JPH07166285A - Hardened al alloy sheet by baking and production thereof - Google Patents

Hardened al alloy sheet by baking and production thereof

Info

Publication number
JPH07166285A
JPH07166285A JP15168194A JP15168194A JPH07166285A JP H07166285 A JPH07166285 A JP H07166285A JP 15168194 A JP15168194 A JP 15168194A JP 15168194 A JP15168194 A JP 15168194A JP H07166285 A JPH07166285 A JP H07166285A
Authority
JP
Japan
Prior art keywords
less
temperature
alloy
content
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15168194A
Other languages
Japanese (ja)
Inventor
Takeo Sakurai
健夫 櫻井
Akinori Yoshizawa
成則 吉澤
Hiroshi Iwamura
宏 岩村
Shojiro Oya
正二郎 大家
Osamu Takezoe
修 竹添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Alcoa Yuso Kizai KK
Original Assignee
Shinko Alcoa Yuso Kizai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Alcoa Yuso Kizai KK filed Critical Shinko Alcoa Yuso Kizai KK
Priority to JP15168194A priority Critical patent/JPH07166285A/en
Publication of JPH07166285A publication Critical patent/JPH07166285A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a material excellent in strength, formability, and low temp. baking hardenability by specifying a composition and a structure, respectively. CONSTITUTION:This alloy has a composition containing, by weight ratio, 0.2-1.0% Mg and 0.5-2.0% Si, having Si content in excess of the content of Mg constituting Mg2Si and containing 0.35-1.5% Mg2Si and 0.35-1.2% residual Si, further containing 0.5-2.0% Cu and 0.05-0.50% Mn, and having the balance Al. Moreover, this sheet has a structure consisting of equiaxed particles of <=35mum crystalline grain size. This alloy sheet can be produced by subjecting an ingot to homogenizing treatment and to hot rolling, subjecting the resultant hot rolled plate to annealing consisting of heating up to 450-520 deg.C at a rate of 300 deg.C/min, holding for 0-10sec, and cooling at a rate of >=300 deg.C/min, applying cold rolling, and then subjecting the resultant cold rolled sheet to solution heat treatment, hardening down to 50-120 deg.C at >=300 deg.C/min cooling rate, and holding for 1-48hr. Baking finish of this alloy sheet is done by applying holding at 150-200 deg.C for 5-120min, and beta'-Mg2Si is age-precipitated by 10-45% by volume percentage of matrix.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成形加工性に優れ、又
は成形加工性に優れていると共に、常温時効性が抑制さ
れた焼付硬化型Al合金板及びその製造方法に関し、更
に詳述すると、自動車用、家電用及び機械部品用等パネ
ル材に用いられるAl合金板材で、プレス又は曲げ等の
加工時の成形加工性が優れ、これらの製造工程にある焼
付塗装(ベーキング)等の短時間加熱処理において強度
が向上する焼付硬化型Al合金板及びその製造方法に関
する。
FIELD OF THE INVENTION The present invention relates to a bake-hardenable Al alloy sheet which is excellent in moldability or moldability and has reduced room temperature aging, and a method for producing the same. , Al alloy plate materials used for panel materials for automobiles, home appliances, machine parts, etc., with excellent formability during processing such as pressing or bending, and for a short time such as baking coating (baking) in these manufacturing processes The present invention relates to a bake hardenable Al alloy plate having improved strength in heat treatment and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、自動車用、家電用、機械部品用等
の軽量化を目的に主として使用されているAl合金板
は、プレス又は曲げ等の成形加工が行われ、加工後の塗
装工程において塗装膜に強度を与えるために加熱処理
(焼付塗装、ベーキング)が行われている。その際の加
熱温度を利用してAl合金板の強度を向上させる方法が
行われている。
2. Description of the Related Art Conventionally, Al alloy sheets, which have been mainly used for the purpose of reducing the weight of automobiles, home appliances, machine parts, etc., are subjected to molding such as pressing or bending, and in the coating process after processing. Heat treatment (baking coating, baking) is performed to give strength to the coating film. A method of improving the strength of the Al alloy plate by utilizing the heating temperature at that time is performed.

【0003】かかるAl合金板としては、プレス等の成
形加工時には強度を低くし、成形が容易であり、一方、
成形加工後は焼付塗装の加熱処理により強度が著しく向
上する材料であることが理想とされ、主としてAl−M
g−Si系アルミニウム合金が使用されている。このよ
うにAl合金については、特開平1−111851号が
提案されている。
Such an Al alloy plate has low strength during forming such as pressing and is easy to form. On the other hand,
After molding, it is ideal that the strength of the material is remarkably improved by the heat treatment of baking coating.
A g-Si based aluminum alloy is used. As described above, regarding the Al alloy, JP-A-11-11851 has been proposed.

【0004】しかし、従来、この種の用途に使用される
Al−Mg−Si系アルミニウム合金及びその製造方法
においては、成形性又は形状凍結性の重視により、T4
状態での強度が極めて低く、更には焼付硬化後に強度が
向上したとしても十分な強度が得られず、軽度な外力を
加えただけで変形してしまうという問題があった。
However, in the Al--Mg--Si type aluminum alloy and the manufacturing method thereof which have been conventionally used for this type of application, T4 is emphasized due to the importance of formability or shape fixability.
The strength in the state is extremely low, and further, even if the strength is improved after bake hardening, sufficient strength cannot be obtained, and there is a problem that it is deformed only by applying a slight external force.

【0005】一方、自動車用部品においては、自動車の
低燃費規制により、更に軽量化が促進する傾向にある。
これにより、Al合金板の薄肉化が要求されるが、従来
のAl合金板及びその製造方法では、T4状態での素材
強度を低くし成形性を向上させると上記問題が生じ、又
は薄肉化のため素材強度を高くすると成形性が著しく劣
る等の問題があった。
On the other hand, the weight of automobile parts tends to be further reduced due to the regulation of low fuel consumption of automobiles.
As a result, it is required to reduce the thickness of the Al alloy plate. However, in the conventional Al alloy plate and the manufacturing method thereof, if the material strength in the T4 state is lowered and the formability is improved, the above problem occurs, or Therefore, when the material strength is increased, there is a problem that the formability is remarkably deteriorated.

【0006】更に、最近の焼付塗装の焼付条件は、省エ
ネルギ化及び生産性向上のため、加えて樹脂などの高温
に処理できない部品が増える等、部品の多様化が進み、
塗料が進歩したこと等により低温化してきている。例え
ば、自動車用部品に用いられるAl合金の焼付温度は、
従来は約200℃であったが、近年、150〜170℃
の低温で処理されるようになっている。しかし、従来、
Al−Mg−Si系アルミニウム合金板及びその製造方
法において、このような低温・短時間処理によって焼付
硬化性を向上させるための製造方法が提案されている
が、この処理法を行うと、殆どの合金において成形加工
性が著しく低下するという欠点があった。そこで、この
低温焼付塗装処理に対応すべく、特開昭62−8985
2号が提案されている。
Further, the recent baking conditions for baking coating are diversification of parts such as increase in parts that cannot be processed at high temperature such as resin in order to save energy and improve productivity.
The temperature has been decreasing due to the progress of paints. For example, the baking temperature of an Al alloy used for automobile parts is
Conventionally, it was about 200 ° C, but in recent years, it is 150-170 ° C.
It is designed to be processed at low temperatures. But conventionally,
In the Al-Mg-Si based aluminum alloy plate and the manufacturing method thereof, a manufacturing method for improving the bake hardenability by such low temperature and short time treatment has been proposed. The alloy has a drawback that the formability is remarkably reduced. Therefore, in order to cope with this low temperature baking coating treatment, JP-A-62-8985.
No. 2 is proposed.

【0007】しかし、これらの提案では、室温に放置す
ると、強度の増加とそれに伴う加工後のスプリングバッ
ク量の増加と成形性の劣化が著しい。このため、製造
後、数カ月放置すると、プレス加工が困難になり、製造
直後のプレス加工条件では、加工形状が得られなかった
り、成形不可能となるという問題がある。
[0007] However, in these proposals, when left at room temperature, the strength is increased, the springback amount after the processing is increased, and the formability is significantly deteriorated. For this reason, if left for several months after manufacturing, pressing becomes difficult, and under the pressing conditions immediately after manufacturing, a processed shape cannot be obtained or molding becomes impossible.

【0008】本発明はかかる問題点に鑑みてなされたも
のであって、軽量化に伴う薄肉化に対応した素材強度の
高強度化と、低温・短時間の焼付塗装の焼付条件におい
て十分な焼付硬化性と共に優れた成形加工性とが得ら
れ、更に常温時効性が抑制された成形加工性が優れた焼
付硬化型Al−Mg−Si−Cu−Mn系Al合金板及
びその製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and has a high material strength corresponding to a reduction in thickness accompanying a reduction in weight and a sufficient baking under the baking conditions of low temperature / short time baking coating. Provided are a bake-hardenable Al-Mg-Si-Cu-Mn-based Al alloy plate which has excellent moldability as well as hardenability and which has excellent moldability with suppressed aging at room temperature, and a method for producing the same. The purpose is to

【0009】[0009]

【課題を解決するための手段】本発明に係る焼付硬化型
Al合金板は、Mg:0.2〜1.0%、Si:0.5
〜2.0%の範囲において、Mg2Siを構成するMg
に対しSi過剰の配合であって、MgとSiがMg2
i量として0.35〜1.5%で含み、且つ、残留する
Si量が0.35〜1.2%で含有し、更にCu:0.
5〜2.0%及びMn:0.05〜0.50%を含有
し、残部がAl及び不可避的不純物からなり、板材の組
織が結晶粒径で35μm以下で、且つ板の表面及び断面
の組織が等軸粒であることを特徴とする。
The bake hardenable Al alloy sheet according to the present invention has Mg: 0.2 to 1.0% and Si: 0.5.
In the range of up to 2.0%, Mg constituting Mg 2 Si
On the other hand, the composition is excessive in Si, and Mg and Si are Mg 2 S.
The i content is 0.35 to 1.5%, the remaining Si content is 0.35 to 1.2%, and Cu: 0.
5 to 2.0% and Mn: 0.05 to 0.50%, the balance consisting of Al and inevitable impurities, the structure of the plate material having a crystal grain size of 35 μm or less, and the surface and cross section of the plate. The tissue is characterized by equiaxed grains.

