JP2006037148A - Aluminum alloy hard sheet for can barrel and its production method - Google Patents

Aluminum alloy hard sheet for can barrel and its production method Download PDF

Info

Publication number
JP2006037148A
JP2006037148A JP2004216840A JP2004216840A JP2006037148A JP 2006037148 A JP2006037148 A JP 2006037148A JP 2004216840 A JP2004216840 A JP 2004216840A JP 2004216840 A JP2004216840 A JP 2004216840A JP 2006037148 A JP2006037148 A JP 2006037148A
Authority
JP
Japan
Prior art keywords
aluminum alloy
hot rolling
range
hot
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004216840A
Other languages
Japanese (ja)
Inventor
Akira Hibino
旭 日比野
Akira Tajiri
彰 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2004216840A priority Critical patent/JP2006037148A/en
Publication of JP2006037148A publication Critical patent/JP2006037148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an aluminum alloy hard sheet having an excellent balance of strength, ironing workability, flange formability and an earing ratio as the material for a can barrel by a low cost process in which process annealing after hot rolling is obviated. <P>SOLUTION: The Al alloy hard sheet is composed of an Al-Mg-Mn based alloy, and in which n value is 0.01 to 0.2, and the rate of success in severe ironing is ≥70%. The hot rolled sheet as an intermediate product thereof has an electric conductivity of 30 to 50%, a crystal grain size (ASTM) of ≥4.0 and a cube orientation density of 5 to 10. Regarding its production method. hot rolling conditions (a hot rolling starting temperature, a material temperature in each sheet thickness in the process, Ln(Z) value, a strain rate, a hot rolling finishing temperature and a cooling rate) are strictly prescribed, after the hot rolling, process annealing is not performed, and it is finished only by cold rolling. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は2ピースアルミニウム缶用の缶胴(一般にはDI缶胴)あるいはリシール性を備えたアルミニウムボトルの缶胴に使用されるAl−Mg−Mn系アルミニウム合金の硬質板およびその製造方法に関し、特に塗装焼付前後の強度が高いにもかかわらず、塗装焼付前のしごき加工性、塗装焼付後のフランジ成形性が優れ、かつ深絞り耳も低い缶胴用アルミニウム合金硬質板とその製造方法、および缶胴用アルミニウム合金硬質板向けの熱間圧延板に関するものである。   The present invention relates to a hard plate of an Al-Mg-Mn-based aluminum alloy used for a can body for a two-piece aluminum can (generally a DI can body) or a can body of an aluminum bottle having resealability, and a method for producing the same, In particular, despite its high strength before and after paint baking, an aluminum alloy hard plate for a can body having excellent ironing workability before paint baking, flange formability after paint baking, and low deep-drawing ears, and its manufacturing method, and The present invention relates to a hot rolled sheet for an aluminum alloy hard plate for a can body.

一般に2ピースアルミニウム缶(DI缶)の製造工程としては、缶胴用素材に対して、深絞り加工およびしごき加工によるDI成形を施して缶胴形状とした後、所定の寸法、形状にトリミングを施して脱脂・洗浄処理を行ない、さらに塗装・印刷を行って焼付け(ベーキング)を行ない、その後に缶胴縁部に対してネッキング加工、フランジ加工を行ない、別に成形した缶蓋と合せて巻締め(シーミング加工)を行なうのが通常である。   In general, the manufacturing process for two-piece aluminum cans (DI cans) is to form can bodies by deep-drawing and ironing the can body material, and then trimming to the specified dimensions and shape. Apply degreasing and cleaning, then paint and print, bake (baking), then neck and flange the can body edge, and wind it together with a separately formed can lid (Seaming processing) is usually performed.

また、リシール性を有するアルミニウムボトル缶としては、いわゆる1ピースボトル缶と2ピースボトル缶とがあり、前者と後者とではその製造方法が若干異なる。前述の1ピースボトル缶の場合は、前述の2ピースアルミニウム缶(DI缶)と同様の工程を経て、最後のフランジ加工の代りに口部成形(スカート成形、ネジ成形、カール成形)を行なう。一方後者の2ピースボトル缶の場合は、缶胴用素材に対して、深絞り加工およびしごき・フランジ加工を行なってフランジ付き缶胴形状とした後、トップドーム成形(ネッキング・絞り加工)、缶底フランジトリミングを行なってから脱脂・洗浄処理を行ない、さらに塗装・印刷を行なって焼付け(ベーキング)し、穴あけ、スカート成形、ねじ成形、カール成形などの口部成形を行ない、さらに缶底フランジ加工および巻締めを行なうのが通常である。   In addition, as aluminum bottle cans having resealability, there are so-called 1-piece bottle cans and 2-piece bottle cans, and the former and the latter have slightly different production methods. In the case of the above-described one-piece bottle can, the same process as the above-described two-piece aluminum can (DI can) is performed, and mouth molding (skirt molding, screw molding, curl molding) is performed instead of the final flange processing. On the other hand, in the case of the latter two-piece bottle can, deep-drawing and ironing / flange processing are performed on the material for the can body to form a can body with flange, then top dome molding (necking / drawing), can After performing bottom flange trimming, degreasing and cleaning, painting and printing, baking (baking), hole forming, skirt forming, screw forming, curl forming, and other can bottom flange processing It is usual to perform tightening.

上述のようにして製造される2ピース缶やボトル缶の缶胴用の素材としては、従来からAl−Mg−Mn系合金からなるJIS3004合金の硬質板が広く使用されている。この3004合金は、しごき加工性に優れていて、強度を高めるために高圧延率で冷間圧延を施した場合でも比較的良好な成形性を示すところから、これらの缶胴材として好適であるとされている。   As a material for a can body of a two-piece can or a bottle can manufactured as described above, a JIS 3004 alloy hard plate made of an Al-Mg-Mn alloy has been widely used. This 3004 alloy is excellent in ironing workability, and it exhibits a relatively good formability even when subjected to cold rolling at a high rolling rate in order to increase the strength. Therefore, it is suitable as these can body materials. It is said that.

なおこのような3004合金からなる缶胴用硬質板の製造方法としては、一般にDC鋳造法などによって鋳造した後、鋳塊に均質化処理を施し、さらに熱間圧延および冷間圧延によって所定の板厚とし、かつその過程における熱間圧延後の冷間圧延前、もしくは冷間圧延の中途において、再結晶のために中間焼鈍を施す方法が一般的である。   In addition, as a manufacturing method of such a hard plate made of 3004 alloy, generally, after casting by a DC casting method or the like, the ingot is homogenized, and further, a predetermined plate is obtained by hot rolling and cold rolling. A method is generally used in which the thickness is increased and intermediate annealing is performed for recrystallization in the process before cold rolling after hot rolling or in the middle of cold rolling.

ところでアルミニウム缶胴材(2ピースアルミニウム缶の缶胴やアルミニウムボトル缶の缶胴)については、主として材料コスト削減の観点から、薄肉化を図ることが強く望まれている。そしてこのように薄肉化を図る場合、薄肉化に伴なう缶の座屈強度低下の問題等を回避するため、材料の高強度化を図ることが重要であり、特にボトル缶の場合には缶胴部のみならず、缶肩部、缶頸部も所要の強度を確保する必要があり、そのため材料の高強度化が不可欠である。   By the way, it is strongly desired to reduce the thickness of an aluminum can body (a two-piece aluminum can and an aluminum bottle can) mainly from the viewpoint of reducing material costs. And when thinning in this way, it is important to increase the strength of the material in order to avoid problems such as a reduction in buckling strength of the can accompanying the thinning, especially in the case of bottle cans In addition to the can body, it is necessary to ensure the required strength not only in the can body but also in the shoulder and the neck of the can.

またボトル缶を含むDI缶の製造時における高い生産性を確保するためには、しごき加工時における缶切れを防止するため、しごき加工性が良好であることが必要である。   Moreover, in order to ensure the high productivity at the time of manufacture of DI can containing a bottle can, in order to prevent the can running out at the time of ironing, it is necessary for ironing workability to be favorable.

さらに、2ピース缶の缶胴の如くフランジ加工が要求される場合には、フランジ割れの発生を防止するため、フランジ成形性(口拡げ性)が優れていることが求められる。   Furthermore, when flange processing is required like the can body of a two-piece can, in order to prevent the occurrence of flange cracking, excellent flange formability (expandability) is required.

そしてまたDI缶胴用材料としては、DI成形時における耳率が安定して低いことが望まれる。すなわち、DI成形時の耳率が安定して低いことは、DI成形時の歩留り向上と、缶胴の耳切れに起因する缶胴破断防止の点から重要である。   In addition, as a material for the DI can body, it is desired that the ear rate at the time of DI molding is stable and low. That is, the stable and low ear rate at the time of DI molding is important from the viewpoint of improving the yield at the time of DI molding and preventing can barrel breakage due to cutting off of the can barrel.

ここで、これらの強度、しごき加工性、フランジ成形性、耳率は、いずれか一つが優れていれば良いというものではなく、これらのバランスが良好で総合的に優れていることが必要であり、また製造方法としては、上述のような材料特性からの諸要求のほか、製造コストが低廉であることも重要である。   Here, these strengths, ironing workability, flange formability, and ear rate are not necessarily good if any one is excellent, it is necessary that these balances are good and comprehensively excellent. Moreover, as a manufacturing method, it is important that the manufacturing cost is low in addition to the various requirements from the material characteristics as described above.

ところで従来の3004合金缶胴用硬質板の一般的な製造方法においては、前述のように熱間圧延後の冷間圧延前、あるいは冷間圧延の中途において、再結晶のために中間焼鈍を行なうのが通常である。このような中間焼鈍の観点から従来の主な製造プロセスを分類すれば、次の(a)〜(c)のプロセスに分けられる。
(a) 熱延−バッチ焼鈍プロセス
これは、通常の熱間圧延の後、加熱速度の遅い箱型焼鈍炉(バッチ式焼鈍炉;BAF)を用いて焼鈍する方法である。
(b) 熱延−連続焼鈍プロセス
これは、通常の熱間圧延の後、加熱速度の速い連続焼鈍炉(CAL)を用いて焼鈍する方法である。
(c) 冷延中間連続焼鈍プロセス
これは、通常の熱間圧延後の冷間圧延の中途において、加熱速度の速い連続焼鈍炉を用いて焼鈍する方法である。
By the way, in the general manufacturing method of the conventional hard plate for 3004 alloy can body, as described above, intermediate annealing is performed for recrystallization before cold rolling after hot rolling or in the middle of cold rolling. It is normal. If the conventional main manufacturing processes are classified from the viewpoint of such intermediate annealing, they can be divided into the following processes (a) to (c).
(A) Hot rolling-batch annealing process This is a method of annealing using a box annealing furnace (batch annealing furnace; BAF) having a slow heating rate after normal hot rolling.
(B) Hot rolling-continuous annealing process This is a method of annealing using a continuous annealing furnace (CAL) having a high heating rate after normal hot rolling.
(C) Cold rolling intermediate continuous annealing process This is a method of annealing using a continuous annealing furnace having a high heating rate in the middle of cold rolling after normal hot rolling.

さらに、以上の(a)〜(c)のプロセスのほか、次の(d)のような方法もある。
(d) 自己再結晶プロセス
これは、熱間圧延の上がり温度を材料の再結晶温度以上に制御することによって、熱間圧延上がりの状態で材料を自己再結晶(自己焼鈍)させる方法である。
Further, in addition to the processes (a) to (c), there is a method (d) as follows.
(D) Self-recrystallization process This is a method in which the material is self-recrystallized (self-annealed) in the state after hot rolling by controlling the temperature at which hot rolling rises above the recrystallization temperature of the material.

以上のような(a)〜(d)のプロセスのうち、(a)、(b)、(d)のプロセスを適用した場合、いずれも最終的に得られた缶胴材のしごき加工性が劣るという共通の問題がある。またこれらのうち(d)のプロセスでは、しごき加工性を改善しようとすれば、材料強度を下げざるを得ず、そのため強度不足の問題が生じてしまう。さらに(c)のプロセスを適用した場合、缶胴材としてしごき加工性は優れるものの、フランジ成形性が劣るという問題がある。そしてまた、熱間圧延後に再結晶のための焼鈍を必要とする(a)、(b)、(c)のプロセスでは、製造コストが割高であるという問題もある。   Among the processes (a) to (d) as described above, when the processes (a), (b), and (d) are applied, all of the obtained can body materials have ironing workability. There is a common problem of being inferior. Of these, in the process (d), if the ironing workability is to be improved, the material strength has to be lowered, which causes a problem of insufficient strength. Furthermore, when the process of (c) is applied, although ironing workability is excellent as a can body material, there is a problem that flange formability is inferior. In addition, in the processes (a), (b), and (c) that require annealing for recrystallization after hot rolling, there is a problem that the manufacturing cost is high.

ここで、Al−Mg−Mn系合金からなるDI缶胴材の製造方法として既に提案されている先行技術の方法としては、例えば特許文献1〜特許文献9に示すような方法があるが、これらのうち特許文献2〜特許文献7の方法は、いずれも熱間圧延の後、もしくは冷間圧延の中途で焼鈍を必須とするものであり、前述のようにコスト面等で問題があった。また特許文献1、特許文献8、特許文献9の方法の場合、いずれも強度、しごき加工性、フランジ成形性、および耳率の各性能のバランスの良い材料を得る点では未だ不充分であった。   Here, as a prior art method that has already been proposed as a method for manufacturing a DI can body made of an Al-Mg-Mn alloy, for example, there are methods as shown in Patent Literature 1 to Patent Literature 9, Among them, the methods of Patent Literature 2 to Patent Literature 7 all require annealing after hot rolling or in the middle of cold rolling, and have problems in terms of cost as described above. In addition, in the case of the methods of Patent Document 1, Patent Document 8, and Patent Document 9, all of them are still insufficient in obtaining a material having a good balance of strength, ironing workability, flange formability, and ear ratio performance. .

