JP2008303449A - Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming - Google Patents

Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming Download PDF

Info

Publication number
JP2008303449A
JP2008303449A JP2007153937A JP2007153937A JP2008303449A JP 2008303449 A JP2008303449 A JP 2008303449A JP 2007153937 A JP2007153937 A JP 2007153937A JP 2007153937 A JP2007153937 A JP 2007153937A JP 2008303449 A JP2008303449 A JP 2008303449A
Authority
JP
Japan
Prior art keywords
mpa
aluminum alloy
baking
forming
proof stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007153937A
Other languages
Japanese (ja)
Inventor
Akira Hibino
日比野旭
Toshio Komatsubara
小松原俊雄
Akira Tajiri
田尻彰
Takeshi Takada
高田健
Original Assignee
Furukawa Sky Kk
古河スカイ株式会社
Nippon Steel Corp
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Kk, 古河スカイ株式会社, Nippon Steel Corp, 新日本製鐵株式会社 filed Critical Furukawa Sky Kk
Priority to JP2007153937A priority Critical patent/JP2008303449A/en
Publication of JP2008303449A publication Critical patent/JP2008303449A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for forming, in which a performance balance that baking hardenability is excellent, and change over time at normal temperature is small after production, can be optimally constructed, and to provide a method for producing the same. <P>SOLUTION: An aluminum alloy rolled sheet composed of an Al-Mg-Si-based or Al-Mg-Si-Cu-based alloy is subjected to artificial preliminary aging treatment, so as to control the quantity and quality of a cluster II to suitable levels, thus the 0.2% proof stress of the material is beforehand controlled to &ge;140 MPa, the material is subjected to 2% stretching in an aging period at ordinary temperature (0 to 45&deg;C) at least within three months, and, after coating/baking at 170&deg;C&times;20 min, 0.2% proof stress is &ge;240 MPa, and particularly high coating/baking strength in which the degree of increase by the coating/baking is &ge;80 MPa can be achieved. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、成形加工用アルミニウム合金板とその製造方法に関し、特に用途に応じて成形加工や塗装焼付を施して使用されるAl−Mg−Si系もしくはAl−Mg−Si−Cu系の成形加工用アルミニウム合金板とその製造方法に関するものである。   The present invention relates to an aluminum alloy plate for forming and a method for producing the same, and in particular, an Al-Mg-Si-based or Al-Mg-Si-Cu-based forming process that is used after being subjected to forming process or paint baking depending on the application. The present invention relates to an aluminum alloy plate and a method for producing the same.
従来、自動車のボディシートとしては、主として冷延鋼板を使用することが多かったが、最近では車体軽量化等の観点から、アルミニウム合金圧延板を使用することが多くなっている。ところで自動車のボディシートはプレス加工を施して使用するところから、成形加工性が優れていること、また成形加工時におけるリューダースマークが発生しないことが要求される。
また高強度を有することも必須であって、通常は塗装焼付を施して使用されるため、塗装焼付(ベークとも呼ぶ)後に高強度が得られる特性(焼付硬化性、すなわちBH性)が要求される。
そしてまたプレス成形性、形状凍結性、ヘム加工性などの成形性及び焼付硬化性をバランスよく満足させるためには、素材を製造してから成形するまでの材料の常温経時変化、すなわち自然時効による性能劣化、特に塗装焼付後の強度低下を抑制することが非常に重要である。
Conventionally, as a body sheet of an automobile, a cold rolled steel sheet has been mainly used, but recently, an aluminum alloy rolled sheet is frequently used from the viewpoint of reducing the weight of the vehicle body. By the way, since the body sheet of an automobile is used after being subjected to press working, it is required that the formability is excellent and that a Ruders mark is not generated during the forming process.
In addition, it is essential to have high strength, and since it is usually used after being baked, it is required to have a characteristic (bake hardenability, i.e., BH property) that provides high strength after baking (also called baking). The
In addition, in order to satisfy the moldability such as press formability, shape freezing property, hemmability, and bake hardenability in a well-balanced manner, the material changes from room temperature to aging, that is, due to natural aging. It is very important to suppress performance deterioration, particularly strength reduction after baking.
従来このような自動車用ボディシート向けのアルミニウム合金としては、Al−Mg系合金のほか、塗装焼付前の成形加工時においては比較的強度が低くて成形性が優れている一方、塗装焼付時の加熱によって時効されて塗装焼付後の強度が高くなる利点を有するほか、リューダースマークが発生しにくい等の長所を有する時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金が主として使用されている。   Conventionally, as an aluminum alloy for such an automobile body sheet, in addition to an Al-Mg alloy, it has a relatively low strength and excellent formability at the time of molding before coating baking, Aging Al-Mg-Si alloy, aging Al-Mg-Si-Cu alloy, which has the advantage that it is aged by heating and has the advantage that the strength after baking is high, and has the advantage that it does not easily generate Luders marks. Alloys are mainly used.
この時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金の成形性及び焼付硬化性を向上し、常温経時変化を抑制することを検討した特許文献1は、溶体化処理後できるだけ短時間の常温時効を経てからある温度域(50℃〜150℃)に保持する熱処理を提案する。   Patent Document 1, which has studied to improve the formability and bake hardenability of this aging Al—Mg—Si based alloy and aging Al—Mg—Si—Cu based alloy and to suppress room temperature aging, A heat treatment is proposed in which the material is kept at a certain temperature range (50 ° C. to 150 ° C.) after being subjected to normal temperature aging as short as possible after the treatment.
また、特許文献2には保持処理もしくは再加熱処理によって安定なクラスタが形成されやすくなり、クラスタの安定性を向上させ、板製造後の経時変化を抑制して、良好な成形加工性を確保するとともに充分な焼付硬化性を得る安定化処理を施すことによって板製造後の常温での経時変化が少なくなるとともに、塗装焼付でのβ”相が細かくなり、焼付硬化性を向上させたアルミニウム合金板の製造方法が開示された。   Further, in Patent Document 2, stable clusters are easily formed by holding treatment or reheating treatment, and the stability of the clusters is improved, the change with time after the plate is manufactured is suppressed, and good moldability is ensured. In addition, by applying a stabilization treatment to obtain sufficient bake hardenability, the time-dependent change at room temperature after manufacturing the plate is reduced, and the β ”phase in paint baking is finer, and the bake hardenability is improved. The manufacturing method of was disclosed.
この特許文献2に開示された方法における安定なクラスタの形成量を増やすことが、溶質元素の過飽和度の減少を意味し、β”相の形成量を減少させてしまうという問題に着目し、特許文献3には、溶体化処理・空冷後の放置時間中の自然時効によって形成されるクラスタを再固溶させて溶質元素量を再度確保させるための復元処理を放置時間に応じた温度範囲で行い、成形加工性および塗装焼付硬化性に優れた、自動車ボディ用として好適なアルミニウム合金板が開示された。   Focusing on the problem that increasing the amount of stable cluster formation in the method disclosed in Patent Document 2 means a decrease in the degree of supersaturation of the solute element and reducing the amount of β ″ phase formation. Reference 3 describes that a restoration process for re-solidifying clusters formed by natural aging during the standing time after solution treatment and air cooling and re-establishing the amount of solute elements is performed in a temperature range corresponding to the standing time. In addition, an aluminum alloy plate suitable for use in an automobile body has been disclosed, which is excellent in moldability and paint bake hardenability.
一方、特許文献4及び特許文献5には溶体化(高温)処理及び焼入れ後に安定化処理を施す汎用の成形加工用アルミニウム合金板の製造方法が開示された。
特許第3207413号(特開平04−147951) 特開平6−272000号公報 特開平9−143645号公報 特許第2613466号(特開平02−205660) 特許第3359428号(特開平08−049052)
On the other hand, Patent Document 4 and Patent Document 5 disclosed a method for producing a general-purpose aluminum alloy plate for forming that performs solution treatment (high temperature) treatment and stabilization treatment after quenching.
Japanese Patent No. 3207413 (Japanese Patent Laid-Open No. 04-147951) JP-A-6-272000 JP-A-9-143645 Japanese Patent No. 2613466 (Japanese Patent Laid-Open No. 02-205660) Japanese Patent No. 3359428 (Japanese Patent Laid-Open No. 08-049052)
最近では、自動車用ボディシート向けの時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板については材料の薄肉化及びコストダウンを図るために、今まで以上に高い強度レベルが要求され、また同時に常温経時を経ても強度劣化の可及的に少ない材料であることが求められ、加えて塗装焼付については、焼付温度を低温化し、また焼付時間も短時間化する傾向が強まっている。   Recently, for aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates for automobile body sheets, a higher strength level than ever has been achieved in order to reduce the material thickness and reduce costs. At the same time, it is required to be a material with as little strength deterioration as possible even after aging at room temperature. In addition, with regard to paint baking, there is an increasing tendency to lower the baking temperature and shorten the baking time. ing.
係る自動車用ボディシート向けニーズは、温暖化対策をはじめとする環境品質が自動車に対する最大の要求品質になっている社会的背景との関係で、きわめて先鋭かつ緊急の課題となっており、係る課題の達成に向けて実証データを根拠とするだけではなく材料の物性的挙動に着目して精密に合目的化した材料設計が必要とされており、特に高い焼付硬化性(BH性)が重視されるだけでなく、常温経時変化による塗装焼付後強度劣化の抑制という要請に応え、これを合理的なコストで最適な性能バランスで実現することが求められる。   The needs for automobile body seats are extremely acute and urgent issues in relation to the social background, where environmental quality, including measures against global warming, is the highest quality requirement for automobiles. In order to achieve this, material design that is not only based on empirical data but also focused on the physical behavior of the material to achieve precise purposes is required, and particularly high bake hardenability (BH properties) is emphasized. In addition, it is necessary to meet the demand for suppressing deterioration in strength after baking after painting due to aging at room temperature, and to achieve this with an optimal performance balance at a reasonable cost.
この観点で検討すると特許文献1〜特許文献5に開示された製造方法によって得られた時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板では、製造直後(常温経時1ヶ月未満)状態において塗装焼付後に0.2%耐力240MPa以上、その増加分80MPa以上の高強度が得られても、一旦長時間(1ヶ月以上)常温に放置すると、常温時効によってその後の塗装焼付後に強度劣化(0.2%耐力の増加分80MPa未満)が生じ、焼付硬化性(BH性)と常温経時変化の抑制を以上のニーズに応じたレベルで十分に両立させることができてはいない。
例えば特許文献2、特許文献3に開示された製法では、アルミニウム合金マトリックスに生成されるクラスタに着目した検討が行われてはいるものの、合理的なコストで適切な特性を実現するという要請を具体的に満足するものではなかった。
From this point of view, the aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy sheets obtained by the manufacturing methods disclosed in Patent Documents 1 to 5 are immediately after manufacturing (room temperature aging 1 month). Less), after high-strength, 0.2% proof stress 240MPa or higher and 80MPa or more of the increase is obtained, if left at room temperature for a long time (1 month or longer), Deterioration in strength (increased by 0.2% proof stress less than 80 MPa) has occurred, and bake hardenability (BH properties) and room temperature aging cannot be sufficiently balanced at the level according to the above needs.
For example, in the manufacturing methods disclosed in Patent Document 2 and Patent Document 3, although attention has been paid to clusters generated in an aluminum alloy matrix, a specific request for realizing appropriate characteristics at a reasonable cost is specifically described. I was not satisfied.
また、例えば特許文献4に開示されたアルミニウム合金板の製造方法によれば溶体化(高温)処理後、50〜130℃の温度域に焼入れてそのまま50〜150℃で1〜96時間保持する安定化処理を施すことによって強度・成形性を良好にするとしているが、その特許文献4の表3に示されたNo.10では、100℃以上×48時間の安定化処理を行ってはいるものの、焼付後耐力は22.3kg/mm(218.7MPa)以下であり、塗装焼付後に0.2%耐力240MPa以上というニーズを充足するものではない。 Further, for example, according to the method for producing an aluminum alloy plate disclosed in Patent Document 4, after the solution treatment (high temperature) treatment, it is quenched into a temperature range of 50 to 130 ° C. and kept at 50 to 150 ° C. for 1 to 96 hours. It is said that the strength and formability are improved by applying the treatment, but No. 1 shown in Table 3 of Patent Document 4 is shown. No. 10, although the stabilization process is performed at 100 ° C. or higher for 48 hours, the post-baking proof stress is 22.3 kg / mm 2 (218.7 MPa) or lower, and the 0.2% proof stress is 240 MPa or higher after paint baking. It does not meet your needs.