【0010】また、本発明に係る他の焼付硬化型Al合
金板は、Mg:0.3〜1.0%、Si:0.5〜1.
4%の範囲において、Mg2Siを構成するMgに対し
Si過剰の配合であって、MgとSiがMg2Si量と
して0.9〜1.1%で含み、且つ、残留するSi量が
0.6〜1.2%で含有し、更にCu:0.5〜1.0
%及びMn:0.05〜0.50%を含有し、残部がA
l及び不可避的不純物からなり、板材の組織が結晶粒径
で35μm以下で、且つ板の表面及び断面の組織が等軸
粒であることを特徴とする。
Another bake-hardenable Al alloy plate according to the present invention is Mg: 0.3-1.0%, Si: 0.5-1.
In the range of 4%, the content of Si is excessive with respect to Mg constituting Mg 2 Si, Mg and Si are contained in an amount of 0.9 to 1.1% as the amount of Mg 2 Si, and the residual amount of Si is 0.6-1.2%, Cu: 0.5-1.0
% And Mn: 0.05 to 0.50%, the balance A
1 and unavoidable impurities, and the structure of the plate material has a crystal grain size of 35 μm or less, and the structure of the surface and cross section of the plate is equiaxed grains.

【0011】これらの焼付硬化型Al合金板は、更に、
Zr:0.3%以下、Cr:0.3%以下、Ti:0.
1%以下及びFe:0.3%以下からなる群から選択さ
れた1種又は2種以上を含有してもよい。
These bake hardenable Al alloy plates are further
Zr: 0.3% or less, Cr: 0.3% or less, Ti: 0.
You may contain 1 type or 2 types or more selected from the group which consists of 1% or less and Fe: 0.3% or less.

【0012】そして、本発明に係る焼付硬化型Al合金
板の製造方法は、前記いずれかの化学成分を有するAl
合金鋳塊にバーニング温度以下の温度で均質化処理する
工程と、熱間圧延する工程と、加熱速度300℃/分以
上で450〜520℃の温度に0〜10秒保持し、且
つ、冷却速度300℃/分以上で冷却する焼鈍処理する
工程と、所望の板厚に冷間圧延する工程と、溶体化処理
する工程と、300℃/分以上の冷却速度で50〜12
0℃の温度に焼入れし、5分以内に、50〜120℃の
温度に1〜48時間保持する工程とを有することを特徴
とする。
The method for producing a bake-hardenable Al alloy sheet according to the present invention is an Al-containing alloy having any of the above chemical components.
A step of homogenizing the alloy ingot at a temperature not higher than the burning temperature, a step of hot rolling, a heating rate of 300 ° C./min or more, a temperature of 450 to 520 ° C. maintained for 0 to 10 seconds, and a cooling rate. A step of annealing treatment for cooling at 300 ° C./min or more, a step of cold rolling to a desired plate thickness, a step of solution treatment, and a cooling rate of 300 ° C./min or more for 50 to 12
Quenching to a temperature of 0 ° C. and holding at a temperature of 50 to 120 ° C. for 1 to 48 hours within 5 minutes.

【0013】また、前記50〜120℃の温度に1〜4
8時間保持する工程の後工程として、焼付塗装(ベーキ
ング処理)を温度150〜200℃で5〜120分保持
の条件で行い、時効析出物β´−Mg2Siをマトリッ
クスの全体の体積含有率で10〜45%の範囲で析出さ
せる工程を設けても良い。
The temperature of 50 to 120 ° C. is 1 to 4
As a post-step of the step of holding for 8 hours, baking coating (baking treatment) is performed under the condition of holding at a temperature of 150 to 200 ° C. for 5 to 120 minutes, and the aged precipitate β′-Mg 2 Si is contained in the matrix in a total volume content. A step of precipitating in the range of 10 to 45% may be provided.

【0014】[0014]

【作用】本願発明者等は前記課題を解決すべく鋭意研究
を重ねた結果、従来のAl−Mg−Si系合金の強化機
構は以下のような時効硬化機構に基づくものであること
が判明した。S.S.(固溶体)→G.P.ゾーン(T
4状態)→β′−Mg2Si(焼付塗装後)。
The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, have found that the strengthening mechanism of the conventional Al-Mg-Si alloy is based on the following age hardening mechanism. . S. S. (Solid solution) → G. P. Zone (T
4 state) → β'-Mg 2 Si (after baking coating).

【0015】即ち、素材強度を高強度化する機構は、こ
の時効析出物によるものであり、低温・短時間の焼付塗
装処理において焼付硬化性を増加させる製造法では、素
材がT4状態での強度が高いため、成形性は著しく低下
する。よって、Mg及びSi量が適正でないと、強度と
成形性との関係が双方ともに良好な値をとることが難し
い。従って、高強度化の主たる機構を時効析出物β′−
Mg2Siに依存する機構とするのは望ましくないこと
が判明した。
That is, the mechanism for increasing the strength of the material is due to this aging precipitate, and in the manufacturing method for increasing the bake hardenability in the low temperature and short time bake coating treatment, the strength of the material in the T4 state is Therefore, the moldability is significantly reduced. Therefore, if the amounts of Mg and Si are not appropriate, it is difficult for both the relationship between strength and formability to take good values. Therefore, the main mechanism of strengthening is the aging precipitate β'-
It has been found that a mechanism dependent on Mg 2 Si is not desirable.

【0016】一方、6009及び6010で知られるA
l−Mg−Si系合金は、Cuを添加した合金であり、
時効析出物θ′−CuAl2を析出させて強度を増加さ
せるものである。更に、CuはAl−Mg−Si系合金
の時効析出物β′−Mg2Siの密度を上げて緻密に
し、ベークハード性を向上させたり、更に変形機構を均
一変形にする効果がある。従って、高強度化の主たる機
構を時効析出物β′−Mg2Siに依存する機構とする
のが望ましいことが判明した。
On the other hand, A known as 6009 and 6010
The 1-Mg-Si based alloy is an alloy to which Cu is added,
The aging precipitate θ′-CuAl 2 is precipitated to increase the strength. Further, Cu has the effect of increasing the density and densification of the aging precipitate β′-Mg 2 Si of the Al—Mg—Si alloy, improving the bake hardness, and further uniformly deforming the deformation mechanism. Therefore, it was found that it is desirable to make the main mechanism for strengthening the mechanism dependent on the aging precipitate β′-Mg 2 Si.

【0017】更に、Mnを主添加元素とすることで、再
結晶を抑制し、結晶粒を35μm以下にすることで、高
い成形性が得られることを見い出した。
Further, it has been found that by using Mn as a main additive element, recrystallization is suppressed and the crystal grain size is 35 μm or less, whereby high formability can be obtained.

【0018】また、常温時効性に関しては、前述のとお
り、従来のAl−Mg−Si系合金では、低温で高いベ
ークハード性を得るための手法で製造すると、室温での
経時変化が著しく、室温に数カ月放置すると、強度の増
加と、それに伴うスプリングバック量の増加及び成形性
の著しい劣化が起こる。これは、低温でベークハードさ
せるために、溶体化焼入れ処理後の焼入れ処理で、マト
リックス中に、析出の核を生成させ、低温・短時間処理
においてこの析出の核が成長し、時効析出物となり、強
度を増加させる機構を利用している。これにより、この
析出物が温度に敏感に反応し、常温でも成長し、強度の
増加と、それに伴うスプリングバック量の増加及び成形
性低下の原因となることが判明した。
Regarding the room temperature aging property, as described above, when the conventional Al--Mg--Si alloy is manufactured by a method for obtaining a high bake hardness at a low temperature, the change with time at room temperature is remarkable, and If left for several months, the strength increases, the springback amount increases, and the moldability remarkably deteriorates. This is a quenching treatment after solution heat treatment in order to bake harden at a low temperature, and a precipitation nucleus is generated in the matrix, and this precipitation nucleus grows in the low temperature and short time treatment, and becomes an aged precipitate. , Utilizes a mechanism to increase strength. As a result, it was found that this precipitate reacts sensitively to temperature and grows even at room temperature, resulting in an increase in strength, an accompanying increase in the amount of springback, and a decrease in formability.

【0019】この問題に対しては、Cuの添加と、Mg
2Si量を一定範囲に規制することでT4状態での常温
時効性を抑制できることを見い出した。
To solve this problem, addition of Cu and Mg
It was found that normal temperature aging in the T4 state can be suppressed by controlling the amount of 2 Si within a certain range.

【0020】本発明はこのような知見に基づき、更にそ
の含有成分及び製造条件について詳細に研究を重ねた結
果、完成したものである。
The present invention has been completed as a result of further detailed research on the components and manufacturing conditions thereof based on the above findings.

【0021】以下、本発明について更に詳細に説明す
る。先ず、本発明における成分添加理由及び組成限定理
由について説明する。Mg Mgは、それ自体の固溶体強化と、Siと共同して強度
を付与する元素で、時効析出物β´−Mg2Siを析出
し、この量はMgの添加量に依存する。しかし、0.2
%未満では十分な強度(以下、強度とは、素材及び17
0℃の焼付塗装後の耐力をいう)が得られず、また、
1.0%を超えて添加すると鋳造時に平衡相Mg2Si
が晶出物として成長し、伸びの低下が見られることによ
り成形性が著しく低下する。よって、Mg含有量は0.
2〜1.0%の範囲とする。
The present invention will be described in more detail below. First, the reason for adding the components and the reason for limiting the composition in the present invention will be described. Mg Mg is an element that imparts strength to the solid solution strengthening itself and cooperates with Si, and precipitates an aging precipitate β′-Mg 2 Si, and this amount depends on the added amount of Mg. But 0.2
If it is less than%, sufficient strength (hereinafter, strength means material and 17
Yield strength after baking at 0 ° C) is not obtained, and
If more than 1.0% is added, the equilibrium phase Mg 2 Si
Grows as a crystallized product, and a decrease in elongation is observed, resulting in a marked decrease in formability. Therefore, the Mg content is 0.
The range is 2 to 1.0%.