特開平10−310837号公報Japanese Patent Laid-Open No. 10-310837 特開平11−256290号公報JP-A-11-256290 特開平11−256291号公報JP 11-256291 A 特開平11−256292号公報Japanese Patent Laid-Open No. 11-256292 特開2000−234158号公報JP 2000-234158 A 特開2001−40461号公報JP 2001-40461 A 特開2002−212691号公報JP 2002-212691 A 特開2003−203105号公報JP 2003-203105 A 特開平11−140576号公報JP-A-11-140576

この発明は以上の事情を背景としてなされたもので、2ピースアルミニウム缶やアルミニウムボトル缶などのDI缶胴材として望まれる諸特性をバランスよく満足し得る材料、すなわち高強度を有すると同時にしごき加工性およびフランジ成形性が良好で、かつ耳率が安定して低くて、これらの諸特性のバランスが総合的に良好な缶胴用のアルミニウム合金硬質板を、低コストで得ることを目的とするものであり、特に熱間圧延後の焼鈍を不要としたプロセスで上述のような高品質の缶胴材を得る方法を提供することを目的とするものである。   The present invention has been made against the background described above, and is a material which can satisfy various properties desired as a DI can body material such as a two-piece aluminum can and an aluminum bottle can in a balanced manner, that is, having high strength and ironing at the same time. The purpose of this invention is to obtain an aluminum alloy hard plate for a can body at a low cost, which has a good balance and flange formability, a stable and low ear ratio, and a comprehensive balance of these characteristics. In particular, an object of the present invention is to provide a method for obtaining a high-quality can body material as described above in a process that does not require annealing after hot rolling.

本発明者等が前述の課題を解決するべく種々実験・検討を重ねた結果、熱間圧延条件を厳密かつ適切に制御して、熱間圧延板の性能を適切に制御することにより、熱間圧延後の再結晶のための焼鈍を省略しながらも、前述のような諸性能のバランスに優れた高品質のDI缶胴材を得ることができることを見出し、この発明をなすに至った。   As a result of repeated various experiments and studies by the present inventors to solve the above-mentioned problems, the hot rolling conditions are strictly and appropriately controlled, and the hot rolled sheet performance is appropriately controlled. While omitting annealing for recrystallization after rolling, it was found that a high-quality DI can body material having an excellent balance of various performances as described above can be obtained, and the present invention has been made.

すなわち、この発明では、熱間圧延後の中間焼鈍(熱間圧延と冷間圧延との間の中間焼鈍、もしくは冷間圧延中途での中間焼鈍)を行なわないプロセスで製造することを前提としているが、このように熱間圧延後に中間焼鈍を行なわないプロセスでは、熱間圧延終了直後の熱間圧延板の性能は、最終板(缶胴材)の性能を大きく左右することとなる。そして本発明者等が種々実験・検討を重ねた結果、熱間圧延終了後の熱間圧延板の導電率、結晶サイズ、集合組織(結晶方位)、さらには金属間化合物中のMg量を適切に制御することによって、最終板として、強度、しごき加工性、フランジ成形性、耳率のバランスの優れる材料が得られることを見出した。   That is, in this invention, it is premised on manufacturing by a process that does not perform intermediate annealing after hot rolling (intermediate annealing between hot rolling and cold rolling, or intermediate annealing in the middle of cold rolling). However, in such a process in which intermediate annealing is not performed after hot rolling, the performance of the hot rolled sheet immediately after the end of hot rolling greatly affects the performance of the final sheet (can body material). As a result of repeated experiments and examinations by the present inventors, the electrical conductivity, crystal size, texture (crystal orientation) of the hot-rolled sheet after hot rolling is completed, and further, the amount of Mg in the intermetallic compound is appropriately set. As a result, it was found that a material having an excellent balance of strength, ironing workability, flange formability, and ear ratio can be obtained as the final plate.

また前述のような熱間圧延板の導電率、結晶サイズ、集合組織、金属間化合物中のMg量を適切に制御するためには、熱間圧延過程における諸条件、特に板厚減少の各段階における材料温度や、各パスの歪速度、さらには各パスでの熱間歪み蓄積の指標となるZ値(Zener−Hollomon Parameter)を適切に制御することが必要であることを見出した。   In addition, in order to appropriately control the electrical conductivity, crystal size, texture, and amount of Mg in the intermetallic compound as described above, various conditions in the hot rolling process, particularly each stage of thickness reduction. It has been found that it is necessary to appropriately control the material temperature, the strain rate of each pass, and the Z value (Zener-Holomon Parameter) as an index of hot strain accumulation in each pass.

そしてまた、最終板の条件として、成分組成のみならず、加工硬化性能の指標であるn値および苛酷しごきの成功率を適切に規制することによって、前述のような諸性能のバランスの優れた材料が得られることを見出したのである。   In addition, by properly regulating not only the component composition but also the n value that is an index of work hardening performance and the success rate of severe ironing as the conditions of the final plate, a material that has an excellent balance of various performances as described above It was found that can be obtained.

具体的には、請求項1の発明の缶胴用アルミニウム合金硬質板は、Mg0.5〜2.0%、Mn0.5〜2.0%、Fe0.05〜0.8%、Si0.05〜0.8%、Cu0.05〜0.7%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金からなり、加工硬化指数n値が0.01〜0.2の範囲内にあり、しかも苛酷しごきの成功率が70%以上であることを特徴とするものである。   Specifically, the aluminum alloy hard plate for a can body of the invention of claim 1 has Mg 0.5-2.0%, Mn 0.5-2.0%, Fe 0.05-0.8%, Si 0.05 -0.8%, Cu 0.05-0.7% is contained, the balance is made of an aluminum alloy consisting of Al and inevitable impurities, and the work hardening index n value is in the range of 0.01-0.2. Moreover, the success rate of severe ironing is 70% or more.

また請求項2の発明の缶胴用アルミニウム合金硬質板は、請求項1に記載の缶胴用アルミニウム合金硬質板において、前記アルミニウム合金の成分として、さらにCr0.05〜0.5%、Zn0.05〜0.8%、Ti0.001〜0.20%のうちの1種または2種以上を含有するものである。   Moreover, the aluminum alloy hard plate for can bodies of the invention of claim 2 is the aluminum alloy hard plate for can bodies according to claim 1, further comprising Cr 0.05 to 0.5%, Zn 0. It contains one or more of 05 to 0.8% and Ti 0.001 to 0.20%.

さらに請求項3の発明の缶胴用アルミニウム合金硬質板の製造方法は、請求項1もしくは請求項2において規定する成分組成のアルミニウム合金を鋳造した後、500℃以上の温度域で均質化処理を行ない、次いで熱間圧延を行なうにあたり、
(1)熱間圧延を、300〜550℃の範囲内で開始し、
(2)熱間圧延過程における厚さ150mmから20mmまでの間における材料温度を300〜470℃の範囲内に制御し、
(3)熱間圧延過程における厚さ20mmから熱間圧延最終パス直前までの材料温度を270〜420℃の範囲内に制御し、
(4)熱間圧延過程における厚さ150mm以下の各パスにおけるLn(Z)値(注:ZはZener−Hollomon Parameterを示す)を20〜50の範囲内に制御し、
(5)熱間圧延終了温度を270〜350℃の範囲内とし、
(6)熱間圧延上りの270〜350℃の範囲内の温度から100℃以下の温度域までの冷却過程において、100℃までの平均冷却速度を100℃/hr以下に制御し、
以上の(1)〜(6)によって得られた熱間圧延板について、中間焼鈍を施すことなく、50%以上の圧延率で冷間圧延を行ない、加工硬化指数n値が0.01〜0.2の範囲内にありしかも苛酷しごきの成功率が70%以上の缶胴用アルミニウム合金硬質板を得ることを特徴とするものである。
Furthermore, in the method for producing an aluminum alloy hard plate for a can body according to the invention of claim 3, the aluminum alloy having the component composition defined in claim 1 or 2 is cast, and then homogenized in a temperature range of 500 ° C. or higher. And then hot rolling
(1) Hot rolling is started within a range of 300 to 550 ° C,
(2) controlling the material temperature in the range of 300 to 470 ° C. between a thickness of 150 mm and 20 mm in the hot rolling process;
(3) The material temperature from the thickness 20 mm in the hot rolling process to immediately before the final hot rolling pass is controlled within the range of 270 to 420 ° C.,
(4) Ln (Z) value (Note: Z indicates Zener-Holomon Parameter) in each pass having a thickness of 150 mm or less in the hot rolling process is controlled within a range of 20-50,
(5) The hot rolling end temperature is in the range of 270 to 350 ° C.,
(6) In the cooling process from a temperature in the range of 270 to 350 ° C. after the hot rolling up to a temperature range of 100 ° C. or less, the average cooling rate up to 100 ° C. is controlled to 100 ° C./hr or less,
The hot-rolled sheet obtained by the above (1) to (6) is cold-rolled at a rolling rate of 50% or more without performing intermediate annealing, and the work hardening index n value is 0.01 to 0. The aluminum alloy hard plate for a can body is obtained in the range of .2 and the success rate of severe ironing is 70% or more.

また請求項4の発明の缶胴用アルミニウム合金硬質板の製造方法は、請求項3に記載の缶胴用アルミニウム合金硬質板の製造方法において、前記熱間圧延過程における厚さ20mm以下の各パスを、その各パスにおける歪速度が後段のパスほど高くなるように制御するとともに、最終パスの歪速度を50/秒以上に制御することを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a method for producing an aluminum alloy hard plate for a can body according to claim 3, wherein each pass having a thickness of 20 mm or less in the hot rolling process is provided. Is controlled such that the distortion speed in each path becomes higher in the subsequent path, and the distortion speed in the final path is controlled to 50 / second or more.

一方請求項5および請求項6は、請求項1もしくは請求項2に記載の缶胴用アルミニウム合金硬質板を製造する過程での中間製品、すなわち缶胴用アルミニウム合金硬質板向けの熱間圧延板を規定している。   On the other hand, Claim 5 and Claim 6 are intermediate products in the process of manufacturing the aluminum alloy hard plate for can bodies according to claim 1 or 2, that is, hot rolled plates for aluminum alloy hard plates for can bodies. Is stipulated.

すなわち請求項5の発明の缶胴用アルミニウム合金硬質板向け熱間圧延板は、請求項1もしくは請求項2に記載の缶胴用アルミニウム合金硬質板向けの熱間圧延板において、請求項1もしくは請求項2に記載の成分組成のアルミニウム合金からなり、かつ導電率が30〜50%IACSの範囲内にあり、しかも結晶粒度がASTMナンバーで4.0以上であり、さらにキューブ方位密度がランダム試料の5倍以上、100倍以下であることを特徴とするものである。   That is, the hot rolled sheet for an aluminum alloy hard plate for a can body of the invention of claim 5 is the hot rolled plate for an aluminum alloy hard plate for a can body of claim 1 or 2, 3. An aluminum alloy having the component composition according to claim 2, having an electrical conductivity in the range of 30 to 50% IACS, a crystal grain size of 4.0 or more in ASTM number, and a cube orientation density of a random sample. 5 times or more and 100 times or less.

請求項6の発明の缶胴用アルミニウム合金硬質板向け熱間圧延板は、請求項1もしくは請求項2に記載の缶胴用アルミニウム合金硬質板向けの熱間圧延板において、請求項1もしくは請求項2に記載の成分組成のアルミニウム合金からなり、かつ熱間圧延板に存在している金属間化合物中に含まれるMg量が0.01〜0.2%の範囲内であることを特徴とするものである。   The hot-rolled sheet for an aluminum alloy hard plate for a can body according to claim 6 is the hot-rolled plate for an aluminum alloy hard plate for a can body according to claim 1 or 2, Item 2 is an aluminum alloy having the composition described in item 2, and the amount of Mg contained in the intermetallic compound existing in the hot-rolled sheet is in the range of 0.01 to 0.2%. To do.