さらに、特許文献5に開示された成形加工用アルミニウム合金板は、溶体化処理を施して、100℃/min以上で50〜80℃の温度域に冷却し、その温度域で5秒以上かつ合金の耐力が100N/mm 以下になるような範囲内の時間保持し、続いて85〜150℃にて0.5〜50時間安定化処理を施すとしているが、焼入温度を60℃とし、100℃×18時間の安定化処理を行った表2及び表3に示す製造番号1(合金記号A1)は、製造後の常温時効による耐力の経時変化が小さいが、しかも製造後1日目、40日目における180℃×30minの焼付後素材の0.2%耐力はそれぞれ211N/mm、209N/mmであり、やはり塗装焼付後に0.2%耐力240MPa以上というニーズを充足することはできない。 Furthermore, the aluminum alloy sheet for forming disclosed in Patent Document 5 is subjected to a solution treatment, and is cooled to a temperature range of 50 to 80 ° C. at 100 ° C./min or more. Is held for a time within a range such that the proof stress is 100 N / mm 2 or less, and subsequently subjected to stabilization treatment at 85 to 150 ° C. for 0.5 to 50 hours, the quenching temperature is set to 60 ° C., Production number 1 (alloy symbol A1) shown in Tables 2 and 3 subjected to stabilization treatment at 100 ° C. for 18 hours has a small change over time in yield strength due to normal temperature aging after production, and on the first day after production, 0.2% proof stress of baking after material 180 ° C. × 30min at 40 days are each 211N / mm 2, 209N / mm 2, able to satisfy the needs of still 0.2% proof stress 240MPa or more after baking Can not
この発明は以上の事情を背景としてなされたもので、焼付硬化性が優れ、製造後の常温での経時的な変化が少ないという性能バランスを最適に構築できる成形加工用アルミニウム合金板およびその製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, an aluminum alloy sheet for forming and capable of optimally constructing a performance balance of excellent bake hardenability and little change with time at room temperature after manufacture, and a method for manufacturing the same The purpose is to provide.
前述のような課題を解決するべくこの発明者等が検討を重ねた結果、Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金の最終板の組織として、予め高温予備時効によって材料組織中にクラスタIIを十分に生成させるように調整することによって、高い塗装焼付強度を有するアルミニウム合金板を得ることができることを見出し、この発明をなすに至った。   As a result of repeated studies by the present inventors in order to solve the above-described problems, the structure of the final plate of the Al-Mg-Si-based or Al-Mg-Si-Cu-based alloy is preliminarily used as a material structure by high-temperature pre-aging. It has been found that an aluminum alloy sheet having high paint bake strength can be obtained by adjusting so that the cluster II is sufficiently generated therein, and the present invention has been made.
ここで、クラスタは一般にクラスタIとクラスタIIの2種類に分けられる。その特徴として、クラスタIは、おもに70℃未満の保持温度にて形成されるMg、Siの原子集団であり、これは塗装焼付温度でも安定的に存在する。
クラスタIIは、クラスタIと同様なMg、Si原子集団であるが、塗装焼付温度にて強度向上に有効な析出物へと変化する。
Here, clusters are generally divided into two types, cluster I and cluster II. As a feature thereof, the cluster I is an atomic group of Mg and Si formed mainly at a holding temperature of less than 70 ° C., and this exists stably even at the coating baking temperature.
Cluster II is a group of Mg and Si atoms similar to cluster I, but changes into precipitates effective for improving strength at the coating baking temperature.
すなわち本発明の成形加工用アルミニウム合金板は、Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金からなるアルミニウム合金鋳塊から圧延工程と昇温と冷却を含む熱処理工程を経て所要の板厚の圧延板とし、その圧延板に対し、溶体化処理後、人工予備時効処理によって予め材料の0.2%耐力を140MPa以上とし、少なくとも3ヶ月以内の常温(0〜45℃)経時期間中において材料を2%ストレッチした後、170℃×20minの塗装焼付後0.2%耐力が240MPa以上で、塗装焼付による増加分が80MPa以上であることを特徴とする。   That is, the aluminum alloy sheet for forming according to the present invention is obtained from an aluminum alloy ingot made of an Al-Mg-Si or Al-Mg-Si-Cu alloy through a rolling process and a heat treatment process including heating and cooling. A rolled plate having a plate thickness, and after the solution treatment on the rolled plate, the material is 0.2% proof stress 140 MPa or more in advance by artificial preliminary aging treatment, and the normal temperature (0 to 45 ° C.) aging period within at least 3 months After the material is stretched by 2%, the 0.2% proof stress after coating baking at 170 ° C. × 20 min is 240 MPa or more, and the increase due to coating baking is 80 MPa or more.
また本発明の成形加工用アルミニウム合金板は、Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金からなるアルミニウム合金鋳塊から圧延工程と昇温と冷却を含む熱処理工程を経て所要の板厚の圧延板とし、その圧延板に対し、溶体化処理後、人工予備時効処理によって予め材料の0.2%耐力を140MPa以上とし、かつ、示差走査熱量計(DSC:Differential Scanning Calorimeter)による計測で、最大の発熱ピークの高さを0.09W/g以下とし、少なくとも3ヶ月以内の常温(0〜45℃)経時期間中において、材料の塗装焼付後の0.2%耐力が240MPa以上で、塗装焼付による増加分が90MPa以上の高い塗装焼付強度を有することを特徴とする。   In addition, the aluminum alloy sheet for forming according to the present invention is obtained from an aluminum alloy ingot made of an Al-Mg-Si-based or Al-Mg-Si-Cu-based alloy through a rolling process and a heat treatment process including heating and cooling. A rolled plate having a thickness is formed. After the solution treatment, the material is 0.2% proof stress of 140 MPa or more in advance by an artificial preliminary aging treatment, and by a differential scanning calorimeter (DSC). In the measurement, the maximum exothermic peak height is set to 0.09 W / g or less, and the 0.2% proof stress after painting and baking of the material is 240 MPa or more during the normal temperature (0 to 45 ° C.) aging period of at least 3 months. Thus, the increase in coating baking has a high coating baking strength of 90 MPa or more.
クラスタIIの構造、構成は必ずしも一定ではなく、クラスタIIの構造、構成の如何によって材料の焼付け硬化性及び成形性に影響が生じる。
したがってDSC計測で最大の発熱ピークの高さを0.09W/g以下に規制することによってクラスタIIの構造、構成を調整して高性能の焼付け硬化性と成形性の劣化防止効果を得ることができる。
The structure and configuration of the cluster II are not necessarily constant, and the bake hardenability and formability of the material are affected depending on the structure and configuration of the cluster II.
Therefore, by restricting the maximum exothermic peak height in DSC measurement to 0.09 W / g or less, the structure and configuration of cluster II can be adjusted to obtain high-performance bake hardenability and formability prevention effect. it can.
480℃以上の溶体化処理を行ってから80℃以上150℃以下の温度域に100℃/min(分)以上の冷却速度で冷却後に、80℃以上150℃以下の温度域で合金板の0.2%耐力が140MPa以上になるように滞留させる処理でクラスタIIを生成することができる。
材料を80℃以上150℃以下の温度域で滞留させることによって強度に寄与する因子であるクラスタIIの生成量が支配的となり、クラスタIIの生成によって組織中に整合歪みがもたらされ、強度が上昇する。
また、その生成量が一定以上に達すると、クラスタIIと空孔との相互作用で、常温経時変化が抑えられ、常温経時による塗装焼付後強度の劣化を最小限に食い止めることができる。
After performing the solution treatment at 480 ° C. or higher, after cooling at a cooling rate of 100 ° C./min (min) or higher to a temperature range of 80 ° C. or higher and 150 ° C. or lower, the alloy plate is heated at a temperature range of 80 ° C. or higher and 150 ° C. or lower. Cluster II can be generated by a process of retaining so that the 2% proof stress is 140 MPa or more.
By retaining the material in a temperature range of 80 ° C. or more and 150 ° C. or less, the generation amount of cluster II that is a factor contributing to the strength becomes dominant, and the formation of cluster II brings matching strain in the structure, and the strength is increased. To rise.
Moreover, when the production amount reaches a certain level or more, the change with time at room temperature is suppressed by the interaction between the cluster II and the pores, and the deterioration of the strength after coating baking due to the room temperature with time can be minimized.
480℃以上の溶体化処理を行ってから70℃以上90℃以下の温度域に100℃/min(分)以上の冷却速度で冷却後に、70℃以上90℃未満の温度域で10分間以下の滞留をさせる処理によって比較的低温で生成するクラスタIIによって成形性の劣化を防止することができる。
この滞留時間が10分以上では、高性能の焼付け硬化性が得られないおそれがある。
After performing the solution treatment at 480 ° C. or higher, after cooling at a cooling rate of 100 ° C./min (min) or higher in a temperature range of 70 ° C. or higher and 90 ° C. or lower, the temperature range of 70 ° C. or higher and lower than 90 ° C. is 10 minutes or lower. Degradation of formability can be prevented by the cluster II generated at a relatively low temperature by the retention process.
If this residence time is 10 minutes or more, high-performance bake hardenability may not be obtained.
次に、改めて90℃以上150℃以下の温度域に再加熱する。その昇温速度は10℃/min以上の昇温速度とするのがよい。
90℃以上150℃以下の比較的に高温域での滞留によって材料の0.2%耐力を140MPa以上としてより安定なクラスタII構造・構成が得られる。
またDSC計測で最大の発熱ピークの高さが0.09W/g以下となる様に調整すれば、少なくとも3ヶ月以内の常温(0〜45℃)経時期間中において材料の塗装焼付後の0.2%耐力を240MPa以上とし、その増加分が90MPa以上となる高い塗装焼付強度を得ることができる。
また、さらなる高強度を重視する場合、その最大の発熱ピークの高さが0.06W/g以下になるように、予備時効の温度を高温側に調整することが好ましい。また、成形性の劣化防止を重視する場合、人工予備時効温度130℃以下にすることが好ましい。
Next, reheating to a temperature range of 90 ° C. or higher and 150 ° C. or lower is performed again. The temperature rising rate is preferably a temperature rising rate of 10 ° C./min or more.
By staying in a relatively high temperature range of 90 ° C. or more and 150 ° C. or less, the 0.2% proof stress of the material is set to 140 MPa or more, and a more stable Cluster II structure / configuration can be obtained.
Moreover, if the maximum exothermic peak height is adjusted to 0.09 W / g or less by DSC measurement, it will be 0. 0 after coating and baking of the material at room temperature (0 to 45 ° C.) over a period of at least 3 months. The 2% proof stress is 240 MPa or more, and a high paint bake strength with an increase of 90 MPa or more can be obtained.
In the case where higher strength is emphasized, the preliminary aging temperature is preferably adjusted to the high temperature side so that the maximum exothermic peak height is 0.06 W / g or less. Further, when emphasizing prevention of moldability deterioration, it is preferable to set the artificial preliminary aging temperature to 130 ° C. or lower.
成形加工用アルミニウム合金は、Mg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Fe0.03〜1.0%、0.0001%〜0.0500%のBを伴うことが許容されるTi0.005〜0.2%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金とすることができる。また、さらに、Zn0.03〜2.5%、Cu0.05〜1.5%の1種又は2種を含有しても良い。   The aluminum alloy for forming contains Mg 0.2 to 1.5% (mass%, the same shall apply hereinafter), Si 0.3 to 2.0%, Mn 0.03 to 0.6%, Cr 0.01 to 0 Ti0 allowed to accompany B of .4%, Zr 0.01-0.4%, V 0.01-0.4%, Fe 0.03-1.0%, 0.0001% -0.0500% An aluminum alloy containing one or more selected from 0.005 to 0.2%, with the balance being Al and inevitable impurities. Furthermore, you may contain 1 type or 2 types of Zn0.03-2.5%, Cu0.05-1.5%.
薄肉自動車用ボディシート用に焼付硬化性(BH)、成形性及び経時変化性を総合的に調整されてなるようにすることができる。   Bake hardenability (BH), moldability, and change with time can be comprehensively adjusted for a thin automobile body sheet.
[作用]
この発明の成形加工用アルミニウム合金板によれば、人工予備時効処理によってクラスタIIの量と質を適切なレベルに調整することによってとりわけ高い塗装焼付強度を実現することができる。
[Action]
According to the aluminum alloy sheet for forming according to the present invention, particularly high paint bake strength can be realized by adjusting the amount and quality of the cluster II to an appropriate level by artificial preliminary aging treatment.
この発明による成形加工用アルミニウム合金板は、成形性と強度のバランスにおいて特に強度が重視され、焼付硬化性が優れ、塗装焼付後の強度が高く、また常温での経時変化も少なく、常温経時による塗装焼付硬化性の劣化が少ないという優れた性能を奏する。
またこの発明の成形加工用アルミニウム合金板の製造方法によれば、上述のように優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で確実かつ安定して製造することができる。
したがって本発明の成形加工用アルミニウム合金板は、焼付硬化性(BH)、成形性及び経時変化性が総合的に調整されて薄肉自動車用ボディシート用に好適である。
The aluminum alloy sheet for forming according to the present invention is particularly emphasized in the balance between formability and strength, excellent in bake hardenability, high in strength after baking, and with little change over time at room temperature. Excellent performance with less paint bake hardenability.
Moreover, according to the manufacturing method of the aluminum alloy plate for forming according to the present invention, the aluminum alloy plate for forming having excellent performance as described above can be manufactured reliably and stably on a mass production scale.
Accordingly, the aluminum alloy sheet for forming according to the present invention is suitable for a body sheet for thin-walled automobiles because the bake hardenability (BH), formability and aging change are comprehensively adjusted.
この発明の成形加工用アルミニウム合金板の製造方法におけるアルミニウム合金板は、基本的にはAl−Mg−Si系合金もしくはAl−Mg−Si−Cu系合金であれば良く、その具体的な成分組成は特に制約されるものではない。