【0022】Si SiはMgと共同し主として時効析出物β´−Mg2
iの析出による析出硬化で強度に付与する元素で、この
量は添加量に依存する。しかし、0.5%未満では十分
な強度が得られず、また、2.0%を超えると平衡相M
2Siが晶出し、伸びを大きく低下させ、成形性の劣
化が生ずる。よって、Si含有量は0.5〜2.0%の
範囲とする。
Si Si mainly cooperates with Mg, and is mainly aged precipitate β′-Mg 2 S.
It is an element strongly imparted by precipitation hardening due to precipitation of i, and this amount depends on the addition amount. However, if it is less than 0.5%, sufficient strength cannot be obtained, and if it exceeds 2.0%, the equilibrium phase M
g 2 Si is crystallized and elongation is greatly reduced, resulting in deterioration of formability. Therefore, the Si content is set to the range of 0.5 to 2.0%.

【0023】但し、MgとSiとの関係については、M
gに対し、Si過剰の配合であって、MgとSiがMg
2Si量として0.35〜1.5で含み、且つ、残留す
るSi量が0.35〜1.2%で含有する必要がある。
However, regarding the relationship between Mg and Si, M
When the content of Si is excessive with respect to g, Mg and Si are Mg
2 The amount of Si must be 0.35 to 1.5, and the amount of residual Si must be 0.35 to 1.2%.

【0024】即ち、強度及び成形性はMg、Siの添加
量に依存し、強度及び焼付塗装において強度上昇に寄与
するのがこれらによって造られるβ´−Mg2Siによ
るものである。しかし、Mg2Si量が0.35%未満
では強度が非常に低く、焼付硬化性も殆どなく、また、
1.5%を超えると伸びが低下し、成形性が著しく低下
する。よって、Mg、Si量はMg2Siとして0.3
5〜1.5%の範囲とする。 更に、SiはMgに対し
過剰に添加するとMg2Siとして造られずに残ったS
iが残Siとして存在し、これは成形性を上昇させる効
果がある。しかもこの残SiがT4状態で固溶している
と、固溶体硬化により強度は上昇する。しかし、残Si
が0.35%未満では強度は十分得られず、また、1.
2%を超えると強度が増加し、成形性は劣化する。従っ
て、残Si量は0.35〜1.2%の範囲とする。この
ようなMg2Si量と残Siの量を考慮して、Mg及び
Si量を適正に配合する。
That is, the strength and formability depend on the added amounts of Mg and Si, and it is the β'-Mg 2 Si produced by these that contributes to the strength and strength increase in baking coating. However, if the amount of Mg 2 Si is less than 0.35%, the strength is very low, and there is almost no bake hardenability.
If it exceeds 1.5%, the elongation is lowered and the formability is remarkably lowered. Therefore, the amount of Mg and Si is 0.3 as Mg 2 Si.
The range is 5 to 1.5%. Furthermore, if Si is added excessively with respect to Mg, S that remains without being formed as Mg 2 Si
i is present as residual Si, which has the effect of increasing the formability. Moreover, if this residual Si is in solid solution in the T4 state, the strength increases due to solid solution hardening. However, the remaining Si
Is less than 0.35%, sufficient strength cannot be obtained.
If it exceeds 2%, the strength increases and the formability deteriorates. Therefore, the residual Si amount is set to a range of 0.35 to 1.2%. Considering the amount of Mg 2 Si and the amount of residual Si, the amounts of Mg and Si are properly mixed.

【0025】Mn MnはCuと同様に第二相析出物としてMnAl6が析
出し、溶体化処理を十分に行い固溶させて強度を上昇さ
せることができ、しかも、合金組織の再結晶を抑制して
結晶粒を微細化する効果がある。そのため、成形向上に
付与する元素である。しかし、0.05%未満では、結
晶粒微細化効果が現れず、しかも第二相析出物MnAl
6の析出が顕著でないため、成形加工性の向上が認めら
れない。また、0.50%を超えて含有すると粗大な晶
出物を生成し、成形性を低下させる。よって、Mnの含
有量は0.05〜0.50%の範囲とする。この範囲で
Mnを添加することにより、溶体化処理を十分に行い素
材強度を上げても、結晶粒が35μm以下となるため、
成形性の劣化は認められない。
Mn Mn is similar to Cu in that MnAl 6 precipitates as a second phase precipitate and can be sufficiently solution-treated to form a solid solution to increase the strength and suppress recrystallization of the alloy structure. This has the effect of refining the crystal grains. Therefore, it is an element imparted to the improvement of molding. However, if it is less than 0.05%, the grain refining effect does not appear, and the second phase precipitate MnAl
Since the precipitation of 6 is not remarkable, no improvement in molding processability is observed. Further, if the content exceeds 0.50%, coarse crystallized substances are formed, and the formability is lowered. Therefore, the Mn content is set to a range of 0.05 to 0.50%. By adding Mn in this range, the crystal grain becomes 35 μm or less even if the solution treatment is sufficiently performed and the material strength is increased.
No deterioration in moldability is observed.

【0026】Cu Cuは時効析出物θ´−CuAl2により強度を付与す
る元素である。本発明では、強度の増加はβ´−Mg2
Si(焼付塗装後)によるものだけでなく、Cu添加に
よりこの時効析出物β´が緻密で微細になることによ
り、強度の向上と共に低温焼付での焼付硬化性を向上さ
せる。しかし、Cuが0.5%未満では低温焼付時に十
分な強度が得られず、また、2.0%を超えると、θ´
−CuAl2の析出が増大し、且つ、このθ´−CuA
2の析出物は室温で成長するため、経時変化により強
度が上がり、それに伴い、伸びと成形性が低下する。よ
って、Cu含有量は0.5〜2.0%の範囲とする。こ
の範囲でCuを添加すると、上述のようにβ´−Mg2
Si(焼付塗装後)を緻密で微細にし、強度向上の効果
があると共に、Al−Mg−Si系合金の変形機構を均
一変形させるため、成形性を向上させる効果がある。
Cu Cu is an element that imparts strength by the aging precipitate θ′-CuAl 2 . In the present invention, the increase in strength is β′-Mg 2
Not only due to Si (after baking coating), but also due to addition of Cu, this aging precipitate β ′ becomes dense and fine, thereby improving strength and bake hardenability at low temperature baking. However, if Cu is less than 0.5%, sufficient strength cannot be obtained during low temperature baking, and if it exceeds 2.0%, θ ′
-CuAl 2 precipitation increases, and this θ'-CuA
Since the precipitate of l 2 grows at room temperature, the strength increases with the lapse of time, and the elongation and the formability decrease accordingly. Therefore, the Cu content is in the range of 0.5 to 2.0%. When Cu is added within this range, β′-Mg 2 is added as described above.
Si (after baking coating) is made dense and fine, and has the effect of improving strength, and also has the effect of improving the formability because the deformation mechanism of the Al-Mg-Si alloy is uniformly deformed.

【0027】本発明では、上述の成分調整により、薄肉
化に対応する素材強度の高強度化、低温短時間の焼付塗
装での十分な焼付硬化性と共に優れた成形性が得られる
が、更に、常温時効性を抑制するには、以下の成分組成
とすることが好ましい。
In the present invention, by adjusting the above-mentioned components, it is possible to obtain a high material strength corresponding to the thinning, a sufficient bake hardenability in a low temperature and a short time bake coating, and an excellent moldability. In order to suppress the normal temperature aging property, the following component composition is preferable.

【0028】即ち、Mg:0.3〜1.0%、Si:
0.5〜1.4%の範囲において、Mg2Siを構成す
るMgに対しSi過剰の配合であって、MgとSiがM
2Si量として0.9〜1.1%で含み、且つ残留す
るSi量が0.6〜1.2%で含有し、更にCu:0.
5〜1.0%及びMn:0.05〜0.50%を含有
し、必要に応じて更に、Zr:0.3%以下、Cr:
0.3%以下、Ti:0.1%以下、Fe:0.3%以
下のうちの1種又は2種以上を含有し、残部がAl及び
不純物からなる組成である。その理由は以下のとおりで
ある。
That is, Mg: 0.3 to 1.0%, Si:
In a range of 0.5 to 1.4%, the composition of Mg 2 Si is excessive with respect to Mg constituting Mg 2 Si, and Mg and Si are M.
The content of g 2 Si is 0.9 to 1.1%, and the residual Si content is 0.6 to 1.2%.
5 to 1.0% and Mn: 0.05 to 0.50%, and if necessary, further Zr: 0.3% or less, Cr:
The composition contains one or more of 0.3% or less, Ti: 0.1% or less, and Fe: 0.3% or less, with the balance being Al and impurities. The reason is as follows.

【0029】前述のように、Cuは時効析出物θ´−C
uAl2により強度を付与する元素である。しかし、本
発明では、強度の増加はほぼβ´−Mg2Siによるも
ので、Cuの添加効果は、この時効析出物を緻密で微細
にすることにより、強度の向上並びに低温焼付で焼付硬
化性を向上させるものである。更に、Cuの添加は、常
温時効性を抑制する効果がある。後述の実施例に示すよ
うに強度及び成形性共にCuの添加範囲が0.5〜1.
0%で、常温時効性が急激に抑制されていることが判明
した。しかし、0.5%未満では強度の増加及び常温時
効性を抑制する効果が認められず、また、1.0%を超
えるとθ´−CuAl2の析出が増大し、且つこのθ´
−CuAl2の析出物は伸びと成形性を低下させ、更に
耐食性が劣化する。よって、Cu含有量は0.5〜1.
0%の範囲とする。
As described above, Cu is an aging precipitate θ'-C.
It is an element that gives strength by uAl 2 . However, in the present invention, the increase in strength is almost due to β'-Mg 2 Si, and the effect of Cu addition is that the aging precipitates are made dense and fine to improve the strength and bake hardenability by low temperature baking. Is to improve. Furthermore, the addition of Cu has the effect of suppressing the room temperature aging. As shown in Examples described later, the addition range of Cu is 0.5 to 1 for both strength and formability.
It was found that at 0%, the room temperature aging property was drastically suppressed. However, if it is less than 0.5%, the effect of increasing the strength and suppressing the room temperature aging is not recognized, and if it exceeds 1.0%, the precipitation of θ′-CuAl 2 increases, and this θ ′
Precipitate -CuAl 2 lowers the elongation and formability, further corrosion resistance is degraded. Therefore, the Cu content is 0.5 to 1.
The range is 0%.