請求項1もしくは請求項2の発明による缶胴用アルミニウム合金硬質板は、2ピース缶やボトル缶のDI缶胴に要求される諸特性のバランスに優れており、特に強度、しごき加工性、フランジ成形性、および耳率のバランスが良好である。また請求項3、請求項4の発明の缶胴用アルミニウム合金硬質板の製造方法によれば、熱間圧延後の中間焼鈍(熱間圧延と冷間圧延との間の中間焼鈍、もしくは冷間圧延中途での中間焼鈍)を省いたプロセスを適用しているため生産性が高く、低コストで缶胴材を製造することができ、しかもこのように中間焼鈍を省略しながらも、缶胴材に要求される諸特性、特に強度としごき加工性、フランジ成形性、および耳率のバランスに優れた高性能の缶胴材を安定して得ることができる。また請求項5、請求項6の発明の缶胴用アルミニウム合金硬質板向け熱間圧延板を用いれば、熱間圧延後の中間焼鈍を省略しながらも、最終的に前述のように優れた性能バランスを有する缶胴用アルミニウム合金硬質板を得ることができる。   The aluminum alloy hard plate for a can body according to the invention of claim 1 or claim 2 has an excellent balance of various properties required for a DI can body of a two-piece can or a bottle can, particularly strength, ironing workability, flange Good balance between moldability and ear rate. Moreover, according to the manufacturing method of the aluminum alloy hard plate for can bodies of the invention of Claim 3 and Claim 4, intermediate annealing after hot rolling (intermediate annealing between hot rolling and cold rolling, or cold Since the process that eliminates the intermediate annealing in the middle of rolling) is applied, the can body can be manufactured at high cost and at a low cost. It is possible to stably obtain a high-performance can body material excellent in the balance of various characteristics required for, particularly strength, ironing workability, flange formability, and ear ratio. Moreover, if the hot-rolled sheet for aluminum alloy hard plates for can bodies of the inventions of claims 5 and 6 is used, the final excellent performance as described above is obtained while omitting the intermediate annealing after hot rolling. An aluminum alloy hard plate for a can body having a balance can be obtained.

先ずこの発明の缶胴用アルミニウム合金硬質板に用いられるアルミニウム合金の成分組成の限定理由について説明する。   First, the reasons for limiting the component composition of the aluminum alloy used in the aluminum alloy hard plate for a can body of the present invention will be described.

Mg:
Mgの添加は、Mgそれ自体の固溶による強度向上に効果があり、またMgの固溶に伴なう加工硬化量の増大による強度向上が期待でき、さらにはSiとの共存によるMg2Siの時効析出による強度向上も期待でき、したがってMgは缶胴材として必要な強度を得るためには不可欠の元素である。またMgは、加工時の転位の増殖作用があるため、再結晶粒を微細化させるためにも有効である。但しMg量が0.5%未満では上述の効果が少なく、一方2.0%を越えれば、高強度は容易に得られるものの、DI加工時の変形抵抗が大きくなってしごき加工性やフランジ成形性を悪くする。したがってMg量は0.5〜2.0%の範囲内とした。なおMg量は、この範囲内でも特に0.7〜1.5%の範囲内が好ましい。
Mg:
The addition of Mg is effective in improving the strength by solid solution of Mg itself, and can be expected to improve the strength by increasing the work hardening amount accompanying the solid solution of Mg, and further, Mg 2 Si by coexistence with Si. Therefore, Mg is an indispensable element for obtaining the strength required as a can body material. Further, Mg has an effect of multiplying dislocations at the time of processing, and is therefore effective for making recrystallized grains finer. However, if the amount of Mg is less than 0.5%, the above effect is small. On the other hand, if it exceeds 2.0%, high strength can be easily obtained, but the deformation resistance during DI processing increases and ironing workability and flange forming Worsen sex. Therefore, the Mg content is set in the range of 0.5 to 2.0%. The Mg amount is particularly preferably within the range of 0.7 to 1.5% even within this range.

Mn:
Mnは強度および成形性の向上に寄与する有効な元素である。特にこの発明で目的としている用途である缶胴材ではDI成形時にしごき加工が加えられるため、とりわけMnは重要となる。アルミニウム板のしごき加工においては通常エマルジョンタイプの潤滑剤が用いられているが、Mn系晶出物が少ない場合には同程度の強度を有していてもエマルジョンタイプ潤滑剤だけでは潤滑能が不足し、ゴーリングと称される擦り疵や焼付きなどの外観不良が発生するおそれがある。ゴーリングは晶出物の大きさ、量、種類に影響されることが知られており、その晶出物を形成するためにMnは不可欠な元素である。Mn量が0.5%未満ではMn系化合物による固体潤滑的な効果が得られず、一方Mn量が2.0%を越えればAl6Mnの初晶巨大金属間化合物が発生して、著しく成形性を損なってしまう。そこでMn量は0.5〜2.0%の範囲内とした。またここで製品板中における固溶Mnは、加工時の回復を抑制する効果および塗装焼付け時の軟化を低減する効果がある。なおMn量は、0.5〜2.0%の範囲内でも特に0.7〜1.5%の範囲内が好ましい。
Mn:
Mn is an effective element that contributes to improvement in strength and formability. In particular, Mn is particularly important for a can body material, which is the intended use of the present invention, because ironing is applied during DI molding. Emulsion-type lubricants are usually used in ironing of aluminum plates, but if there are few Mn-based crystallized products, even if they have the same level of strength, the emulsion-type lubricants alone are not sufficient for lubrication. In addition, appearance defects such as scuffing and seizure called goling may occur. Goling is known to be affected by the size, amount, and type of crystallized matter, and Mn is an indispensable element for forming the crystallized product. If the amount of Mn is less than 0.5%, the effect of solid lubrication by the Mn-based compound cannot be obtained. On the other hand, if the amount of Mn exceeds 2.0%, an Al 6 Mn primary crystal giant intermetallic compound is generated. Formability will be impaired. Therefore, the amount of Mn is set in the range of 0.5 to 2.0%. Moreover, the solid solution Mn in a product board has the effect which suppresses the recovery | restoration at the time of a process, and the effect which reduces the softening at the time of paint baking here. The Mn content is particularly preferably within the range of 0.7 to 1.5% even within the range of 0.5 to 2.0%.

Fe:
Feは、Mnの晶出や析出を促進して、アルミニウム基地中のMn固溶量やMn系金属間化合物の分散状態を制御するために必要な元素であり、また化合物を通じて結晶粒の微細化にも寄与する。そして適切な化合物分散状態を得るためには、Mn添加量に応じてFeを添加することが必要である。Fe量が0.05%未満では適切な化合物分散状態、微細な結晶粒を得ることが困難であり、一方Fe量が0.8%を越えれば、Mn添加に伴なって初晶巨大金属間化合物が発生しやすくなり、しごき加工性、フランジ成形性を損なうおそれがある。そこでFe量の範囲は0.05〜0.8%とした。なおFe量は、0.05〜0.8%の範囲内でも特に0.2〜0.6%の範囲内が好ましい。
Fe:
Fe is an element required to promote Mn crystallization and precipitation, and to control the amount of Mn solid solution in the aluminum matrix and the dispersion state of the Mn-based intermetallic compound. Also contributes. In order to obtain an appropriate compound dispersion state, it is necessary to add Fe according to the amount of Mn added. If the amount of Fe is less than 0.05%, it is difficult to obtain an appropriate compound dispersion state and fine crystal grains. A compound is likely to be generated, which may impair ironing workability and flange formability. Therefore, the range of Fe content is set to 0.05 to 0.8%. The Fe content is particularly preferably in the range of 0.2 to 0.6% even within the range of 0.05 to 0.8%.

Si:
Siの添加は、Mg2Si系化合物の析出による時効硬化を通じて缶胴材の強度向上に寄与する。またSiは、Al−Mn−Fe−Si系金属間化合物を生成して、Mn系金属間化合物の分散状態を制御するために必要な元素である。Si量が0.05%未満では上記の効果が得られず、一方0.8%を越えれば時効硬化により材料が硬くなりすぎて成形性を阻害する。そこでSi量の範囲は0.05〜0.8%とした。なおSi量は、0.05〜0.8%の範囲内でも特に0.1〜0.5%の範囲内が好ましい。
Si:
The addition of Si contributes to improvement of the strength of the can body material through age hardening by precipitation of Mg 2 Si-based compounds. Si is an element necessary for generating an Al—Mn—Fe—Si intermetallic compound and controlling the dispersion state of the Mn intermetallic compound. If the amount of Si is less than 0.05%, the above effect cannot be obtained. On the other hand, if it exceeds 0.8%, the material becomes too hard due to age hardening, thereby impairing the moldability. Therefore, the range of Si content is set to 0.05 to 0.8%. The Si content is particularly preferably in the range of 0.1 to 0.5% even within the range of 0.05 to 0.8%.

Cu:
Cuは、主にAl−Cu−Mg系析出物として析出して、強度向上に寄与する。Cu量が0.05%未満ではその効果が得られず、一方Cuを0.7%を越えて添加した場合には、時効硬化は容易に得られるものの、硬くなりすぎてしごき加工性、フランジ成形性などを阻害し、また耐食性も劣化する。そこでCu量の範囲は0.05〜0.7%とした。なおCu量は、0.05〜0.7%の範囲内でも特に0.1〜0.4%の範囲内が好ましい。
Cu:
Cu precipitates mainly as an Al-Cu-Mg-based precipitate and contributes to strength improvement. If the amount of Cu is less than 0.05%, the effect cannot be obtained. On the other hand, when Cu is added in excess of 0.7%, although age hardening can be easily obtained, it becomes too hard and ironing workability, flange Impairs moldability and deteriorates corrosion resistance. Therefore, the range of Cu content is set to 0.05 to 0.7%. The Cu content is particularly preferably in the range of 0.1 to 0.4% even within the range of 0.05 to 0.7%.

以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良いが、必要に応じてCr、Zn、Tiのうちの1種または2種以上を添加しても良い。これらのCr、Zn、Tiについてさらに詳細に説明する。   In addition to the above elements, Al and inevitable impurities may be basically used, but one or more of Cr, Zn, and Ti may be added as necessary. These Cr, Zn, and Ti will be described in more detail.

Cr:
Crは強度向上に効果的な元素であるが、0.05%未満ではその効果が少なく、0.5%を越えれば巨大晶出物生成によって成形性の低下を招くため、好ましくない。そこでCrを添加する場合のCr量の範囲は0.05〜0.5%とした。なおCr量のより好ましい範囲は0.1〜0.4%である。
Cr:
Cr is an element effective for improving the strength. However, if it is less than 0.05%, the effect is small, and if it exceeds 0.5%, the formation of a giant crystallized product causes a decrease in formability, which is not preferable. Therefore, the range of Cr content when adding Cr is set to 0.05 to 0.5%. A more preferable range of the Cr content is 0.1 to 0.4%.

Zn:
Znの添加はAl−Mg−Zn系粒子の時効析出による強度向上に寄与するが、0.05%未満ではその効果が得られず、0.8%を越えれば、強度への寄与については問題がないが、耐食性を劣化させる。そこでZnを添加する場合のZr量の範囲は0.05〜0.8%とした。なおZn量のより好ましい範囲は、0.1〜0.5%である。
Zn:
Addition of Zn contributes to strength improvement by aging precipitation of Al—Mg—Zn-based particles, but if less than 0.05%, the effect cannot be obtained, and if over 0.8%, there is a problem with contribution to strength. There is no, but deteriorates the corrosion resistance. Therefore, the range of the Zr amount when adding Zn is set to 0.05 to 0.8%. A more preferable range of the Zn content is 0.1 to 0.5%.

Ti:
通常のアルミニウム合金においては、鋳塊結晶粒微細化のためにTiを微量添加することが行なわれており、この発明においても、必要に応じて微量のTiを添加しても良い。但しTi量が0.001%未満ではその効果が得られず、一方0.20%を越えれば巨大なAl−Ti系金属間化合物が晶出して成形性を阻害するため、Tiを添加する場合のTi量は0.001〜0.20%の範囲内とした。またTiとともに微量のBを添加すれば鋳塊結晶粒微細化の効果が向上することが知られており、そこでこの発明の場合もTiとともに微量のBを添加することは許容される。このようにTiと併せてBを添加する場合、B量が0.0001%未満ではその効果がなく、0.05%を越えればTi−B系の粗大粒子が混入して成形性を害することから、TiとともにBを添加する場合のB量は0.0001〜0.05%の範囲内ととすることが望ましい。
Ti:
In a normal aluminum alloy, a small amount of Ti is added for refining ingot crystal grains. In this invention, a small amount of Ti may be added as necessary. However, if the amount of Ti is less than 0.001%, the effect cannot be obtained. On the other hand, if it exceeds 0.20%, a large Al—Ti intermetallic compound crystallizes and inhibits formability. The amount of Ti was in the range of 0.001 to 0.20%. Further, it is known that the addition of a small amount of B together with Ti improves the effect of refining the ingot crystal grains. Therefore, in the present invention, addition of a small amount of B together with Ti is allowed. Thus, when adding B together with Ti, if the amount of B is less than 0.0001%, there is no effect, and if it exceeds 0.05%, Ti-B based coarse particles are mixed to impair the formability. Therefore, the amount of B when adding B together with Ti is preferably within the range of 0.0001 to 0.05%.

さらにこの発明の缶胴用アルミニウム合金硬質板では、合金の成分組成を前述のように規制するのみならず、板の加工硬化指数、すなわち所謂n値と、苛酷しごきの成功率を定めている。これらについて次に説明する。   Furthermore, the aluminum alloy hard plate for a can body of the present invention not only regulates the composition of the alloy as described above, but also defines the work hardening index of the plate, that is, the so-called n value, and the success rate of severe ironing. These will be described next.

加工硬化指数(n値)は材料の各種加工時、各種成形加工時における加工硬化の種々の指標であり、次の(1)式
σ=F・ε ・・・(1)
で定義される。但し、σは真応力、εは真歪み、Fは定数である。
The work hardening index (n value) is various indices of work hardening at the time of various processing of materials and various forming processes.
σ = F · ε n (1)
Defined by Where σ is true stress, ε is true strain, and F is a constant.

