JP2004250738A - Al-Mg BASED ALLOY SHEET - Google Patents

Al-Mg BASED ALLOY SHEET Download PDF

Info

Publication number
JP2004250738A
JP2004250738A JP2003041141A JP2003041141A JP2004250738A JP 2004250738 A JP2004250738 A JP 2004250738A JP 2003041141 A JP2003041141 A JP 2003041141A JP 2003041141 A JP2003041141 A JP 2003041141A JP 2004250738 A JP2004250738 A JP 2004250738A
Authority
JP
Japan
Prior art keywords
less
texture
orientation
alloy
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003041141A
Other languages
Japanese (ja)
Inventor
Katsura Kajiwara
桂 梶原
Kazuhide Matsumoto
和秀 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003041141A priority Critical patent/JP2004250738A/en
Publication of JP2004250738A publication Critical patent/JP2004250738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg based alloy sheet which is utilized as the material for an automobile wheel or the like, has excellent strength, deep drawability and surface properties, and in which "ear" occurring on deep drawing can remarkably be reduced as well. <P>SOLUTION: In the Al-Mg based alloy sheet, each texture in the Cube orientation, S orientation, Cu orientation, Brass orientation and Goss orientation is suitably regulated as well as the componential composition of the alloy, so that not only the improvement of its workability or the like to which attention has been payed is attained, but also "ear" on deep drawing can be reduced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高強度であり且つ深絞り加工性に優れる上に、加工時における耳率が顕著に低減されたAl−Mg系合金板に関するものであり、自動車のボディシート,骨格材やホイール,および船舶や電気製品の外板等に適したものである。
【0002】
【従来の技術】
アルミニウム合金材は鋼材と比べて軽量化が可能であり、しかもリサイクルし易いところから、省エネルギー化や省資源化の要求に応えて、自動車のボディシート,骨格,ホイール等の材料として、鋼材に代わって使用され始めている。この様な用途向けのアルミニウム合金として、従来より、優れた強度や成形性を有し溶接性も良好な、Mgを含むアルミニウム合金が使用されている。
【0003】
このAl−Mg系合金に関しては、最近、特に軽量化の要請が強いホイールへの応用が注目されている。自動車用ディスクホイールは、基本的にはリム部とディスク部とからなり、リム部は、主として板材(展伸材)に成形加工を加えて製造される。また、ディスク部は鋳造または鍛造によることも多いが、最近ではリム部と同様に板材(展伸材)に成形加工を施して製造されることが多い。従って、自動車ホイール用アルミニウム合金、特にそのリム部に使用されるアルミニウム合金には、高い機械的強度のみならず優れた成形性も要求される。
【0004】
従来、ホイールの素材としては、JIS 5000系のAl−Mg系合金を使用するのが一般的であり、特に、JIS 5052合金、JIS 5154合金などが使用される。しかしながら、これらMgを含む合金材は、一般に鋼材と比較して深絞り加工性に劣るという問題があった。
【0005】
深絞り加工性が改良されたAl−Mg系合金としては、例えば特許文献1に記載の合金が挙げられる。当該技術では、成分組成だけでなく集合組織と結晶粒径に着目し、張出し成形性や深絞り成形性等のプレス成形性の改良を図っている。
【0006】
また、特許文献2には、プレス成形性等に加えてホイールへの応用を考慮し、光輝性をも改良したAl−Mg系合金の製造方法が記載されている。
【0007】
ところで、アルミニウム合金を深絞り成形してホイール等へ加工する際には、被加工体の末端が波型となり、決して直線状にはならない。この末端部分は「耳」と呼ばれているが、この「耳」は除去せざるを得ないものであり歩留りロスの原因となるため、耳率はできる限り低い方が良い。
【0008】
しかし、従来では、この「耳率」を考慮したアルミニウム合金はなかった。
【0009】
【特許文献1】
特開2000−80431号公報(請求項2等)
【特許文献2】
特開平10−53846号公報(請求項1等)
【0010】
【発明が解決しようとする課題】
上述した様に、これまでにも強度や成形性に優れたAl−Mg系合金は知られていたが、「耳率」の点から充分なものはなかった。
【0011】
そこで、本発明が解決すべき課題は、強度や深絞り加工性,および表面性状に優れるだけでなく、深絞り加工時に生じる「耳」を顕著に低減することができる(「低耳率」である)Al−Mg系合金板を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく、種々のAl−Mg系合金を調製し、その集合組織と深絞り加工性や耳率等との関係について鋭意研究を重ねた。その結果、深絞り加工性に影響を与える集合組織成分について、特に各方位量のバランスと板厚方向の分布を適切に制御にすれば上記課題が解決できることを見出して、本発明を完成した。
【0013】
即ち、本発明に係るAl−Mg系合金板は、Mgを2〜6%(以下、合金組成の比率の場合には、全て「質量%」を意味するものとする。)含有し、且つCube方位,S方位,Cu方位,Brass方位,およびGoss方位の各集合組織が、下記の条件を満たすことを特徴とする。
【0014】
▲1▼Cube方位の存在率:10〜30%
▲2▼S方位の存在率:30〜50%
▲3▼Cu方位,Brass方位:それぞれ5〜20%
▲4▼Goss方位の存在率:10%以下
▲5▼(Cube+Goss)/(S+Cu+Brass)=0.1〜0.5。
【0015】
深絞り加工時の「耳」は、合金の圧延方向および圧延方向に対し90°方向に発生するもの(0°/90°方向の耳。以下、「−耳」という)と、圧延方向に対して45°方向に生じるもの(45°方向の耳。以下、「+耳」という)とがある。本発明者らは、合金集合組織の各方位とこれら「−耳」および「+耳」との相互関係を詳細に検討した結果、上記要件を満たせば、合金の強度や成形性,その表面性状を改善できるのみならず、耳率を低減できることを見出した。
【0016】
上記Al−Mg系合金板の板厚としては、2〜10mmが好ましい。従来のAl−Mg系合金板は1mm程度の比較的薄いものであり、冷間圧延率や最終焼鈍での加熱速度,冷却速度等の制御代が大きく、集合組織の面でも制御し易いものであった。これに対し、深絞り加工に用いられるアルミニウム合金の板厚は2〜10mmと比較的厚いことから、従来のアルミニウム合金板の製造方法をそのまま応用しても、望ましい成形性等を得るのは困難であった。しかし、本願発明の規定要件を満たす合金板は、厚板であっても製造条件を調節することによって比較的容易に得ることができる。従って、板厚を規定することには先行技術との差異を明確にする意図がある。
【0017】
上記アルミニウム合金板の表面部から500μmの領域の結晶粒径は、80μm以下が好ましい。当該要件を満たす合金板は表面性状に優れ、製品の仕上りが美しくなるからである。
【0018】
上記アルミニウム合金板では、Mnを1.0%以下(0%を含まない)含有するものが好適である。Mnは結晶粒を微細化することによって、合金の強度,延性,靭性および成形性の向上に寄与すると共に、集合組織バランスの安定化や製造条件による変動幅を小さくするために有効な元素だからである。
【0019】
また、Cuを0.6%以下(0%を含まない)含有するものが更に好ましい。強度が向上する上に、Cuは光の反射率を向上させる元素であることから、製品の光輝性が増すからである。
【0020】
他に、Fe:0.7%以下,Si:0.5%以下,Cr:0.4%以下,Zn:0.5%以下,Zr:0.3%以下(それぞれ、0%を含まない)からなる群より選択された少なくとも一種を含有する合金板も好適である。これら元素は、何れも機械的特性(強度,延性,靭性,硬化等)の向上に寄与する元素だからである。
【0021】
更に、Ti:0.005〜0.20%を単独で、またはB:0.0001〜0.05%と組合せて含有する合金板も好適である。これら元素は、鋳塊結晶粒の微細化に有効だからである。
【0022】
【発明の実施の形態】
本発明に係るAl−Mg系合金板が享有する最大の特徴は、高い強度と深絞り加工性を示し優れた表面性状を有する上に、深絞り加工時における耳率が低減されており、歩留りが良いことにある。
【0023】
即ち、従来より強度や成形性が改善されたAl−Mg系合金板が開発されていたが、耳率をも考慮した合金板はなく、歩留りの点で問題を残していた。しかし、本発明者らは合金板の集合組織に着目し、その存在バランスや分布を適正に制御すれば成形性の向上と共に耳率をも改善できることを見出し、本発明を完成した。
【0024】
以下に、斯かる特徴を発揮する本発明の実施形態、及びその効果について説明する。
【0025】
本発明でAl−Mg系のアルミニウム合金を選択したのは、Mgは単独で固溶強化による強度向上に有効であると共に、加工硬化能を高め、材料を均一に塑性変形させる効果があることから、成形材料として非常に優れているからである。
【0026】
本発明では、Mgを2〜6%添加する。Mgが2%未満では、前述した効果が表われないからであり、6%を超えると成形時に粒界破壊が発生し易くなるからである。Mgの含有量としては、好適には2.0%以上,6.0%以下である。
【0027】
本発明は、Al−Mg系合金の集合組織を規定することを要旨としており、通常のアルミニウム合金においては、下記の結晶方位集合組織の存在が知られている。
【0028】
Cube方位 :{001}<100>