【0030】更に、常温時効による強度の増加とそれに
伴う成形性の劣化を抑制するために、Mgの下限を0.
3%、Siの上限を1.4%とすると共に、Mg2Si
量を0.9〜1.1%、残留するSi量を0.6〜1.
2%とする。
Further, in order to suppress the increase in strength due to normal temperature aging and the deterioration of formability accompanying it, the lower limit of Mg is set to 0.
3%, the upper limit of Si is 1.4%, and Mg 2 Si
Content of 0.9 to 1.1% and residual Si content of 0.6 to 1.
2%

【0031】なお、本発明におけるAl−Mg−Si−
Cu−Mn系合金は、上述のMg、Si、Cu及びMn
を必須成分とすれば、その効果は十分得られるが、他の
元素を本発明の効果を損なわない限度で必要に応じて添
加し、又は不純物として許容できる。特に、Zr:0.
3%以下、Cr:0.3%以下、Ti:0.1%以下、
Fe:0.3%以下のうちの1種又は2種以上を含有さ
せると、成形性が向上する。
In the present invention, Al-Mg-Si-
The Cu-Mn alloy is the above-mentioned Mg, Si, Cu and Mn.
If is an essential component, the effect can be sufficiently obtained, but other elements can be added as necessary or acceptable as impurities so long as the effect of the present invention is not impaired. In particular, Zr: 0.
3% or less, Cr: 0.3% or less, Ti: 0.1% or less,
Fe: If one or more of 0.3% or less is contained, the moldability is improved.

【0032】ここで、Crは金属間化合物を形成し、微
細化した化合物は、再結晶を抑制し、結晶粒を微細化
し、成形性向上に効果を与えるが、0.3%を超えて添
加すると、粗大な金属間化合物として成長し、伸びの著
しい低下と成形性の急激な劣化の原因となる。従って、
Crの添加量は0.3%以下が望ましい。
Here, Cr forms an intermetallic compound, and the finely divided compound suppresses recrystallization and makes the crystal grains finer and has the effect of improving the formability, but is added in excess of 0.3%. Then, it grows as a coarse intermetallic compound, which causes a remarkable decrease in elongation and a sharp deterioration in formability. Therefore,
The Cr addition amount is preferably 0.3% or less.

【0033】Zrは、Crと同様に金属間化合物を形成
し、微細化した化合物は、再結晶を抑制し、結晶粒を微
細化し、成形性向上に効果を与えるが、0.3%を超え
て添加すると、粗大な金属間化合物として成長し、伸び
の著しい低下と成形性の急激な劣化の原因となる。従っ
て、Crの添加量は0.3%以下が望ましい。
Zr forms an intermetallic compound similar to Cr, and the finely divided compound suppresses recrystallization and makes the crystal grains finer, which is effective for improving the formability, but exceeds 0.3%. If it is added as a compound, it grows as a coarse intermetallic compound, which causes a remarkable decrease in elongation and a sharp deterioration in formability. Therefore, the amount of Cr added is preferably 0.3% or less.

【0034】Tiは鋳塊の結晶粒を微細にし、且つ成形
性を向上させる元素であるが、0.1%を超えて含有す
ると、粗大な晶出物を生成し、成形性を低下させる。よ
って、Tiの含有量は0.1%以下が望ましい。
Ti is an element which makes the crystal grains of the ingot finer and improves the formability, but when it is contained in excess of 0.1%, coarse crystallized substances are formed and the formability is lowered. Therefore, the Ti content is preferably 0.1% or less.

【0035】Feは強度向上効果は小さいが、0.3%
を超えると晶出物の生成が著しく、粗大化の原因ともな
り、更に結晶粒を粗大化させる。これらは、成形性を著
しく低下させることになる。よって、Fe含有量は0.
3%以下が望ましい。
Fe has a small effect of improving strength, but 0.3%
If it exceeds, crystallized substances are remarkably generated, which causes coarsening and further coarsens the crystal grains. These significantly reduce the moldability. Therefore, the Fe content is 0.
3% or less is desirable.

【0036】次に、本発明の製造条件について説明す
る。
Next, the manufacturing conditions of the present invention will be described.

【0037】上記Al−Mg−Si−Cu−Mn系アル
ミニウム合金は、常法により、溶解→鋳造→均質化熱処
理→熱間圧延を行い、熱間圧延後、組織制御のため焼鈍
処理を行う。
The above Al-Mg-Si-Cu-Mn-based aluminum alloy is melted, cast, homogenized, heat-rolled and hot-rolled by a conventional method, and after hot-rolling, an annealing treatment is performed to control the structure.

【0038】但し、本発明では、この焼鈍を行うことに
より、合金中の析出物を微細で、且つ、均一分散させ、
再結晶を抑制することによって、冷間圧延→溶体化処理
後の結晶粒組織を微細にする効果があり、結晶粒の微細
化により成形性の増加を得るための処理である。しか
し、その加熱及び冷却速度が300℃/分未満では、焼
鈍時に時効析出物であるMg2Siが粗大析出し、冷延
後T4処理してもこの析出物は溶けることがないため低
温・短時間ベーキングでのベークハード性が低減する。
よって、この焼鈍時の加熱・冷却速度は300℃/分以
上とする。また、そのときの加熱温度は、450℃未満
では、結晶粒の微細化効果が無く、成形性は向上しな
い。更に、520℃を超えると、溶体化処理温度に近づ
き固溶体強化が起き、強度が上がるため、その後の冷間
圧延で耳割れ等を起こす原因となる。よって、熱間圧延
後の焼鈍温度は、450〜520℃の範囲とする。な
お、保持時間は10秒以下で十分である。
However, in the present invention, by performing this annealing, the precipitates in the alloy are finely and uniformly dispersed,
By suppressing recrystallization, there is an effect of refining the crystal grain structure after cold rolling → solution treatment, and is a treatment for obtaining an increase in formability by refining the crystal grains. However, if the heating and cooling rate is less than 300 ° C./min, Mg 2 Si, which is an aging precipitate, is coarsely precipitated during annealing, and the precipitate does not melt even after T4 treatment after cold rolling. Bake hardness in time baking is reduced.
Therefore, the heating / cooling rate during this annealing is set to 300 ° C./min or more. If the heating temperature at that time is less than 450 ° C., there is no effect of refining the crystal grains, and the formability is not improved. Further, when the temperature exceeds 520 ° C., the solid solution strengthens due to approaching the solution treatment temperature, and the strength increases, which causes ear cracks and the like in the subsequent cold rolling. Therefore, the annealing temperature after hot rolling is in the range of 450 to 520 ° C. A holding time of 10 seconds or less is sufficient.

【0039】その後、冷間圧延を行って所望の板厚とし
た後、溶体化処理を施す。冷間圧延→溶体化処理の工程
の条件は特に制限されない。
After that, cold rolling is performed to obtain a desired plate thickness, and then solution treatment is performed. The conditions of the step of cold rolling → solution treatment are not particularly limited.

【0040】溶体化処理後は、従来は常温まで水冷又は
空冷により焼入れが行われていたが、本発明では、焼入
れ→保持の新規プロセスを採用し、以下に示すように、
焼入温度、焼入時の冷却速度並びに焼入温度での保持時
間をコントロールするものである。
After the solution treatment, quenching was conventionally performed by water cooling or air cooling to room temperature, but in the present invention, a new process of quenching → holding is adopted, and as shown below,
It controls the quenching temperature, the cooling rate during quenching, and the holding time at the quenching temperature.

【0041】焼入温度(即ち、焼入終了温度)が50℃
未満では、150℃程度の非常に低い温度での焼付塗装
で焼付硬化性が殆どなく、更に常温に放置する時間の経
過と共に消失する。一方、焼入温度が120℃を超える
と、Mg2Siの析出により、T4処理での強度が上が
りすぎて、成形性が劣化し並びに焼付硬化性が認められ
ない。従って、焼入温度の範囲は50〜120℃とす
る。
Quenching temperature (that is, quenching end temperature) is 50 ° C.
When it is less than 1, there is almost no bake hardenability by baking coating at a very low temperature of about 150 ° C., and it disappears with the passage of time when left at room temperature. On the other hand, if the quenching temperature exceeds 120 ° C., the strength in T4 treatment increases too much due to the precipitation of Mg 2 Si, the moldability deteriorates, and the bake hardenability is not recognized. Therefore, the quenching temperature range is 50 to 120 ° C.

【0042】この焼入温度(50〜120℃)に焼入れ
るときの冷却速度は、300℃/分未満では焼入後の強
度が低くなり、且つ、低温(150℃)での焼付硬化性
が認められなくなる。従って、冷却速度は300℃/分
以上とする。
If the cooling rate when quenching to this quenching temperature (50 to 120 ° C.) is less than 300 ° C./min, the strength after quenching will be low and the bake hardenability at low temperature (150 ° C.) will be low. Will not be recognized. Therefore, the cooling rate is 300 ° C./minute or more.

【0043】次に、焼入温度での保持時間については、
50℃という低温焼入れの場合、短時間保持では目的と
する低温での焼付硬化性の向上は認められず、また、1
20℃で長時間保持すると平衡相Mg2Siが析出し、
T4処理での強度が上がりすぎて、焼付硬化性は認めら
れなくなる。また、焼付温度が50℃未満の時、48時
間を超えて長時間保持すると、低温焼付硬化性は消失
し、また120℃を超える温度で1時間未満の短時間保
持を行ってもMg2Siが既に析出しているため、焼付
硬化性は認められない。従って、焼入条件としては、焼
入温度は50〜120℃、保持時間は1〜48時間とす
る。更に、この焼入温度での保持工程は、焼入れ後5分
以上経過した後に行うと、低温時の焼付硬化性が著しく
低下するため、5分以内に行うこととする。
Next, regarding the holding time at the quenching temperature,
In the case of quenching at a low temperature of 50 ° C, improvement in bake hardenability at the target low temperature is not recognized by holding for a short time, and 1
Equilibrium phase Mg 2 Si precipitates when kept at 20 ° C for a long time,
The strength of T4 treatment is too high, and bake hardenability is not observed. Also, when the baking temperature is below 50 ° C., 48 when a long time to hold more than hours, low temperature bake hardenability disappeared, also 120 exceeds ° C. Mg 2 be subjected to short-time retention of less than 1 hour at a temperature Si Bake-hardenability is not recognized because it has already been deposited. Therefore, as the quenching conditions, the quenching temperature is 50 to 120 ° C. and the holding time is 1 to 48 hours. Further, if this holding step at the quenching temperature is performed after 5 minutes or more have passed after quenching, the bake hardenability at a low temperature is remarkably deteriorated, so the holding step is performed within 5 minutes.