このような加工硬化指数n値は最終的な製品(缶胴)の強度および成形性、加工性に影響を与える。加工硬化指数n値が0.01未満では、加工硬化が進み難いため、強度不足となりやすく、また缶のボトム部とネック部の成形時において、シワが発生しやすくなる。一方n値が0.2を越えれば、材料の加工硬化が過度に進み、フランジ割れ感受性が高くなって、フランジ成形性が低下し、またしごき加工性も低下するおそれがある。そこでこの発明では、缶胴用アルミニウム合金硬質板の加工硬化指数n値を0.01〜0.2の範囲内に定めた。なおここでn値は、JIS5号試験片を圧延方向と平行に採取し、伸び2〜3%の範囲で求めたものとする。   Such a work hardening index n value affects the strength, formability, and workability of the final product (can body). When the work hardening index n value is less than 0.01, work hardening is difficult to proceed, so that the strength tends to be insufficient, and wrinkles are likely to occur during the molding of the bottom and neck portions of the can. On the other hand, if the n value exceeds 0.2, the work hardening of the material proceeds excessively, the flange cracking sensitivity becomes high, the flange formability is lowered, and the ironing workability may be lowered. Therefore, in the present invention, the work hardening index n value of the aluminum alloy hard plate for can bodies is set within a range of 0.01 to 0.2. Here, the n value is obtained in the range of 2 to 3% by taking a JIS No. 5 test piece in parallel with the rolling direction.

さらに、DI缶胴材のしごき加工性を効率良く、しかも高精度で評価するために、本発明者等が実験・検討を重ねた結果、リドローダイスR1.8mmとし、缶ボディメーカの第2のしごき用ダイスを抜いて、第1と第3のしごき用ダイスのしごき率55%と苛酷に設定してしごき加工(苛酷しごき)を行なった場合に、連続100缶の製缶で缶切れが発生しない比率がしごき加工性の指標としてきわめて有効であることを見出した。そしてこのような苛酷しごきの成功率が70%以上になれば、しごき加工性が良好とみなすことができることを見出し、この値を発明の缶胴用アルミニウム合金硬質板のしごき加工性指標として規定した。   Furthermore, in order to evaluate the iron can workability of DI can body efficiently and with high accuracy, the present inventors have conducted experiments and examinations. When the ironing die is removed and the ironing rate (55%) of the first and third ironing dies is set to be severe, and the ironing process (severe ironing) is performed, the can breaks out of 100 cans. It has been found that the ratio of not working is extremely effective as an index of ironing workability. And when the success rate of such a severe ironing reached 70% or more, it was found that ironing workability could be considered good, and this value was defined as the ironing workability index of the aluminum alloy hard plate for can bodies of the invention. .

さらにこの発明では、最終板(缶胴用アルミニウム合金硬質板)として、強度、しごき加工性、フランジ成形性、耳率のバランスの優れた材料を安定して得るため、そのアルミニウム合金硬質板(最終板)の製造過程の中間製品である熱間圧延板、すなわち缶胴用アルミニウム合金硬質板向けの熱間圧延板について、導電率、結晶粒サイズ、集合組織(結晶方位)、さらには金属間化合物に含まれるMg量を規定している。その理由は次の通りである。   Furthermore, in this invention, as the final plate (aluminum alloy hard plate for can body), in order to stably obtain a material excellent in balance of strength, ironing workability, flange formability, and ear rate, the aluminum alloy hard plate (final) For hot rolled sheets that are intermediate products in the manufacturing process of plates, that is, hot rolled sheets for aluminum plates for can bodies, electrical conductivity, grain size, texture (crystal orientation), and intermetallic compounds Mg content is defined. The reason is as follows.

この発明では、缶胴用アルミニウム合金硬質板の製造プロセスとして、低コスト化を図るため、熱間圧延終了直後やその後の冷間圧延中途での中間焼鈍を実施しないプロセスを適用することとしており、このようなプロセスでは、熱間圧延終了後の熱間圧延板の性能が最終板の性能を大きく左右することとなる。そして本発明者等が種々実験・検討を重ねた結果、熱間圧延終了後の段階における熱間圧延板の導電率、結晶粒サイズ、集合組織(結晶方位)の制御、さらには金属間化合物に含まれるMg量の制御が、最終板の強度、しごき加工性、フランジ成形性、耳率のバランスにとって極めて重要であることを見出し、これらを熱間圧延板についての条件として規定したのである。   In this invention, as a manufacturing process of the aluminum alloy hard plate for the can body, in order to reduce costs, a process that does not perform intermediate annealing immediately after the end of hot rolling or in the middle of subsequent cold rolling is applied. In such a process, the performance of the hot rolled sheet after completion of hot rolling greatly affects the performance of the final sheet. As a result of various experiments and examinations by the present inventors, the control of the conductivity, crystal grain size, texture (crystal orientation) of the hot rolled sheet in the stage after the hot rolling is completed, and further to the intermetallic compound It was found that control of the amount of Mg contained was extremely important for the balance of the strength, ironing workability, flange formability, and ear ratio of the final plate, and these were defined as conditions for the hot rolled plate.

具体的には、先ず熱間圧延板の導電率は、材料中に固溶している元素の固溶量の指標となる値であって、加工硬化に及ぼす影響が大きく、したがって導電率は加工硬化性を通じて材料の強度、しごき加工性、フランジ成形性に影響を及ぼす重要な因子であることから、この発明では30〜50%IACSの範囲内に規制することとした。ここで、熱間圧延板の導電率が30%IACS未満では、固溶元素量が多過ぎて、最終板の加工硬化指数n値が0.2を越えるおそれがあり、その場合高強度を得るためには有利となるが、しごき加工性、フランジ成形性が低下してしまう。また、熱間圧延後の導電率が50%IACSを越えれば、固溶元素量が少な過ぎて、最終板の加工硬化指数n値が0.01未満に低下してしまうおそれがあり、それに伴ない強度不足を招くおそれがある。なお熱間圧延板の導電率は、好ましくは35〜45%IACSの範囲内とする。なお、加工硬化指数n値は、導電率に影響される以外に、次に述べるように結晶方位、析出物のサイズと分布密度にも影響される。   Specifically, first, the electrical conductivity of the hot-rolled sheet is a value that serves as an index of the solid solution amount of the element dissolved in the material, and has a large effect on work hardening. Since it is an important factor affecting the strength of the material, the ironing workability, and the flange formability through the curability, in this invention, it was decided to regulate within the range of 30-50% IACS. Here, if the electrical conductivity of the hot-rolled sheet is less than 30% IACS, the amount of the solid solution element is too large, and the work hardening index n value of the final sheet may exceed 0.2, in which case high strength is obtained. Therefore, ironing workability and flange formability are reduced. Further, if the electrical conductivity after hot rolling exceeds 50% IACS, the amount of solid solution elements is too small, and the work hardening index n value of the final plate may be reduced to less than 0.01, and accordingly. There is a risk of lack of strength. The electrical conductivity of the hot rolled sheet is preferably in the range of 35 to 45% IACS. The work hardening index n is not only influenced by the electrical conductivity, but also by the crystal orientation, the size and distribution density of the precipitates as described below.

次に結晶粒が微細であることは、強度向上と均一変形に寄与する重要な因子であり、したがって結晶粒度は材料の強度、しごき加工性、フランジ成形性のバランスにとって極めて重要である。熱間圧延板段階での結晶粒度がASTMナンバーで4.0未満では、中間焼鈍を省略したプロセスでは最終板の組織も微細とならず、そのため強度、しごき加工性、フランジ成形性の良好な板を得ることが困難となる。そこで熱間圧延板段階での結晶粒サイズをASTMナンバー4.0以上と定めた。なお好ましくはASTMナンバー7.0以上とする。   Next, the fineness of the crystal grains is an important factor contributing to the improvement of strength and uniform deformation. Therefore, the crystal grain size is extremely important for the balance between the strength of the material, ironing workability, and flange formability. If the grain size at the hot-rolled sheet stage is less than 4.0 in the ASTM number, the structure of the final sheet will not be fine in the process that omits the intermediate annealing, so that the sheet has good strength, ironing workability, and flange formability. It becomes difficult to obtain. Therefore, the crystal grain size at the hot rolled sheet stage is determined to be ASTM number 4.0 or more. Preferably, the ASTM number is 7.0 or higher.

さらに、熱間圧延板の段階での集合組織(結晶方位密度)、特にキューブ方位密度は、最終板の耳率に大きな影響を及ぼすだけでなく、すべり変形の異方性にも影響を与え、そのすべり変形の異方性を通じて、最終板のしごき加工性、フランジ成形性にも影響を及ぼす。熱間圧延段階でのキューブ方位密度の適切な範囲は、最終板の耳率、しごき加工性、フランジ成形性のバランスから、ランダム試料の5倍以上100倍以下である。熱間圧延板でのキューブ方位密度がランダム試料の5倍未満となるかまたは100倍を越えれば、しごき加工性、フランジ成形性が低下し、また低耳率を得ることも困難となる。   Furthermore, the texture (crystal orientation density) at the stage of the hot-rolled sheet, particularly the cube orientation density, not only greatly affects the ear rate of the final sheet, but also affects the anisotropy of slip deformation, Through the anisotropy of the slip deformation, it affects the ironing workability and flange formability of the final plate. The appropriate range of the cube orientation density in the hot rolling stage is 5 times or more and 100 times or less that of the random sample in view of the balance of the ear ratio, the ironing workability, and the flange formability of the final plate. If the cube orientation density in the hot-rolled sheet is less than 5 times or more than 100 times that of the random sample, ironing workability and flange formability are lowered, and it is difficult to obtain a low ear ratio.

さらに、熱間圧延板中に存在する金属間化合物、特にMgを含有する系の金属間化合物(Mg系金属間化合物)の分散状況(分布の疎密、サイズ)は、最終板の強度や耳率、しごき加工性に大きな影響を与える。またここで熱間圧延板中に存在する金属間化合物のMg量(板全体に対してMg系金属間化合物に含まれているMgの割合)は、Mg系金属間化合物の分散状況の指標となる。そこでこの発明では、熱間圧延板中に存在する金属間化合物中に含まれているMg量を、熱間圧延板全体の全ての金属間化合物の合計量(総金属間化合物量)に対する割合で0.01〜0.2質量%の範囲内と規定している。   Furthermore, the dispersion status (distribution density, size) of intermetallic compounds present in hot-rolled sheets, particularly Mg-containing intermetallic compounds (Mg-based intermetallic compounds), determines the strength and ear ratio of the final sheet. It has a great influence on ironing processability. Also, here, the amount of Mg in the intermetallic compound present in the hot-rolled sheet (the ratio of Mg contained in the Mg-based intermetallic compound to the entire sheet) is an indicator of the dispersion status of the Mg-based intermetallic compound. Become. Therefore, in the present invention, the amount of Mg contained in the intermetallic compound present in the hot-rolled sheet is a ratio with respect to the total amount of all intermetallic compounds (total amount of intermetallic compound) in the entire hot-rolled sheet. It is specified within the range of 0.01 to 0.2% by mass.

この点についてより具体的に説明すると、熱間圧延板中に含まれるMg系金属間化合物としては、代表的にはAl−Mg−Cu系(例えばS相すなわちMgCuAl2)やMg2Siなどがある。このようなMg系金属間化合物に含まれているMgの量が熱間圧延板全体に対し0.01%未満では、これらのMg系金属間化合物の分布が疎になり過ぎて、低強度になりやすく、また、耳率も不安定になる。逆に金属間化合物に含まれるMgの量が熱間圧延板全体に対し0.2%を越えれば、これら金属間化合物の分布が密になり過ぎて、しごき加工性が劣化する。特に上述のMg系金属間化合物のうちS相は、そのサイズが小さく、強度、しごき加工性に及ぼす影響が大きいから、上記のように規制すこととした。なお、Mg系以外の金属間化合物としては、Al(MnFe)Si系、AlMnSi系、AlFeSi系、AlMn系、AlFe系などがあり、一般にはこれらが主体となって全金属間化合物の90%以上を占めることが多く、これらのMg系以外の金属間化合物も全体として一定の分散強化の効果をもたらすが、個々の粒子サイズは比較的大きく、析出硬化に対する寄与は少ない。したがって合金成分および製造条件がこの発明で規定する範囲内であれば、Mg系以外の金属間化合物については特に考慮する必要はない。 More specifically, the Mg-based intermetallic compound contained in the hot-rolled sheet typically includes an Al—Mg—Cu-based (for example, S phase, that is, MgCuAl 2 ), Mg 2 Si, and the like. is there. If the amount of Mg contained in such an Mg-based intermetallic compound is less than 0.01% with respect to the entire hot-rolled sheet, the distribution of these Mg-based intermetallic compounds becomes too sparse, resulting in low strength. The ear rate is also unstable. Conversely, if the amount of Mg contained in the intermetallic compound exceeds 0.2% with respect to the entire hot-rolled sheet, the distribution of these intermetallic compounds becomes too dense and the ironing workability deteriorates. In particular, among the Mg-based intermetallic compounds described above, the S phase has a small size and has a large effect on strength and ironing workability. In addition, as intermetallic compounds other than Mg-based, there are Al (MnFe) Si-based, AlMnSi-based, AlFeSi-based, AlMn-based, AlFe-based, etc., and generally 90% or more of all intermetallic compounds are mainly composed of these. These intermetallic compounds other than Mg-based compounds also bring about a certain dispersion strengthening effect as a whole, but the individual particle size is relatively large and the contribution to precipitation hardening is small. Therefore, if the alloy components and the production conditions are within the ranges specified in the present invention, there is no need to consider intermetallic compounds other than Mg-based compounds.