Goss方位 :{011}<100>
Brass方位:{011}<211>
Cu方位 :{112}<111>
(若しくは、D方位:{4 4 11}<11 11 8>
S方位 :{123}<634>
RW方位 :{001}<110> (Cube方位が板面回転した方位)
SB方位 :{681}<112>等。
【0029】
ここで、集合組織のでき方は同じ結晶系でも加工法によって異なり、圧延による板材の場合には、圧延面と圧延方向で表す必要がある。即ち、上記各方位において、圧延面は{○○○}で表現され、圧延方向は<△△△>で表現される(○、△は整数を示す)(長島晋一編著「集合組織」(丸善株式会社刊),軽金属学会「軽金属」解説Vol.43,第285〜293頁(1993年)を参照)。
【0030】
本発明では、これら各方位について、以下の様に規定している。
【0031】
▲1▼Cube方位の存在率:10〜30%
▲2▼S方位の存在率:30〜50%
▲3▼Cu方位,Brass方位の存在率:それぞれ5〜20%
▲4▼Goss方位の存在率:10%以下
▲5▼(Cube+Goss)/(S+Cu+Brass)=0.1〜0.5。
【0032】
「Cube方位」を10〜30%としたのは、Cube方位が増えるほど「−耳」(0°および90°方向の耳)が強くなる一方で、10%未満であると「+耳」(45°方向の耳)が強くなるからである。従って、斯かる存在率は、15%以上,25%以下がより好ましい。
【0033】
「S方位」を30〜50%としたのは、S方位が増える程「+耳」(45゜方向の耳)が強くなるが、30%以上存在することで、板厚方向の集合組織の均一性が高まるからである。つまり、30%未満では板厚方向で集合分布が大きくなって「−耳」が強くなるとともに、成形時に均一変形が生じなくなる。従って、斯かる存在率は、35%以上,45%以下がより好ましい。
【0034】
「Cu方位」と「Brass方位」については、これらが増える程「+耳」が強くなるが、それぞれが5〜20%の範囲にあることで、集合組織のバランスが安定化する。より好ましくは、それぞれ10%以上,19%以下とする。
【0035】
「Goss方位」を10%以下としたのは、10%を超えると「−耳」が強くなると共に、絞り加工性が低下するからである。
【0036】
各方位が上記範囲にあることに加えて、本発明では(Cube+Goss)/(S+Cu+Brass)の値が0.1〜0.5の範囲内にあることを必須とする。当該範囲内であれば集合組織のバランスが良く、成形性に優れると共に耳率を低減することができるからである。つまり、当該値が0.1未満では「+耳」が強くなり、0.5を超えると「−耳」が強くなる。当該範囲としては、0.15以上,0.39以下がより好適である。
【0037】
本発明においては、基本的に上記各結晶面から±15゜以内の結晶方位のずれは、同一の結晶面に属するものと定義する。斯かる範囲内であれば、加工時等においてほぼ同一の性質を示すからである。
【0038】
本発明で規定されているCube,Brass,Cu,S,Goss方位の何れにも属さない方位粒の存在率は、3〜35%の範囲にあることが好ましく、5%以上,30%以下がより好ましい。プロセス条件のばらつきによる耳率のばらつきが低減され、耳率が更に安定するからである。尚、上記Cube方位以外の結晶方位としては、例えばCube〜Goss方位間の方位や、S〜Cu〜Brass方位間に属する方位がある。
【0039】
本発明における集合組織分布の評価は、合金板表面の中心(板長方向の1/2,板幅方向の1/2の交点)を通り,表面に直交し,且つ圧延方向に平行な面について、SEM−EBSP(Electron Back Scattering Pattern)を用いて測定することによることが好ましい。集合組織の分布は拡大写真等を用いて視覚的にも評価できるが、視覚的には区別が難しい結晶方位もあるためである。この場合、各集合組織成分の存在率は、測定部位に占める各面積率により評価する。
【0040】
また、上記測定は、合金板の板厚方向1/4部と中心部で測定することが望ましい。これら部位で上記の集合組織成分に関する要件を満たせば、深絞り加工時において均一に変形でき、深絞り加工性に優れる合金板を容易に特定できるからである。両部位で測定する面積は広ければ広い程、集合組織の分布データと耳率等との相関性は高まるが、実際には各測定部位において、縦500〜1000μm,横500〜1000μmの長方形(正方形を含む)に占める各集合組織の存在率(面積率)を測定すれば、測定結果は成形性や耳率に反映されると推定できる。尚、具体的な評価方法の一例は、後述する実施例にて説明する。
【0041】
前記特許文献1に記載されている「深絞り成形性に優れたAl−Mg系合金板」の集合組織に関する規定は、「(S/Cube)が1以上でGossが10%以下」であり(特許文献1の請求項2を参照)、当該規定は、本願発明の要件と重複する。しかし、上述した様に集合組織の方位はこれら3種以外にも存在し、集合組織を総合的に評価すれば、特許文献1に記載の合金では、成形性はともかく耳率が低減されているとは限らない。例えば、後述の実施例で実証しているが、特許文献1に具体的に記載されている合金は、本発明合金に比べて明らかに耳率が高い。即ち、本発明のアルミニウム合金は、特許文献1に記載の集合組織に関する規定を更に詳細に追求し、耳率の低減という新たな効果を付与した点に顕著な特徴を有している。
【0042】
本発明に係るAl−Mg系合金板の板厚は、2〜10mmが好ましい。本発明合金を、特に深絞り成形により製造されるホイール材として利用する場合には、板厚を比較的厚くする必要があるからである。また、当該規定には、従来技術との差異を明確にする意図もある。即ち、これまでAl−Mg合金の集合組織の点で制御された従来技術は、いずれも板厚1mm程度の薄板であり、冷間圧延率や最終焼鈍での加熱速度、冷却速度(急速加熱、急速冷却など)の制御代が大きく、集合組織の面でも制御し易いものであった。しかしながら、板厚2〜10mmの厚板は冷間圧延率や最終焼鈍条件の自由度が小さく板厚方向に集合組織の分布が生じ易いことから、従来方法によりこの様な厚板を製造すると、耳率の点で全く満足できないアルミニウム厚板しか得られなかった。しかし、本発明によれば、比較的厚いアルミニウム板であっても成形性に優れるのみならず、深絞り加工時の耳率も低いものを製造することができる。
【0043】
本発明に係るAl−Mg系合金板の結晶粒径に関しては、表面部から500μm領域の結晶粒径で80μm以下が好ましい。当該結晶粒径が80μm以下であれば、深絞り加工後の表面性状に寄与するので美しい製品が得られるが、80μmを超えると肌荒れが生じるおそれがあるからである。
【0044】
本発明に係るAl−Mg系合金板は、その成分組成として、Al,Mgおよび不可避的不純物以外にも、以下の成分を添加してもよい。但し、添加元素や不純物元素が少ない方が、光輝性向上の面では有利である。
【0045】
[Cu:0.6%以下(0%を含まない)]
Cuは、AlCuMgの形成や固溶によって合金強度を向上すると共に、光の反射率を向上させ光輝性向上に寄与する元素である。しかし、0.5%を超えると粗大なAlCuMgが形成され脆くおそれがあるので、0.6%以下にする。
【0046】
[Mn:1.0%以下(0%を含まない)]
Mnは、結晶粒を微細化し、強度,延性,靭性および成形性の向上に寄与すると共に、集合組織バランスの安定化やプロセス条件による変動幅を小さくするのに有効な元素である。また、固溶Mnおよび化合物であるAl−Fe−Mn−Si相(α相)の適正分布によって、加工性も向上させる。しかし1.0%超過ではMnAlの初晶巨大金属化合物が晶出し、成形性の低下につながる。より好ましい含有量は、0.9%以下である。
【0047】
[Fe:0.7%以下,Si:0.5%以下,Cr:0.4%以下,Zn:0.5%以下,Zr:0.3%以下(それぞれ、0%を含まない)からなる群より選択された少なくとも一種]
これら元素の1種または2種以上を積極的に添加することで、機械的特性(強度,延性,靭性,硬化等)や成形性を向上させることができる。例えばFeやSiは、Al合金中でAl−Fe系[AlFe(m:3〜6の整数)等],Al−Fe−Si系(α−AlFeSi等),またはAl−Mn−Fe−Siなど種々の晶出物および析出物を形成し、結晶粒の微細化や加工性等を高める作用を有するとともに、その添加量によって、集合組織も制御できる。これら元素の個々の添加効果は、以下の通りである。
【0048】
Fe:Feは、結晶粒の微細化及び化合物の適正分布による成形性の向上に効果があるが、0.7%を超える場合は化合物の粗大化による成形性の低下につながる。また、Feが0.01%未満ではその効果がないので、好適な下限量は0.01%である。
【0049】
Si:Siを添加すると、上述の金属間化合物を生成し、成形性の向上に効果がある。Si量が0.02%未満では上記の効果が得られず、一方、0.5%を越えれば時効硬化により材料が硬くなりすぎて成形性を阻害する。従って、好適な下限量は0.02%である。
【0050】
Zn:Znは強度の向上に寄与する元素であるが、添加量が0.5%を超えると粗大なAl−Zn系化合物が形成され脆くなる上に、耐食性を劣化させる。そこでZn量を0.5%以下とし、より好ましい上限値を0.4%とする。一方、0.05%未満では強度向上効果が得られないので、好適な下限量を0.05%以上とする。
【0051】
Cr,Zr:Cr,Zrも強度向上に効果的な元素であり、Cr:0.4%以下、Zr:0.3%以下でこの効果を発揮する。斯かる範囲を越えると、巨大晶出物生成によって成形性の低下を招くため、好ましくない。
【0052】
[Ti:0.005〜0.20%単独、またはB:0.0001〜0.05%との組合せ]
通常のアルミニウム合金においては、鋳塊結晶粒微細化のためにTi、或いはTiおよびBを微量添加することが行われており、この発明においても、必要に応じて微量のTiを単独で、或いはBと組合せて添加しても良い。但し、Ti量が0.005%未満ではその効果が得られず、0.20%を越えると巨大なAl−Ti系金属間化合物が晶出して成形性を阻害するため、Ti添加量は0.005〜0.20%とする。また、Ti単独でも鋳塊結晶粒微細化効果を示すが、Tiと併せてBを添加してもよい。この場合、B量が0.0001%未満ではその効果がなく、0.05%を越えればTi−B系の粗大粒子が混入して成形性を害することから、Tiと共にBを添加する場合のB量は0.0001〜0.05%の範囲内とした。
【0053】
上述した各元素以外にも、合金の様々な特性を高めるために所望の元素を添加してもよい。しかし、上記規定以外の残部は、不可避的に含まれる元素(不可避的不純物)が存在する他、Alとすることが好ましい。
【0054】
上記で説明した結晶方位組成を有するAl−Mg系合金板を製造する、即ち、合金板の集合組織を制御するためには、均熱,熱延粗圧延,仕上げ圧延,冷間圧延,最終焼鈍という一連の工程(冷間圧延中に、焼鈍を行なう場合も含む)において、条件を精緻に制御することが重要である。
【0055】
このような製造工程中における具体的なプロセス条件は、合金の成分組成や他のプロセス条件との兼ね合いで異なってくるから一概には定められない。しかし、本発明者らは、上述の絞り加工性と耳率に及ぼす集合組織形態に加えて、製造工程中の集合組織変化を詳細に調査し、以下の知見を得た。
【0056】
先ず、「最終焼鈍板の耳率と合金板の集合組織」は、「冷間圧延板(冷間圧延中に焼鈍を行なう場合には、最終焼鈍を行なう直前の最後の冷間圧延を施したものを意味する)の耳率と最終焼鈍前の合金板集合組織状態」および「冷間圧延率(=再結晶の駆動力となる蓄積ひずみ量)」で支配される。更に、「冷間圧延板の耳率」は、「冷間圧延率」と「冷間圧延前の耳率」によって支配される。ここで、「冷間圧延前」とは、熱延後、または熱延後に続いて焼鈍を行なった場合の当該焼鈍後、或いは冷延中に焼鈍を入れる場合には、最終の冷間圧延前の焼鈍を行なった後のことを指す。
【0057】
一例では、最終板5mmの板で、圧延率30%程度の低冷間圧延工程において低耳率(0%)を得るためには、冷間圧延前の板でCube方位を強く発達させることが必要であり、また、熱延板耳率を0〜―6%程度に制御することが必要である。即ち、熱間圧延板での集合組織と集合組織バランスを制御することが、成形性に優れ且つ耳率が低い合金板製造にとり非常に重要である。
【0058】
また、従来の薄いAl−Mg系合金板(約1mm程度)で熱延後におけるトータル加工率の高い板材では、最終焼鈍によってCube方位やS方位が主に発達し、他の方位が十分発達しない。しかし、本発明が主に対象にしているような板厚が厚い合金板(2〜10mm)では、他の方位の発達を制御することが重要であることが本発明者らによって見出されている。
【0059】
以下、本発明に係るAl−Mg系合金板を製造するには、一般的には次の様な条件が好ましい。
【0060】
[鋳造]
鋳造は、一般的な方法により行えばよい。例えば、所定の合金組成を有するものから、DC鋳造法などによってスラブ等の鋳塊を得た後に均質化処理を施す。
【0061】
[均熱条件]
均熱工程では、AlマトリックスへのMg固溶量を増加させることによって、熱延板の集合組織を制御することができる。当該工程での好ましい均熱温度は450〜550℃、保持時間は1〜20時間で2回以上の均熱処理は行わないものとする。均熱温度が低すぎる場合には、充分な効果が得られない場合がある一方で、20時間を越える長時間の加熱や2回の均熱処理を行なうと、他成分元素であるMn,Fe系の析出物が生じて熱延板で所望の集合組織形態が得られないことがあるからである。
【0062】
[熱間粗圧延]
熱間粗圧延の開始温度は、上記均熱工程に引き続いて行うため450〜550℃である。450℃未満では、熱延中に十分な再結晶が生じずに圧延されるため、集合組織のバランスが崩れ好ましくない。また、550℃を超えると熱間圧延板の表面において酸化や焼きつきが生じたり、再結晶粒が粗大化して表面性状の悪化,成形性の低下,成形後の肌荒れが生じる場合がある。
【0063】
終了温度は350〜470℃とする。冷間圧延率が低い製品板を製造する場合、熱延終了温度は高温が好ましく、350℃未満では仕上げ圧延後に再結晶するための十分な自己熱が不足し、また。次の熱間仕上圧延で圧延温度が低くなってエッジ割れが生じるからである。一方、470℃を超えると、次の熱間仕上圧延でCube方位発達のための駆動力となる歪みが十分蓄積されない。
【0064】
[仕上圧延]
仕上圧延工程での最終加工率は10%〜50%とし、仕上圧延工程の総加工率は60%〜95%とする。また、仕上圧延工程における最終圧延速度は50m/m〜150m/mとする。これら圧下率と速度の他に温度との組み合わせによって、熱延板の集合組織形態を制御することができる。
【0065】
終了温度は、最終製品板厚,当該工程後の冷間圧延率や中間焼鈍の有無によって組み合わせて制御する必要があり、適正範囲が異なる。具体的には、▲1▼冷間加工率が高い場合(50%〜75%),冷間加工率が低い(50%以下)+中間焼鈍(熱延後または冷間圧延途中)を行なう場合,または熱延後すぐ最終焼鈍で製造する場合には230℃〜300℃とし、▲2▼冷間加工率が低く中間焼鈍を行なわない場合,または熱延板のままで加工を行なう場合(圧延板を製品板とする場合)には290℃〜370℃とする。
【0066】
[中間工程]
最終製品の板厚や熱延後の冷間加工率に応じて、熱間圧延工程後の焼鈍(以下、「熱延後焼鈍」という)または冷間圧延工程中での焼鈍(以下、「冷延焼鈍」という)を適宜追加することによって、集合組織を調整することができる。
【0067】
[冷間圧延]
最終板厚は、およそ2〜10mmとするのが好ましいので、冷間圧延率は0%〜80%とする。ここで、上述の通り「冷間圧延板の耳率」は「冷間圧延率」と「冷間圧延前の耳率」によって支配されるので、冷間圧延前の集合組織,耳率と製品厚によって、冷間圧延率を適宜制御すればよい。
【0068】
[最終焼鈍]
焼鈍温度は300℃〜400℃、保持時間は10分〜6時間とする。なお昇温速度は、およそ100℃/h以下とする。高温(例えば500℃以上)または急速加熱条件下では、本規定の集合組織のバランスが得られないことがあり好ましくない。また、長時間保持すると、結晶粒成長により集合組織バランスが崩れると共に、粗大結晶粒により成形後の肌荒れが生じるおそれがあるので好ましくない。
【0069】
前述した様に、以上の製造方法はあくまで本発明の合金板を製造するに好適な例であって、上記条件を満たす製造方法によれば、必ず本発明の合金板が得られるわけではない。即ち、本発明の合金板を得るには、合金の成分組成やプロセス条件間の兼ね合いによって、条件を調節する必要がある。しかし、少なくとも上記条件を大きく外れるプロセスを含む製造方法によって得られた合金板は、本発明に係る集合組織を有さず、成形性や耳率等の性質が劣るといえる。
【0070】
本発明は以上の様に構成されており、本発明に係る集合組織組成を有するAl−Mg系合金板は、比較的厚い板厚を有する場合であっても、成形性に優れるのみならず深絞り加工時における耳率が顕著に低減されていることから、自動車用ホイール等の複雑な形状を有する製品にも応用することができる。
【0071】
以下に、実施例を示すことにより本発明を更に詳細に説明するが、本発明の範囲はこれらに限定されるものではない。
【0072】
【実施例】
(製造例)
表1に示す成分組成(残部はAlおよび不可避的不純物とする)のAl合金を溶解し、DC鋳造法によって板厚600mm,幅1300mmの鋳塊を得た。次に表2に示す製造条件に従って、この鋳塊からAl−Mg系合金板を製造した。
【0073】
【表1】成分組成

Figure 2004250738
【0074】
【表2】製造方法
Figure 2004250738
【0075】
上記表1中、本発明の成分組成規定を外れるものには、下線を付してある。また、表2中においても、本発明の好適な製造条件を外れる条件には、下線を付す。更に、表2中の「中間工程」において、単に「焼鈍」とあるのは「熱延後焼鈍」を表し、「中鈍」は「中間焼鈍」を意味し、No.15は2回の均熱条件を行なっている。
【0076】
(試験例1)集合組織の評価
上記製造例により製造した各合金板について、合金板表面の中心(板長方向の1/2,板幅方向の1/2)を通り,表面に直交し,且つ圧延方向に平行する断面の集合組織組成を測定した。
【0077】
具体的には、上記断面に機械研磨およびバフ研磨を行なった後、更に電解研磨した。サンプルは、当該断面の表面から1/4部(表面から板厚方向へ1/4部の領域)と、板厚中心部(板厚1/2部)から採取した。
【0078】
次に、SEM−EBSP(Electron Back Scattering (Scattered) Pattern),またはEBSD(Diffraction)ともいう)によって、当該断面各部において、厚さ方向500μm圧延方向1000μmの長方形に占める集合組織組成を測定し、各方位の存在率と結晶粒径を評価した。測定は、板表面から板厚中心部にかけて、ステップ間隔3μm以下で行なった。SEM装置としては、日本電子社製SEM(JEOL JSM 5410)または、Philips社製FE−SEM(電解放出型走査電子顕微鏡,Field Emission Scanning Electron Microscopy)(XL30S−FEG)を使用した。
【0079】
また、EBSP測定・解析システムは、TSL社製EBSP(OIM)を用いた。
【0080】
上記測定によって得られた集合組織組成解析の結果の一例を、図1として示す。図1の通り、上記測定方法によれば集合組織の分布を視覚的に得ることができるので、本発明の条件を満たすか否かは、所定の範囲における各集合組織が占める割合によって判断することができる。
【0081】
また、各方位の存在率から、下記式(1)の値を算出した。
式(1)値=(Cube+Goss)/(S+Cu+Brass)。
【0082】
(試験例2)機械的特性の評価
JIS Z 2201の5号試験片(25mm ×50mm GL×板厚)を圧延方向と平行に採取し、室温引張り試験を行なうことによって、引張り特性(耐力,強度,伸び)を評価した。
【0083】
室温引張り試験は、JIS Z 2241(1980年,金属材料引張り試験方法)に基づき、室温20℃で行なった。引張り速度は、0.2%耐力までは5mm/分、0.2%耐力以降は20mm/分とした。当該方法によって、0.2%耐力,強度,伸びの評価を行った(N数=5)。
【0084】
(試験例3)耳率と表面性状の評価
上記製造例で製造した合金板から潤滑油(Castrol No.700を50%に希釈したもの)を用いて素板(ブランク)を作製し、これをエリクセン試験機によって、以下の条件でカップ形状に成形した。
【0085】
ブランク直径 = 100 mm
ポンチの直径 = φ 50 mm
ポンチの肩部のR= 4.5 mm
ダイスの直径 = φ 65.1mm
ダイス側肩部のR= 14 mm
しわ押さえ圧 = 500 kgf
絞り比 = 2 (絞り率=50%)。
【0086】
上記深絞り成形後、カップ末端で生じる耳について、図2に示す方法によって耳率を評価した。この際、圧延板方向の0°/90°方向、0°/180°方向に生じる耳を「−耳」と表現し、45°方向に生じる耳を「+耳」で表した。
【0087】
また、深絞り成形後絞りの表面性状(肌あれ)は、◎:発生なし,○:軽度に発生,△:発生,×:強く発生で評価した。
【0088】
以上の試験結果を表3に示す。
【0089】
【表3】
Figure 2004250738
【0090】
表3中の「式(1)値」は、(Cube+Goss)/(S+Cu+Brass)の値を示す。
【0091】
(結果の考察)
表2の「製造方法」と表3の集合組織組成を比較すると、本発明に係る好適な製造方法の条件を外れる工程を採用すれば、本発明で規定する範囲内の集合組織組成は得られないことが分かる。一方、No.16の合金によれば、製造方法が本発明の好適な製造方法の範囲内であっても、各工程の組合わせによって本発明に係る集合組織は得られない。
【0092】
また、表3中、結晶集合組織が本発明の範囲内にないNo.10〜17の合金では、機械的強度はともかく「耳率」が高く、加工時における歩留りが悪いことが考えられる。それに加え、No.18の合金では、Mg含有量が少ないために機械的強度や表面性状も低い。尚、No.13〜15の合金は、前記特許文献1に記載のアルミニウム合金であり、No.16の合金は、前記特許文献2に記載のものである。
【0093】
これに対して、合金成分組成や集合組織が本発明の範囲内にあるNo.1〜9の合金は、機械的強度や表面性状に優れるのみならず、耳率も低減されていることが実証された。
【0094】
上記結果に基づき、(Cube+Goss)/(S+Cu+Brass)の値と耳率との関係を図3に示す。図3によれば、(Cube+Goss)/(S+Cu+Brass)の値と耳率には明確な相互関係があり、耳率を±5以内に抑制するには、(Cube+Goss)/(S+Cu+Brass)の値を0.1〜0.5にすべきことが明らかにされた。
【0095】
【発明の効果】
本発明に係るAl−Mg系合金板は、高強度であり加工性や表面性状に優れるのみならず、深絞り加工時に生じる「耳」が顕著に低減されている。
【0096】
従って、本発明のAl−Mg系合金板は、近年、より複雑な加工を施される製品、例えば自動車用ホイール等に応用できるものとして、産業上非常に有用である。
【図面の簡単な説明】
【図1】各集合組織の分布を示す図。
【図2】耳率の評価方法を示す図。
【図3】(Cube+Goss)/(S+Cu+Brass)の値と耳率との関係を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an Al-Mg-based alloy plate having high strength and excellent deep drawing workability and having a markedly reduced ear ratio during processing, and relates to an automobile body sheet, a skeleton material, a wheel, and the like. Also, it is suitable for outer panels of ships and electric products.
[0002]
[Prior art]
Aluminum alloys can be lighter in weight and easier to recycle than steel. In response to demands for energy and resource savings, aluminum alloys have replaced steel as materials for body sheets, frames, wheels, etc. of automobiles. Has begun to be used. As an aluminum alloy for such applications, an aluminum alloy containing Mg, which has excellent strength and formability and good weldability, has been used.
[0003]
With respect to this Al-Mg alloy, application to a wheel, which is particularly required to be light in weight, has recently attracted attention. An automobile disk wheel basically includes a rim portion and a disk portion, and the rim portion is mainly manufactured by subjecting a plate material (extended material) to a forming process. The disc portion is often cast or forged, but recently, like the rim portion, is often manufactured by subjecting a plate material (extended material) to a forming process. Accordingly, aluminum alloys for automobile wheels, particularly aluminum alloys used for the rim thereof, are required to have not only high mechanical strength but also excellent formability.
[0004]
Conventionally, as a material for a wheel, a JIS 5000-based Al-Mg-based alloy is generally used, and particularly, JIS 5052 alloy, JIS 5154 alloy, or the like is used. However, these alloy materials containing Mg generally have a problem that they are inferior in deep drawability as compared with steel materials.
[0005]
Examples of the Al-Mg based alloy with improved deep drawability include an alloy described in Patent Document 1. In this technique, attention is paid not only to the component composition but also to the texture and crystal grain size, and the press formability such as stretch formability and deep drawability is improved.
[0006]
Patent Literature 2 describes a method for producing an Al-Mg-based alloy having improved glittering properties in consideration of application to wheels in addition to press formability and the like.
[0007]
By the way, when an aluminum alloy is deep-drawn and processed into a wheel or the like, the end of the workpiece becomes wavy and never straight. The end portion is called an "ear". Since the "ear" must be removed and causes a yield loss, the ear ratio is preferably as low as possible.
[0008]
However, conventionally, there has been no aluminum alloy that takes this “ear ratio” into consideration.
[0009]
[Patent Document 1]
JP-A-2000-80431 (Claim 2 etc.)
[Patent Document 2]
JP-A-10-53846 (Claim 1 etc.)
[0010]
[Problems to be solved by the invention]
As described above, Al-Mg-based alloys having excellent strength and formability have been known, but none of them are sufficient in terms of "ear ratio".
[0011]
Therefore, the problem to be solved by the present invention is that not only the strength, the deep drawing workability, and the surface properties are excellent, but also the “ears” generated at the time of deep drawing can be significantly reduced (“low ear ratio”). A) to provide an Al-Mg based alloy plate.
[0012]
[Means for Solving the Problems]
The present inventors have prepared various Al-Mg based alloys in order to solve the above-mentioned problems, and have intensively studied the relationship between the texture and the deep drawing workability and the ear ratio. As a result, the inventors have found that the above-mentioned problems can be solved by appropriately controlling the balance of the respective orientation amounts and the distribution in the thickness direction of the texture components that affect the deep drawability, and completed the present invention.
[0013]
That is, the Al-Mg based alloy sheet according to the present invention contains 2 to 6% of Mg (hereinafter, in the case of the alloy composition ratio, all mean "% by mass") and Cube. Each texture of the azimuth, the S azimuth, the Cu azimuth, the Brass azimuth, and the Goss azimuth satisfies the following conditions.
[0014]
(1) Cube orientation abundance: 10 to 30%
(2) S orientation abundance: 30-50%
(3) Cu direction, Brass direction: 5 to 20% each
(4) Existence rate of Goss orientation: 10% or less
(5) (Cube + Goss) / (S + Cu + Brass) = 0.1-0.5.
[0015]
The “ears” at the time of deep drawing are those generated in the rolling direction of the alloy and 90 ° with respect to the rolling direction (ears in the 0 ° / 90 ° direction; hereinafter, referred to as “-ears”). (The ear in the 45 ° direction; hereinafter, referred to as “+ ear”). The present inventors have examined in detail the relationship between each direction of the alloy texture and the “− ears” and “+ ears”. As a result, if the above requirements are satisfied, the strength, formability, and surface properties of the alloy are obtained. Not only can be improved, but also the ear rate can be reduced.
[0016]
The thickness of the Al-Mg based alloy plate is preferably 2 to 10 mm. The conventional Al-Mg alloy sheet is relatively thin, about 1 mm, and has a large control margin such as a cold rolling rate, a heating rate and a cooling rate in final annealing, and is easy to control in terms of texture. there were. On the other hand, since the thickness of the aluminum alloy used for deep drawing is relatively thick, 2 to 10 mm, it is difficult to obtain desirable formability and the like even if the conventional method for manufacturing an aluminum alloy sheet is applied as it is. Met. However, an alloy plate that satisfies the requirements of the present invention can be obtained relatively easily by adjusting the manufacturing conditions even for a thick plate. Therefore, the purpose of defining the thickness is to clarify the difference from the prior art.
[0017]
The crystal grain size in a region of 500 μm from the surface of the aluminum alloy plate is preferably 80 μm or less. This is because an alloy plate satisfying the requirements has excellent surface properties and the finished product becomes beautiful.
[0018]
The above-mentioned aluminum alloy plate preferably contains Mn at 1.0% or less (excluding 0%). Mn is an element that contributes to improving the strength, ductility, toughness, and formability of the alloy by refining the crystal grains, and is also an effective element for stabilizing the texture balance and reducing the fluctuation range due to manufacturing conditions. is there.
[0019]
Further, those containing 0.6% or less (not including 0%) of Cu are more preferable. This is because not only is the strength improved, but Cu is an element that improves the light reflectance, so that the glitter of the product is increased.
[0020]
In addition, Fe: 0.7% or less, Si: 0.5% or less, Cr: 0.4% or less, Zn: 0.5% or less, Zr: 0.3% or less (excluding 0% each) An alloy plate containing at least one selected from the group consisting of: This is because each of these elements contributes to improvement of mechanical properties (strength, ductility, toughness, hardening, etc.).
[0021]
Further, an alloy plate containing Ti: 0.005 to 0.20% alone or in combination with B: 0.0001 to 0.05% is also preferable. This is because these elements are effective for refining ingot crystal grains.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The greatest features of the Al-Mg based alloy sheet according to the present invention are that it has high strength and deep drawability, has excellent surface properties, and has a reduced ear ratio during deep drawability, and a high yield. There is a good thing.
[0023]
That is, although an Al-Mg alloy plate having improved strength and formability has been developed, there is no alloy plate that takes account of the ear ratio, and there remains a problem in terms of yield. However, the present inventors have paid attention to the texture of the alloy sheet, and have found that if the existence balance and distribution are appropriately controlled, the formability can be improved and the ear ratio can be improved, and the present invention has been completed.
[0024]
Hereinafter, embodiments of the present invention exhibiting such characteristics and effects thereof will be described.
[0025]
Al-Mg based aluminum alloy was selected in the present invention because Mg alone is effective for improving strength by solid solution strengthening, and also has the effect of enhancing work hardening ability and uniformly plastically deforming the material. This is because it is very excellent as a molding material.
[0026]
In the present invention, 2 to 6% of Mg is added. If the content of Mg is less than 2%, the above-mentioned effects cannot be obtained, and if the content is more than 6%, grain boundary fracture is likely to occur during molding. The content of Mg is preferably 2.0% or more and 6.0% or less.
[0027]
The gist of the present invention is to specify the texture of an Al-Mg-based alloy, and the existence of the following crystal orientation texture in a normal aluminum alloy is known.
[0028]
Cube orientation: {001} <100>
Goss direction: {011} <100>
Brass direction: {011} <211>
Cu orientation: {112} <111>
(Or D direction: {4 4 11} <11 11 8>
S direction: {123} <634>
RW azimuth: {001} <110> (the azimuth where the Cube azimuth is rotated on the plate surface)
SB direction: {681} <112> and the like.
[0029]
Here, the formation of the texture differs depending on the processing method even for the same crystal system, and in the case of a rolled sheet material, it is necessary to express it by a rolling surface and a rolling direction. That is, in each of the above orientations, the rolled surface is represented by {, and the rolling direction is represented by <△△△> (○ and △ indicate integers) (“Texture” edited by Shinichi Nagashima (Maruzen) Published by the Japan Institute of Light Metals, “Light Metals,” Vol. 43, pp. 285-293 (1993)).
[0030]
In the present invention, these directions are defined as follows.
[0031]
(1) Cube orientation abundance: 10 to 30%
(2) S orientation abundance: 30-50%
(3) Presence rate of Cu direction and Brass direction: 5 to 20% each
(4) Existence rate of Goss orientation: 10% or less
(5) (Cube + Goss) / (S + Cu + Brass) = 0.1-0.5.
[0032]
The reason why the “Cube direction” is set to 10 to 30% is that “− ears” (ears in 0 ° and 90 ° directions) become stronger as the Cube direction increases, while “+ ears” ( This is because the ear in the 45 ° direction) becomes stronger. Therefore, such an abundance is more preferably 15% or more and 25% or less.
[0033]
The reason why the “S direction” is set to 30 to 50% is that the “+ ear” (45 ° direction ear) increases as the S direction increases, but the presence of 30% or more increases the texture in the sheet thickness direction. This is because the uniformity is improved. That is, if it is less than 30%, the aggregate distribution increases in the plate thickness direction, the “− ear” becomes strong, and uniform deformation does not occur during molding. Therefore, such an abundance is more preferably 35% or more and 45% or less.
[0034]
Regarding the “Cu orientation” and the “Brass orientation”, the “+ ear” becomes stronger as they increase, but when each is in the range of 5 to 20%, the balance of the texture is stabilized. More preferably, they are 10% or more and 19% or less, respectively.
[0035]
The reason why the “Goss direction” is set to 10% or less is that if it exceeds 10%, the “−ear” becomes strong and the drawability deteriorates.
[0036]
In addition to each direction being in the above range, the present invention requires that the value of (Cube + Goss) / (S + Cu + Brass) be in the range of 0.1 to 0.5. This is because within this range, the texture is well balanced, the moldability is excellent, and the ear ratio can be reduced. That is, if the value is less than 0.1, “+ ear” becomes strong, and if it exceeds 0.5, “− ear” becomes strong. The range is more preferably 0.15 or more and 0.39 or less.
[0037]
In the present invention, basically, the deviation of the crystal orientation within ± 15 ° from each of the crystal planes is defined as belonging to the same crystal plane. This is because within the above range, almost the same properties are exhibited during processing and the like.
[0038]
The abundance of orientation grains that do not belong to any of the Cube, Brass, Cu, S, and Goss orientations specified in the present invention is preferably in the range of 3 to 35%, and is preferably 5% or more and 30% or less. More preferred. This is because the variation of the ear ratio due to the variation of the process condition is reduced, and the ear ratio is further stabilized. The crystal orientation other than the Cube orientation includes, for example, an orientation between the Cube and Goss orientations and an orientation belonging to the S to Cu to Brass orientations.
[0039]
The evaluation of the texture distribution in the present invention is performed on a plane passing through the center of the alloy sheet surface (intersection of 1/2 in the sheet length direction and 1/2 in the sheet width direction), orthogonal to the surface and parallel to the rolling direction. , SEM-EBSP (Electron Back Scattering Pattern). This is because the texture distribution can be visually evaluated using an enlarged photograph or the like, but there are crystal orientations that are difficult to visually distinguish. In this case, the existence ratio of each texture component is evaluated based on each area ratio occupying the measurement site.
[0040]
In addition, it is desirable that the above measurement is performed at a quarter portion and a central portion in the thickness direction of the alloy plate. If the above-mentioned requirements regarding the texture component are satisfied in these portions, an alloy plate which can be uniformly deformed during deep drawing and which has excellent deep drawing workability can be easily specified. The larger the area measured at both sites, the higher the correlation between the distribution data of the texture and the ear ratio, etc., but actually, at each measurement site, a rectangular (square) of 500 to 1000 μm in length and 500 to 1000 μm in width. ), It can be estimated that the measurement result is reflected on the moldability and ear ratio. An example of a specific evaluation method will be described in an embodiment described later.
[0041]
The regulation on the texture of the “Al-Mg based alloy sheet excellent in deep drawing formability” described in Patent Document 1 is “(S / Cube) is 1 or more and Goss is 10% or less” ( The definition overlaps with the requirement of the present invention. However, as described above, the orientation of the texture exists in addition to these three types, and if the texture is comprehensively evaluated, the alloy described in Patent Document 1 has a reduced ear ratio regardless of the formability. Not necessarily. For example, as demonstrated in Examples described later, the alloy specifically described in Patent Document 1 has a clearly higher ear ratio than the alloy of the present invention. That is, the aluminum alloy of the present invention has a remarkable feature in that the rules regarding the texture described in Patent Literature 1 are pursued in more detail, and a new effect of reducing ear ratio is imparted.
[0042]
The thickness of the Al-Mg based alloy plate according to the present invention is preferably 2 to 10 mm. This is because when the alloy of the present invention is used particularly as a wheel material manufactured by deep drawing, the plate thickness needs to be relatively thick. Also, the provision is intended to clarify the difference from the prior art. That is, the conventional technologies controlled so far in terms of the texture of the Al-Mg alloy are all thin plates having a thickness of about 1 mm, and have a cold rolling ratio, a heating rate in final annealing, and a cooling rate (rapid heating, (Such as rapid cooling), and it was easy to control the texture. However, since a thick plate having a thickness of 2 to 10 mm has a small degree of freedom in the cold rolling ratio and the final annealing conditions and the texture tends to be distributed in the thickness direction, when such a thick plate is manufactured by a conventional method, Only aluminum plates which were completely unsatisfactory in terms of ear ratio were obtained. However, according to the present invention, even a relatively thick aluminum plate can be manufactured not only with excellent formability but also with a low ear ratio during deep drawing.
[0043]
Regarding the crystal grain size of the Al—Mg based alloy sheet according to the present invention, the crystal grain size in a region of 500 μm from the surface is preferably 80 μm or less. If the crystal grain size is 80 μm or less, a beautiful product can be obtained because it contributes to the surface properties after deep drawing, but if it exceeds 80 μm, the surface may be roughened.
[0044]
The following components may be added to the Al-Mg-based alloy sheet according to the present invention in addition to Al, Mg and unavoidable impurities as the component composition. However, it is advantageous that the number of added elements and impurity elements is small in terms of improving the glitter.
[0045]
[Cu: 0.6% or less (excluding 0%)]
Cu is Al 2 It is an element that improves the alloy strength by the formation and solid solution of CuMg, improves the light reflectance, and contributes to the improvement of the glitter. However, if it exceeds 0.5%, coarse Al 2 Since CuMg is formed and may be brittle, the content is set to 0.6% or less.
[0046]
[Mn: 1.0% or less (excluding 0%)]
Mn is an element that refines crystal grains, contributes to improvement in strength, ductility, toughness, and formability, and is effective in stabilizing the texture balance and reducing the fluctuation range due to process conditions. In addition, the workability is also improved by the proper distribution of the solid solution Mn and the Al—Fe—Mn—Si phase (α phase) as a compound. However, if it exceeds 1.0%, MnAl 6 The primary crystal giant metal compound is crystallized, leading to a reduction in formability. A more preferred content is 0.9% or less.
[0047]
[Fe: 0.7% or less, Si: 0.5% or less, Cr: 0.4% or less, Zn: 0.5% or less, Zr: 0.3% or less (each excluding 0%) At least one selected from the group consisting of:
By positively adding one or more of these elements, mechanical properties (strength, ductility, toughness, hardening, etc.) and moldability can be improved. For example, Fe or Si is an Al—Fe system [Al m Fe (m: an integer of 3 to 6)], Al-Fe-Si (α-AlFeSi or the like), or Al-Mn-Fe-Si or the like to form various crystallized substances and precipitates. It has the effect of improving the fineness and processability, and the texture can be controlled by the amount of addition. The effect of adding each of these elements is as follows.
[0048]
Fe: Fe is effective in improving the formability due to the refinement of the crystal grains and the proper distribution of the compound. However, when it exceeds 0.7%, the formability is reduced due to the coarsening of the compound. If the content of Fe is less than 0.01%, the effect is not obtained. Therefore, a preferable lower limit is 0.01%.
[0049]
Si: When Si is added, the above-mentioned intermetallic compound is generated, which is effective in improving moldability. If the Si content is less than 0.02%, the above effects cannot be obtained, while if it exceeds 0.5%, the material becomes too hard due to age hardening, thereby impairing moldability. Therefore, the preferred lower limit is 0.02%.
[0050]
Zn: Zn is an element that contributes to improvement in strength. However, if the addition amount exceeds 0.5%, a coarse Al—Zn-based compound is formed and becomes brittle, and the corrosion resistance is deteriorated. Therefore, the Zn content is set to 0.5% or less, and a more preferable upper limit is set to 0.4%. On the other hand, if it is less than 0.05%, the effect of improving the strength cannot be obtained, so the preferable lower limit is 0.05% or more.
[0051]
Cr, Zr: Cr and Zr are also effective elements for improving the strength, and exhibit this effect when Cr: 0.4% or less and Zr: 0.3% or less. Exceeding the above range is not preferable because the formation of giant crystals causes a reduction in moldability.
[0052]
[Ti: 0.005 to 0.20% alone or in combination with B: 0.0001 to 0.05%]
In ordinary aluminum alloys, a small amount of Ti or Ti and B is added to refine the ingot crystal grains. In the present invention, too, a small amount of Ti is used alone or as necessary. You may add in combination with B. However, if the Ti content is less than 0.005%, the effect cannot be obtained, and if it exceeds 0.20%, a huge Al-Ti-based intermetallic compound is crystallized to inhibit the formability. 0.005 to 0.20%. In addition, although Ti alone has an effect of refining ingot crystal grains, B may be added together with Ti. In this case, if the B content is less than 0.0001%, the effect is not obtained. If the B content exceeds 0.05%, coarse particles of Ti-B type are mixed and formability is impaired. The B content was in the range of 0.0001 to 0.05%.
[0053]
In addition to the above-described elements, desired elements may be added to enhance various properties of the alloy. However, it is preferable that the remainder other than the above-mentioned rule be Al in addition to the inevitable elements (inevitable impurities).
[0054]
In order to manufacture an Al-Mg alloy sheet having the crystal orientation composition described above, that is, to control the texture of the alloy sheet, it is necessary to equalize heat, hot roll rough rolling, finish rolling, cold rolling, and final annealing. It is important to precisely control the conditions in the series of steps (including the case where annealing is performed during cold rolling).
[0055]
Specific process conditions during such a manufacturing process cannot be unconditionally determined because they differ depending on the composition of the alloy and other process conditions. However, the present inventors have investigated in detail the texture change during the manufacturing process in addition to the texture morphology affecting the drawability and ear ratio described above, and have obtained the following knowledge.
[0056]
First, the "final rate of the final annealed sheet and the texture of the alloy sheet" is "cold rolled sheet (when annealing during cold rolling, the last cold rolling immediately before the final annealing was performed. ) And the state of the texture of the alloy plate before final annealing ”and“ the cold rolling rate (= the amount of accumulated strain that becomes the driving force for recrystallization) ”. Further, the "edge ratio of the cold-rolled sheet" is governed by the "cold rolling ratio" and the "ear ratio before cold rolling". Here, "before cold rolling" means, after hot rolling, or after annealing in the case where annealing is performed subsequently after hot rolling, or when performing annealing during cold rolling, before final cold rolling. After annealing.
[0057]
In one example, in order to obtain a low ear ratio (0%) in a low cold rolling process at a rolling ratio of about 30% with a 5 mm final plate, it is necessary to strongly develop the Cube orientation in the plate before cold rolling. It is necessary, and it is necessary to control the hot-rolled sheet edge ratio to about 0 to -6%. That is, controlling the texture and the texture balance in the hot-rolled sheet is very important for the production of an alloy sheet having excellent formability and a low ear rate.
[0058]
In a conventional thin Al-Mg alloy sheet (about 1 mm) having a high total processing rate after hot rolling, the Cube orientation and the S orientation mainly develop by final annealing, and other orientations do not sufficiently develop. . However, the present inventors have found that it is important to control the development of other orientations in a thick alloy plate (2 to 10 mm) as mainly intended by the present invention. I have.
[0059]
Hereinafter, in order to manufacture the Al—Mg based alloy sheet according to the present invention, generally, the following conditions are preferable.
[0060]
[casting]
The casting may be performed by a general method. For example, a homogenizing treatment is performed after obtaining an ingot such as a slab from a material having a predetermined alloy composition by a DC casting method or the like.
[0061]
[Soaking conditions]
In the soaking step, the texture of the hot-rolled sheet can be controlled by increasing the amount of Mg solid solution in the Al matrix. The preferred soaking temperature in this step is 450 to 550 ° C., the holding time is 1 to 20 hours, and two or more soaking treatments are not performed. If the soaking temperature is too low, a sufficient effect may not be obtained. On the other hand, if the heating is performed for a long time exceeding 20 hours and the soaking is performed twice, Mn and Fe-based alloys which are other component elements are not obtained. This is because a desired texture form may not be obtained in the hot-rolled sheet in some cases due to the formation of precipitates.
[0062]
[Rough hot rolling]
The starting temperature of the hot rough rolling is 450 to 550 ° C. to perform the hot soaking process subsequent to the soaking process. If the temperature is lower than 450 ° C., rolling is performed without sufficient recrystallization during hot rolling, so that the balance of the texture is undesirably lost. On the other hand, if the temperature exceeds 550 ° C., oxidation or seizure may occur on the surface of the hot-rolled sheet, or recrystallized grains may become coarse, resulting in deterioration of surface properties, deterioration of formability, and rough surface after forming.
[0063]
The end temperature is 350-470 ° C. In the case of producing a product sheet having a low cold rolling reduction, the hot rolling end temperature is preferably high, and if it is lower than 350 ° C., sufficient self-heat for recrystallization after finish rolling is insufficient. This is because the subsequent hot finish rolling lowers the rolling temperature and causes edge cracking. On the other hand, when the temperature exceeds 470 ° C., the distortion which is the driving force for the Cube orientation development in the next hot finish rolling is not sufficiently accumulated.
[0064]
[Finish rolling]
The final processing rate in the finish rolling step is 10% to 50%, and the total processing rate in the finish rolling step is 60% to 95%. Further, the final rolling speed in the finish rolling step is set to 50 m / m to 150 m / m. The texture of the hot rolled sheet can be controlled by the combination of the temperature in addition to the rolling reduction and the speed.
[0065]
The end temperature needs to be controlled in combination depending on the final product sheet thickness, the cold rolling ratio after the process, and the presence or absence of intermediate annealing, and the appropriate range is different. Specifically, {circle around (1)} when the cold work rate is high (50% to 75%), when the cold work rate is low (50% or less) + intermediate annealing (after hot rolling or during cold rolling) 230 ° C. to 300 ° C. when the final annealing is performed immediately after hot rolling, and (2) when the cold working rate is low and no intermediate annealing is performed, or when the hot rolled sheet is processed (rolling). When the plate is used as a product plate), the temperature is 290 ° C to 370 ° C.
[0066]
[Intermediate process]
Depending on the thickness of the final product and the rate of cold working after hot rolling, annealing after the hot rolling step (hereinafter, referred to as “annealing after hot rolling”) or annealing during the cold rolling step (hereinafter, “cold rolling”) The texture can be adjusted by appropriately adding “spread annealing”.
[0067]
[Cold rolling]
Since the final thickness is preferably about 2 to 10 mm, the cold rolling reduction is 0% to 80%. Here, as described above, since the “edge ratio of the cold-rolled sheet” is governed by the “cold rolling ratio” and the “ear ratio before cold rolling”, the texture, ear ratio and product before cold rolling are determined. The cold rolling reduction may be appropriately controlled depending on the thickness.
[0068]
[Final annealing]
The annealing temperature is 300 ° C. to 400 ° C., and the holding time is 10 minutes to 6 hours. Note that the heating rate is about 100 ° C./h or less. Under a high temperature (for example, 500 ° C. or higher) or a rapid heating condition, the balance of the specified texture may not be obtained, which is not preferable. Further, holding for a long time is not preferable because the texture balance may be lost due to the growth of crystal grains and the rough surface after forming may be caused by coarse crystal grains.
[0069]
As described above, the above-described manufacturing method is merely a suitable example for manufacturing the alloy sheet of the present invention, and the manufacturing method satisfying the above conditions does not always yield the alloy sheet of the present invention. That is, in order to obtain the alloy plate of the present invention, it is necessary to adjust conditions according to the balance between the composition of the alloy and the process conditions. However, it can be said that an alloy plate obtained by a manufacturing method including a process at least largely deviating from the above conditions does not have the texture according to the present invention and is inferior in properties such as moldability and ear ratio.
[0070]
The present invention is configured as described above, and the Al-Mg-based alloy sheet having the texture composition according to the present invention is excellent not only in formability but also in Since the ear ratio at the time of drawing is remarkably reduced, it can be applied to products having complicated shapes such as automobile wheels.
[0071]
Hereinafter, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited thereto.
[0072]
【Example】
(Production example)
An Al alloy having a component composition shown in Table 1 (the remainder being Al and inevitable impurities) was dissolved, and an ingot having a thickness of 600 mm and a width of 1300 mm was obtained by DC casting. Next, according to the manufacturing conditions shown in Table 2, an Al-Mg based alloy plate was manufactured from this ingot.
[0073]
[Table 1] Component composition
Figure 2004250738
[0074]
[Table 2] Manufacturing method
Figure 2004250738
[0075]
In Table 1 above, those which do not satisfy the component composition rules of the present invention are underlined. Also in Table 2, conditions that deviate from the preferable manufacturing conditions of the present invention are underlined. Further, in the “intermediate step” in Table 2, the term “annealing” simply indicates “annealing after hot rolling”, “medium annealing” means “intermediate annealing”, and “No. No. 15 performs the soaking condition twice.
[0076]
(Test Example 1) Evaluation of texture
For each alloy plate manufactured by the above manufacturing example, a set of cross sections passing through the center of the alloy plate surface (1/2 in the plate length direction, 1/2 in the plate width direction), orthogonal to the surface, and parallel to the rolling direction. The tissue composition was measured.
[0077]
Specifically, after mechanical polishing and buff polishing were performed on the cross section, electrolytic polishing was further performed. Samples were taken from 1/4 part from the surface of the cross section (a region of 1/4 part from the surface in the thickness direction) and from the center of the thickness (1/2 thickness).
[0078]
Next, by SEM-EBSP (Electron Back Scattering (Scattered) Pattern) or EBSD (Diffraction)), the texture composition occupying a rectangle of 500 μm in the thickness direction and 1000 μm in the rolling direction was measured at each section of the cross section. The orientation ratio and crystal grain size were evaluated. The measurement was performed at a step interval of 3 μm or less from the plate surface to the center of the plate thickness. As the SEM device, SEM (JEOL JSM 5410) manufactured by JEOL Ltd. or FE-SEM (Field Emission Scanning Electron Microscopy) (XL30S-FEG) manufactured by Philips was used.
[0079]
The EBSP measurement and analysis system used was EBSP (OIM) manufactured by TSL.
[0080]
One example of the results of the texture composition analysis obtained by the above measurement is shown in FIG. As shown in FIG. 1, the distribution of the texture can be visually obtained according to the above-described measurement method. Therefore, whether or not the condition of the present invention is satisfied is determined by the ratio of each texture in a predetermined range. Can be.
[0081]
Further, the value of the following equation (1) was calculated from the abundance ratio in each direction.
Equation (1) value = (Cube + Goss) / (S + Cu + Brass).
[0082]
(Test Example 2) Evaluation of mechanical properties
A JIS Z 2201 No. 5 test piece (25 mm × 50 mm GL × plate thickness) was sampled in parallel with the rolling direction, and subjected to a room temperature tensile test to evaluate tensile properties (proof stress, strength, elongation).
[0083]
The room temperature tensile test was performed at room temperature of 20 ° C. based on JIS Z 2241 (1980, tensile test method for metallic materials). The pulling speed was 5 mm / min up to 0.2% proof stress, and 20 mm / min after 0.2% proof stress. By this method, 0.2% proof stress, strength and elongation were evaluated (N number = 5).
[0084]
(Test Example 3) Evaluation of ear ratio and surface texture
From the alloy plate manufactured in the above manufacturing example, a blank (blank) was prepared using lubricating oil (a product obtained by diluting Castrol No. 700 to 50%). Molded.
[0085]
Blank diameter = 100 mm
Punch diameter = φ50 mm
R of the shoulder of the punch = 4.5 mm
Die diameter = φ65.1mm
R = 14 mm at the die side shoulder
Wrinkle pressure = 500 kgf
Aperture ratio = 2 (aperture ratio = 50%).
[0086]
After the above-described deep drawing, the ear ratio at the end of the cup was evaluated by the method shown in FIG. At this time, the ears generated in the 0 ° / 90 ° direction and the 0 ° / 180 ° direction of the rolling plate were expressed as “− ears”, and the ears generated in the 45 ° direction were expressed as “+ ears”.
[0087]
The surface properties (skin roughness) of the drawn after deep drawing were evaluated as ◎: no occurrence, :: slight occurrence, Δ: occurrence, ×: strong occurrence.
[0088]
Table 3 shows the above test results.
[0089]
[Table 3]
Figure 2004250738
[0090]
“Value of Equation (1)” in Table 3 indicates a value of (Cube + Goss) / (S + Cu + Brass).
[0091]
(Discussion of results)
Comparing the "manufacturing method" in Table 2 with the texture composition in Table 3, it is possible to obtain a texture composition within the range specified in the present invention by adopting a step that deviates from the conditions of the preferable manufacturing method according to the present invention. I understand that there is no. On the other hand, No. According to the alloy No. 16, the texture according to the present invention cannot be obtained by a combination of the steps even if the manufacturing method is within the range of the preferable manufacturing method of the present invention.
[0092]
Also, in Table 3, No. 1 having a crystal texture not within the scope of the present invention. Regarding the alloys Nos. 10 to 17, the "ear ratio" is high irrespective of the mechanical strength, and the yield at the time of processing is considered to be poor. In addition, No. Alloy No. 18 also has low mechanical strength and surface properties due to low Mg content. In addition, No. The alloys Nos. 13 to 15 are aluminum alloys described in Patent Document 1 described above. The alloy No. 16 is the one described in Patent Document 2.
[0093]
On the other hand, the alloy compositions and textures of the alloys No. It was proved that the alloys Nos. 1 to 9 were not only excellent in mechanical strength and surface properties, but also reduced in ear rate.
[0094]
FIG. 3 shows the relationship between the value of (Cube + Goss) / (S + Cu + Brass) and the ear rate based on the above results. According to FIG. 3, there is a clear correlation between the value of (Cube + Goss) / (S + Cu + Brass) and the ear ratio. To suppress the ear ratio within ± 5, the value of (Cube + Goss) / (S + Cu + Brass) is set to 0. .1 to 0.5.
[0095]
【The invention's effect】
The Al-Mg-based alloy sheet according to the present invention has high strength, excellent workability and excellent surface properties, and also significantly reduces "ears" generated during deep drawing.
[0096]
Therefore, the Al-Mg-based alloy plate of the present invention is industrially very useful as a material that can be applied to products subjected to more complicated processing in recent years, such as automobile wheels.
[Brief description of the drawings]
FIG. 1 is a view showing the distribution of each texture.
FIG. 2 is a diagram showing a method of evaluating ear ratio.
FIG. 3 is a diagram showing a relationship between a value of (Cube + Goss) / (S + Cu + Brass) and ear rate.

Claims (7)

Al−Mg系合金板であって、Mgを2〜6質量%含有し、且つCube方位,S方位,Cu方位,Brass方位,およびGoss方位の各集合組織が、下記の条件を満たすことを特徴とするAl−Mg系合金板。
▲1▼Cube方位の存在率:10〜30%
▲2▼S方位の存在率:30〜50%
▲3▼Cu方位,Brass方位の存在率:それぞれ5〜20%
▲4▼Goss方位の存在率:10%以下
▲5▼(Cube+Goss)/(S+Cu+Brass)=0.1〜0.5
An Al-Mg based alloy plate containing 2 to 6% by mass of Mg, and each texture of Cube orientation, S orientation, Cu orientation, Brass orientation, and Goss orientation satisfy the following conditions. Al-Mg alloy plate.
(1) Cube orientation abundance: 10 to 30%
(2) S orientation abundance: 30-50%
(3) Presence rate of Cu direction and Brass direction: 5 to 20% each
(4) Existence rate of Goss orientation: 10% or less (5) (Cube + Goss) / (S + Cu + Brass) = 0.1 to 0.5
板厚が2〜10mmである請求項1に記載のAl−Mg系合金板。The Al-Mg-based alloy plate according to claim 1, wherein the plate thickness is 2 to 10 mm. 表面部から500μmの領域の結晶粒径が80μm以下である請求項1または2に記載のAl−Mg系合金板。The Al-Mg based alloy sheet according to claim 1 or 2, wherein a crystal grain size in a region of 500 µm from the surface portion is 80 µm or less. Mnを1.0%質量以下(0%を含まない)含有する請求項1〜3のいずれかに記載のAl−Mg系合金板。The Al-Mg-based alloy sheet according to any one of claims 1 to 3, wherein Mn contains 1.0% by mass or less (excluding 0%). Cuを0.6質量%以下(0%を含まない)含有する請求項1〜4のいずれかに記載のAl−Mg系合金板。The Al-Mg-based alloy plate according to any one of claims 1 to 4, wherein Cu contains 0.6% by mass or less (excluding 0%) of Cu. Fe:0.7質量%以下,Si:0.5質量%以下,Cr:0.4質量%以下,Zn:0.5質量%以下,Zr:0.3質量%以下(それぞれ、0%を含まない)からなる群より選択された少なくとも一種を含有する請求項1〜5のいずれかに記載のAl−Mg系合金板。Fe: 0.7% by mass or less, Si: 0.5% by mass or less, Cr: 0.4% by mass or less, Zn: 0.5% by mass or less, Zr: 0.3% by mass or less (each 0% The Al-Mg-based alloy plate according to any one of claims 1 to 5, which contains at least one member selected from the group consisting of: Ti:0.005〜0.20質量%を単独で、またはB:0.0001〜0.05質量%と組合せて含有する請求項1〜6のいずれかに記載のAl−Mg系合金板。The Al-Mg-based alloy sheet according to any one of claims 1 to 6, comprising 0.005 to 0.20 mass% of Ti alone or in combination with 0.0001 to 0.05 mass% of B.
JP2003041141A 2003-02-19 2003-02-19 Al-Mg BASED ALLOY SHEET Pending JP2004250738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041141A JP2004250738A (en) 2003-02-19 2003-02-19 Al-Mg BASED ALLOY SHEET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041141A JP2004250738A (en) 2003-02-19 2003-02-19 Al-Mg BASED ALLOY SHEET

Publications (1)

Publication Number Publication Date
JP2004250738A true JP2004250738A (en) 2004-09-09

Family

ID=33024806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041141A Pending JP2004250738A (en) 2003-02-19 2003-02-19 Al-Mg BASED ALLOY SHEET

Country Status (1)

Country Link
JP (1) JP2004250738A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
JP2006316332A (en) * 2005-05-16 2006-11-24 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability, and method for producing the same
JP2008231505A (en) * 2007-03-20 2008-10-02 Mitsubishi Alum Co Ltd Bright aluminum alloy material and its manufacturing method
JP2011137200A (en) * 2009-12-28 2011-07-14 Kobe Steel Ltd Aluminum alloy sheet for heat insulator and method for producing the same
US8317947B2 (en) 2007-06-11 2012-11-27 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet for press forming
CN103630565A (en) * 2013-11-22 2014-03-12 武汉钢铁(集团)公司 Method for discriminating deep drawing property of automobile panel by using earing tendency value M
JP2016504483A (en) * 2012-08-22 2016-02-12 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Intergranular corrosion resistant aluminum alloy strip and method for producing the same
JP2016141886A (en) * 2015-02-05 2016-08-08 株式会社神戸製鋼所 Aluminum alloy sheet for can top
JP2017078199A (en) * 2015-10-20 2017-04-27 株式会社神戸製鋼所 Aluminum alloy sheet for casing engine mount
KR20170088405A (en) * 2014-11-27 2017-08-01 하이드로 알루미늄 롤드 프로덕츠 게엠베하 Heat exchanger, use of an aluminium alloy and an aluminium strip and method for producing an aluminium strip
CN107532241A (en) * 2015-12-17 2018-01-02 诺维尔里斯公司 Aluminium micro-structural and associated method for highly moulding product
JP2020510759A (en) * 2017-03-08 2020-04-09 ナノアル エルエルシー High performance 5000 series aluminum alloy
CN113927973A (en) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 External packing material for high-depth-of-penetration battery device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
JP2006316332A (en) * 2005-05-16 2006-11-24 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability, and method for producing the same
JP2008231505A (en) * 2007-03-20 2008-10-02 Mitsubishi Alum Co Ltd Bright aluminum alloy material and its manufacturing method
US8317947B2 (en) 2007-06-11 2012-11-27 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet for press forming
JP2011137200A (en) * 2009-12-28 2011-07-14 Kobe Steel Ltd Aluminum alloy sheet for heat insulator and method for producing the same
KR101803520B1 (en) * 2012-08-22 2017-11-30 하이드로 알루미늄 롤드 프로덕츠 게엠베하 Intergranular corrosion-resistant aluminum alloy strip, and method for the production thereof
JP2016504483A (en) * 2012-08-22 2016-02-12 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Intergranular corrosion resistant aluminum alloy strip and method for producing the same
US10550456B2 (en) 2012-08-22 2020-02-04 Hydro Aluminium Rolled Products Gmbh Intercrystalline corrosion-resistant aluminium alloy strip, and method for the production thereof
CN103630565A (en) * 2013-11-22 2014-03-12 武汉钢铁(集团)公司 Method for discriminating deep drawing property of automobile panel by using earing tendency value M
KR20170088405A (en) * 2014-11-27 2017-08-01 하이드로 알루미늄 롤드 프로덕츠 게엠베하 Heat exchanger, use of an aluminium alloy and an aluminium strip and method for producing an aluminium strip
KR102221072B1 (en) * 2014-11-27 2021-02-26 하이드로 알루미늄 롤드 프로덕츠 게엠베하 Heat exchanger, use of an aluminium alloy and an aluminium strip and method for producing an aluminium strip
JP2016141886A (en) * 2015-02-05 2016-08-08 株式会社神戸製鋼所 Aluminum alloy sheet for can top
JP2017078199A (en) * 2015-10-20 2017-04-27 株式会社神戸製鋼所 Aluminum alloy sheet for casing engine mount
CN107532241A (en) * 2015-12-17 2018-01-02 诺维尔里斯公司 Aluminium micro-structural and associated method for highly moulding product
JP2019500488A (en) * 2015-12-17 2019-01-10 ノベリス・インコーポレイテッドNovelis Inc. Aluminum microstructures for highly molded products and related methods
US10604826B2 (en) 2015-12-17 2020-03-31 Novelis Inc. Aluminum microstructure for highly shaped products and associated methods
JP2020510759A (en) * 2017-03-08 2020-04-09 ナノアル エルエルシー High performance 5000 series aluminum alloy
US11814701B2 (en) 2017-03-08 2023-11-14 NanoAL LLC High-performance 5000-series aluminum alloys
JP7401307B2 (en) 2017-03-08 2023-12-19 ナノアル エルエルシー High performance 5000 series aluminum alloy
CN113927973A (en) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 External packing material for high-depth-of-penetration battery device

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JP2008190021A (en) Al-Mg BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2007277694A (en) Painted aluminum-alloy sheet for lid of positive pressure can, and manufacturing method therefor
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
JP2022519238A (en) How to make a plate or band made of aluminum alloy and the board, band or molded product manufactured by it
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2003268475A (en) Aluminum alloy sheet for forming, and manufacturing method therefor
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP5411924B2 (en) Method for producing hot rolled sheet of Al-Mg alloy
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP5415016B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP2004315878A (en) Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality
JP2000234158A (en) Production of aluminum alloy sheet for can barrel
JP4694770B2 (en) Aluminum alloy plate with excellent bending workability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Effective date: 20071010

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A02