通常はMg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Fe0.03〜1.0%、0.0001%〜0.0500%のBを伴うことが許容されるTi0.005〜0.2%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とすることが好ましい。また、さらに、Zn0.03〜2.5%、Cu0.05〜1.5%の1種又は2種を含有しても良い。
以下にこの素材合金の成分限定理由について説明する。
The aluminum alloy plate in the method for producing an aluminum alloy plate for forming according to the present invention may basically be an Al-Mg-Si alloy or an Al-Mg-Si-Cu alloy, and its specific composition Is not particularly restricted.
Usually, it contains Mg 0.2 to 1.5% (mass%, the same shall apply hereinafter), Si 0.3 to 2.0%, Mn 0.03 to 0.6%, Cr 0.01 to 0.4%, Zr0 0.01 to 0.4%, V 0.01 to 0.4%, Fe 0.03 to 1.0%, 0.0001% to 0.0500% Ti allowed to accompany B 0.005 to 0.00%. It is preferable to use, as a raw material, an aluminum alloy containing one or more selected from 2%, with the balance being Al and inevitable impurities. Furthermore, you may contain 1 type or 2 types of Zn0.03-2.5%, Cu0.05-1.5%.
The reasons for limiting the components of this material alloy will be described below.
Mg:
Mgはこの発明で対象としている系の合金で基本となる合金元素であって、Siと共同して強度向上に寄与する。Mg量が0.2%未満では塗装焼付時に析出硬化によって強度向上に寄与するβ”相の生成量が少なくなるため、充分な強度向上が得られず、一方1.5%を越えれば、粗大なMg−Si系の金属間化合物が生成され、成形性、特に曲げ加工性が低下するから、Mg量は0.2〜1.5%の範囲内とした。最終板の成形性、特に曲げ加工性をより良好にするためには、Mg量は0.3〜0.9%の範囲内が好ましい。
Mg:
Mg is an alloy element that is a basic alloy of the system targeted by the present invention, and contributes to strength improvement in cooperation with Si. If the Mg content is less than 0.2%, the amount of β "phase that contributes to strength improvement by precipitation hardening during baking is reduced, so that sufficient strength improvement cannot be obtained, while if it exceeds 1.5%, it is coarse. Mg-Si based intermetallic compounds are produced, and the formability, particularly bending workability, is reduced, so the Mg content is within the range of 0.2 to 1.5%. In order to improve the workability, the Mg content is preferably in the range of 0.3 to 0.9%.
Si:
Siもこの発明の系の合金で基本となる合金元素であって、Mgと共同して強度向上に寄与する。またSiは、鋳造時に金属Siの晶出物として生成され、その金属Si粒子の周囲が加工によって変形されて、溶体化処理の際に再結晶核の生成サイトとなるため、再結晶組織の微細化にも寄与する。Si量が0.3%未満では上記の効果が充分に得られず、一方2.0%を越えれば粗大なSi粒子や粗大なMg−Si系の金属間化合物が生じて、成形性、特に曲げ加工性の低下を招く。したがってSi量は0.3〜2.0%の範囲内とした。プレス成形性と曲げ加工性とのより良好なバランスを得るためには、Si量は0.5〜1.3%の範囲内が好ましい。
Si:
Si is also an alloy element that is fundamental in the alloy of the present invention, and contributes to strength improvement in cooperation with Mg. In addition, Si is produced as a crystallized product of metal Si at the time of casting, and the periphery of the metal Si particles is deformed by processing and becomes a recrystallization nucleus generation site during solution treatment. It also contributes to If the amount of Si is less than 0.3%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, coarse Si particles and coarse Mg-Si based intermetallic compounds are produced, and formability, particularly This causes a decrease in bending workability. Therefore, the Si amount is set in the range of 0.3 to 2.0%. In order to obtain a better balance between press formability and bending workability, the Si content is preferably in the range of 0.5 to 1.3%.
Mn、Cr、Zr、V
これらの元素は、強度向上や結晶粒微細化、あるいは時効性(焼付硬化性)の向上に有効であり、いずれか1種または2種以上を添加する。
Mnの含有量が0.03%未満、もしくはCrの含有量が0.01%未満、またはZrの含有量が0.01%未満、Vの含有量が0.01%未満、では、上記の効果が充分に得られず、一方Mnの含有量が0.6%を越えるか、あるいはCr、Zr、Vの含有量がそれぞれ0.4%を越えれば、上記の効果が飽和するばかりでなく、多数の金属間化合物が生成されて成形性、特にヘム曲げ性に悪影響を及ぼすおそれがあり、したがってMnは0.03〜0.6%の範囲内、Cr、Zr、Vはそれぞれ0.01〜0.4%の範囲内とした。
Mn, Cr, Zr, V
These elements are effective in improving strength, crystal grain refinement, or improving aging (bake hardenability), and any one or more of them are added.
When the Mn content is less than 0.03%, or the Cr content is less than 0.01%, or the Zr content is less than 0.01%, and the V content is less than 0.01%, If the Mn content exceeds 0.6% or the Cr, Zr, and V contents exceed 0.4%, the above effect is not only saturated. , A large number of intermetallic compounds may be produced, which may adversely affect the formability, particularly hem bendability. Therefore, Mn is in the range of 0.03 to 0.6%, and Cr, Zr, and V are each 0.01%. Within the range of ~ 0.4%.
Fe
Feは強度向上と結晶粒微細化に有効な元素である。
その含有量が0.03%未満では充分な効果が得られず、一方1.0%を越えれば、成形性、特に曲げ加工性が低下するおそれがあり、したがってFe量は0.03〜1.0%の範囲内とした。
Fe
Fe is an element effective for strength improvement and crystal grain refinement.
If its content is less than 0.03%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 1.0%, moldability, particularly bending workability, may be deteriorated. Within the range of 0.0%.
Ti
鋳塊組織を微細にするためにTi0.005%〜0.200%を単独であるいはB0.0001%〜0.0500%とともに添加してもかまわない。Ti添加量が0.200%を超え、かつB添加量が0.0500%を超えると粗大な晶出物が生じ、成形性が低下するおそれがある。一方、Tiが0.005%未満で、かつB0.0001%未満である場合には、鋳塊の組織微細化の効果が少ない。また、Tiが0.200%を超えると粗大な晶出物が生じ成形性を害し、Bが0.05%を超えると同じく粗大な金属間化合物が生じ成形性を害する。したがって0.0001%〜0.0500%のBを伴うことが許容されるTi0.005〜0.2%を添加することができる。
Ti
To make the ingot structure fine, 0.005% to 0.200% Ti may be added alone or together with B0.0001% to 0.0500%. If the Ti addition amount exceeds 0.200% and the B addition amount exceeds 0.0500%, coarse crystallized matter is generated, and the moldability may be lowered. On the other hand, when Ti is less than 0.005% and less than B0.0001%, the effect of refining the structure of the ingot is small. Further, if Ti exceeds 0.200%, coarse crystallized substances are generated and the moldability is impaired, and if B exceeds 0.05%, coarse intermetallic compounds are generated and the moldability is impaired. Therefore, 0.005% to 0.2% Ti, which is allowed to accompany 0.0001% to 0.0500% B, can be added.
更に、鋳塊組織の微細化にはScの添加も効果があり、0.01〜0.2%の範囲内であればScを添加しても特に支障はない。 Furthermore, the addition of Sc is also effective for making the ingot structure finer, and there is no particular problem even if Sc is added within the range of 0.01 to 0.2%.
Zn
Znは時効性向上を通じて強度向上に寄与するとともに表面処理性の向上に有効な元素である。
Znの添加量が0.03%未満では上記の効果が充分に得られず、一方2.5%を越えれば成形性と耐食性が低下するから、Znを添加する場合の添加量は0.03〜2.5%の範囲内とした。
Zn
Zn is an element that contributes to strength improvement through improvement in aging and is effective in improving surface treatment.
If the added amount of Zn is less than 0.03%, the above effect cannot be obtained sufficiently. On the other hand, if the added amount exceeds 2.5%, the moldability and the corrosion resistance deteriorate, so the added amount when adding Zn is 0.03. Within the range of ~ 2.5%.
Cu
Cuは強度向上および成形性向上のために添加されることがある元素である。この強度向上および成形性向上の目的からCuを添加する場合の添加量は0.05%以上とする。
しかし、その量が1.5%を越えれば耐食性(耐粒界腐食性、耐糸錆性)が劣化するから、Cuの含有量は1.5%以下に規制することとした。なお、より耐食性の改善を図る必要がある場合はCu量は1.0%以下が好ましく、さらに特に耐食性を重視する場合は、Cu量は0.05%以下に規制することが望ましい。
Cu
Cu is an element that may be added to improve strength and formability. For the purpose of improving the strength and formability, the addition amount when adding Cu is 0.05% or more.
However, if the amount exceeds 1.5%, the corrosion resistance (intergranular corrosion resistance, yarn rust resistance) deteriorates, so the Cu content is restricted to 1.5% or less. In addition, when it is necessary to further improve the corrosion resistance, the Cu content is preferably 1.0% or less, and when the corrosion resistance is particularly important, the Cu content is desirably regulated to 0.05% or less.
また時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金においては、高温時効促進元素あるいは常温時効抑制元素であるAg、In、Cd、Be、あるいはSnを微量添加することがある。
この発明の成形加工用アルミニウム合金板でも微量添加であればこれらの元素の添加も許容され、それぞれ0.3%以下であれば特に所期の目的を損なうことはない。
In addition, in aging Al-Mg-Si alloys and aging Al-Mg-Si-Cu alloys, trace amounts of Ag, In, Cd, Be, or Sn which are high temperature aging promoting elements or normal temperature aging inhibiting elements are added. Sometimes.
Even in the aluminum alloy sheet for forming according to the present invention, addition of these elements is allowed if added in a trace amount, and if it is 0.3% or less, the intended purpose is not particularly impaired.
以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良い。   In addition to the above elements, basically, Al and inevitable impurities may be used.
次にこの発明の成形加工用アルミニウム合金板の製造方法について説明する。
この発明の成形加工用アルミニウム合金板の製造方法では前述のような成分組成の合金を常法に従って溶製し、DC鋳造法等の通常の鋳造法によって鋳造する。
Next, a method for producing the aluminum alloy plate for forming according to the present invention will be described.
In the method for producing an aluminum alloy sheet for forming according to the present invention, an alloy having the component composition as described above is melted in accordance with a conventional method and cast by a normal casting method such as a DC casting method.
次に得られた鋳塊に対して、例えば下記のいずれかの工程で熱処理、圧延が施され、所要の板厚とされる。
1.均質化処理工程⇒熱間圧延工程⇒冷間圧延工程⇒中間焼鈍工程⇒冷間圧延工程
2.均質化処理工程⇒熱間圧延工程⇒焼鈍工程⇒冷間圧延工程
3.均質化処理工程⇒熱間圧延工程⇒冷間圧延工程
Next, the obtained ingot is subjected to heat treatment and rolling in one of the following steps, for example, to obtain a required plate thickness.
1. Homogenization process ⇒ Hot rolling process ⇒ Cold rolling process ⇒ Intermediate annealing process ⇒ Cold rolling process 2. Homogenization process ⇒ Hot rolling process ⇒ Annealing process ⇒ Cold rolling process Homogenization process ⇒ Hot rolling process ⇒ Cold rolling process
すなわちこの発明の成形加工用アルミニウム合金板の製造方法は、鋳塊を所要の板厚とする工程については、常法に従えば良く、その条件が特に限定されるものではない。
一般的には、均質化処理温度480℃以上、保持時間1h以上48h以下、必要に応じて3℃/min以上の冷却速度で冷却して熱間圧延工程に供する。熱間圧延の開始温度250℃以上590℃以下、終了温度150℃以上350℃以下、昇温と冷却速度(およそ5〜60℃/hr)の遅いバッチ方式の中間焼鈍では、焼鈍温度300〜450℃、保持時間1h〜24h、昇温と冷却速度(およそ2〜100℃/sec)の大きい連続焼鈍ライン(CAL方式)では、焼鈍温度400〜590℃、保持時間0秒〜10分などの工程が実施される。
That is, in the method for producing an aluminum alloy sheet for forming according to the present invention, the process of setting the ingot to the required plate thickness may be in accordance with a conventional method, and the conditions are not particularly limited.
In general, it is subjected to a hot rolling step after being cooled at a homogenization temperature of 480 ° C. or more, a holding time of 1 h to 48 h, and a cooling rate of 3 ° C./min or more as necessary. In batch-type intermediate annealing with a hot rolling start temperature of 250 ° C. or more and 590 ° C. or less, an end temperature of 150 ° C. or more and 350 ° C. or less, and a slow temperature increase and cooling rate (approximately 5 to 60 ° C./hr), an annealing temperature of 300 to 450 is used. In a continuous annealing line (CAL method) having a high temperature and a cooling rate (approximately 2 to 100 ° C./sec), a annealing temperature of 400 to 590 ° C., a holding time of 0 seconds to 10 minutes, etc. Is implemented.
また後述するように、この発明の成形加工用アルミニウム合金板の製造方法では溶体化処理が高温で行われることから最終的に得られる成形加工用アルミニウム合金板の塗装焼付硬化性や成形性への前工程の影響は非常に小さくなる。   Further, as will be described later, in the method of manufacturing an aluminum alloy plate for forming according to the present invention, since the solution treatment is performed at a high temperature, the finally obtained aluminum alloy plate for forming processing can be improved in paint bake hardenability and formability. The effect of the previous process is very small.
次に鋳塊を所要の板厚とした後、480℃以上の温度で溶体化処理を行なう。
この溶体化処理は、Mg2Si、単体Si等をマトリックスに固溶させ、これによって焼付硬化性を付与して塗装焼付後の強度向上を図るために重要な工程である。またこの工程は、Mg2Si、単体Si粒子等の固溶によって第2相粒子の分布密度を低下させて、延性と曲げ性を向上させるためにも寄与し、さらには再結晶によって最終的に所要の結晶方位を得て、良好な成形性を得るためにも重要な工程である。
Next, after making the ingot a required plate thickness, solution treatment is performed at a temperature of 480 ° C. or higher.
This solution treatment is an important process for solid-dissolving Mg2Si, simple substance Si, etc. in the matrix, thereby imparting bake hardenability and improving the strength after paint baking. This process also contributes to lowering the distribution density of the second phase particles by solid solution of Mg2Si, simple substance Si particles, etc., and improving ductility and bendability. This is also an important process for obtaining crystal orientation and obtaining good moldability.
溶体化処理温度が480℃未満の場合、常温での経時変化の抑制に対しては有利と考えられるが、その場合Mg2Si、Siなどの固溶量が少なくなって、充分な焼付硬化性が得られなくなるばかりでなく、延性と曲げ性も著しく悪化するから、溶体化処理温度は480℃以上とする必要がある。なお特に溶体化効果を重視する場合は、溶体化処理温度は540℃以上とすることが好ましい。一方溶体化処理温度の上限は特に規定しないが、共晶融解の発生のおそれや再結晶粒粗大化等を考慮して、通常は590℃以下とすることが望ましい。また溶体化処理の時間は特に規制しないが、通常は5分を越えれば溶体化効果が飽和し、経済性を損なうばかりではなく、結晶粒の粗大化のおそれもあるから、溶体化処理の時間は5分以内が望ましい。   When the solution treatment temperature is less than 480 ° C., it is considered advantageous for suppressing the change over time at room temperature. Not only does this become impossible, but ductility and bendability also deteriorate significantly, so the solution treatment temperature needs to be 480 ° C. or higher. In particular, when emphasizing the solution effect, the solution treatment temperature is preferably 540 ° C. or higher. On the other hand, the upper limit of the solution treatment temperature is not particularly defined, but it is usually preferably 590 ° C. or less in consideration of the possibility of eutectic melting and coarsening of recrystallized grains. The solution treatment time is not particularly limited. However, if it exceeds 5 minutes, the solution effect is saturated, not only the economic efficiency is impaired, but also the crystal grains may be coarsened. Is preferably within 5 minutes.
この発明の成形加工用アルミニウム合金板の製造方法では、溶体化処理後100℃/min以上の冷却速度で、80以上150℃以下の温度域に冷却することもできる。
ここで、溶体化処理後の冷却速度が100℃/min未満では、冷却中にMg2Siあるいは単体Siが粒界に多量に析出してしまい、成形性、特にヘム加工性が低下すると同時に、焼付硬化性が低下して塗装焼付時の充分な強度向上が望めなくなる。
また、80℃未満の温度域に冷却された場合、クラスタIあるいは低温クラスタIIが形成され、焼付け硬化性が低下するおそれがある。また、150℃越えて材料を滞留した場合、粒界析出が起こりやすく、成形性、ヘム加工性が低下するおそれがある。さらに常温経時による焼付け硬化性の低下も懸念されるため、150℃以下にした。成形性と焼付け硬化性のバランスから130℃以下が好ましい。
In the manufacturing method of the aluminum alloy plate for forming according to the present invention, the solution can be cooled to a temperature range of 80 to 150 ° C. at a cooling rate of 100 ° C./min or more after the solution treatment.
Here, if the cooling rate after the solution treatment is less than 100 ° C./min, Mg2Si or simple substance Si precipitates in the grain boundary during cooling, and at the same time, the formability, particularly heme workability is lowered, and at the same time, bake hardening. As a result, the strength is lowered and it is not possible to expect a sufficient strength improvement during painting baking.
Moreover, when it cools to the temperature range below 80 degreeC, the cluster I or the low temperature cluster II may be formed, and there exists a possibility that bake hardenability may fall. In addition, when the material is retained at a temperature exceeding 150 ° C., grain boundary precipitation is likely to occur, and the moldability and hemmability may be deteriorated. Furthermore, since there is a concern about a decrease in bake curability due to aging at room temperature, the temperature is set to 150 ° C. or lower. From the balance of moldability and bake hardenability, 130 ° C. or lower is preferable.
この発明の成形加工用アルミニウム合金板の製造方法では、溶体化処理後、人工予備時効処理によって予め材料の0.2%耐力を140MPa以上にすることができる。
溶体化処理を行ってから80℃以上150℃以下の温度域に100℃/min以上の冷却速度で冷却し、その80℃以上150℃以下の温度域で材料を滞留させる処理で金属組織中にクラスタIIと言われる析出物を生成させる。
In the manufacturing method of the aluminum alloy sheet for forming according to the present invention, the 0.2% proof stress of the material can be made 140 MPa or more in advance by an artificial preliminary aging treatment after the solution treatment.
After the solution treatment, cooling is performed at a cooling rate of 100 ° C./min or higher in a temperature range of 80 ° C. or higher and 150 ° C. or lower, and the material is retained in the temperature range of 80 ° C. or higher and 150 ° C. or lower in the metal structure. A precipitate called Cluster II is produced.
材料を80℃以上150℃以下の温度域で滞留させることによってクラスタIIの生成によって組織中に整合歪みがもたらされ、強度が上昇する。また、その生成量(密度)が一定以上に達すと、短時間の焼付け硬化性が格段に向上し、一般製法で得られない高い塗装焼付強度を得ることができる。また、高密度のクラスタIIと空孔との相互作用および過飽和度の低減によって、常温経時変化が抑えられ、常温経時による塗装焼付後強度の劣化を最小限に食い止めることができる。   By causing the material to stay in a temperature range of 80 ° C. or higher and 150 ° C. or lower, the formation of cluster II causes an alignment strain in the structure, and the strength increases. Moreover, when the production amount (density) reaches a certain level or more, the short-time bake hardenability is remarkably improved, and high paint bake strength that cannot be obtained by a general production method can be obtained. Further, due to the interaction between the high-density cluster II and the pores and the reduction of the degree of supersaturation, the change with time at room temperature can be suppressed, and the deterioration of the strength after baking with coating due to the room temperature can be minimized.
この発明の成形加工用アルミニウム合金板の製造方法では、480℃以上の溶体化処理を行ってから70℃以上90℃以下の温度域に100℃/min(分)以上の冷却速度で冷却することもできる。
この冷却速度の冷却によって粒界析出を防ぎ、成形性、ヘム加工性の低下を抑えることができる。
70℃未満に焼入れした場合、焼付け硬化性の低下が大きくなるおそれがある。一方、直接に90℃以上の温度域に焼入れした場合、成形性の低下が大きくなるおそれがある。 なお、滞留時間が10分を超える場合には高性能の焼付け硬化性が得られなくなるおそれがある。
In the manufacturing method of the aluminum alloy sheet for forming according to the present invention, after the solution treatment at 480 ° C. or higher, cooling is performed at a cooling rate of 100 ° C./min (min) or higher in a temperature range of 70 ° C. or higher and 90 ° C. or lower. You can also.
By cooling at this cooling rate, precipitation at the grain boundary can be prevented, and deterioration of formability and hemmability can be suppressed.
When it hardens below 70 degreeC, there exists a possibility that the fall of bake sclerosis | hardenability may become large. On the other hand, when directly quenching in a temperature range of 90 ° C. or higher, there is a possibility that a decrease in moldability becomes large. If the residence time exceeds 10 minutes, high-performance bake hardenability may not be obtained.
さらに改めて90℃以上150℃以下の温度域で0.2%耐力が140MPa以上になるように滞留させる処理を施す。
より高性能の焼付け硬化性を得るために、第1段の比較低温の予備時効を行なった後、さらに高温の第2段予備時効を行う。
上述のように予備時効温度が高温ほど、より安定なクラスタII構造、構成が得られ、これらは塗装焼付時に強度に寄与するβ”相へ移行しやくなるため、塗装焼付後に高強度が得られる。
また、0.2%耐力が140MPa以上になるように滞留させる結果として多量の安定なクラスタIIが存在し、DSC計測では220℃と350℃の間に最大の発熱ピークが認められ、その高さは0.09W/g以下になるという特徴がある。その結果、多量の安定なクラスタIIと空孔の相互作用および過飽和度の低減によって、常温経時による焼付け硬化性の劣化を最小限に食い止めることができ、少なくとも3ヶ月以内の常温(0〜45℃)経時期間中において材料の塗装焼付後の0.2%耐力が240MPa以上、その増加分が90MPa以上の高い塗装焼付強度を得ることができる。成形性とのバランスを重視する場合、第2段の予備時効は90〜130℃の処理が好ましい。
Further, a treatment for retaining the 0.2% proof stress at 140 MPa or higher in a temperature range of 90 ° C. or higher and 150 ° C. or lower is performed.
In order to obtain a higher performance bake hardenability, the first stage comparative low temperature preliminary aging is performed, and then the higher temperature second stage preliminary aging is performed.
As described above, the higher the preliminary aging temperature is, the more stable the cluster II structure and configuration are obtained, and these tend to shift to the β ″ phase that contributes to strength at the time of paint baking, so that high strength is obtained after paint baking. .
In addition, a large amount of stable cluster II exists as a result of retention so that the 0.2% proof stress is 140 MPa or more, and the maximum exothermic peak is observed between 220 ° C. and 350 ° C. in the DSC measurement. Is 0.09 W / g or less. As a result, it is possible to minimize the deterioration of the bake hardenability due to the aging of the room temperature due to the interaction between a large amount of the stable cluster II and pores and the reduction of the degree of supersaturation. ) It is possible to obtain a high paint bake strength with a 0.2% proof stress after painting and baking of the material of 240 MPa or more and an increase of 90 MPa or more during the aging period. When emphasizing the balance with formability, the second stage preliminary aging is preferably performed at 90 to 130 ° C.
この発明の成形加工用アルミニウム合金板では便宜上、代表的な条件として、「材料を2%ストレッチした後、170℃×20分で塗装焼付」した場合の耐力値等で規定する。しかし、係る規定はこの発明の成形加工用アルミニウム合金板がその塗装焼付条件だけで用いられると言うことを意味するものではない。すなわち0〜5%の範囲のストレッチ後に140〜230℃で10分〜120分程度の塗装焼付という一般的条件の範囲内ならいずれが適用されてもかまわない。無論、その場合、それぞれの塗装焼付条件に対応する耐力値を実験的に求める必要がある。   In the aluminum alloy sheet for forming according to the present invention, for the sake of convenience, as a typical condition, it is defined by a proof stress value or the like when “the material is stretched 2% and then baked at 170 ° C. for 20 minutes”. However, this rule does not mean that the aluminum alloy sheet for forming according to the present invention is used only under the paint baking conditions. In other words, any one may be applied as long as it is within the range of general conditions of coating baking at 140 to 230 ° C. for about 10 to 120 minutes after stretching in the range of 0 to 5%. Of course, in that case, it is necessary to experimentally obtain a proof stress value corresponding to each paint baking condition.
以下にこの発明の実施例を比較例とともに記す。なお以下の実施例は、この発明の効果を説明するためのものであり、実施例記載のプロセスおよび条件がこの発明の技術的範囲を制限するものではない。以下の実施例はその効果を示す一例である。   Examples of the present invention will be described below together with comparative examples. The following examples are for explaining the effects of the present invention, and the processes and conditions described in the examples do not limit the technical scope of the present invention. The following example is an example showing the effect.
表1に示すこの発明成分組成(mass%)範囲内の合金記号A1〜A4の合金について、それぞれ常法に従って溶製し、DC鋳造法によってスラブに鋳造した。   Alloys of alloy symbols A1 to A4 within the composition (mass%) range shown in Table 1 were melted in accordance with conventional methods and cast into slabs by DC casting.
得られた各スラブに対して530℃、5hの条件で均質化処理を施した。均質化処理後、熱間圧延工程、冷間圧延工程で1mm厚さの板とした。その後、得られた素材に対して表2に示す製造条件でこの発明の処理を施した。なお、表2に示す溶体化処理後の80〜150℃温度域、あるいは70〜90℃温度域に冷却する平均冷却速度は500℃/minである。また、実施例2の時効処理1の温度から時効処理2の温度への昇温時間は5分以内である。
表2に示す製造条件においては製造番号1、製造番号2、製造番号3、製造番号4、製造番号5は発明例、製造番号6、製造番号7、製造番号8は比較例である。
Each obtained slab was homogenized at 530 ° C. for 5 hours. After the homogenization treatment, a plate having a thickness of 1 mm was formed in the hot rolling process and the cold rolling process. Then, the process of this invention was given with respect to the obtained raw material on the manufacturing conditions shown in Table 2. In addition, the average cooling rate cooled to the 80-150 degreeC temperature range after the solution treatment shown in Table 2, or the 70-90 degreeC temperature range is 500 degrees C / min. Moreover, the temperature rising time from the temperature of the aging treatment 1 of Example 2 to the temperature of the aging treatment 2 is within 5 minutes.
In the production conditions shown in Table 2, production number 1, production number 2, production number 3, production number 4, and production number 5 are invention examples, production number 6, production number 7, and production number 8 are comparative examples.
以上のようにして得られた各板について、各種特性評価を行った。
特性評価に当たっては、常温経時変化を考慮して常温(25℃)に10日放置した後、引張試験を行なって、機械的強度として0.2%耐力値(YS1)、塗装焼付後の強度として0.2%耐力値(ABYS1)を測定した。さらにその後、常温(25℃)に90日放置した後、機械的強度として0.2%耐力値を測定し(YS2)、塗装焼付後の強度として0.2%耐力値(ABYS2)を測定した。YS2−YS1によって経時変化評価の指標とした。ABYS1−YS1、ABYS2−YS2によって塗装焼付後の0.2%耐力の増加分を評価した。
Various characteristics evaluation was performed about each board obtained as mentioned above.
In the characteristic evaluation, after standing at room temperature (25 ° C.) for 10 days in consideration of aging at room temperature, a tensile test is performed to obtain a 0.2% proof stress value (YS1) as mechanical strength, and strength after baking. A 0.2% proof stress value (ABYS1) was measured. Further, after standing at room temperature (25 ° C.) for 90 days, 0.2% proof stress value was measured as mechanical strength (YS2), and 0.2% proof stress value (ABYS2) was measured as strength after baking. . YS2-YS1 was used as an index for evaluation of changes over time. An increase in 0.2% proof stress after paint baking was evaluated by ABYS1-YS1 and ABYS2-YS2.
さらにその常温(25℃)に放置した各板につき、成形性評価として、張出し高さを測定した。
張出し試験:
200mm×200mmの大きさの1mm板の両面にマスキングフィルムを貼り、さらに潤滑を高めるため、ワックスを塗った状態で張出し試験に供し、最大張出し高さを調べた。なおポンチとしては球頭ポンチ径100mmのものを使用した。
Further, for each plate left at room temperature (25 ° C.), the overhang height was measured as moldability evaluation.
Overhang test:
A masking film was pasted on both sides of a 1 mm plate having a size of 200 mm × 200 mm, and in order to further improve lubrication, it was subjected to a bulge test in a state where wax was applied, and the maximum bulge height was examined. A punch having a ball head punch diameter of 100 mm was used.
さらにその後、常温(25℃)に10日、90日放置した各板につき、それぞれ2%ストレッチ後、170℃×20minの塗装焼付処理を施し、その焼付後の各板について引張試験を行なって、機械的強度として0.2%耐力値を測定し焼付硬化性(BH性)評価の指標とした。   After that, each plate left at room temperature (25 ° C.) for 10 days and 90 days is stretched by 2%, and then subjected to a coating baking process of 170 ° C. × 20 minutes, and each plate after baking is subjected to a tensile test, The 0.2% proof stress value was measured as the mechanical strength and used as an index for bake hardenability (BH property) evaluation.
塗装焼付処理は具体的には2%ストレッチを加えた材料を用いて常温(0℃から45℃まで、通常20℃)から170℃のオイルバスにて通常約80℃/分の平均昇温速度で170℃になるように加熱し、この温度で20分保持したのち、オイルバスから取出し、常温環境(約20℃)で50℃以下になるまで自然空冷(通常約50℃/分の降温)して行った。
ここで、塗装焼付処理にあたって2%ストレッチを施したのは、自動車メーカーで素材が滞留し、常温経時後、プレス−組立−塗装という製造工程に供される際のプレス後に生じる歪を実験的に模擬したものである。
素材の状態及び塗装焼付条件によって耐力値が変ることから自動車メーカーにおける塗装焼付対象となる素材の状態に一般的に近似させるために、塗装焼付処理にあたってストレッチを施すことが必要となる場合が多い。
以上の各種評価の結果を表3に最終板の材料性能として示す。
Specifically, the coating baking process is performed using a material added with 2% stretch, and an average temperature increase rate of about 80 ° C./min in an oil bath from normal temperature (from 0 ° C. to 45 ° C., usually 20 ° C.) to 170 ° C. After heating to 170 ° C and holding at this temperature for 20 minutes, take it out from the oil bath and let it cool naturally (normally about 50 ° C / min.) Until it reaches 50 ° C or less in a normal temperature environment (about 20 ° C) I went there.
Here, 2% stretch was applied in the paint baking process because the material stayed at an automobile maker, and after the aging at room temperature, the strain generated after pressing during the press-assembly-painting manufacturing process was experimentally tested. It is a simulation.
Since the proof stress value varies depending on the state of the material and the coating baking condition, it is often necessary to stretch the coating baking process in order to generally approximate the state of the material to be subjected to coating baking in an automobile manufacturer.
The results of the above various evaluations are shown in Table 3 as the material performance of the final plate.
表3のDSC測定はパーキンエルマー社製Diamond DSCを使用し、サンプル重量約50mg、リファレンス(基準物質)には99.99%高純度アルミニウムを使用し、昇温速度を40℃/minとし、測定温度範囲を20℃〜500℃として、発熱、吸熱ピーク高さを、リファレンスを使って測定したベースラインを基準(発熱、吸熱ピークなし)にして測定した。横軸を温度に、縦軸を発熱、吸熱の熱エネルギー指標(W/g)で表示した。   The DSC measurement in Table 3 uses a Diamond DSC manufactured by PerkinElmer, the sample weight is about 50 mg, 99.99% high-purity aluminum is used as a reference (reference material), and the heating rate is 40 ° C./min. The temperature range was 20 ° C. to 500 ° C., and the exothermic and endothermic peak heights were measured based on the baseline measured using a reference (no exothermic and endothermic peaks). The horizontal axis represents temperature, and the vertical axis represents heat energy index (W / g) of heat generation and endotherm.
表1〜表3に示される様に、製造番号1〜製造番号5は、いずれも合金の成分組成がこの発明で規定する範囲内であって、かつ製造プロセス条件もこの発明で規定する範囲内に設定されて、製造番号1〜製造番号5の成形加工用アルミニウム合金板は焼付硬化性が高く、塗装焼付時に充分な焼付硬化性を示し、さらに3ヶ月の材料強度(耐力)の経時変化も最大で製造番号4の12MPaであって小さい。
したがってこれらの製造番号1〜製造番号5のものは焼付硬化性(BH)と成形性が重視される自動車ボディシート用に好適に利用することができる。
As shown in Tables 1 to 3, production numbers 1 to 5 are all within the range specified by the present invention for the component composition of the alloy, and the manufacturing process conditions are also within the range specified by the present invention. The aluminum alloy plates for forming with the production numbers 1 to 5 have a high bake hardenability, exhibit a sufficient bake hardenability at the time of paint baking, and the material strength (proof stress) changes over time for 3 months. The maximum is 12 MPa of production number 4 and is small.
Therefore, those with production numbers 1 to 5 can be suitably used for automobile body sheets where bake hardenability (BH) and formability are important.
具体的には製造番号1は、製造後、塗装焼付前の0.2%耐力が142MPa(常温経時10日)であり、常温経時90日の0.2%耐力が152MPaであり、予め材料の0.2%耐力を140MPa以上とするというの条件を充足する。また材料を2%ストレッチした後、170℃×20minの塗装焼付後0.2%耐力{以下、「焼付硬化性(BH)」とする。}が250(90日経時、10日経時)MPaであって、240MPa以上とする条件を充足し、塗装焼付による耐力の増加が108MPa(10日経時)、98MPa(90日経時)と大きく、増加分が80MPa以上とするこの発明の条件を充足する。また張り出し高さが36.7(90日経時)〜36.9(10日経時)mmであり十分な成形性を示した。また常温(25℃)に10日放置した後、引張試験を行なって0.2%耐力値を測定した(YS1)と、常温(25℃)に90日放置した後0.2%耐力値を測定した(YS2)として得られた数値によって経持変化評価の指標とした(YS2−YS1)値が10MPaと極めて小さく経時変化性が良好であった。   Specifically, production number 1 has a 0.2% proof stress of 142 MPa (10 days at room temperature) after production and before baking, and a 0.2% proof stress of 152 MPa at 90 days at room temperature. The condition that the 0.2% proof stress is 140 MPa or more is satisfied. Further, after the material is stretched by 2%, it is 0.2% proof stress after coating baking at 170 ° C. for 20 minutes {hereinafter referred to as “baking curability (BH)”. } Is 250 (90-day lapse, 10-day lapse) MPa, satisfying the condition of 240 MPa or more, and the increase in yield strength due to paint baking is as large as 108 MPa (10-day lapse) and 98 MPa (90-day lapse). The condition of the present invention in which the minute is 80 MPa or more is satisfied. The overhang height was 36.7 (90 days elapsed) to 36.9 (10 days elapsed) mm, and sufficient moldability was exhibited. Also, after standing at room temperature (25 ° C.) for 10 days, a tensile test was performed to measure a 0.2% proof stress value (YS1), and after leaving at room temperature (25 ° C.) for 90 days, a 0.2% proof stress value was obtained. The (YS2-YS1) value, which was used as an index for evaluation of the change with time based on the measured value (YS2), was as extremely low as 10 MPa, and the aging property was good.
またこの製造番号1は560℃以上の溶体化処理を行ってから平均冷却速度を500℃/minとして冷却され、時効処理1の滞留温度を102℃として製造された。
したがって製造番号1は480℃以上の溶体化処理を行ってから80℃以上150℃以下の温度域に100℃/min(分)以上の冷却速度で冷却後に、80℃以上150℃以下の温度域で合金板の0.2%耐力が140MPa以上になるように滞留させるという条件を充足して製造された。
480℃以上の溶体化処理を行ってから80℃以上150℃以下の温度域に100℃/min(分)以上の冷却速度で冷却後に、80℃以上150℃以下の温度域で合金板の0.2%耐力が140MPa以上になるように滞留させるという条件を充足して製造された。
したがって製造番号1はこの発明の成形加工用アルミニウム合金板の製造方法の実施に該当する。
In addition, this production number 1 was manufactured at a temperature of 560 ° C. or higher and then cooled at an average cooling rate of 500 ° C./min, and a residence temperature of aging treatment 1 was 102 ° C.
Therefore, production number 1 is a temperature range of 80 ° C. or higher and 150 ° C. or lower after cooling at a cooling rate of 100 ° C./min (min) or higher in a temperature range of 80 ° C. or higher and 150 ° C. or lower after solution treatment at 480 ° C. or higher. Thus, it was manufactured under the condition that the 0.2% proof stress of the alloy plate is retained so as to be 140 MPa or more.
After performing the solution treatment at 480 ° C. or higher, after cooling at a cooling rate of 100 ° C./min (min) or higher to a temperature range of 80 ° C. or higher and 150 ° C. or lower, the alloy plate is heated to 0 ° C. or higher and 150 ° C. or lower. It was manufactured by satisfying the condition that the 2% proof stress was retained to be 140 MPa or more.
Therefore, production number 1 corresponds to the implementation of the method for producing an aluminum alloy sheet for forming according to the present invention.
また製造番号2では製造後、塗装焼付前の0.2%耐力が151MPa(常温経時10日)であり、常温経時90日の0.2%耐力が152MPaであり、予め材料の0.2%耐力を140MPa以上とするという条件を充足する。また90日経時のDSC計測結果において測定温度範囲を20℃〜500℃としたときの最大発熱ピークの高さが0.045W/gであり、最大の発熱ピークの高さを0.09W/g以下とする条件を充足する。さらに2%ストレッチ後の170℃×20minの塗装焼付後の焼付硬化性(BH)が258(90日経時)〜259(10日経時)MPaであり、3ヶ月以内の常温(0〜45℃)経時期間中において材料の塗装焼付後の0.2%耐力が240MPa以上とする条件を充足する。また塗装焼付による耐力の増加が108MPa(10日経時)、98MPa(90日経時)と大きく、増加分が80MPa以上とするこの発明の条件を充足し、さらに増加分が90MPa以上とするこの発明条件を充足する。   In production number 2, the 0.2% yield strength after production and before baking is 151 MPa (room temperature aging 10 days), the room temperature aging 90 days 0.2% proof stress is 152 MPa, and 0.2% of the material in advance. The condition that the proof stress is 140 MPa or more is satisfied. In the DSC measurement results after 90 days, the maximum exothermic peak height is 0.045 W / g when the measurement temperature range is 20 ° C. to 500 ° C., and the maximum exothermic peak height is 0.09 W / g. The following conditions are satisfied. Furthermore, the bake hardenability (BH) after baking at 170 ° C. for 20 min after 2% stretching is 258 (90-day aging) to 259 (10-day aging) MPa, and room temperature (0 to 45 ° C.) within 3 months. The condition that the 0.2% proof stress after painting and baking of the material is 240 MPa or more during the aging period is satisfied. Further, the increase in yield strength due to paint baking is as large as 108 MPa (10 days elapsed) and 98 MPa (90 days elapsed), the increase is 80 MPa or more, the present invention conditions are satisfied, and the increase is 90 MPa or more. Is satisfied.
また製造番号2では張り出し高さが37.1(90日経時)〜37.3(10日経時)mmであり十分な成形性を示した。また常温(25℃)に10日放置した後、引張試験を行なって0.2%耐力値を測定した(YS1)と、常温(25℃)に90日放置した後0.2%耐力値を測定した(YS2)として得られた数値によって経持変化評価の指標とした(YS2−YS1)値が9MPaと極めて小さく経時変化性が良好であった。   In the production number 2, the overhang height was 37.1 (90 days elapsed) to 37.3 (10 days elapsed) mm, and sufficient moldability was exhibited. Also, after standing at room temperature (25 ° C.) for 10 days, a tensile test was performed to measure a 0.2% proof stress value (YS1), and after leaving at room temperature (25 ° C.) for 90 days, a 0.2% proof stress value was obtained. The (YS2-YS1) value, which was used as an index for evaluation of the change with time based on the measured value (YS2), was as extremely low as 9 MPa, and the change over time was good.
またこの製造番号2は溶体化処理後の時効処理1の滞留温度は81℃であって、かつ滞留時間が0.03時間であることから、80℃以上150℃以下の温度域で滞留させるという条件が履行され、同時に70℃以上90℃未満の温度域で10分間以下の滞留をさせるという条件が履行された。さらに時効処理1後の時効処理2も温度103℃、滞留時間が12時間とされて90℃以上150℃以下の温度域で滞留をさせるという条件が履行された。   In addition, since the retention temperature of the aging treatment 1 after the solution treatment is 81 ° C. and the residence time is 0.03 hours, the production number 2 is said to be retained in a temperature range of 80 ° C. or more and 150 ° C. or less. The conditions were fulfilled, and at the same time, the conditions of staying for 10 minutes or less in a temperature range of 70 ° C. or more and less than 90 ° C. were fulfilled. Furthermore, the aging treatment 2 after the aging treatment 1 was also performed under the condition that the temperature was 103 ° C. and the residence time was 12 hours, and the residence was performed in a temperature range of 90 ° C. or more and 150 ° C. or less.
さらに製造番号3では、製造後、塗装焼付前の0.2%耐力が159MPa(常温経時10日)であり、常温経時90日の0.2%耐力が162MPaであり、予め材料の0.2%耐力を140MPa以上とするという条件を充足する。また材料を2%ストレッチした後、170℃×20minの塗装焼付後0.2%耐力が242(90日経時、10日経時)MPaであって、240MPa以上とする条件を充足し、塗装焼付による耐力の増加が83MPa(10日経時)、80MPa(90日経時)と大きく、増加分が80MPa以上とするこの発明の条件を充足する。
また張り出し高さが37.3(90日経時)〜37.6(10日経時)mmであり十分な成形性を示した。また常温(25℃)に10日放置した後、引張試験を行なって0.2%耐力値を測定した(YS1)と、常温(25℃)に90日放置した後0.2%耐力値を測定した(YS2)として得られた数値によって経持変化評価の指標とした(YS2−YS1)値が3MPaと極めて小さく経時変化性が良好であった。
Further, in production number 3, the 0.2% proof stress after production and before paint baking is 159 MPa (10 days at room temperature), the 0.2% proof stress at 90 days at room temperature is 162 MPa, and 0.2% of the material in advance. The condition that the% proof stress is 140 MPa or more is satisfied. Also, after stretching the material by 2%, after baking at 170 ° C. for 20 minutes, the 0.2% proof stress is 242 (90 days elapsed, 10 days elapsed) MPa, satisfying the condition of 240 MPa or more, and by coating baking The increase in yield strength is as large as 83 MPa (10 days elapsed) and 80 MPa (90 days elapsed), and the increase is 80 MPa or more.
Further, the overhang height was 37.3 (90 days elapsed) to 37.6 (10 days elapsed) mm, and sufficient moldability was exhibited. Also, after standing at room temperature (25 ° C.) for 10 days, a tensile test was performed to measure a 0.2% proof stress value (YS1), and after leaving at room temperature (25 ° C.) for 90 days, a 0.2% proof stress value was obtained. The (YS2-YS1) value, which was used as an index for evaluation of the change with time by the numerical value obtained as the measured (YS2), was as extremely small as 3 MPa, and the aging property was good.
またこの製造番号3は560℃以上の溶体化処理を行ってから平均冷却速度を500℃/minとして冷却され、溶体化処理後の時効処理1の滞留温度83℃、滞留時間42hとして製造され、80℃以上150℃以下の温度域で滞留させるという条件が履行された。
したがって製造番号3はこの発明の成形加工用アルミニウム合金板の製造方法の実施に該当する。
In addition, this production number 3 is cooled at an average cooling rate of 500 ° C./min after performing a solution treatment at 560 ° C. or higher, and is manufactured as a residence temperature of 83 ° C. and a residence time of 42 hours in the aging treatment 1 after the solution treatment. The condition of retaining in a temperature range of 80 ° C. or higher and 150 ° C. or lower was implemented.
Therefore, production number 3 corresponds to the implementation of the method for producing an aluminum alloy sheet for forming according to the present invention.
さらに製造番号4では、製造後、塗装焼付前の0.2%耐力が155MPa(常温経時10日)であり、常温経時90日の0.2%耐力が167MPaであり、予め材料の0.2%耐力を140MPa以上とするという条件を充足する。また材料を2%ストレッチした後、170℃×20minの塗装焼付後0.2%耐力が260MPa(10日経時)及び261MPa(90日経時)であって、240MPa以上とする条件を充足し、塗装焼付による耐力の増加が105MPa(10日経時)、94MPa(90日経時)と大きく、増加分が80MPa以上とするこの発明の条件を充足する。
また張り出し高さが36.5(90日経時)〜36.7(10日経時)mmであり十分な成形性を示した。また常温(25℃)に10日放置した後、引張試験を行なって0.2%耐力値を測定した(YS1)と、常温(25℃)に90日放置した後0.2%耐力値を測定した(YS2)として得られた数値によって経持変化評価の指標とした(YS2−YS1)値が12MPaと小さく経時変化性が良好であった。
Furthermore, in the production number 4, the 0.2% proof stress after production and before baking is 155 MPa (normal temperature aging 10 days), the 0.2% proof stress 90 days at normal temperature 90 days is 167 MPa. The condition that the% proof stress is 140 MPa or more is satisfied. In addition, after stretching the material by 2%, after baking at 170 ° C. for 20 minutes, the 0.2% proof stress is 260 MPa (10 days elapsed) and 261 MPa (90 days elapsed), satisfying the condition of 240 MPa or more. The increase in the yield strength due to baking is as large as 105 MPa (10-day lapse) and 94 MPa (90-day lapse), and the conditions of the present invention in which the increase is 80 MPa or more are satisfied.
Further, the overhang height was 36.5 (90 days elapsed) to 36.7 (10 days elapsed) mm, and sufficient moldability was exhibited. Also, after standing at room temperature (25 ° C.) for 10 days, a tensile test was performed to measure a 0.2% proof stress value (YS1), and after leaving at room temperature (25 ° C.) for 90 days, a 0.2% proof stress value was obtained. The (YS2-YS1) value, which was used as an index for evaluation of the change with time by the numerical value obtained as the measured (YS2), was as small as 12 MPa, and the aging property was good.
またこの製造番号4は560℃以上の溶体化処理を行ってから平均冷却速度を500℃/minとして冷却され、溶体化処理後120℃から1℃/hで80℃まで徐冷されて80℃以上150℃以下の温度域で滞留させるという条件を充足して製造され、この製造番号4はこの発明の成形加工用アルミニウム合金板の製造方法を実施して製造され、自動車ボディシート用に好適に利用できるこの発明の成形加工用アルミニウム合金板に該当する。   In addition, this production number 4 was cooled at an average cooling rate of 500 ° C./min after solution treatment at 560 ° C. or higher, gradually cooled from 120 ° C. to 80 ° C. at 1 ° C./h after solution treatment, and then cooled to 80 ° C. Manufactured by satisfying the condition of staying in a temperature range of 150 ° C. or less, this production number 4 is produced by carrying out the method for producing an aluminum alloy plate for forming according to the present invention, and is suitable for automobile body seats. It corresponds to the aluminum alloy plate for forming process of the present invention that can be used.
さらに製造番号5では、製造後、塗装焼付前の0.2%耐力が160MPa(常温経時10日)であり、常温経時90日の0.2%耐力が168MPaであり、予め材料の0.2%耐力を140MPa以上とするという条件を充足する。また材料を2%ストレッチした後、170℃×20minの塗装焼付後0.2%耐力が249MPa(10日経時)及び248MPa(90日経時)であって、240MPa以上とする条件を充足し、塗装焼付による耐力の増加が89MPa(10日経時)、80MPa(90日経時)であり、増加分が80MPa以上とするこの発明の条件を充足する。
また張り出し高さが36.9(90日経時)〜37.2(10日経時)mmであり十分な成形性を示した。また常温(25℃)に10日放置した後、引張試験を行なって0.2%耐力値を測定した(YS1)と、常温(25℃)に90日放置した後0.2%耐力値を測定した(YS2)として得られた数値によって経持変化評価の指標とした(YS2−YS1)値が8MPaと小さく経時変化性が良好であった。
Furthermore, in production number 5, the 0.2% proof stress after production and before painting and baking is 160 MPa (room temperature aging 10 days), the 0.2% proof stress 90 days at room temperature aging is 168 MPa. The condition that the% proof stress is 140 MPa or more is satisfied. Also, after stretching the material by 2%, after baking at 170 ° C. for 20 minutes, the 0.2% proof stress is 249 MPa (10 days elapsed) and 248 MPa (90 days elapsed), satisfying the condition of 240 MPa or more. The increase in the yield strength due to baking is 89 MPa (10-day lapse) and 80 MPa (90-day lapse), and the conditions of the present invention in which the increase is 80 MPa or more are satisfied.
Further, the overhang height was 36.9 (90 days elapsed) to 37.2 (10 days elapsed) mm, and sufficient moldability was exhibited. Also, after standing at room temperature (25 ° C.) for 10 days, a tensile test was performed to measure a 0.2% proof stress value (YS1), and after leaving at room temperature (25 ° C.) for 90 days, a 0.2% proof stress value was obtained. The (YS2-YS1) value, which was used as an index for evaluation of the change with time by the numerical value obtained as the measured (YS2), was as small as 8 MPa, and the change with time was good.
またこの製造番号5は560℃以上の溶体化処理を行ってから平均冷却速度を500℃/minとして冷却され、溶体化処理後88℃から02℃/hで80℃まで徐冷されて80℃以上150℃以下の温度域で滞留させるという条件を充足して製造され、この製造番号5はこの発明の成形加工用アルミニウム合金板の製造方法の実施に該当する。   In addition, this production number 5 was cooled at an average cooling rate of 500 ° C./min after solution treatment at 560 ° C. or higher, and after the solution treatment, gradually cooled from 88 ° C. to 80 ° C. at 80 ° C./h to 80 ° C. It is manufactured while satisfying the condition of retaining in a temperature range of 150 ° C. or less, and this production number 5 corresponds to the implementation of the method for producing an aluminum alloy sheet for forming according to the present invention.
一方、製造番号6、製造番号7についても合金の成分組成がこの発明で規定する範囲内であって、かつ製造プロセス条件も、時効処理1が行われた。しかし、製造番号6では溶体化処理後の時効処理1の滞留温度が70℃であって80℃以上150℃以下の温度域で滞留させるという条件は履行されておらず、したがって製造番号6はこの発明の成形加工用アルミニウム合金板の製造方法実施には該当しない。
また、事前に十分安定な高温クラスタII生成処理が履行されていないことからも、バランスを失って焼付硬化性(BH)が226MPaと低下を生じこの発明の成形加工用アルミニウム合金板の条件を充足せず、したがって、焼付硬化性(BH)が重視される自動車ボディシート用には不適切である。
On the other hand, with regard to the production numbers 6 and 7, the alloy composition was within the range defined by the present invention, and the aging treatment 1 was performed under the production process conditions. However, in the production number 6, the condition that the retention temperature of the aging treatment 1 after the solution treatment is 70 ° C. and is retained in the temperature range of 80 ° C. or more and 150 ° C. or less is not implemented. It does not correspond to the method of manufacturing the aluminum alloy plate for forming according to the invention.
In addition, since sufficiently stable high temperature cluster II generation processing has not been implemented in advance, the balance is lost and the bake hardenability (BH) is reduced to 226 MPa, which satisfies the conditions of the aluminum alloy sheet for forming according to the present invention. Therefore, it is unsuitable for automobile body sheets where bake hardenability (BH) is important.
一方、製造番号7では溶体化処理後の時効処理1として15〜30℃の常温でそのまま放置する処理が行われ、80℃以上150℃以下の温度域で滞留させる処理は行われず、したがって製造番号7はこの発明の成形加工用アルミニウム合金板の製造方法の実施には該当しない。その結果、クラスタIが多量に生成され、焼付硬化性(BH)が136MPaと大きな低下を生じ、この発明の成形加工用アルミニウム合金板の条件を充足せず、したがって、焼付硬化性(BH)が重視される自動車ボディシート用には不適切である。   On the other hand, in the production number 7, as the aging treatment 1 after the solution treatment, the treatment is allowed to stand at room temperature of 15 to 30 ° C., and the treatment for staying in the temperature range of 80 ° C. to 150 ° C. is not performed. No. 7 does not correspond to the implementation of the manufacturing method of the aluminum alloy plate for forming according to the present invention. As a result, a large amount of cluster I is produced, and the bake hardenability (BH) is greatly reduced to 136 MPa, which does not satisfy the conditions of the aluminum alloy sheet for forming according to the present invention. Therefore, the bake hardenability (BH) is low. It is not suitable for car body seats that are important.
これに対し製造番号8は、合金の成分組成はこの発明で規定する範囲内であり、溶体化処理後の時効処理1の滞留温度が90℃であって80℃以上150℃以下の温度域で滞留させる処理が行われてはいる。しかし、製造後、塗装焼付前の0.2%耐力が128MPa(常温経時10日)であり、80℃以上150℃以下の温度域で合金板の0.2%耐力が140MPa以上になるように滞留させるとするこの発明の条件は充足されていない。
また製造番号8は焼付硬化性(BH)が215MPaであり170℃×20minの塗装焼付後0.2%耐力が240MPa以上とするこの発明の条件も充足しない。したがって、焼付硬化性(BH)が重視される自動車ボディシート用に適用することはできない。
On the other hand, in production number 8, the alloy component composition is within the range specified in the present invention, and the residence temperature of aging treatment 1 after solution treatment is 90 ° C., and the temperature range is 80 ° C. or more and 150 ° C. or less. The process to make it stay is performed. However, the 0.2% proof stress after manufacturing and before baking is 128 MPa (10 days at room temperature), and the 0.2% proof stress of the alloy plate is 140 MPa or higher in the temperature range of 80 ° C. or higher and 150 ° C. or lower. The condition of the present invention to be retained is not satisfied.
Production No. 8 has a bake hardenability (BH) of 215 MPa and does not satisfy the conditions of this invention in which the 0.2% proof stress is 240 MPa or more after baking at 170 ° C. for 20 minutes. Therefore, it cannot be applied to an automobile body sheet where bake hardenability (BH) is important.
この発明の成形加工用アルミニウム合金板および成形加工用アルミニウム合金板の製造方法は、塗装焼付前の素材強度が常温経時の短い期間中(例えば製造後15日)において通常の材料に比べて高いことから、自動車ボディシート材の成形許容範囲にあり、特に塗装焼付け後の強度を重視する自動車用ボディシートに最適である。   The forming aluminum alloy sheet and the forming aluminum alloy sheet manufacturing method according to the present invention are such that the strength of the material before baking is higher than that of a normal material during a short period of normal temperature (for example, 15 days after manufacture). Therefore, it is within the allowable range of molding of automobile body sheet materials, and is especially suitable for automobile body sheets that emphasize strength after paint baking.

Claims (7)

  1. Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金からなるアルミニウム合金鋳塊から圧延工程と昇温と冷却を含む熱処理工程を経て所要の板厚の圧延板とし、その圧延板に対し、溶体化処理後、人工予備時効処理によって予め材料の0.2%耐力を140MPa以上とし、少なくとも3ヶ月以内の常温(0〜45℃)経時期間中において、材料を2%ストレッチした後、170℃×20minの塗装焼付後0.2%耐力が240MPa以上であることを特徴とする成形加工用アルミニウム合金板。 An aluminum alloy ingot made of an Al-Mg-Si-based or Al-Mg-Si-Cu-based alloy is subjected to a rolling process and a heat treatment process including heating and cooling to obtain a rolled sheet having a required thickness. Then, after the solution treatment, the material is made to have a 0.2% proof stress of 140 MPa or more in advance by an artificial preliminary aging treatment, and after stretching the material by 2% during a normal temperature (0 to 45 ° C.) time period within at least 3 months, 170 An aluminum alloy sheet for forming, which has a 0.2% proof stress of 240 MPa or more after baking at 20 ° C. for 20 minutes.
  2. 塗装焼付による0.2%耐力増加分が80MPa以上である請求項1記載の成形加工用アルミニウム合金板。 The aluminum alloy sheet for forming according to claim 1, wherein the 0.2% yield strength increase due to paint baking is 80 MPa or more.
  3. 示差走査熱量計(DSC:Differential Scanning Calorimeter)による計測で、最大の発熱ピークの高さを0.09W/g以下とし、塗装焼付による増加分が90MPa以上の高い塗装焼付強度を有する請求項1記載の成形加工用アルミニウム合金板。 2. A high scanning baking strength with a maximum baking peak of 0.09 W / g or less and an increase due to coating baking of 90 MPa or more as measured by a differential scanning calorimeter (DSC). Aluminum alloy plate for forming.
  4. Mg0.2〜1.5%(mass%、以下同じ)、Si0.3〜2.0%を含有し、かつMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、V0.01〜0.4%、Fe0.03〜1.0%、0.0001%〜0.0500%のBを伴うことが許容されるTi0.005〜0.2%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなる請求項1〜請求項3のいずれか一に記載の成形加工用アルミニウム合金板。 Mg 0.2-1.5% (mass%, the same shall apply hereinafter), Si 0.3-2.0%, Mn 0.03-0.6%, Cr 0.01-0.4%, Zr0.01 Ti 0.005 to 0.2% allowed to accompany B of ~ 0.4%, V 0.01 to 0.4%, Fe 0.03 to 1.0%, 0.0001% to 0.0500% The aluminum alloy plate for forming according to any one of claims 1 to 3, comprising one or more selected from among the above, with the balance comprising Al and inevitable impurities.
  5. Zn0.03〜2.5%、Cu0.05〜1.5%のうちの1種又は2種を含む請求項1〜請求項4のいずれか一に記載の成形加工用アルミニウム合金板。 The aluminum alloy plate for forming according to any one of claims 1 to 4, comprising one or two of Zn 0.03-2.5% and Cu 0.05-1.5%.
  6. 480℃以上の溶体化処理を行ってから80℃以上150℃以下の温度域に100℃/min(分)以上の冷却速度で冷却後に、80℃以上150℃以下の温度域で合金板の0.2%耐力が140MPa以上になるように滞留させる請求項1記載の成形加工用アルミニウム合金板の製造方法。 After performing the solution treatment at 480 ° C. or higher, after cooling at a cooling rate of 100 ° C./min (min) or higher to a temperature range of 80 ° C. or higher and 150 ° C. or lower, the alloy plate is heated at a temperature range of 80 ° C. or higher and 150 ° C. or lower. The method for producing an aluminum alloy sheet for forming according to claim 1, wherein the 2% proof stress is retained so as to be 140 MPa or more.
  7. 480℃以上の溶体化処理を行ってから70℃以上90℃以下の温度域に100℃/min(分)以上の冷却速度で冷却後に、70℃以上90℃未満の温度域で10分間以下の滞留をさせて改めて90℃以上150℃以下の温度域で合金板の0.2%耐力が140MPa以上になるように滞留させる請求項3記載の成形加工用アルミニウム合金板の製造方法。 After performing the solution treatment at 480 ° C. or higher, after cooling at a cooling rate of 100 ° C./min (min) or higher in a temperature range of 70 ° C. or higher and 90 ° C. or lower, the temperature range of 70 ° C. or higher and lower than 90 ° C. is 10 minutes or lower. The manufacturing method of the aluminum alloy plate for shaping | molding of Claim 3 which makes it retain so that the 0.2% yield strength of an alloy plate may become 140 Mpa or more again in the temperature range of 90 to 150 degreeC.
JP2007153937A 2007-06-11 2007-06-11 Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming Pending JP2008303449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153937A JP2008303449A (en) 2007-06-11 2007-06-11 Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153937A JP2008303449A (en) 2007-06-11 2007-06-11 Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming

Publications (1)

Publication Number Publication Date
JP2008303449A true JP2008303449A (en) 2008-12-18

Family

ID=40232429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153937A Pending JP2008303449A (en) 2007-06-11 2007-06-11 Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming

Country Status (1)

Country Link
JP (1) JP2008303449A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732759A (en) * 2011-03-31 2012-10-17 株式会社神户制钢所 Aluminum alloy plate for formation processing and manufacturing method thereof
JP2014218734A (en) * 2013-04-09 2014-11-20 株式会社神戸製鋼所 Aluminum alloy sheet for press molding, manufacturing method therefor and press molded body thereof
KR101476284B1 (en) * 2014-09-30 2014-12-24 유선상 Al-Si-Mg Aluminum alloy and manufacturing method thereof
WO2015151907A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminum alloy plate having excellent moldability and bake finish hardening properties
WO2015151908A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminum alloy plate having excellent moldability and bake hardening properties
JP2015196854A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy sheet excellent in moldability and coating/baking hardenability
JP2015196853A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy sheet excellent in moldability and coating/baking hardenability
CN105506408A (en) * 2015-12-18 2016-04-20 百色学院 Die casting aluminum alloy for automobile plates and production technology of die casting aluminum alloy
EP2964800B1 (en) 2013-03-07 2017-08-09 Aleris Aluminum Duffel BVBA Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
CN109666824A (en) * 2019-01-29 2019-04-23 中铝材料应用研究院有限公司 High-intensitive Al-Mg-Si-Mn wrought aluminium alloy and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205660A (en) * 1989-02-06 1990-08-15 Kobe Steel Ltd Manufacture of aluminum alloy sheet having excellent baking hardenability of paint
JPH04318144A (en) * 1991-04-17 1992-11-09 Kobe Steel Ltd Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture
JPH05112839A (en) * 1991-10-21 1993-05-07 Kobe Steel Ltd Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
JPH06340940A (en) * 1993-06-02 1994-12-13 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH0718390A (en) * 1993-07-05 1995-01-20 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet material for forming
JPH07197219A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for forming
JP2005139537A (en) * 2003-11-10 2005-06-02 Kobe Steel Ltd Aluminum alloy sheet having excellent baking finish hardenability
JP2005139530A (en) * 2003-11-10 2005-06-02 Furukawa Sky Kk Method of producing aluminum alloy sheet for forming
JP2005171295A (en) * 2003-12-09 2005-06-30 Furukawa Sky Kk Aluminum alloy sheet to be formed and manufacturing method therefor
JP2006257505A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205660A (en) * 1989-02-06 1990-08-15 Kobe Steel Ltd Manufacture of aluminum alloy sheet having excellent baking hardenability of paint
JPH04318144A (en) * 1991-04-17 1992-11-09 Kobe Steel Ltd Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture
JPH05112839A (en) * 1991-10-21 1993-05-07 Kobe Steel Ltd Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
JPH06340940A (en) * 1993-06-02 1994-12-13 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH0718390A (en) * 1993-07-05 1995-01-20 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet material for forming
JPH07197219A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for forming
JP2005139537A (en) * 2003-11-10 2005-06-02 Kobe Steel Ltd Aluminum alloy sheet having excellent baking finish hardenability
JP2005139530A (en) * 2003-11-10 2005-06-02 Furukawa Sky Kk Method of producing aluminum alloy sheet for forming
JP2005171295A (en) * 2003-12-09 2005-06-30 Furukawa Sky Kk Aluminum alloy sheet to be formed and manufacturing method therefor
JP2006257505A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732759A (en) * 2011-03-31 2012-10-17 株式会社神户制钢所 Aluminum alloy plate for formation processing and manufacturing method thereof
EP2964800B1 (en) 2013-03-07 2017-08-09 Aleris Aluminum Duffel BVBA Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
JP2014218734A (en) * 2013-04-09 2014-11-20 株式会社神戸製鋼所 Aluminum alloy sheet for press molding, manufacturing method therefor and press molded body thereof
WO2015151907A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminum alloy plate having excellent moldability and bake finish hardening properties
JP2015196854A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy sheet excellent in moldability and coating/baking hardenability
JP2015196852A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy sheet excellent in moldability and coating/baking hardenability
JP2015196853A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy sheet excellent in moldability and coating/baking hardenability
CN106103762A (en) * 2014-03-31 2016-11-09 株式会社神户制钢所 Formability and the aluminium alloy plate of baking application hardening excellence
WO2015151908A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminum alloy plate having excellent moldability and bake hardening properties
KR101476284B1 (en) * 2014-09-30 2014-12-24 유선상 Al-Si-Mg Aluminum alloy and manufacturing method thereof
CN105506408A (en) * 2015-12-18 2016-04-20 百色学院 Die casting aluminum alloy for automobile plates and production technology of die casting aluminum alloy
CN109666824A (en) * 2019-01-29 2019-04-23 中铝材料应用研究院有限公司 High-intensitive Al-Mg-Si-Mn wrought aluminium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008303449A (en) Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5059423B2 (en) Aluminum alloy plate
JP6227222B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP2005139537A (en) Aluminum alloy sheet having excellent baking finish hardenability
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4634249B2 (en) Aluminum alloy plate for forming and method for producing the same
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
JP4602195B2 (en) Method for producing aluminum alloy sheet for forming
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5495538B2 (en) Warm press forming method of bake hardening type aluminum alloy plate
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP6355098B2 (en) High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JP2008163357A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
JP2017186641A (en) Aluminum alloy sheet and manufacturing method of aluminum alloy sheet
JP2012107339A (en) Aluminum alloy sheet for automobile and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100305

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Written amendment

Effective date: 20120522

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20130228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130422

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140306