以上のように、この発明では熱間圧延板の段階での導電率、結晶粒度、キューブ方位密度、および金属間化合物に含まれるMg量をそれぞれ規定しており、最終板(熱間圧延板に冷間圧延を加えたもの)の段階ではこれらを規定していないが、その理由は次の通りである。   As described above, in the present invention, the electrical conductivity, crystal grain size, cube orientation density, and Mg content contained in the intermetallic compound at the stage of the hot rolled sheet are respectively defined, and the final sheet (on the hot rolled sheet) These are not stipulated at the stage of cold rolling), but the reason is as follows.

すなわち、最終板では冷間加工(冷間圧延)によって結晶粒が変形し、繊維状の加工組織となるため、結晶粒サイズの測定は困難であり、また冷間加工によるキューブ方位密度の低減と加工集合組織成分の増大などにって結晶方位成分が複雑となり、一律に方位密度条件を規定することが困難となる。さらにこの発明では、熱間圧延後に中間焼鈍を行なわないプロセスを対象としているため、冷間圧延後の最終板の性能バランスは熱間圧延後の段階での性能指標によってほとんど決定されてしまう。したがってこの発明では、熱間圧延板の段階での板の条件を厳密に規定しておくこととした。   In other words, in the final plate, the crystal grains are deformed by cold working (cold rolling) to form a fibrous work structure, so it is difficult to measure the crystal grain size, and the cold orientation reduces the cube orientation density. The crystal orientation component becomes complicated due to an increase in the processed texture component, and it becomes difficult to uniformly define the orientation density condition. Furthermore, since the present invention targets a process in which intermediate annealing is not performed after hot rolling, the performance balance of the final sheet after cold rolling is almost determined by the performance index at the stage after hot rolling. Therefore, in the present invention, the conditions of the plate at the stage of the hot rolled plate are strictly defined.

次にこの発明の缶胴用アルミニウム合金硬質板の製造方法について説明する。なおこの発明では、最終板である缶胴用アルミニウム合金硬質板のみならず、その中間製品に相当する熱間圧延板についても規定しているが、このような中間製品としての熱間圧延板の製造方法は、以下の缶胴用アルミニウム合金硬質板の製造方法についての説明中に含ませて説明するものとする。   Next, the manufacturing method of the aluminum alloy hard plate for can bodies of this invention is demonstrated. In addition, in this invention, not only the aluminum alloy hard plate for can bodies which is the final plate, but also a hot rolled plate corresponding to the intermediate product is defined. The manufacturing method is included in the following description of the manufacturing method of the aluminum alloy hard plate for can bodies.

先ず前述のような合金組成を有するアルミニウム合金鋳塊を、常法にしたがってDC鋳造法(半連続鋳造法)により鋳造する。次いでその鋳塊に対して均質化処理を行ない、鋳塊の偏析を均質化するとともにMn、Fe、Si系の第2相粒子サイズと分布を最適化する。このような第2相粒子のサイズと分布は熱間圧延板の結晶粒サイズと集合組織に影響を及ぼす。均質化処理温度が500℃未満では、均質化効果が不充分であるばかりでなく、微細な結晶粒サイズ、最適な集合組織が得られなくなるおそれがある。一方均質化処理温度の上限特に規制しないが、通常は640℃を越えれば、共晶融解のおそれがあるから、640℃以下とすることが好ましい。より好ましくは、均質化処理温度は560〜630℃の範囲内とする。また均質化処理の時間は特に規制しないが、1時間未満では均質化効果が不充分となるおそれがあり、また48時間を越えれば経済性を損なうから、通常は1〜48時間の範囲内とし、好ましくは2〜16時間の範囲内とする。なお上述のようにして均質化処理を行なった鋳塊は、その温度を保持したまま直ちに次に述べるような熱間圧延に供しても良く、あるいは一旦冷却して表面品質維持のための面削を行なった後、改めて熱間圧延開始温度に再加熱して熱間圧延を行なっても良い。   First, an aluminum alloy ingot having the above alloy composition is cast by a DC casting method (semi-continuous casting method) according to a conventional method. The ingot is then homogenized to homogenize the ingot segregation and optimize the size and distribution of Mn, Fe, and Si-based second phase particles. The size and distribution of the second phase particles influence the crystal grain size and texture of the hot rolled sheet. When the homogenization treatment temperature is less than 500 ° C., not only the homogenization effect is insufficient, but there is a possibility that a fine crystal grain size and an optimum texture cannot be obtained. On the other hand, the upper limit of the homogenization treatment temperature is not particularly restricted, but normally, if it exceeds 640 ° C, eutectic melting may occur, and therefore it is preferably 640 ° C or less. More preferably, the homogenization temperature is in the range of 560 to 630 ° C. The homogenization time is not particularly limited, but if it is less than 1 hour, the homogenization effect may be insufficient, and if it exceeds 48 hours, the economy is impaired. , Preferably within the range of 2 to 16 hours. The ingot that has been homogenized as described above may be immediately subjected to hot rolling as described below while maintaining its temperature, or it may be cooled once and surface milled to maintain surface quality. After carrying out, the hot rolling may be performed again by reheating to the hot rolling start temperature.

均質化処理後には、上述のように熱間圧延を行なう。ここで、この発明の場合、熱間圧延後に焼鈍を行なわないプロセスを適用することとしているため、熱間圧延上がりの状態で充分に再結晶している必要があり、また熱間圧延後は冷間圧延を施すだけであるため、熱間圧延を終了した段階での板(熱間圧延板)の性能は最終板の性能に大きな影響を及ぼす。そこで最終板として性能バランスの優れたものを得るため、熱間圧延を終了した段階での板の条件として、既に述べたように導電率、結晶粒サイズ、キューブ方位密度、および金属間化合物に含まれるMg量を規定している。そしてこれらの条件を満たす熱間圧延板を得るためには、熱間圧延条件を厳密に規制する必要があり、そこでこの発明の製造方法では、熱間圧延開始温度や熱間圧延終了温度(熱延上り温度)のみならず、熱間圧延過程における各板厚段階(特に後期〜末期)での材料温度、さらには熱間圧延過程の後期〜末期における各パスのLn(Z)値、歪速度等を厳密に規制している。具体的には、請求項3に係る発明の製造方法では、次の(1)〜(6)の条件を規定している。
(1)熱間圧延開始温度を、300〜550℃の範囲内に制御する。
(2)熱間圧延過程における厚さ150mmから20mmまでの間における材料温度を300〜470℃の範囲内に制御する。
(3)熱間圧延過程における厚さ20mmから熱間圧延最終パス直前までの材料温度を270〜420℃の範囲内に制御する。
(4)熱間圧延過程における厚さ150mm以下の各パスにおけるLn(Z)値を20〜50の範囲内に制御する。
(5)熱間圧延終了温度を270〜350℃の範囲内に制御する。
(6)熱間圧延上りの270〜350℃の範囲内の温度から100℃以下の温度域までの冷却過程において、100℃までの平均冷却速度を100℃/hr以下に制御する。
After the homogenization treatment, hot rolling is performed as described above. Here, in the case of the present invention, since a process in which annealing is not performed after hot rolling is applied, it is necessary to sufficiently recrystallize after hot rolling, and after hot rolling, it is necessary to cool. Since only hot rolling is performed, the performance of the plate (hot rolled plate) at the stage where hot rolling is finished has a great influence on the performance of the final plate. Therefore, in order to obtain an excellent performance balance as the final plate, the conditions of the plate at the stage of finishing the hot rolling are included in the conductivity, crystal grain size, cube orientation density, and intermetallic compound as described above. Defines the amount of Mg. In order to obtain a hot-rolled sheet that satisfies these conditions, it is necessary to strictly regulate the hot-rolling conditions. Therefore, in the production method of the present invention, the hot-rolling start temperature and the hot-rolling end temperature (heat Material temperature at each sheet thickness stage (especially late to final stage) in the hot rolling process as well as the Ln (Z) value and strain rate of each pass in the late to final stage of the hot rolling process. Etc. are strictly regulated. Specifically, in the manufacturing method of the invention according to claim 3, the following conditions (1) to (6) are defined.
(1) The hot rolling start temperature is controlled within a range of 300 to 550 ° C.
(2) The material temperature in the thickness range from 150 mm to 20 mm in the hot rolling process is controlled within a range of 300 to 470 ° C.
(3) The material temperature from the thickness 20 mm in the hot rolling process to immediately before the final hot rolling pass is controlled within a range of 270 to 420 ° C.
(4) The Ln (Z) value in each pass having a thickness of 150 mm or less in the hot rolling process is controlled within a range of 20-50.
(5) The hot rolling end temperature is controlled within a range of 270 to 350 ° C.
(6) In the cooling process from a temperature in the range of 270 to 350 ° C. after the hot rolling to a temperature range of 100 ° C. or less, the average cooling rate up to 100 ° C. is controlled to 100 ° C./hr or less.

さらに以上の(1)〜(6)の条件と併せて、次の(7)の条件を満たすことが望ましく、この(7)の条件を請求項4の発明で規定している。
(7)熱間圧延過程における厚さ20mm以下の各パスを、その各パスにおける歪速度が後段のパスほど高くなるように制御するとともに、最終パスの歪速度を50/秒以上に制御する。
In addition to the above conditions (1) to (6), it is desirable that the following condition (7) is satisfied. The condition (7) is defined by the invention of claim 4.
(7) Each pass having a thickness of 20 mm or less in the hot rolling process is controlled so that the strain rate in each pass becomes higher as the subsequent pass, and the strain rate in the final pass is controlled to 50 / second or more.

以下にこれらの熱間圧延条件のうち、先ず請求項3で規定している(1)〜(6)の条件について具体的に説明する。   Hereinafter, among these hot rolling conditions, the conditions (1) to (6) defined in claim 3 will be specifically described.

(1)熱間圧延開始温度を、300〜550℃の範囲内に制御する。
熱間圧延開始温度は、熱間圧延中の材料の回復、再結晶挙動に強い影響を及ぼす。熱間圧延開始温度が300℃未満では圧延中に再結晶が起こりにくく、材料の延性が低下して、熱間圧延中に板のエッジ割れ現象が生じやすい。一方、550℃を越えた温度で熱間圧延を開始すれば、粗大な結晶粒が形成されやすく、板の表面品質が低下するため、熱間圧延開始温度は300〜550℃の範囲に制御することとした。なお熱間圧延開始温度の好ましい範囲は350〜500℃である。
(1) The hot rolling start temperature is controlled within a range of 300 to 550 ° C.
The hot rolling start temperature strongly affects the recovery and recrystallization behavior of the material during hot rolling. When the hot rolling start temperature is less than 300 ° C., recrystallization hardly occurs during rolling, the ductility of the material is lowered, and the edge cracking phenomenon of the plate is likely to occur during hot rolling. On the other hand, if hot rolling is started at a temperature exceeding 550 ° C., coarse crystal grains are easily formed, and the surface quality of the plate is deteriorated. Therefore, the hot rolling start temperature is controlled in the range of 300 to 550 ° C. It was decided. In addition, the preferable range of hot rolling start temperature is 350-500 degreeC.

(2)熱間圧延過程における厚さ150mmから20mmまでの間における材料温度を300〜470℃の範囲内の温度に制御する。
熱間圧延の開始温度と終了温度だけではなく、熱間圧延中の材料温度制御は極めて重要であり、特に熱間圧延過程中における板厚150mm以降の段階での材料温度の厳密な制御は、材料の析出挙動、再結晶挙動を制御して、材料の導電率、集合組織、耳率を適切な範囲に制御するために不可欠かつ重要である。板厚150mmから20mmまでの段階の材料温度が300℃未満では、熱間圧延中に深刻な板エッジ割れが生じるおそれがあり、一方470℃を越えれば、再結晶の進行が早まり、所要の導電率、集合組織、耳率が得られなくなるおそれがある。
(2) The material temperature in the thickness range from 150 mm to 20 mm in the hot rolling process is controlled to a temperature within the range of 300 to 470 ° C.
In addition to the hot rolling start temperature and end temperature, the material temperature control during hot rolling is extremely important. In particular, the strict control of the material temperature at the stage after the sheet thickness of 150 mm during the hot rolling process is as follows: It is indispensable and important to control the deposition behavior and recrystallization behavior of the material to control the conductivity, texture, and ear ratio of the material within an appropriate range. If the material temperature in the stage of the plate thickness from 150 mm to 20 mm is less than 300 ° C., serious plate edge cracking may occur during hot rolling. The rate, texture, and ear rate may not be obtained.

(3)熱間圧延過程における厚さ20mmから熱間圧延最終パス直前までの材料温度を270〜420℃の範囲内に制御する。
この条件は、前述の(2)の厚さ150mmから20mmの段階の温度条件と合せて、熱間圧延過程における材料の析出挙動、再結晶挙動を制御して、材料の導電率、集合組織、耳率を適切な範囲に制御するばかりでなく、(2)の温度条件よりさらに低温側にシフトさせて材料温度を制御することによって、より多くの歪を蓄積し、熱間圧延終了後の材料の結晶粒度を微細にさせるために必要である。この段階での材料温度が270℃未満では、熱間圧延中に深刻な板エッジ割れを招くおそれがあり、一方420℃を越えれば、再結晶の進行が早まって、所要の導電率、集合組織、耳率が得られなくなるおそれがあるばかりでなく、歪の蓄積も少なくなって、微細な結晶粒を得ることが困難となる。なおこの範囲内でも特に280〜390℃の範囲内に制御することが好ましい。
(3) The material temperature from the thickness 20 mm in the hot rolling process to immediately before the final hot rolling pass is controlled within a range of 270 to 420 ° C.
This condition is combined with the temperature condition of 150 mm to 20 mm in the thickness of (2) described above, and controls the material precipitation behavior and recrystallization behavior in the hot rolling process, so that the material conductivity, texture, In addition to controlling the ear ratio to an appropriate range, the material temperature is controlled by shifting to a lower temperature side than the temperature condition of (2), thereby accumulating more strain and the material after the hot rolling is completed. It is necessary to make the crystal grain size of the finer. If the material temperature at this stage is less than 270 ° C., serious plate edge cracking may occur during hot rolling. On the other hand, if it exceeds 420 ° C., the progress of recrystallization is accelerated and the required conductivity and texture are increased. In addition to the possibility that the ear rate cannot be obtained, the accumulation of strain is also reduced, making it difficult to obtain fine crystal grains. Even within this range, it is particularly preferable to control the temperature within the range of 280 to 390 ° C.

(4)熱間圧延過程における厚さ150mm以下の各パスにおけるLn(Z)値を20〜50の範囲内に制御する。
ここで、Zは、例えば文献「アルミニウム材料の基礎と工業技術」(昭和60年5月1日、社団法人軽金属協会発行)の第88頁〜第89頁に示されているように、熱間歪み蓄積の指標となるZener−Hollomon Parameter(単位:/秒)であり、歪み速度をE、活性化エネルギをQ、気体定数をR、温度をTとすれば、次の(2)式
Z=E・exp(Q/RT) ・・・(2)
で求められる値である。そして請求項3の発明では、前記の(2)、(3)の温度条件と合わせて、材料の熱間歪み蓄積と回復・再結晶を制御する目的で、Z値の自然対数Ln(Z)の値を、20から50までの範囲内に制御することとしている。ここで、Ln(Z)の値が20未満では熱間歪みの蓄積が不充分であり、一方50を越えれば材料の再結晶が促進され、いずれの場合も所要の集合組織、耳率、結晶粒度が得られなくなるおそれがある。なお厚さ150mm以下の各パスのLn(Z)の値は、好ましくは25〜45の範囲内に制御する。ここで、各パスにおけるLn(Z)の値は、(2)式から明らかなように各パスの歪速度および各パスの温度を適切に調整することによって制御することができ、特に厚さ150mm以下の各パスのLn(Z)の値を上述のような特定の範囲内に制御することは、所要の集合組織、耳率、結晶粒度を得るために極めて有効である。なおこの発明においては、Z値の計算にあたって活性化エネルギQの値として37,300cal/molの値を用い、気体定数Rとしては1.987cal/mol・kの値を用いている。
(4) The Ln (Z) value in each pass having a thickness of 150 mm or less in the hot rolling process is controlled within a range of 20-50.
Here, for example, Z is hot as shown in pages 88 to 89 of the document “Basics and Industrial Technology of Aluminum Materials” (issued by the Japan Light Metal Association on May 1, 1985). The Zener-Holomon Parameter (unit: / second) that is an index of strain accumulation, where the strain rate is E, the activation energy is Q, the gas constant is R, and the temperature is T, the following equation (2)
Z = E · exp (Q / RT) (2)
This is the value obtained by. In the invention of claim 3, the natural logarithm Ln (Z) of the Z value is used for the purpose of controlling hot strain accumulation and recovery / recrystallization of the material in accordance with the temperature conditions of (2) and (3). Is controlled within a range of 20 to 50. Here, if the value of Ln (Z) is less than 20, accumulation of hot strain is insufficient, while if it exceeds 50, recrystallization of the material is promoted. In any case, the required texture, ear ratio, crystal The particle size may not be obtained. The value of Ln (Z) for each pass having a thickness of 150 mm or less is preferably controlled within the range of 25-45. Here, the value of Ln (Z) in each pass can be controlled by appropriately adjusting the strain rate of each pass and the temperature of each pass as is apparent from the equation (2), and in particular, the thickness is 150 mm. Controlling the value of Ln (Z) in each of the following passes within the specific range as described above is extremely effective for obtaining a required texture, ear ratio, and crystal grain size. In the present invention, in calculating the Z value, a value of 37,300 cal / mol is used as the value of the activation energy Q, and a value of 1.987 cal / mol · k is used as the gas constant R.

(5)熱間圧延終了温度を270〜350℃の範囲内に制御する。
熱間圧延終了温度が270℃未満では、充分な再結晶組織が得られ難く、この場合そのまま焼鈍せずに最終板厚まで冷間圧延すれば、DI缶の耳が高くなり、またしごき加工性の劣化も招く。一方熱間圧延終了温度が350℃を越える場合、材料は完全再結晶組織となりやすいが、結晶粒の粗大化と表面品質の低下を招くおそれがある。そのため熱間圧延の終了温度は270〜350℃の範囲内とした。なおこの範囲内でも特に280〜340℃の範囲内が好ましい。なおまた熱間圧延終了板厚は特に限定しないが、最終板の強度と耳率としごき加工性、フランジ成形性のバランスを考慮すれば、3.0〜1.5mmの範囲内が好ましい。
(5) The hot rolling end temperature is controlled within a range of 270 to 350 ° C.
When the hot rolling finish temperature is less than 270 ° C., it is difficult to obtain a sufficient recrystallized structure. In this case, if the steel sheet is cold-rolled to the final thickness without being annealed as it is, the ears of the DI can become high and the ironing processability is increased. It also causes deterioration. On the other hand, when the hot rolling finish temperature exceeds 350 ° C., the material tends to have a complete recrystallized structure, but there is a possibility that the crystal grains become coarse and the surface quality deteriorates. Therefore, the end temperature of the hot rolling is set in the range of 270 to 350 ° C. Even within this range, a range of 280 to 340 ° C. is particularly preferable. Further, the thickness of the hot-rolled finished sheet is not particularly limited, but is preferably in the range of 3.0 to 1.5 mm in consideration of the balance between the strength and ear ratio of the final sheet and the ironing workability and flange formability.

(6)熱間圧延上りの270〜350℃の範囲内の温度から100℃以下の温度域までの冷却過程において、100℃までの平均冷却速度を100℃/hr以下に制御する。
熱間圧延終了後、270〜350℃の温度範囲からの冷却過程、特に100℃までの冷却過程は、再結晶の進行過程であって、キューブ方位結晶粒が成長する過程でもある。この過程での平均冷却速度が100℃/hrを越えれば、再結晶が充分に進行せず、キューブ方位結晶粒の生成が不充分となり、その結果最終板の低耳率の制御に不利となるだけではなく、成形性も低下するおそれがある。またこの冷却過程は、微細なMg系金属間化合物が生成する過程でもあり、この過程での冷却速度を制御することにより、Mg系金属間化合物のサイズと分布を適切に調整することができ、その結果冷間圧延後に適切な材料強度が得られるばかりでなく、安定した低い耳率を得ることが可能となる。そこでこの冷却過程での平均冷却速度を100℃/hr以下に規制することとした。なおこの過程で生成されるMg系金属間化合物としては、既に述べたようにAl−Mg−Cu系(例えばS相 MgCuAl2)、Mg2Siなどがある。そして既に述べたように熱間圧延板中の金属間化合物に含まれるMgの量が0.01%未満では、これらの金属間化合物の分布が疎になり過ぎて、低強度になりやすく、また耳率も不安定になり、逆に金属間化合物に含まれるMgの量が0.2%を越えれば、これらの金属間化合物の分布が密になり過ぎて、しごき加工性が劣化するから、金属間化合物に含まれるMgの量は0.01〜0.2%の範囲内とする必要があり、そのためにも上記の冷却過程の制御は重要である。
(6) In the cooling process from a temperature in the range of 270 to 350 ° C. after the hot rolling to a temperature range of 100 ° C. or less, the average cooling rate up to 100 ° C. is controlled to 100 ° C./hr or less.
After the hot rolling is completed, the cooling process from the temperature range of 270 to 350 ° C., particularly the cooling process to 100 ° C. is a process of recrystallization and is a process of growing cube-oriented crystal grains. If the average cooling rate in this process exceeds 100 ° C./hr, recrystallization does not proceed sufficiently, resulting in insufficient formation of cube-oriented crystal grains, which is disadvantageous for controlling the low ear ratio of the final plate. In addition to this, the moldability may also be reduced. This cooling process is also a process in which fine Mg-based intermetallic compounds are produced, and by controlling the cooling rate in this process, the size and distribution of the Mg-based intermetallic compounds can be adjusted appropriately, As a result, it is possible not only to obtain an appropriate material strength after cold rolling, but also to obtain a stable low ear rate. Therefore, the average cooling rate in the cooling process is regulated to 100 ° C./hr or less. Examples of the Mg-based intermetallic compound produced in this process include Al—Mg—Cu-based (for example, S phase MgCuAl 2 ) and Mg 2 Si as already described. And as already stated, if the amount of Mg contained in the intermetallic compound in the hot-rolled sheet is less than 0.01%, the distribution of these intermetallic compounds becomes too sparse and tends to be low strength, If the amount of Mg contained in the intermetallic compound exceeds 0.2%, the distribution of these intermetallic compounds becomes too dense and the ironing workability deteriorates. The amount of Mg contained in the intermetallic compound needs to be in the range of 0.01 to 0.2%, and for this reason, control of the cooling process is important.

さらに請求項4の発明の製造方法においては、熱間圧延条件として、請求項3の発明の製造方法で規定している(1)〜(6)のほか、(7)の条件を規定しており、この(7)の条件について次に説明する。   Furthermore, in the manufacturing method of the invention of claim 4, in addition to (1) to (6) defined in the manufacturing method of the invention of claim 3 as hot rolling conditions, the conditions of (7) are specified. The condition (7) will be described next.

(7)熱間圧延過程における厚さ20mm以下の各パスの歪速度が、後段のパスほど高くなるように、すなわち後パスの歪速度をその一つ前のパスの歪速度を越えるように制御(以下このような制御方式を逓増方式と称する)するとともに、最終パスの歪速度を50/秒以上に制御する。
このように熱間圧延中の歪速度を規制することによって、(2)、(3)の温度条件、(4)のLn(Z)条件と有機的に結びついて、より安定的に望ましい導電率、集合組織、耳率と微細な結晶粒度が得られるばかりでなく、Mg系金属間化合物の量を制御することが可能となる。一般に熱間圧延における仕上げ段階では、相対的に材料温度が低くなるのが通常であり、このように材料温度が低下していく段階で歪速度を逓増させることによって、組織の回復を抑制し、歪を蓄積させるために極めて有効となる。そして熱間圧延過程で歪が蓄積された加工組織から完全再結晶組織に変わるまでの間は、転位パイプ拡散などによって微細なMg系金属間化合物が多量に生成されることになる。ここで、歪速度を逓増方式にしなければ、蓄積が足りず、そのため微細なMg系金属間化合物の生成が不足して、最終板で所要の強度と適切な耳率が得られなくなるという不具合が生じる。また、最終パスの歪速度が50/秒未満の場合も同様な不具合が生じる。
(7) The strain rate of each pass having a thickness of 20 mm or less in the hot rolling process is controlled to be higher in the subsequent pass, that is, the strain rate of the subsequent pass is controlled to exceed the strain rate of the previous pass. (Hereinafter, such a control method is referred to as a gradual increase method), and the distortion speed of the final path is controlled to 50 / second or more.
By regulating the strain rate during hot rolling in this way, it is organically linked to the temperature conditions of (2) and (3) and the Ln (Z) condition of (4), and the more desirable desirable conductivity. In addition to obtaining a texture, ear ratio and fine crystal grain size, the amount of Mg-based intermetallic compound can be controlled. In general, in the finishing stage in hot rolling, the material temperature is usually relatively low, and by increasing the strain rate in such a stage that the material temperature decreases, the recovery of the structure is suppressed, This is extremely effective for accumulating distortion. A large amount of fine Mg-based intermetallic compound is generated by dislocation pipe diffusion or the like until the processing structure in which strain is accumulated in the hot rolling process is changed to a complete recrystallization structure. Here, unless the strain rate is gradually increased, the accumulation is insufficient, so that the production of fine Mg-based intermetallic compound is insufficient, and the required strength and appropriate ear ratio cannot be obtained on the final plate. Arise. The same problem occurs when the distortion speed of the final pass is less than 50 / second.

以上のような各条件を満たすようにして、熱間圧延を終了して材料を室温もしくは室温近くまで冷却した後には、自己焼鈍によりほぼ完全な再結晶の組織となるばかりでなく、微細な結晶組織と適切なMg系金属間化合物の分布が得られるため、これ以降、改めて中間焼鈍を施すことなく、冷間圧延を行なうだけで、低コストで性能バランスの優れた高品質の製品板を得ることができる。   After satisfying each of the above conditions, after hot rolling is finished and the material is cooled to room temperature or near room temperature, not only a complete recrystallization structure is obtained by self-annealing, but also a fine crystal Since the distribution of the structure and the appropriate Mg-based intermetallic compound can be obtained, high-quality product plates with excellent performance balance at low cost can be obtained simply by cold rolling without intermediate annealing. be able to.

冷間圧延は、圧延率50%以上で行なう。ここで、中間焼鈍を施さずに最終冷間圧延率を50%未満とした場合、最終製品板の望ましい板厚0.35〜0.25mmの範囲を考慮すれば、熱延上り板厚を1mm未満にする必要が生じる。しかしながら熱延上り板厚を1mm未満とすることは、実操業上において極めて困難であり、また最終冷間圧延率を50%未満とすれば、材料の冷間加工硬化による強化が少なくなり、充分な材料強度が得られなくなるおそれがあり、さらには耳率の制御にも不利となる。したがって、冷間圧延率は50%以上に規制することとした。なお冷間圧延率の上限は特に規制しないが、しごき加工性、フランジ成形性、耳率、強度のバランスを考慮すれば、好ましくは90%以下とする。   Cold rolling is performed at a rolling rate of 50% or more. Here, when the final cold rolling reduction is set to less than 50% without performing the intermediate annealing, the hot rolled plate thickness is set to 1 mm in consideration of the desirable thickness range of 0.35 to 0.25 mm of the final product plate. It is necessary to make it less than. However, it is extremely difficult in actual operation to make the hot rolled plate thickness less than 1 mm, and if the final cold rolling rate is less than 50%, the strengthening due to the cold work hardening of the material is reduced and sufficient. There is a possibility that a sufficient material strength cannot be obtained, and it is also disadvantageous for the control of the ear rate. Therefore, the cold rolling rate is regulated to 50% or more. The upper limit of the cold rolling rate is not particularly limited, but is preferably 90% or less in consideration of the balance of ironing workability, flange formability, ear rate, and strength.

以上のような工程を経て得られた硬質板は、既に述べたような加工硬化指数n値の条件(0.01〜0.2)、および苛酷しごき成功率の条件(70%以上)を満たし、強度、しごき加工性、フランジ成形性、耳率のバランスの優れた材料となる。   The hard plate obtained through the above steps satisfies the conditions for the work hardening index n value (0.01 to 0.2) and the severe success rate condition (70% or more) as described above. , Strength, ironing workability, flange formability, and excellent balance of ear ratio.

以下にこの発明の実施例を比較例とともに説明する。なお以下の各例は、この発明の効果を説明するためのものであり、実施例記載のプロセスおよび条件がこの発明の技術的範囲を制限するものではないことはもちろんである。   Examples of the present invention will be described below together with comparative examples. The following examples are for explaining the effects of the present invention, and it goes without saying that the processes and conditions described in the examples do not limit the technical scope of the present invention.

表1に示す合金記号A1〜A6の各合金について、それぞれ常法に従って溶製し、DC鋳造法により厚み650mmのスラブに鋳造した。得られたスラブについて、610℃の温度に加熱して6時間保持の均質化処理を行ない、放冷した。その後、片面あたり10mmづつ面削して表2中に示す熱間圧延開始温度まで加熱して2時間保持後、熱間圧延を開始した。なおスラブ均質化処理における昇温速度は2〜200℃/hr、均質化処理後の冷却過程における降温速度は5〜1000℃/hrの範囲内とした。熱間圧延過程では、150〜20mmの板厚範囲で100mm、65mm、30mmの各板厚をそれぞれ代表板厚として材料温度の測定を行ない、また板厚20mm以下では、12mmおよび4.5mmをそれぞれ代表板厚として材料温度の測定を行なった。さらに、各代表板厚のLn(Z)値および板厚20mm以下の各パスの歪速度を調べた。なお、熱間圧延終了板厚は2mmとした。このような熱間圧延過程における詳細な条件を表2、表3に示す。   Each alloy of alloy symbols A1 to A6 shown in Table 1 was melted in accordance with a conventional method, and cast into a slab having a thickness of 650 mm by a DC casting method. About the obtained slab, it heated to the temperature of 610 degreeC, the homogenization process hold | maintained for 6 hours was performed, and it stood to cool. Then, chamfering was performed 10 mm per side and heated to the hot rolling start temperature shown in Table 2 and maintained for 2 hours, and then hot rolling was started. In addition, the temperature increase rate in the slab homogenization treatment was in the range of 2 to 200 ° C./hr, and the temperature decrease rate in the cooling process after the homogenization treatment was in the range of 5 to 1000 ° C./hr. In the hot rolling process, the material temperature is measured with the plate thickness of 100 mm, 65 mm, and 30 mm as the representative plate thickness in the plate thickness range of 150 to 20 mm, and when the plate thickness is 20 mm or less, 12 mm and 4.5 mm are respectively measured. The material temperature was measured as the representative plate thickness. Further, the Ln (Z) value of each representative plate thickness and the strain rate of each pass having a plate thickness of 20 mm or less were examined. Note that the hot-rolling finished plate thickness was 2 mm. Detailed conditions in the hot rolling process are shown in Tables 2 and 3.

熱間圧延後は、中間焼鈍を施すことなく、板厚0.285mmまで冷間圧延を行ない、硬質板とした。なお冷間圧延率は85.75%である。   After the hot rolling, cold rolling was performed to a plate thickness of 0.285 mm without intermediate annealing to obtain a hard plate. The cold rolling rate is 85.75%.

以上の過程において、熱間圧延板の段階での導電率、結晶粒サイズ、結晶方位密度(キューブ方位密度)、および板中に存在する金属間化合物に含まれるMg量(板全体の全ての金属間化合物の総量に対する金属間化合物中のMgの割合:質量%)を測定したので、その結果を表4に示す。なおこれらの測定方法は次の通りである。   In the above process, the electrical conductivity, crystal grain size, crystal orientation density (cube orientation density) at the stage of the hot rolled sheet, and the amount of Mg contained in the intermetallic compound present in the sheet (all metals in the entire sheet) The ratio of Mg in the intermetallic compound to the total amount of the intermetallic compound (mass%) was measured, and the results are shown in Table 4. These measurement methods are as follows.

導電率(%IACS)
渦電流導電率測定装置を用いて、銅、黄銅を基準試料として測定を行なった。
Conductivity (% IACS)
Using an eddy current conductivity measuring device, measurement was performed using copper and brass as a reference sample.

結晶粒サイズ:
圧延方向と平行な断面をEBSP法でマッピングし、得られた結晶粒を切断法で評価し、ASTM規格と比較して結晶粒度ナンバーを付した。
Grain size:
The cross section parallel to the rolling direction was mapped by the EBSP method, the obtained crystal grains were evaluated by the cutting method, and the grain size number was assigned in comparison with the ASTM standard.

結晶方位密度(キューブ方位密度)の測定:
厚さ2mmの熱間圧延板について、10%NaOH水溶液で表面から板厚中央方向に向けて250μm、500μm、725μm、1000μmの深さまでエッチングしたものをそれぞれ測定サンプルとし、これらの各位置で測定したキューブ方位密度の平均値を熱間圧延板のキューブ方位密度とした。測定装置としては、リガク(株)のX線回折装置を用い、X線回折のシェルツ反射法により、{200}、{220}、{111}の不完全極点図を測定し、これらを元に三次元結晶方位解析(ODF)を行なって調べた。またこれらの解析においては、アルミニウム粉末から作られたランダム結晶方位を有する試料を測定して得られたデータを{200}、{220}、{111}の不完全極点図解析の際に使う規格化ファイルとし、これによりランダム方位を有する試料に対する倍数としてキューブ方位密度、すなわち{100}<001>方位の密度を求めた。なおこの発明において、結晶方位密度は全て三次元結晶方位解析(ODF)に基くものである。
Measurement of crystal orientation density (cube orientation density):
A hot-rolled sheet having a thickness of 2 mm was etched at a depth of 250 μm, 500 μm, 725 μm, and 1000 μm from the surface toward the center of the sheet thickness with a 10% NaOH aqueous solution, and measured at each of these positions. The average value of the cube orientation density was taken as the cube orientation density of the hot rolled sheet. As a measuring device, an incomplete pole figure of {200}, {220}, {111} is measured by the X-ray diffraction Schertz reflection method using the Rigaku Corporation X-ray diffractometer. A three-dimensional crystal orientation analysis (ODF) was performed and examined. In these analyses, data obtained by measuring a sample having a random crystal orientation made from aluminum powder is used in the incomplete pole figure analysis of {200}, {220}, and {111}. The cube orientation density, that is, the density of {100} <001> orientation, was obtained as a multiple of the sample having a random orientation. In this invention, the crystal orientation density is all based on three-dimensional crystal orientation analysis (ODF).

金属間化合物に含まれるMg量の測定:
熱間圧延板に含まれるMg量は、フェノール法によって調べ、熱間圧延板中に存在する全金属間化合物の総質量に対する割合として求めた。
Measurement of Mg content in intermetallic compounds:
The amount of Mg contained in the hot-rolled sheet was examined by the phenol method and determined as a ratio to the total mass of all intermetallic compounds present in the hot-rolled sheet.

さらに、前述のようにして得られた最終板(缶胴用アルミニウム合金硬質板)について、塗装焼付を想定した200℃×20分保持の熱処理(ベーク)を行なった前後の試験片について引張試験を行ない、ベーク前後の機械的強度(0.2%耐力)を調べるとともに、ベーク前の加工硬化指数n値について調べた。   Further, the final plate (aluminum alloy hard plate for can body) obtained as described above was subjected to a tensile test on test pieces before and after being subjected to heat treatment (baking) held at 200 ° C. for 20 minutes assuming coating baking. The mechanical strength (0.2% proof stress) before and after baking was examined, and the work hardening index n value before baking was examined.

また、前述の最終板について、カップ耳率および苛酷しごきの成功率を調べるとともに、フランジ成形性を調べ、さらにDI缶に成形した後のDI缶の耐圧試験を行なって、ボトム耐圧を調べた。これらの結果を表5に示す。なおこれらの具体的な試験方法、評価方法は次の通りである。   Further, for the above-mentioned final plate, the cup ear ratio and the success rate of severe ironing were examined, the flange formability was examined, and the pressure resistance test of the DI can after being formed into a DI can was conducted to examine the bottom pressure resistance. These results are shown in Table 5. These specific test methods and evaluation methods are as follows.

引張試験(ベーク前後の耐力、ベーク前のn値):
JIS5号試験片を圧延方向と平行に採取して引張試験を行なった。なお加工硬化指数n値は、伸び2〜3%の範囲において、前記(1)式に基いて求めた。
Tensile test (proof strength before and after baking, n value before baking):
A JIS No. 5 test piece was taken in parallel with the rolling direction and subjected to a tensile test. In addition, the work hardening index n value was calculated | required based on the said (1) Formula in the range of 2-3% of elongation.

カップ耳率:
コイルの長手方向に等間隔に7点、幅方向に等間隔に5点、合計35点について絞り試験を行なって45°方向のカップ耳率を調べた。
Cup ear rate:
A drawing test was conducted on a total of 35 points, 7 points at equal intervals in the longitudinal direction of the coil and 5 points at equal intervals in the width direction, and the cup ear ratio in the 45 ° direction was examined.

苛酷しごきの成功率:
DI缶成形において、リドローダイスR1.8mmとし、缶ボディメーカの第2のしごき用ダイスを抜いて、第1と第3のしごき用ダイスのしごき率55%と苛酷に設定してしごき加工(苛酷しごき)を行ない、連続100缶の製缶で缶切れが発生しない比率をしごき加工性の指標として求めた。ここでこのような苛酷しごきの成功率が70%以上になれば、しごき加工性が良好とみなすことができる。
Severe ironing success rate:
In DI can molding, the loader die is 1.8mm, the second ironing die of the can body manufacturer is pulled out, and the ironing ratio is set to 55% and the ironing rate of the first and third ironing dies is severe (severe The ratio at which the can breakage does not occur in continuous 100 cans was determined as an index of ironing processability. Here, if the success rate of such severe ironing becomes 70% or more, ironing workability can be considered good.

フランジ成形性(口拡げ性):
フランジ成形性(口拡げ性)としては4段ネッキング後のフランジ成形性を調べた。すなわち、4段ネッキング後のDI缶開口部(半径R0:29mm)に15°の勾配が形成されたポンチを、トリミング、洗浄、ベークしたDI缶の上部開口端にその開口縁部が割れるまで押し込み、割れる限界まで口拡げした後の開口部の半径をR1とし、その差(R1−R0)を求めた。
Flange formability (mouth expandability):
As the flange formability (mouth expandability), the flange formability after four-stage necking was examined. That is, a punch having a 15 ° gradient formed in the DI can opening (radius R0: 29 mm) after four-stage necking is pushed in until the opening edge of the trimmed, cleaned, and baked DI can breaks. The radius of the opening after expanding to the limit at which it can break was defined as R1, and the difference (R1-R0) was determined.

DI缶耐圧試験(ボトム耐圧):
DI缶の内圧をボトムが変形されるまで上昇させて、その最大の圧力を求めた。
DI can pressure resistance test (bottom pressure resistance):
The internal pressure of the DI can was increased until the bottom was deformed, and the maximum pressure was obtained.

Figure 2006037148
Figure 2006037148

Figure 2006037148
Figure 2006037148

Figure 2006037148
Figure 2006037148

Figure 2006037148
Figure 2006037148

Figure 2006037148
Figure 2006037148

表2〜表5において、製造番号1〜4はいずれもこの発明の成分組成範囲内の合金を用いて、この発明で規定する方法に従って製造した例であり、この場合には最終板の強度、耳率、しごき性、フランジ成形性のバランスが優れ、DI缶のボトム耐圧も良好であることが確認された。   In Tables 2 to 5, production numbers 1 to 4 are all examples produced according to the method defined in the present invention using alloys within the component composition range of the present invention. In this case, the strength of the final plate, It was confirmed that the balance of the ear ratio, the ironing property, and the flange formability was excellent, and the bottom pressure resistance of the DI can was also good.

一方製造番号5、6の比較例は、いずれも合金の成分組成はこの発明で規定する範囲内であるが、熱間圧延条件の少なくとも一部がこの発明の範囲を外れた例である。そして製造番号5の比較例の場合は、フランジ成形性は良好であるが、強度、最終板のn値が低く、45°耳率も高く、さらにしごき性の低下も見られ、またDI缶のボトム耐圧も低かった。また製造番号6の比較例の場合は、高強度でかつボトム耐圧性も良好であったが、しごき性が極端に低下し、また耳率、フランジ成形性も悪かった。さらに製造番号7の比較例は、合金の成分組成がこの発明で規定する範囲を外れた例であり、この場合は製造プロセス条件はこの発明で規定する範囲内としたが、ベーク後の強度、耳率、しごき性、フランジ成形性がいずれも劣っていた。   On the other hand, the comparative examples of production numbers 5 and 6 are examples in which the alloy component composition is within the range defined by the present invention, but at least part of the hot rolling conditions is out of the range of the present invention. In the case of the comparative example of production number 5, the flange formability is good, but the strength, the n value of the final plate are low, the 45 ° ear ratio is high, and the ironing property is also reduced. The bottom pressure resistance was also low. In the case of the comparative example of production number 6, the strength was high and the bottom pressure resistance was good, but the ironing property was extremely lowered, and the ear rate and flange formability were also poor. Furthermore, the comparative example of production number 7 is an example in which the component composition of the alloy is outside the range specified in the present invention. In this case, the manufacturing process conditions are within the range specified in the present invention, but the strength after baking, Ear ratio, ironability, and flange formability were all inferior.

Claims (6)

Mg0.5〜2.0%(mass%、以下同じ)、Mn0.5〜2.0%、Fe0.05〜0.8%、Si0.05〜0.8%、Cu0.05〜0.7%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金からなり、加工硬化指数n値が0.01〜0.2の範囲内にあり、しかも苛酷しごきの成功率が70%以上であることを特徴とする、缶胴用アルミニウム合金硬質板。   Mg 0.5-2.0% (mass%, the same shall apply hereinafter), Mn 0.5-2.0%, Fe 0.05-0.8%, Si 0.05-0.8%, Cu 0.05-0.7 The balance is made of an aluminum alloy consisting of Al and inevitable impurities, the work hardening index n value is in the range of 0.01 to 0.2, and the success rate of severe ironing is 70% or more. An aluminum alloy hard plate for a can body characterized by that. 請求項1に記載の缶胴用アルミニウム合金硬質板において、
前記アルミニウム合金の成分として、さらにCr0.05〜0.5%、Zn0.05〜0.8%、Ti0.001〜0.20%のうちの1種または2種以上を含有する、缶胴用アルミニウム合金硬質板。
The aluminum alloy hard plate for a can body according to claim 1,
As a component of the aluminum alloy, further containing one or more of Cr 0.05 to 0.5%, Zn 0.05 to 0.8%, Ti 0.001 to 0.20%, for a can body Aluminum alloy hard plate.
請求項1もしくは請求項2において規定する成分組成のアルミニウム合金を鋳造した後、500℃以上の温度域で均質化処理を行ない、次いで熱間圧延を行なうにあたり、
(1)熱間圧延を、300〜550℃の範囲内で開始し、
(2)熱間圧延過程における厚さ150mmから20mmまでの間における材料温度を300〜470℃の範囲内に制御し、
(3)熱間圧延過程における厚さ20mmから熱間圧延最終パス直前までの材料温度を270〜420℃の範囲内に制御し、
(4)熱間圧延過程における厚さ150mm以下の各パスにおけるLn(Z)値(注:ZはZener−Hollomon Parameterを示す)を20〜50の範囲内に制御し、
(5)熱間圧延終了温度を270〜350℃の範囲内とし、
(6)熱間圧延上りの270〜350℃の範囲内の温度から100℃以下の温度域までの冷却過程において、100℃までの平均冷却速度を100℃/hr以下に制御し、
以上の(1)〜(6)によって得られた熱間圧延板について、中間焼鈍を施すことなく、50%以上の圧延率で冷間圧延を行ない、加工硬化指数n値が0.01〜0.2の範囲内にありしかも苛酷しごきの成功率が70%以上の缶胴用アルミニウム合金板を得ることを特徴とする、缶胴用アルミニウム合金硬質板の製造方法。
After casting the aluminum alloy having the component composition defined in claim 1 or 2, homogenization treatment is performed in a temperature range of 500 ° C. or higher, and then hot rolling is performed.
(1) Hot rolling is started within a range of 300 to 550 ° C,
(2) controlling the material temperature in the range of 300 to 470 ° C. in the thickness range from 150 mm to 20 mm in the hot rolling process,
(3) The material temperature from the thickness 20 mm in the hot rolling process to immediately before the final hot rolling pass is controlled within the range of 270 to 420 ° C.,
(4) Ln (Z) value (Note: Z indicates Zener-Holomon Parameter) in each pass having a thickness of 150 mm or less in the hot rolling process is controlled within a range of 20-50,
(5) The hot rolling end temperature is in the range of 270 to 350 ° C.,
(6) In the cooling process from the temperature in the range of 270 to 350 ° C. after the hot rolling to the temperature range of 100 ° C. or less, the average cooling rate up to 100 ° C. is controlled to 100 ° C./hr or less,
The hot-rolled sheet obtained by the above (1) to (6) is cold-rolled at a rolling rate of 50% or more without performing intermediate annealing, and the work hardening index n value is 0.01 to 0. A method for producing an aluminum alloy hard plate for a can body, characterized in that an aluminum alloy plate for a can body having a success rate of severe ironing within a range of .2 is 70% or more.
請求項3に記載の缶胴用アルミニウム合金硬質板の製造方法において、
前記熱間圧延過程における厚さ20mm以下の各パスを、その各パスにおける歪速度が後段のパスほど高くなるように制御するとともに、最終パスの歪速度を50/秒以上に制御することを特徴とする、缶胴用アルミニウム合金硬質板の製造方法。
In the manufacturing method of the aluminum alloy hard plate for can bodies according to claim 3,
Each pass having a thickness of 20 mm or less in the hot rolling process is controlled so that the strain rate in each pass becomes higher as the subsequent pass, and the strain rate in the final pass is controlled to 50 / second or more. And manufacturing method of aluminum alloy hard plate for can body.
請求項1もしくは請求項2に記載の缶胴用アルミニウム合金硬質板向けの熱間圧延板において、請求項1もしくは請求項2に記載の成分組成のアルミニウム合金からなり、かつ導電率が30〜50%IACSの範囲内にあり、しかも結晶粒度がASTMナンバーで4.0以上であり、さらにキューブ方位密度がランダム試料の5倍以上、100倍以下であることを特徴とする、缶胴用アルミニウム合金硬質板向け熱間圧延板。   The hot rolled plate for an aluminum alloy hard plate for a can body according to claim 1 or 2, wherein the hot rolled plate is made of an aluminum alloy having the component composition according to claim 1 or 2, and has an electrical conductivity of 30 to 50. % IACS, crystal grain size is 4.0 or more in ASTM number, and cube orientation density is 5 times or more and 100 times or less of random sample, aluminum alloy for can body Hot rolled plate for hard plate. 請求項1もしくは請求項2に記載の缶胴用アルミニウム合金硬質板向けの熱間圧延板において、請求項1もしくは請求項2に記載の成分組成のアルミニウム合金からなり、かつ熱間圧延板に存在している金属間化合物中に含まれるMg量が0.01〜0.2%の範囲内であることを特徴とする、缶胴用アルミニウム合金硬質板向け熱間圧延板。   The hot rolled plate for an aluminum alloy hard plate for a can body according to claim 1 or 2, wherein the hot rolled plate is made of the aluminum alloy having the component composition according to claim 1 or 2, and is present in the hot rolled plate. A hot-rolled sheet for an aluminum alloy hard plate for a can body, wherein the amount of Mg contained in the intermetallic compound is in the range of 0.01 to 0.2%.
JP2004216840A 2004-07-26 2004-07-26 Aluminum alloy hard sheet for can barrel and its production method Pending JP2006037148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216840A JP2006037148A (en) 2004-07-26 2004-07-26 Aluminum alloy hard sheet for can barrel and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216840A JP2006037148A (en) 2004-07-26 2004-07-26 Aluminum alloy hard sheet for can barrel and its production method

Publications (1)

Publication Number Publication Date
JP2006037148A true JP2006037148A (en) 2006-02-09

Family

ID=35902457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216840A Pending JP2006037148A (en) 2004-07-26 2004-07-26 Aluminum alloy hard sheet for can barrel and its production method

Country Status (1)

Country Link
JP (1) JP2006037148A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378236C (en) * 2006-04-25 2008-04-02 东北轻合金有限责任公司 High surface aluminium strip and its prodn. method
JP2008248289A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Aluminum alloy sheet for packaging container and manufacturing method therefor
CN100445414C (en) * 2006-12-06 2008-12-24 云南冶金集团总公司 Heat treatment method for use in processing technology for production of 5XXX series aluminium plate by using cast-rolling stock
JP2009242831A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2009242830A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
CN104093868A (en) * 2012-02-10 2014-10-08 株式会社神户制钢所 Aluminum alloy sheet for connecting components and manufacturing process therefor
WO2015140833A1 (en) * 2014-03-20 2015-09-24 株式会社Uacj Aluminum alloy sheet for dr can body and manufacturing method therefor
WO2017110869A1 (en) * 2015-12-25 2017-06-29 株式会社Uacj Aluminum alloy sheet for can body, and method for manufacturing same
JP2020033632A (en) * 2018-08-31 2020-03-05 株式会社Uacj Aluminum alloy sheet
CN111945043A (en) * 2020-07-31 2020-11-17 河南泰鸿新材料有限公司 5M49-O state aluminum alloy plate strip for door plate and preparation method and application thereof
CN117305663A (en) * 2023-11-30 2023-12-29 中铝材料应用研究院有限公司 Aluminum alloy plate and preparation method thereof, aluminum alloy welding method and welding joint

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378236C (en) * 2006-04-25 2008-04-02 东北轻合金有限责任公司 High surface aluminium strip and its prodn. method
CN100445414C (en) * 2006-12-06 2008-12-24 云南冶金集团总公司 Heat treatment method for use in processing technology for production of 5XXX series aluminium plate by using cast-rolling stock
JP2008248289A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Aluminum alloy sheet for packaging container and manufacturing method therefor
JP2009242831A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2009242830A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
CN104093868A (en) * 2012-02-10 2014-10-08 株式会社神户制钢所 Aluminum alloy sheet for connecting components and manufacturing process therefor
JPWO2015140833A1 (en) * 2014-03-20 2017-04-06 株式会社Uacj Aluminum alloy plate for DR can body and manufacturing method thereof
CN106103760A (en) * 2014-03-20 2016-11-09 株式会社Uacj DR tank body aluminium alloy plate and manufacture method thereof
WO2015140833A1 (en) * 2014-03-20 2015-09-24 株式会社Uacj Aluminum alloy sheet for dr can body and manufacturing method therefor
CN106103760B (en) * 2014-03-20 2018-06-05 株式会社Uacj DR tank bodies aluminium alloy plate and its manufacturing method
WO2017110869A1 (en) * 2015-12-25 2017-06-29 株式会社Uacj Aluminum alloy sheet for can body, and method for manufacturing same
CN108368570A (en) * 2015-12-25 2018-08-03 株式会社Uacj Tank body aluminium alloy plate and its manufacturing method
JPWO2017110869A1 (en) * 2015-12-25 2018-10-11 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
JP2020033632A (en) * 2018-08-31 2020-03-05 株式会社Uacj Aluminum alloy sheet
JP7111563B2 (en) 2018-08-31 2022-08-02 株式会社Uacj aluminum alloy plate
CN111945043A (en) * 2020-07-31 2020-11-17 河南泰鸿新材料有限公司 5M49-O state aluminum alloy plate strip for door plate and preparation method and application thereof
CN117305663A (en) * 2023-11-30 2023-12-29 中铝材料应用研究院有限公司 Aluminum alloy plate and preparation method thereof, aluminum alloy welding method and welding joint
CN117305663B (en) * 2023-11-30 2024-03-19 中铝材料应用研究院有限公司 Aluminum alloy plate and preparation method thereof, aluminum alloy welding method and welding joint

Similar Documents

Publication Publication Date Title
WO2018012532A1 (en) Method for producing aluminum alloy rolled material for molding processing having superior bending workability and ridging resistance
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
WO2014046010A1 (en) Aluminum alloy plate exhibiting excellent baking finish hardening properties
JP6326485B2 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
JP2013060627A (en) Aluminum alloy sheet superior in hardenability in baking coating
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2005146375A (en) Aluminum alloy sheet for forming, and method for producing the same
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
TW202033775A (en) Method for manufacturing aluminum-manganese alloy
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
WO2018143376A1 (en) Aluminum alloy sheet and production method therefor
JP5415016B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP3871473B2 (en) Method for producing aluminum alloy plate for can body

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070614

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027