【0044】更に、本発明のAl合金板材の組織につい
て説明する。
Further, the structure of the Al alloy plate material of the present invention will be described.

【0045】結晶粒径は、成形性、SSマーク、肌荒れ
性、曲げ加工性等を左右する重要なファクターである。
成形性、特に張出性は結晶粒径が小さいと向上し、肌荒
れ性、曲げ加工性についても、結晶粒径が小さい程良好
となる。SSマークについては、Al−Mg系合金等に
見られるような結晶粒の微細による劣化は、本発明合金
系であるAl−Mg−Si系合金では殆ど認められず、
結晶粒径は、微細化してもSSマークは発生しない。従
って、結晶粒径は35μmより大きいと、特に成形性及
び肌荒れ性を著しく低下させるため、35μm以下とす
る。
The crystal grain size is an important factor that affects the formability, SS mark, surface roughness, bending workability and the like.
Formability, especially bulging property, is improved when the crystal grain size is small, and skin roughness and bending workability are also better as the crystal grain size is smaller. Regarding the SS mark, deterioration due to fine crystal grains as seen in Al-Mg alloys and the like is hardly recognized in the Al-Mg-Si alloy of the present invention.
Even if the crystal grain size is reduced, SS marks do not occur. Therefore, if the crystal grain size is larger than 35 μm, the moldability and the surface roughness are remarkably reduced, and therefore the crystal grain size is set to 35 μm or less.

【0046】また、板の表面及び断面の組織が等軸粒で
あるので、成形に対する方向性が殆どなく、局部的な変
形を伴わず、均一変形機構を有しながら変形するため、
張出や絞り等の成形を向上させる効果がある。製造条件
のうち特に、熱間圧延後の焼鈍処理(加熱速度300℃
/分以上で450〜520℃の温度に0〜10秒保持)
を行うことにより、この等軸粒が得られ、この処理が本
発明範囲外であると等軸粒を得るのが困難である。
Further, since the surface and cross-sectional structure of the plate are equiaxed grains, there is almost no directivity for molding, there is no local deformation, and deformation occurs with a uniform deformation mechanism.
It has an effect of improving molding such as overhang and drawing. Among the manufacturing conditions, especially annealing treatment after hot rolling (heating rate 300 ° C
/ Minute or more and hold at a temperature of 450 to 520 ° C for 0 to 10 seconds)
This equiaxed grain is obtained by carrying out, and it is difficult to obtain the equiaxed grain if this treatment is outside the scope of the present invention.

【0047】合金内部組織については、Cu添加による
効果と高温焼入処理による効果によって、150〜20
0℃×5〜120分のベーキング処理後の時効析出物
β′−Mg2Siの析出はマトリックス全体の体積含有
率で10〜45%が得られる。ベーキング処理後の時効
析出物の体積含有率が10%未満では十分な強度を得る
ことができず、45%を超えると過時効となり強度を低
下させる。
The internal structure of the alloy is 150 to 20 depending on the effect of Cu addition and the effect of high temperature quenching treatment.
After the baking treatment at 0 ° C. for 5 to 120 minutes, the precipitation of the aged precipitate β′-Mg 2 Si is 10 to 45% in terms of the volume content of the entire matrix. If the volume content of the aging precipitate after the baking treatment is less than 10%, sufficient strength cannot be obtained, and if it exceeds 45%, overaging occurs and the strength decreases.

【0048】素材の持つ変形機構については、6000
系合金においては、局部変形タイプであり、全体の変形
は5000系合金に比して小さいため成形性が悪い。し
かし、5000系合金は均一変形タイプであるため、成
形がAl合金の種類中では比較的良好である。この点、
本発明合金は、基本組成となる6000系Al−Mg−
Si中にCuを添加することにより、6000系合金の
欠点を解消して5000系合金の利点を生かしたものと
なり、変形機構が均一変形になる。
The deformation mechanism of the material is 6000.
The type alloy is a local deformation type, and since the total deformation is smaller than that of the 5000 type alloy, the formability is poor. However, since the 5000 series alloy is a uniform deformation type, the forming is relatively good among the types of Al alloys. In this respect,
The alloy of the present invention has a basic composition of 6000 series Al-Mg-
By adding Cu to Si, the defects of the 6000 series alloy are eliminated and the advantages of the 5000 series alloy are utilized, and the deformation mechanism becomes uniform deformation.

【0049】[0049]

【実施例】次に、本発明の実施例について説明する。第1実施例 下記表1に示す化学成分を有するアルミニウム合金を常
法により溶解→鋳造し得られた50mm厚鋳塊に510
℃×4時間の均質化処理を施した後、480℃以下の温
度で板厚5mmまでの熱間圧延を行った。熱間圧延材を
室温まで放置した後、昇温速度40℃/時で450℃×
5秒の条件にて焼鈍処理を行い、その後、常温にて冷間
圧延を施し、板厚1mmとし、実験に供した。
EXAMPLES Next, examples of the present invention will be described. First Example An aluminum alloy having the chemical composition shown in Table 1 below was melted and cast into a 50 mm thick ingot obtained by a conventional method to obtain 510
After subjecting to a homogenizing treatment at 4 ° C for 4 hours, hot rolling was performed at a temperature of 480 ° C or less to a plate thickness of 5 mm. After leaving the hot-rolled material to room temperature, the temperature rise rate is 40 ° C / hour and 450 ° C ×
Annealing treatment was performed under the condition of 5 seconds, and then cold rolling was performed at room temperature to a plate thickness of 1 mm, which was then subjected to an experiment.

【0050】この冷延材を530℃の溶体化処理温度に
加熱して20秒間保持し、次いで表2に焼入条件、即
ち、530℃から常温まで冷却する時の平均冷却速度を
50〜800℃/分の範囲で変化させて焼入温度に焼入
れし、その焼入温度のまま0.3〜72時間の範囲で保
持した後、常温まで冷却した。
This cold-rolled material was heated to a solution heat treatment temperature of 530 ° C. and held for 20 seconds, and then, in Table 2, quenching conditions, that is, the average cooling rate when cooling from 530 ° C. to room temperature was 50 to 800. After quenching to the quenching temperature by changing in the range of ° C / min, the quenching temperature was maintained for 0.3 to 72 hours and then cooled to room temperature.

【0051】得られた材料について、焼入れ後室温にて
5日間放置後の機械的性質を調べると共に、170℃×
20分のベーキング処理した時の機械的性質(焼付硬化
性)を調べた。それらの結果を表3に示す。
The obtained material was examined for mechanical properties after being left to stand at room temperature for 5 days after quenching and at 170 ° C.
The mechanical properties (bake hardenability) when baked for 20 minutes were examined. The results are shown in Table 3.

【0052】表3から明らかなように、本発明の実施例
は、表2の焼入条件で焼入れを行うことにより、低温
(170℃)でのベーキング処理で焼付硬化性が極めて
優れていることが分かる。更に、本発明の実施例は、表
2に示す焼入条件で処理しても、成形性が優れているこ
とがわかる。一方、本発明範囲以外の化学成分のAl合
金では、本発明範囲内の焼入条件を採用しても、焼付硬
化性は全く認められない。
As is clear from Table 3, in the examples of the present invention, by performing the quenching under the quenching conditions shown in Table 2, the bake hardenability is extremely excellent in the baking treatment at a low temperature (170 ° C.). I understand. Furthermore, it can be seen that the examples of the present invention have excellent formability even when treated under the quenching conditions shown in Table 2. On the other hand, with an Al alloy having a chemical composition outside the scope of the present invention, bake hardenability is not observed at all even when the quenching conditions within the scope of the present invention are adopted.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】第2実施例 第1実施例の表1に示した合金No.3のAl合金(本発
明範囲内の化学成分)と、No.10のAl合金(本発明
範囲外の化学成分)を常法で溶解、鋳造し、得られた鋳
塊について、加熱速度40℃/時で510℃の温度に4
時間保持する均質化熱処理を施した後、熱間圧延を行
い、厚さ5mmの板とした。得られた熱間圧延材を表4
に示す条件で焼鈍処理し、その後冷間圧延を行って厚さ
1.0mmの板とした。
Second Embodiment Al alloy No. 3 shown in Table 1 of the first embodiment (chemical composition within the scope of the present invention) and No. 10 Al alloy (chemical composition outside the scope of the present invention) Was melted and cast by a conventional method, and the obtained ingot was heated at a heating rate of 40 ° C./hour to a temperature of 510 ° C.
After performing a homogenizing heat treatment for holding for a time, hot rolling was performed to obtain a plate having a thickness of 5 mm. The obtained hot rolled material is shown in Table 4.
Annealing treatment was performed under the conditions shown in (1) and then cold rolling was performed to obtain a plate having a thickness of 1.0 mm.

【0057】次いで、得られた板を加熱速度400℃/
分で530℃の温度に20秒間保持し、800℃/分の
冷却速度で50℃の温度に焼入れし、そのまま50℃の
温度に24時間保持し、実験に供した。得られた材料に
つき、強度、成形性、結晶粒の測定を行った。結晶粒
は、厚さ1.0mmの材料板をエメリー紙(320〜1
200番)により研磨した後、バフ(アルミナ粒径50
μm)により鏡面研磨し、フッ化水素酸により電解腐食
し、その後、光学顕微鏡にて組織観察をし、切片法によ
りその大きさを測定した。得られた素材の特性と結晶粒
径並びに焼付(170℃×20分)後の焼付硬化性を表
5に示す。また、合金No.3のAl合金について表4中
の焼鈍条件(iii)で焼鈍した材料と、合金No.10の合
金で表4中の焼鈍条件(iv)の材料との各結晶組織写真
を図1及び図2に示す。
Then, the obtained plate was heated at a heating rate of 400 ° C. /
It was kept at a temperature of 530 ° C. for 20 seconds, quenched at a temperature of 50 ° C. at a cooling rate of 800 ° C./minute, kept at a temperature of 50 ° C. for 24 hours, and then subjected to an experiment. The strength, moldability and crystal grains of the obtained material were measured. For crystal grains, use a 1.0 mm thick material plate on emery paper (320-1
After polishing with # 200, buff (alumina particle size 50
(μm) and mirror-polished, and electrolytically corroded with hydrofluoric acid. After that, the structure was observed with an optical microscope, and the size was measured by a section method. Table 5 shows the characteristics of the obtained material, the crystal grain size, and the bake hardenability after baking (170 ° C. × 20 minutes). In addition, each crystal structure photograph of the material annealed under the annealing conditions (iii) in Table 4 for the Al alloy No. 3 and the material under the annealing conditions (iv) in Table 4 for the alloy No. 10 is shown. This is shown in FIGS. 1 and 2.

【0058】表5及び図1、図2から明らかなように、
本発明例は熱間圧延後に本発明条件で行い、冷間圧延す
ることで、20μm以下の結晶粒が得られ、比較例合金
について本発明範囲外の条件で焼鈍を施したものに比し
て、微細化していることがわかる。更に、本発明例は成
形性が優れ、焼付硬化性も向上している。
As is clear from Table 5 and FIGS. 1 and 2,
The present invention example was performed under the present invention conditions after hot rolling, and by cold rolling, crystal grains of 20 μm or less were obtained, and compared with the comparative example alloys annealed under conditions outside the present invention range. It can be seen that they are becoming finer. Furthermore, the inventive examples have excellent moldability and improved bake hardenability.

【0059】[0059]

【表4】 [Table 4]

【0060】[0060]

【表5】 [Table 5]

【0061】第3実施例 第1実施例の表1に示した合金No.3のAl合金(本発
明範囲内の化学成分)と、合金No.10のAl合金(本
発明範囲外の化学成分)を常法で溶解し、鋳造し、得ら
れた鋳塊について、加熱速度40℃/時で510℃の温
度に4時間保持する均質化熱処理を施した後、熱間圧延
を行い、厚さ5mmの板とした。得られた熱間圧延材を
室温まで放置した後、昇温速度300℃/分で500℃
×5秒、その後の冷却速度300℃/分の条件にて焼鈍
処理を行い、その後、冷間圧延を行って、厚さ1.0m
mの板とした。
Third Example Al alloy No. 3 shown in Table 1 of the first example (chemical composition within the range of the present invention) and Al No. 10 alloy (chemical composition outside the range of the present invention) ) Is melted and cast by a conventional method, and the obtained ingot is subjected to homogenizing heat treatment in which the temperature is kept at 510 ° C. for 4 hours at a heating rate of 40 ° C./hour, followed by hot rolling to obtain a thickness of It was a 5 mm plate. After leaving the obtained hot-rolled material to room temperature, it is heated to 500 ° C at a temperature rising rate of 300 ° C / min.
Annealing treatment under the condition of × 5 seconds and then a cooling rate of 300 ° C./min, followed by cold rolling to a thickness of 1.0 m
m plate.

【0062】次いで、得られた板を加熱速度400℃/
分で530℃の温度に20秒間保持し、800℃/分の
冷却速度で50℃の温度に焼入れし、そのまま50℃の
温度に24時間保持し、実験に供した。この熱処理を施
した材料につき、JIS5号引張試験片に加工し、平行
部において、図3に示すように5mm間隔で50mmま
でゲージレングス(G.L.)を11ポイントけがき、
実験に供した。実験は、そのゲージレングスの初期状態
と引張試験後の状態を測定し、その差をとり、それを変
化量とした。その結果を図4に示す。本発明例は比較例
に比して均一変形機構を持ち、全伸びを大きくしている
ことが分かる。このため、本発明例の合金は成形性が良
好である。
Then, the obtained plate was heated at a heating rate of 400 ° C. /
It was kept at a temperature of 530 ° C. for 20 seconds, quenched at a temperature of 50 ° C. at a cooling rate of 800 ° C./minute, kept at a temperature of 50 ° C. for 24 hours, and then subjected to an experiment. The heat-treated material was processed into JIS No. 5 tensile test pieces, and in the parallel portion, as shown in FIG. 3, a gauge length (GL) was scribed at 11 points up to 50 mm.
It was subjected to an experiment. In the experiment, the initial state of the gauge length and the state after the tensile test were measured, the difference between them was taken, and the change was taken. The result is shown in FIG. It can be seen that the inventive examples have a uniform deformation mechanism and increase the total elongation as compared with the comparative examples. Therefore, the alloys of the examples of the present invention have good formability.

【0063】第4実施例 第1実施例の表1に示した合金No.3のAl合金(本発
明範囲内の化学成分)及びNo.10のAl合金(比較合
金)を常法で溶解、鋳造し、得られた鋳塊について、加
熱速度40℃/時で510℃の温度に4時間保持する均
質化熱処理を施した後、熱間圧延を行い、厚さ5mmの
板とした。得られた熱間圧延材を室温まで放置した後、
昇温速度300℃/分で500℃×5秒、その後冷却速
度300℃/分の条件にて焼鈍処理を行い、その後、常
温にて冷間圧延を施し、板厚1mmとし、次いで得られ
た板を加熱速度400℃/分で530℃の温度に20秒
間保持し、800℃/分の冷却速度で50℃の温度に焼
入れし、そのまま50℃の温度に24時間保持し、実験
に供した。この熱処理を施した材料につき、ベーキング
処理を行った。ベーキング処理条件及びそのときの時効
析出物の体積含有率及び強度を表6に示す。更に、ベー
キング処理後の時効析出物の析出状態を透過型電子顕微
鏡にて観察した結果を図5に示す。
Fourth Example The alloy No. 3 Al alloy (chemical components within the scope of the present invention) and No. 10 Al alloy (comparative alloy) shown in Table 1 of the first example were melted by a conventional method, After casting, the obtained ingot was subjected to a homogenizing heat treatment of holding it at a temperature of 510 ° C. for 4 hours at a heating rate of 40 ° C./hour, followed by hot rolling to obtain a plate having a thickness of 5 mm. After leaving the obtained hot rolled material to room temperature,
An annealing treatment was performed at a temperature rising rate of 300 ° C./min at 500 ° C. for 5 seconds and then at a cooling rate of 300 ° C./min, and then cold rolling was performed at room temperature to a plate thickness of 1 mm. The plate was kept at a temperature of 530 ° C. for 20 seconds at a heating rate of 400 ° C./min, quenched at a temperature of 50 ° C. at a cooling rate of 800 ° C./min, and kept at a temperature of 50 ° C. for 24 hours to be subjected to an experiment. . A baking treatment was performed on the heat-treated material. Table 6 shows the baking treatment conditions and the volume content and strength of the aged precipitate at that time. Furthermore, the result of observing the precipitation state of the aging precipitate after the baking treatment with a transmission electron microscope is shown in FIG.

【0064】この結果より、本発明範囲内のベーキング
処理を行うことにより、時効析出物の体積含有率は26
〜42%で、強度は170〜230N/mm2と高いこ
とが分かる。
From these results, the volume content of aging precipitates was 26 by performing the baking treatment within the range of the present invention.
It can be seen that the strength is as high as 170 to 230 N / mm 2 at ˜42%.

【0065】[0065]

【表6】 [Table 6]

【0066】第5実施例 下記表7に示す化学成分を有するアルミニウム合金を常
法により溶解→鋳造し得られた50mm厚鋳塊に560
℃×4時間の均質化処理を施した後、即熱間圧延を行
い、板厚5mmとした。熱間圧延材を室温まで放置し、
昇温速度200℃/時で500℃×5秒の条件にて焼鈍
処理を行い、その後、常温にて冷間圧延を施し、板厚1
mmとした。この冷延材を530℃の溶体化処理温度に
加熱して30秒間保持し、次いで50℃の温湯焼入れ
し、2時間の保持を行い、T4材を製作した。その後、
室温放置7日間経過材と室温放置3カ月間経過材を製作
し、実験に供した。
Fifth Example An aluminum alloy having the chemical composition shown in Table 7 below was melted by a conventional method and cast into a 50 mm thick ingot obtained by casting 560
After subjecting to homogenizing treatment at 4 ° C. for 4 hours, hot rolling was performed immediately to obtain a plate thickness of 5 mm. Leave the hot rolled material to room temperature,
Annealing treatment was performed at a temperature rising rate of 200 ° C./hour under conditions of 500 ° C. for 5 seconds, and then cold rolling was performed at room temperature to obtain a sheet thickness of 1
mm. This cold rolled material was heated to a solution treatment temperature of 530 ° C. and held for 30 seconds, then quenched in hot water of 50 ° C. and held for 2 hours to produce a T4 material. afterwards,
A material that had been left to stand at room temperature for 7 days and a material that had been left at room temperature for 3 months were manufactured and subjected to experiments.

【0067】強度の測定は、島津製オートグラフによる
引張試験を行い、耐力の常温時効による耐力の変化を求
め、(3カ月時σ0.2−7日時σ0.2)が15N/mm2
以下であるものを合格とした。
To measure the strength, a tensile test was carried out using an autograph manufactured by Shimadzu, and a change in the proof stress due to room temperature aging was determined. (3 months time σ 0.2 -7 date σ 0.2 ) was 15 N / mm 2
The following were accepted.

【0068】成形性は、エリクセン試験機を用い、JI
S−Z2247エリクセン試験B方法に従って評価し
た。3カ月経過材を用い、そのときのエリクセン値が
9.8mm以上の値を示したものをAl−Mg系合金と
同等の成形性とし、合格とした。
The moldability was measured by JI using an Erichsen tester.
It was evaluated according to the S-Z2247 Erichsen Test B method. A material that had been used for 3 months and had an Erichsen value of 9.8 mm or more at that time had the same formability as that of the Al-Mg alloy and was regarded as acceptable.

【0069】強度及び成形試験の結果を下記表8に示
す。表8から明らかなように、本発明例の実施例21か
ら24の合金強度は、(3カ月時σ0.2−7日時σ0.2
が15N/mm2以下であり、且つ、成形性の指標であ
るエリクセン値が9.8mm以上と、常温放置しても成
形性が劣化せず、優れていることが分かる。
The results of the strength and molding test are shown in Table 8 below. As is clear from Table 8, the alloy strengths of Examples 21 to 24 of the present invention are (σ 0.2 −7 date and time σ 0.2 at 3 months).
Is 15 N / mm 2 or less and the Erichsen value, which is an index of moldability, is 9.8 mm or more, and it is clear that the moldability does not deteriorate even when left at room temperature and is excellent.

【0070】[0070]

【表7】 [Table 7]

【0071】[0071]

【表8】 [Table 8]

【0072】第6実施例 第5実施例の表7に示した合金No.21のAl合金
(本発明範囲内の化学成分)と合金No.25のAl合
金(本発明範囲外の化学成分)を常法で溶解、鋳造し、
得られた鋳塊について560℃×4時間の均質化処理を
施した後、即熱間圧延を行い、板厚2.5mmとした。
No.21合金は、熱間圧延材を室温まで放置し、昇温
速度200℃/時で500℃×5秒の条件にて焼鈍処理
を行い、その後、常温にて冷間圧延を施し、板厚1mm
とした。No.25合金については、比較のため、焼鈍
処理を行わず、熱間圧延後、常温で冷間圧延し、板厚1
mmとした。これらの冷延材を530℃の溶体化処理温
度に加熱して30分間保持し、次いで50℃の温湯焼入
れし、2時間の保持を行い、T4材を製作した。
Sixth Embodiment Alloy No. shown in Table 7 of the fifth embodiment. 21 Al alloy (chemical composition within the scope of the present invention) and alloy No. 21. 25 Al alloys (chemical components outside the scope of the present invention) were melted and cast by a conventional method,
The obtained ingot was homogenized at 560 ° C. for 4 hours and then immediately hot-rolled to a plate thickness of 2.5 mm.
No. For alloy No. 21, the hot-rolled material was allowed to stand to room temperature, annealed at a temperature rising rate of 200 ° C./hour under conditions of 500 ° C. for 5 seconds, and then cold rolled at room temperature to obtain a plate thickness of 1 mm.
And No. For comparison, alloy 25 was not annealed, but was hot-rolled and then cold-rolled at room temperature to obtain a sheet thickness of 1
mm. These cold rolled materials were heated to a solution treatment temperature of 530 ° C. and held for 30 minutes, then quenched in hot water of 50 ° C. and held for 2 hours to produce T4 material.

【0073】得られた材料につき成形性、結晶粒の測定
を行った。成形性はエリクセン試験機を用い、JIS−
2247エリクセン試験B法に従って評価した。結晶粒
径は厚さ1mmの材料板をエメリー紙(320〜120
0番)、バフ(アルミナ粒径50μm)により鏡面研磨
し、ふっ化水素酸による電解腐食を行い、その後、光学
顕微鏡にて組織観察し、写真撮影後、切片法による結晶
粒の大きさを測定した。
Moldability and crystal grains of the obtained material were measured. Moldability is measured by JIS-
2247 Erichsen test B method evaluated. The crystal grain size is 1 mm thick and the material plate is emery paper (320-120
No. 0), mirror-polished with buff (alumina particle size 50 μm), electrolytic corrosion with hydrofluoric acid, then microscopic observation of the structure with an optical microscope, and measurement of crystal grain size by sectioning method did.

【0074】下記表9はNo.21材(本発明例)及び
No.25材(比較例)のエリクセン高さと結晶粒径を
示し、図6、図7に夫々No.21材、No.25材の
結晶組織写真を示す。表9及び図6、図7より明かなよ
うに、No.21材(本発明例)は、結晶粒が25μm
以下の結晶粒が得られ、且つ、エリクセン値が10.0
mmと非常に高く、No.25材(比較例)より、結晶
粒が微細化され、成形性が優れていることがわかる。
Table 9 below shows No. 21 material (example of the present invention) and No. 21 material. The Erichsen height and the crystal grain size of No. 25 material (comparative example) are shown in FIG. 6 and FIG. No. 21 material, No. The crystal structure photograph of 25 materials is shown. As is clear from Table 9 and FIGS. 21 material (Example of the present invention) has a crystal grain of 25 μm.
The following crystal grains were obtained, and the Erichsen value was 10.0.
mm, which is very high, From No. 25 (Comparative Example), it is found that the crystal grains are made finer and the formability is excellent.

【0075】[0075]

【表9】 [Table 9]

【0076】[0076]

【発明の効果】以上詳述したように、本発明によれば、
Al−Mg−Si−Cu−Mn系合金板のMg、Siの
含有量を調整し、最適なMg2Si量及び残Si量に
し、更に強度及び成形性を向上させる効果のあるCu及
びMnを添加し、結晶粒径が35μm以下であるので、
素材強度が高く、しかも低温での焼付塗装においても十
分な焼付硬化性が得られると共に成形加工性を優れたも
のとすることができる。これは従来材と異なり、Cu添
加により時効析出物β′−Mg2Si(焼付塗装後)を
緻密で微細にすることで強度増加並びに低温での焼付塗
装で優れた焼付硬化性が得られるものであり、更にはC
u添加により変形機構を均一変形させることで低温での
焼付塗装でも成形性向上が発揮されるものである。従っ
て、Al合金板の薄肉化が可能となり、更には成形加工
性が良好なため、自動車、家電製品、機械部品の軽量化
に寄与し、利用頻度が向上する効果は極めて顕著であ
る。
As described in detail above, according to the present invention,
By adjusting the content of Mg and Si of the Al-Mg-Si-Cu-Mn-based alloy plate to the optimum Mg 2 Si content and the remaining Si content, Cu and Mn having the effect of further improving strength and formability are selected. And the crystal grain size is 35 μm or less,
The material strength is high, and sufficient bake hardenability can be obtained even in baking coating at low temperature, and molding processability can be made excellent. This is different from the conventional material in that the addition of Cu makes the aging precipitate β'-Mg 2 Si (after baking coating) denser and finer to increase the strength and to obtain excellent bake hardenability in baking coating at low temperature. And further C
By uniformly deforming the deformation mechanism by adding u, the moldability is improved even in baking coating at low temperature. Therefore, the thickness of the Al alloy plate can be reduced, and since the moldability is good, the effect of contributing to the weight reduction of automobiles, home appliances, and mechanical parts and improving the frequency of use is extremely remarkable.

【0077】また、更に限定された成分調整をすること
により、常温時効による強度の増加とそれに伴う成形性
の劣化を抑制し、3カ月経過しても、製造時とほぼ変わ
らぬ性能を維持するAl合金板材として、経時によるプ
レス加工時の条件を変えることがないため、自動車、家
電製品、機械部品の軽量化に寄与し、工業的に使用頻度
を一層向上させることが可能となり、その効果は極めて
高い。
Further, by further limiting the component adjustment, the increase in strength due to room temperature aging and the accompanying deterioration in moldability are suppressed, and the performance which is almost the same as that at the time of manufacture is maintained even after 3 months have passed. As an Al alloy plate material, since it does not change the conditions at the time of press working over time, it contributes to the weight reduction of automobiles, home electric appliances, and mechanical parts, and it is possible to further improve the frequency of use industrially. Extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】第2実施例で得られた材料の金属組織を示す写
真で、本発明例の場合である。
FIG. 1 is a photograph showing the metallographic structure of the material obtained in the second example, which is the case of the example of the present invention.

【図2】第2実施例で得られた材料の金属組織を示す写
真で、比較例である。
FIG. 2 is a photograph showing a metallographic structure of the material obtained in the second example, which is a comparative example.

【図3】変形機構測定用の試験片の形状を示す図であ
る。
FIG. 3 is a view showing a shape of a test piece for measuring a deformation mechanism.

【図4】変形機構(全伸びの状態)を示す図である。FIG. 4 is a diagram showing a deformation mechanism (a state of full extension).

【図5】第4実施例で得られたベーキング処理後の材料
の金属組織を示す写真で、(a)は本発明例(170℃
×20分ベーキング)、(b)は比較例(120℃×1
0分ベーキング)、(c)は比較例(200℃×120
分ベーキング)である。
FIG. 5 is a photograph showing the metallographic structure of the material after the baking treatment obtained in the fourth example, in which (a) is the example of the present invention (170 ° C.).
X 20 minutes baking), (b) is a comparative example (120 ° C x 1)
0 minute baking), (c) is a comparative example (200 ° C. × 120
Minute baking).

【図6】第6実施例で得られたT4材の金属組織を示す
写真で、本発明例の場合である。
FIG. 6 is a photograph showing the metallographic structure of the T4 material obtained in the sixth example, which is the case of the example of the present invention.

【図7】第6実施例で得られたT4材の金属組織を示す
写真で、比較例の場合である。
FIG. 7 is a photograph showing the metal structure of the T4 material obtained in the sixth example, which is the case of the comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大家 正二郎 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 竹添 修 栃木県真岡市鬼怒ケ丘15番地 株式会社神 戸製鋼所真岡製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shojiro Oya 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Co., Ltd. Kobe Research Institute of Technology (72) Inventor Osamu Takezoe Kinuike, Moka City, Tochigi Prefecture Oka No. 15 Kado Steel Works Moka Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下、同じ)、Mg:0.2
〜1.0%、Si:0.5〜2.0%の範囲において、
Mg2Siを構成するMgに対しSi過剰の配合であっ
て、MgとSiがMg2Si量として0.35〜1.5
%で含み、且つ、残留するSi量が0.35〜1.2%
で含有し、更にCu:0.5〜2.0%及びMn:0.
05〜0.50%を含有し、残部がAl及び不可避的不
純物からなり、板材の組織が結晶粒径で35μm以下
で、且つ板の表面及び断面の組織が等軸粒であることを
特徴とする焼付硬化型Al合金板。
1. In weight% (hereinafter the same), Mg: 0.2
~ 1.0%, in the range of Si: 0.5-2.0%,
It is a mixture of Si in excess of Mg constituting Mg 2 Si, and Mg and Si are 0.35 to 1.5 as the amount of Mg 2 Si.
%, And the amount of residual Si is 0.35 to 1.2%
And Cu: 0.5 to 2.0% and Mn: 0.
It is characterized by containing 0.05 to 0.50%, the balance consisting of Al and inevitable impurities, the structure of the plate material having a crystal grain size of 35 μm or less, and the structure of the surface and cross section of the plate being equiaxed grains. Bake hardening type Al alloy plate.
【請求項2】 Mg:0.3〜1.0%、Si:0.5
〜1.4%の範囲において、Mg2Siを構成するMg
に対しSi過剰の配合であって、MgとSiがMg2
i量として0.9〜1.1%で含み、且つ、残留するS
i量が0.6〜1.2%で含有し、更にCu:0.5〜
1.0%及びMn:0.05〜0.50%を含有し、残
部がAl及び不可避的不純物からなり、板材の組織が結
晶粒径で35μm以下で、且つ板の表面及び断面の組織
が等軸粒であることを特徴とする焼付硬化型Al合金
板。
2. Mg: 0.3 to 1.0%, Si: 0.5
Mg constituting Mg 2 Si in the range of up to 1.4%
On the other hand, the composition is excessive in Si, and Mg and Si are Mg 2 S.
i content of 0.9 to 1.1% and remaining S
The i content is 0.6 to 1.2%, and further Cu: 0.5 to
1.0% and Mn: 0.05 to 0.50%, the balance consisting of Al and unavoidable impurities, the structure of the plate material having a crystal grain size of 35 μm or less, and the structure of the surface and cross section of the plate. A bake hardening type Al alloy plate characterized by equiaxed grains.
【請求項3】 Mg:0.2〜1.0%、Si:0.5
〜2.0%範囲において、Mg2Siを構成するMgに
対しSi過剰の配合であって、MgとSiがMg2Si
量として0.35〜1.5%で含み、且つ、残留するS
i量が0.35〜1.2%で含有し、更にCu:0.5
〜2.0%及びMn:0.05〜0.50%を含有し、
更に、Zr:0.3%以下、Cr:0.3%以下、T
i:0.1%以下及びFe:0.3%以下からなる群か
ら選択された1種又は2種以上を含有し、残部がAl及
び不可避的不純物からなり、板材の組織が結晶粒径で3
5μm以下で、且つ板の表面及び断面の組織が等軸粒で
あることを特徴とする焼付硬化型Al合金板。
3. Mg: 0.2-1.0%, Si: 0.5
In the range of up to 2.0%, the composition of Mg 2 Si is excessive with respect to Mg constituting Mg 2 Si, and Mg and Si are Mg 2 Si.
S content of 0.35 to 1.5% and remaining S
The i content is 0.35 to 1.2% and further Cu: 0.5
-2.0% and Mn: 0.05-0.50%,
Furthermore, Zr: 0.3% or less, Cr: 0.3% or less, T
i: 0.1% or less and Fe: 0.3% or less, and one or more selected from the group, the balance consisting of Al and unavoidable impurities, and the structure of the plate material having a crystal grain size. Three
A bake hardening type Al alloy plate having a size of 5 μm or less and having a surface and cross-section structure of equiaxed grains.
【請求項4】 Mg:0.3〜1.0%、Si:0.5
〜1.4%の範囲において、Mg2Siを構成するMg
に対しSi過剰の配合であって、MgとSiがMg2
i量として0.9〜1.1%で含み、且つ、残留するS
i量が0.6〜1.2%で含有し、更にCu:0.5〜
1.0%及びMn:0.05〜0.50%を含有し、更
に、Zr:0.3%以下、Cr:0.3%以下、Ti:
0.1%以下及びFe:0.3%以下からなる群から選
択された1種又は2種以上を含有し、残部がAl及び不
可避的不純物からなり、板材の組織が結晶粒径で35μ
m以下で、且つ板の表面及び断面の組織が等軸粒である
ことを特徴とする焼付硬化型Al合金板。
4. Mg: 0.3 to 1.0%, Si: 0.5
Mg constituting Mg 2 Si in the range of up to 1.4%
On the other hand, the composition is excessive in Si, and Mg and Si are Mg 2 S.
i content of 0.9 to 1.1% and remaining S
The i content is 0.6 to 1.2%, and further Cu: 0.5 to
1.0% and Mn: 0.05 to 0.50%, and further Zr: 0.3% or less, Cr: 0.3% or less, Ti:
0.1% or less and Fe: 1% or more selected from the group consisting of 0.3% or less are contained, the balance is made of Al and inevitable impurities, and the structure of the plate material has a crystal grain size of 35 μm.
A bake-hardenable Al alloy plate having a grain size of m or less and the surface and cross-section of the plate having equiaxed grains.
【請求項5】 請求項1乃至4のいずれか1項に記載の
化学成分を有するAl合金鋳塊にバーニング温度以下の
温度で均質化処理する工程と、熱間圧延する工程と、加
熱速度300℃/分以上で450〜520℃の温度に0
〜10秒保持し、且つ、冷却速度300℃/分以上で冷
却する焼鈍処理する工程と、所望の板厚に冷間圧延する
工程と、溶体化処理する工程と、300℃/分以上の冷
却速度で50〜120℃の温度に焼入れし、5分以内
に、50〜120℃の温度に1〜48時間保持する工程
とを有することを特徴とする焼付硬化型Al合金板の製
造方法。
5. A step of homogenizing the Al alloy ingot having the chemical composition according to claim 1 at a temperature not higher than the burning temperature, a step of hot rolling, and a heating rate 300. 0 to a temperature of 450 to 520 ℃ above ℃ / min
Annealing process of holding for 10 seconds and cooling at a cooling rate of 300 ° C./min or more, cold rolling to a desired plate thickness, solution treatment process, and cooling of 300 ° C./min or more Quenching to a temperature of 50 to 120 ° C. at a speed and holding at a temperature of 50 to 120 ° C. for 1 to 48 hours within 5 minutes, a method for producing a bake hardening type Al alloy plate.
【請求項6】 前記50〜120℃の温度に1〜48時
間保持する工程の後工程として、焼付塗装(ベーキング
処理)を温度150〜200℃で5〜120分保持の条
件で行い、時効析出物β´−Mg2Siをマトリックス
の全体の体積含有率で10〜45%の範囲で析出させる
工程を有することを特徴とする請求項5に記載の焼付硬
化型Al合金板の製造方法。
6. As a post-step of the step of holding at the temperature of 50 to 120 ° C. for 1 to 48 hours, baking coating (baking treatment) is performed at a temperature of 150 to 200 ° C. for 5 to 120 minutes, and aged precipitation. The method for producing a bake-hardenable Al alloy sheet according to claim 5, further comprising a step of precipitating the material β'-Mg 2 Si in a range of 10 to 45% in a total volume content of the matrix.
JP15168194A 1993-06-08 1994-06-08 Hardened al alloy sheet by baking and production thereof Pending JPH07166285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15168194A JPH07166285A (en) 1993-06-08 1994-06-08 Hardened al alloy sheet by baking and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16419393 1993-06-08
JP5-164193 1993-06-08
JP15168194A JPH07166285A (en) 1993-06-08 1994-06-08 Hardened al alloy sheet by baking and production thereof

Publications (1)

Publication Number Publication Date
JPH07166285A true JPH07166285A (en) 1995-06-27

Family

ID=26480845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15168194A Pending JPH07166285A (en) 1993-06-08 1994-06-08 Hardened al alloy sheet by baking and production thereof

Country Status (1)

Country Link
JP (1) JPH07166285A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047779A1 (en) * 1996-06-14 1997-12-18 Aluminum Company Of America Highly formable aluminum alloy rolled sheet
JP2004124175A (en) * 2002-10-02 2004-04-22 Furukawa Sky Kk Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP2005139537A (en) * 2003-11-10 2005-06-02 Kobe Steel Ltd Aluminum alloy sheet having excellent baking finish hardenability
CN100366782C (en) * 2001-11-05 2008-02-06 萨尔茨堡炼铝厂股份公司 Aluminum-silicon alloys having improved mechanical properties
EP2088216A1 (en) * 2008-02-07 2009-08-12 Audi AG Aluminium alloy
WO2012160720A1 (en) * 2011-05-20 2012-11-29 住友軽金属工業株式会社 Aluminum alloy material with excellent bendability and process for producing same
WO2019083969A1 (en) * 2017-10-23 2019-05-02 Novelis Inc. High-strength, highly formable aluminum alloys and methods of making the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047779A1 (en) * 1996-06-14 1997-12-18 Aluminum Company Of America Highly formable aluminum alloy rolled sheet
CN100366782C (en) * 2001-11-05 2008-02-06 萨尔茨堡炼铝厂股份公司 Aluminum-silicon alloys having improved mechanical properties
JP2004124175A (en) * 2002-10-02 2004-04-22 Furukawa Sky Kk Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP2005139537A (en) * 2003-11-10 2005-06-02 Kobe Steel Ltd Aluminum alloy sheet having excellent baking finish hardenability
EP2088216A1 (en) * 2008-02-07 2009-08-12 Audi AG Aluminium alloy
WO2012160720A1 (en) * 2011-05-20 2012-11-29 住友軽金属工業株式会社 Aluminum alloy material with excellent bendability and process for producing same
US20140083575A1 (en) * 2011-05-20 2014-03-27 Sumitomo Light Metal Industries, Ltd. Aluminum alloy material exhibiting excellent bendability and method for producing the same
US9834833B2 (en) 2011-05-20 2017-12-05 Uacj Corporation Aluminum alloy material exhibiting excellent bendability and method for producing the same
WO2019083969A1 (en) * 2017-10-23 2019-05-02 Novelis Inc. High-strength, highly formable aluminum alloys and methods of making the same
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2022172234A (en) * 2017-10-23 2022-11-15 ノベリス・インコーポレイテッド High-strength, highly formable aluminum alloys and methods of making the same

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH0747808B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH06136478A (en) Baking hardening type al alloy sheet excellent in formability and its production
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP2003171726A (en) Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor
JP2004315878A (en) Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH10259464A (en) Production of aluminum alloy sheet for forming
CN113474479A (en) Method for producing a plate or strip from an aluminium alloy and plate, strip or shaped part produced thereby
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JP2004183025A (en) Aluminum alloy sheet for forming, and its manufacturing method
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming