scope of this invention.

Claims (3)

Mg0.4〜0.7%(mass%、以下同じ)、Si0.8〜1.2%を含有し、かつMn0.03〜0.4%、Cr0.01〜0.4%、Fe0.03〜0.5%、Ti0.005〜0.2%、Zn0.03〜2.5%のうちから選ばれた1種または2種以上を含有し、さらにCuが0.1%以下に規制され、残部がAlおよび不可避的不純物よりなる合金が素材とされ、板表面のキューブ方位密度をC、板表面から板厚方向に板厚の1/4の位置におけるキューブ方位密度をC1/4、板表面から板厚方向に板厚の1/2の位置におけるキューブ方位密度をC1/2として、次の(1)式および(2)式
<C1/4>C1/2 ・・・(1)
20<{(C+C1/4+C1/2)/3}<200 ・・・(2)
を満たし、かつ0°、90°耳率が5%以上であり、さらに板面内において圧延方向と平行な方向の加工硬化指数をn、板面内において圧延方向に対し45°をなす方向の加工硬化指数をn45、板面内において圧延方向に対し90°をなす方向の加工硬化指数をn90として、次の(3)式および(4)式
<n45>n90 ・・・(3)
0<n45−(n+n90)/2<0.40 ・・・(4)
を満たし、しかも圧延方向と平行な方向のランクフォード値をr、板面内において圧延方向に対し45°をなす方向のランクフォード値をr45、板面内において圧延方向に対し直交する方向のランクフォード値をr90として、次の(5)式により規定されるΔr値
Δr=(r+r90)/2−r45 ・・・(5)
が1.2未満であることを特徴とする、成形加工用アルミニウム合金板。
Mg 0.4-0.7% (mass%, the same shall apply hereinafter), Si 0.8-1.2%, Mn 0.03-0.4%, Cr 0.01-0.4%, Fe0.03 ~ 0.5%, Ti 0.005 to 0.2%, Zn contains 0.03 to 2.5% selected from one or more, and further Cu is regulated to 0.1% or less An alloy consisting of Al and inevitable impurities is used as the raw material, the cube orientation density on the plate surface is C 0 , and the cube orientation density at the position of 1/4 of the plate thickness from the plate surface to the plate thickness direction is C 1/4. The cube orientation density at a position 1/2 of the plate thickness in the plate thickness direction from the plate surface is C 1/2 , and the following formulas (1) and (2) C 0 <C 1/4 > C 1/2 ... (1)
20 <{(C 0 + C 1/4 + C 1/2 ) / 3} <200 (2)
In which the work hardening index in the direction parallel to the rolling direction is n 0 in the plate surface and 45 ° to the rolling direction in the plate surface. work hardening exponent n 45, as n 90 and work hardening coefficient in a direction forming a 90 ° to the rolling direction in the plate surface, the following (3) and (4) n 0 <n 45> n 90 · (3)
0 <n 45 − (n 0 + n 90 ) / 2 <0.40 (4)
In the direction parallel to the rolling direction is r 0 , the rank ford value in the direction of 45 ° with respect to the rolling direction in the plate surface is r 45 , and the direction in the plate surface is orthogonal to the rolling direction. the Lankford value as r 90 of, [Delta] r value Δr = (r 0 + r 90 ) which is defined by the following equation (5) / 2-r 45 ··· (5 )
Is an aluminum alloy sheet for forming, characterized by being less than 1.2.
請求項1に記載の成形加工用アルミニウム合金板において、
結晶粒度がASTMナンバーで4.0以上であることを特徴とする、成形加工用アルミニウム合金板。
In the aluminum alloy plate for forming according to claim 1,
An aluminum alloy plate for forming, wherein the crystal grain size is 4.0 or more by ASTM number.
請求項1もしくは請求項2に記載の成形加工用アルミニウム合金板を製造する方法において、
Mg0.4〜0.7%、Si0.8〜1.2%を含有し、かつMn0.03〜0.4%、Cr0.01〜0.4%、Fe0.03〜0.5%、Ti0.005〜0.2%、Zn0.03〜2.5%のうちから選ばれた1種または2種以上を含有し、さらにCuが0.1%以下に規制され、残部がAlおよび不可避的不純物よりなる合金の鋳塊に対して、490〜590℃の範囲内の温度で均質化処理を行なって、450℃以下の温度に平均冷却速度3℃/min以上で冷却し、その後熱間圧延を行なうにあたり、
(1)熱間圧延温度を300〜450℃の範囲内、
(2)1パス当りの最大圧下量を80mm以下、
(3)各パスの歪み速度を350/秒以下、
(4)熱間圧延中途の板厚が150〜50mmの段階における熱間圧延板の温度を250〜430℃の範囲内、
(5)熱間圧延開始から熱間圧延中途の板厚が150〜50mmの段階までの熱間圧延板の温度降下量を150℃以下、
(6)熱間圧延終了温度を200〜300℃の範囲内、
(7)熱間圧延終了温度から100℃までの平均冷却速度を100℃/hr以下、
にそれぞれ制御し、熱間圧延終了後、熱間圧延板に対し圧延率30%以上の冷間圧延を施して製品板厚とし、さらに480℃以上の温度で溶体化処理を行ない、直ちに100℃/min以上の平均冷却速度で50℃以上150℃未満の温度域まで冷却し、続いてその温度域内で1時間以上の安定化処理を行なうことを特徴とする、成形加工用アルミニウム合金板の製造方法。
In the method for manufacturing the aluminum alloy sheet for forming according to claim 1 or 2,
Mg 0.4-0.7%, Si 0.8-1.2%, Mn 0.03-0.4%, Cr 0.01-0.4%, Fe 0.03-0.5%, Ti0 Contains one or more selected from 0.005 to 0.2% and Zn 0.03 to 2.5%, further Cu is restricted to 0.1% or less, the balance being Al and inevitable The alloy ingot made of impurities is homogenized at a temperature in the range of 490 to 590 ° C., cooled to a temperature of 450 ° C. or lower at an average cooling rate of 3 ° C./min or higher, and then hot rolled. In doing
(1) Hot rolling temperature in the range of 300-450 ° C,
(2) The maximum reduction amount per pass is 80 mm or less,
(3) The distortion rate of each path is 350 / sec or less,
(4) The temperature of the hot rolled sheet in the stage where the sheet thickness during hot rolling is 150 to 50 mm is within the range of 250 to 430 ° C.
(5) The temperature drop amount of the hot rolled sheet from the start of hot rolling to the stage where the sheet thickness during hot rolling is 150 to 50 mm is 150 ° C. or less,
(6) The hot rolling end temperature is in the range of 200 to 300 ° C.
(7) The average cooling rate from the hot rolling end temperature to 100 ° C. is 100 ° C./hr or less,
After the hot rolling is completed, the hot rolled plate is cold rolled at a rolling rate of 30% or more to obtain a product plate thickness, and further subjected to a solution treatment at a temperature of 480 ° C. or higher. Cooling to a temperature range of 50 ° C. or more and less than 150 ° C. at an average cooling rate of at least / min, and subsequently performing a stabilization treatment for 1 hour or more within the temperature range, to produce an aluminum alloy plate for forming Method.
JP2003410480A 2003-12-09 2003-12-09 Aluminum alloy plate for forming and method for producing the same Expired - Fee Related JP4200086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410480A JP4200086B2 (en) 2003-12-09 2003-12-09 Aluminum alloy plate for forming and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410480A JP4200086B2 (en) 2003-12-09 2003-12-09 Aluminum alloy plate for forming and method for producing the same

Publications (3)

Publication Number Publication Date
JP2005171295A JP2005171295A (en) 2005-06-30
JP2005171295A5 JP2005171295A5 (en) 2007-02-01
JP4200086B2 true JP4200086B2 (en) 2008-12-24

Family

ID=34731571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410480A Expired - Fee Related JP4200086B2 (en) 2003-12-09 2003-12-09 Aluminum alloy plate for forming and method for producing the same

Country Status (1)

Country Link
JP (1) JP4200086B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634249B2 (en) * 2005-08-05 2011-02-16 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP4602195B2 (en) * 2005-08-15 2010-12-22 古河スカイ株式会社 Method for producing aluminum alloy sheet for forming
JP4939088B2 (en) * 2006-03-16 2012-05-23 株式会社神戸製鋼所 Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
JP4939091B2 (en) * 2006-03-23 2012-05-23 株式会社神戸製鋼所 Manufacturing method of aluminum alloy plate with excellent bending workability
JP4939093B2 (en) * 2006-03-28 2012-05-23 株式会社神戸製鋼所 Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP4944474B2 (en) * 2006-03-30 2012-05-30 株式会社神戸製鋼所 Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP2008045192A (en) * 2006-08-21 2008-02-28 Kobe Steel Ltd Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP2008231475A (en) * 2007-03-19 2008-10-02 Furukawa Sky Kk Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2008303449A (en) * 2007-06-11 2008-12-18 Furukawa Sky Kk Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming
JP5814834B2 (en) * 2012-03-07 2015-11-17 株式会社神戸製鋼所 Aluminum alloy plate for automobile hood inner panel
JP6619919B2 (en) * 2015-09-23 2019-12-11 株式会社Uacj Aluminum alloy plate excellent in ridging resistance and hem bendability and method for producing the same

Also Published As

Publication number Publication date
JP2005171295A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
WO2018012532A1 (en) Method for producing aluminum alloy rolled material for molding processing having superior bending workability and ridging resistance
JP4634249B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
JP5683193B2 (en) Aluminum alloy rolled sheet for forming with excellent ridging resistance and method for producing the same
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4200082B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4602195B2 (en) Method for producing aluminum alloy sheet for forming
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4164437B2 (en) Method for producing aluminum alloy sheet for forming
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP4798943B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
KR20090104739A (en) Alluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP2003268475A (en) Aluminum alloy sheet for forming, and manufacturing method therefor
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
JP5415016B2 (en) Aluminum alloy plate for forming and method for producing the same
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP5400510B2 (en) Aluminum alloy sheet for forming with excellent deep drawability and bending workability
JP4807484B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5495538B2 (en) Warm press forming method of bake hardening type aluminum alloy plate
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4200086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees