JP2017078199A - Aluminum alloy sheet for casing engine mount - Google Patents

Aluminum alloy sheet for casing engine mount Download PDF

Info

Publication number
JP2017078199A
JP2017078199A JP2015206307A JP2015206307A JP2017078199A JP 2017078199 A JP2017078199 A JP 2017078199A JP 2015206307 A JP2015206307 A JP 2015206307A JP 2015206307 A JP2015206307 A JP 2015206307A JP 2017078199 A JP2017078199 A JP 2017078199A
Authority
JP
Japan
Prior art keywords
aluminum alloy
mass
less
alloy plate
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015206307A
Other languages
Japanese (ja)
Inventor
智子 阿部
Tomoko Abe
智子 阿部
小林 一徳
Kazunori Kobayashi
一徳 小林
大輔 金田
Daisuke Kaneda
大輔 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015206307A priority Critical patent/JP2017078199A/en
Publication of JP2017078199A publication Critical patent/JP2017078199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for casing an engine mount good in all of drawing processability, bulging processability and bending processability.SOLUTION: There is provided an aluminum alloy sheet 3 containing Mg:2.0 to 4.0 mass% and the balance Al with inevitable impurities and having tensile strength in a direction parallel to a rolling direction of 170 MPa or more and Vickers hardness at a position P with 0.5 mm just below an apex of a cross section of a 90 degree V-shaped bending part with zero inside radius of 110 or less. There is provided an aluminum alloy sheet 3 for casing an engine mount preferably containing further at least one kind of Mn:0.5 mass% or less, Cr:0.35 mass% or less and Zr:0.35 mass% or less of 0.1 to 0.6 mass% as total of Mn, Cr and Zr if needed and desirably having surface crystal particle diameter of 95 μm or less.SELECTED DRAWING: Figure 2

Description

本発明は、自動車のボディーにエンジンを懸架するエンジンマウントのケーシング(外筒)の製造に用いられるアルミニウム合金板に関する。   The present invention relates to an aluminum alloy plate used for manufacturing a casing (outer cylinder) of an engine mount for suspending an engine on a body of an automobile.

エンジンマウントは、エンジンをボディーに懸架するために使用される部材であり、特許文献1,2に示すように、弾性体(防振ゴム)が金属のケーシングの中に設置された構造のものが多く用いられている。
エンジンマウントのケーシングの素材として、従来はステンレス鋼が用いられてきたが、近年では、車体軽量化の一環としてアルミニウム材(アルミニウム合金板)の適用が望まれている。
The engine mount is a member used for suspending the engine from the body. As shown in Patent Documents 1 and 2, an engine mount has a structure in which an elastic body (anti-vibration rubber) is installed in a metal casing. Many are used.
Conventionally, stainless steel has been used as a material for the casing of the engine mount. However, in recent years, application of an aluminum material (aluminum alloy plate) has been desired as part of weight reduction of the vehicle body.

エンジンマウントのケーシングは、一般的には回転体であり、縦断面が複雑な形状をしたものも多い。例えば段差部を介して連続する大径部と小径部、及び小径部の端部に形成された外フランジからなるケーシングの場合、これをアルミニウム合金板から製造するには、多段絞り加工後、縮管(縮径)加工、屈曲加工による段差部の形成、端部の伸びフランジ加工等をさらに行う必要がある。このため、エンジンマウントのケーシング用アルミニウム合金板には、これらの加工において割れを生じない良好な加工性と、エンジンの重量及び振動に耐える高い強度が必要とされる。   The casing of an engine mount is generally a rotating body, and many casings have a complicated longitudinal section. For example, in the case of a casing comprising a large-diameter portion and a small-diameter portion that are continuous via a step portion, and an outer flange formed at the end of the small-diameter portion, this can be manufactured from an aluminum alloy plate after multi-stage drawing. It is necessary to further perform the formation of a stepped portion by pipe (reducing diameter) processing, bending processing, stretch flange processing of the end portion, and the like. For this reason, the aluminum alloy plate for casings of the engine mount is required to have good workability that does not cause cracks in these processes and high strength that can withstand the weight and vibration of the engine.

アルミニウム合金の中で5000系(Al−Mg系)合金は、比較的加工性が優れ、強度が高く、かつ安価であり、製造過程で深絞り加工等を必要とする自動車部品用素材として有望である。例えば特許文献3,4には、主として自動車用外板の素材として開発されたAl−Mg系合金板が記載されている。   Among aluminum alloys, 5000 series (Al-Mg series) alloys have relatively good workability, high strength, and low cost, and are promising as materials for automobile parts that require deep drawing and the like in the manufacturing process. is there. For example, Patent Documents 3 and 4 describe Al—Mg alloy plates developed mainly as materials for automobile outer plates.

実開昭60−118047号公報Japanese Utility Model Publication No. 60-118047 特開平6−94068号公報JP-A-6-94068 特開2008−63623号公報JP 2008-63623 A 特開2008−223054号公報JP 2008-223054 A

エンジンマウントのケーシングの製造にあたっては、Al−Mg系合金板に対し、絞り加工後、複数工程にわたり種々の厳しい塑性加工が加えられるケースが想定される。このため、エンジンマウントのケーシング用Al−Mg系合金板は、絞り加工性のほか、張り出し加工性及び曲げ加工性も良好であることが望ましい。
一方、特許文献3に記載されたAl−Mg系合金板は、絞り加工性及び張り出し加工性が優れるとされているが、曲げ加工性について考慮されていない。また、特許文献4に記載されたAl−Mg系合金板は、絞り加工性が優れるとされているが、張り出し加工性及び曲げ加工性について考慮されていない。
When manufacturing the casing of the engine mount, a case where various severe plastic workings are applied to the Al—Mg alloy plate after a drawing process over a plurality of processes is assumed. For this reason, it is desirable that the Al—Mg-based alloy plate for casings of engine mounts has good stretchability and bending workability in addition to drawing workability.
On the other hand, the Al—Mg alloy plate described in Patent Document 3 is said to be excellent in drawing workability and overhang workability, but bending workability is not considered. Moreover, although the Al-Mg type alloy plate described in Patent Document 4 is considered to have excellent drawing workability, it does not take into account overhanging workability and bending workability.

本発明は、絞り加工性、張り出し加工性及び曲げ加工性の全てが良好で、エンジンマウントのケーシングの製造に適したAl−Mg系合金板を提供することを目的とする。   An object of the present invention is to provide an Al—Mg-based alloy plate that is excellent in drawing workability, overhang workability, and bending workability, and is suitable for manufacturing an engine mount casing.

本発明に係るエンジンマウントのケーシング用アルミニウム合金板(Al−Mg系合金板)は、Mg:2.0〜4.0質量%を含有し、残部がAl及び不可避不純物からなり、圧延方向に平行方向の引張強さが170MPa以上であり、内側半径ゼロの90度V字曲げ部の断面の頂点直下0.5mmの位置のビッカース硬さが110以下であることを特徴とする。
上記アルミニウム合金板は、必要に応じて、さらにMn:0.5質量%以下、Cr:0.35質量%以下、Zr:0.35質量%以下のうち少なくとも1種を、Mn、Cr及びZrの合計で0.1〜0.6質量%含有することができる。上記アルミニウム合金板は、表面の結晶粒径が95μm以下であることが好ましい。
The aluminum alloy plate (Al—Mg-based alloy plate) for casings of engine mounts according to the present invention contains Mg: 2.0 to 4.0% by mass, the balance is made of Al and inevitable impurities, and is parallel to the rolling direction. The tensile strength in the direction is 170 MPa or more, and the Vickers hardness at a position of 0.5 mm immediately below the apex of the cross section of the 90-degree V-bent portion having an inner radius of zero is 110 or less.
If necessary, the aluminum alloy plate may further contain at least one of Mn: 0.5% by mass or less, Cr: 0.35% by mass or less, Zr: 0.35% by mass or less, Mn, Cr and Zr. In total, it can contain 0.1-0.6 mass%. The aluminum alloy plate preferably has a surface crystal grain size of 95 μm or less.

本発明に係るアルミニウム合金板は、Vブロック法により内側半径ゼロの90度V字曲げを行ったとき、曲げ部の断面の外側頂点直下0.5mmの位置のビッカース硬さが110以下であり、加工硬化の進行が抑制されている。このため、本発明に係るアルミニウム合金板は、絞り加工性、張り出し加工性及び曲げ加工性(特に繰り返し曲げ加工性)の全てが良好で、多段絞り加工後にさらに厳しい塑性加工を加える必要がある場合でも、割れの発生なしにエンジンマウントのケーシングを製造することができる。
また、本発明に係るアルミニウム合金板は、圧延方向に平行方向の引張強さが170MPa以上であり、エンジンマウントのケーシングに必要な強度を備える。
The aluminum alloy plate according to the present invention has a Vickers hardness of 110 or less at a position of 0.5 mm immediately below the outer vertex of the cross section of the bent portion when performing 90-degree V-shaped bending with an inner radius of zero by the V-block method, Progress of work hardening is suppressed. For this reason, the aluminum alloy sheet according to the present invention has good drawing workability, overhang workability and bending workability (especially repeated bending workability), and it is necessary to apply more severe plastic working after multistage drawing. However, an engine mount casing can be manufactured without cracking.
Further, the aluminum alloy plate according to the present invention has a tensile strength in the direction parallel to the rolling direction of 170 MPa or more, and has a strength necessary for the casing of the engine mount.

加工硬化特性の測定試験の方法(Vブロック法)を説明する図であり、(a)はV字曲げ前の試験片等の側面図、(b)はV字曲げ後の試験片等の側面図である。It is a figure explaining the measuring test method (V block method) of a work hardening characteristic, (a) is a side view of the test piece etc. before V-shaped bending, (b) is a side view of the test piece etc. after V-shaped bending. FIG. 加工硬化特性の測定試験の方法(測定箇所)を説明する図であり、(a)はV字曲げ後の試験片の正面図、(b)は機械研磨後の試験片の側面図である。It is a figure explaining the method (measurement location) of the measurement test of a work hardening characteristic, (a) is a front view of the test piece after V-shaped bending, (b) is a side view of the test piece after mechanical polishing. 繰り返し曲げ加工性の測定試験の方法を説明する図である。It is a figure explaining the method of the measurement test of repeated bending workability. 繰り返し曲げ加工性の評価基準を説明する図(顕微鏡写真)である。It is a figure (micrograph) explaining the evaluation criteria of repeated bending workability.

以下、本発明に係るアルミニウム合金板(Al−Mg系合金板)について、より詳細に説明する。
<アルミニウム合金の組成>
本発明に係るアルミニウム合金は、Mg:2.0〜4.0質量%を含有し、残部がAl及び不可避不純物からなり、必要に応じて、さらにMn:0.5質量%以下、Cr:0.35質量%以下、Zr:0.35質量%以下のうち少なくとも1種を、Mn、Cr及びZrの合計で0.1〜0.6質量%含有する。
Mgは、アルミニウム合金板の強度と絞り加工性を向上させる作用を有する。しかし、Mg含有量が2.0質量%未満では強度が不足する。Mg含有量が2.3質量%以上になると絞り加工性が更に向上する。一方、4.0質量%を超えると加工硬化が進みやすく、特にアルミニウム合金板の繰り返し曲げ加工性が低下する。従って、Mg含有量は2.0〜4.0質量%とする。好ましくは、Mg含有量の下限値が2.3質量%、上限値が2.8質量%である。
Hereinafter, the aluminum alloy plate (Al—Mg alloy plate) according to the present invention will be described in more detail.
<Composition of aluminum alloy>
The aluminum alloy according to the present invention contains Mg: 2.0 to 4.0% by mass, the balance is made of Al and inevitable impurities, and if necessary, Mn: 0.5% by mass or less, Cr: 0 .35% by mass or less, Zr: 0.35% by mass or less, and 0.1 to 0.6% by mass in total of Mn, Cr and Zr.
Mg has the effect of improving the strength and drawing workability of the aluminum alloy plate. However, when the Mg content is less than 2.0% by mass, the strength is insufficient. When the Mg content is 2.3% by mass or more, the drawing processability is further improved. On the other hand, if it exceeds 4.0% by mass, work hardening tends to proceed, and in particular, the repeated bending workability of the aluminum alloy plate is lowered. Therefore, Mg content shall be 2.0-4.0 mass%. Preferably, the lower limit of the Mg content is 2.3% by mass and the upper limit is 2.8% by mass.

Mn、Cr、Zrは、アルミニウム合金板の強度を向上させ、かつアルミニウム合金板の結晶粒の粗大化を防止する作用を有する。Mn、Cr及びZrの合計含有量が0.1質量%以下ではその効果が不足する。一方、Mn、Cr、Zr含有量が個々にそれぞれ0.5質量%、0.35質量%、0.35質量%を超え、又はMn、Cr、Zrの合計含有量が0.6質量%を超えると、加工硬化が進みやすく、アルミニウム合金板の張り出し加工性及び曲げ加工性が低下する。従って、Mn、Cr、Zrの含有量はそれぞれ0.5質量%以下、0.35質量%以下、0.35質量%以下とし、かつMn、Cr及びZrの合計含有量は0.1〜0.6質量%とする。好ましくは、Cr含有量を0.1〜0.35質量%とする。なお、Cr及びZrがアルミニウム合金板の加工硬化に及ぼす作用(強度アップ効果)は、同じ含有量で比較したときMnの約2倍である。   Mn, Cr, and Zr have the effect of improving the strength of the aluminum alloy plate and preventing the crystal grains of the aluminum alloy plate from becoming coarse. If the total content of Mn, Cr and Zr is 0.1% by mass or less, the effect is insufficient. On the other hand, the Mn, Cr and Zr contents individually exceed 0.5% by mass, 0.35% by mass and 0.35% by mass, respectively, or the total content of Mn, Cr and Zr is 0.6% by mass. When it exceeds, work hardening will progress easily and the overhang workability and bending workability of an aluminum alloy plate will fall. Therefore, the contents of Mn, Cr and Zr are 0.5% by mass or less, 0.35% by mass or less and 0.35% by mass or less, respectively, and the total content of Mn, Cr and Zr is 0.1 to 0%. .6 mass%. Preferably, Cr content shall be 0.1-0.35 mass%. In addition, the effect | action (strength improvement effect) which Cr and Zr exert on work hardening of an aluminum alloy plate is about twice Mn when compared with the same content.

不可避不純物のうちSiは、0.3質量%を超えると、Mg−Si系の粗大な金属間化合物が生成して、アルミニウム合金板の加工性が低下する。また、固溶Mg量が低下してアルミニウム合金板の強度が低下する。従って、Si含有量は0.3質量%以下とする。
同じくFeは、0.4質量%を超えると、Al−Fe系の粗大な金属間化合物が生成して、アルミニウム合金板の加工性が低下する。従って、Fe含有量は0.4質量%以下とする。
Si、Fe以外の不純物のうち、Cuは0.1質量%以下とし、Zn、Tiは0.2質量%以下、好ましくは0.1質量%以下とし、B、Ni、Sn、In、Gaはそれぞれ0.05質量%以下、合計で0.15質量%以下とする。
When Si exceeds 0.3% by mass among inevitable impurities, a Mg—Si-based coarse intermetallic compound is generated, and the workability of the aluminum alloy plate is lowered. Moreover, the amount of solid solution Mg falls and the intensity | strength of an aluminum alloy plate falls. Accordingly, the Si content is set to 0.3% by mass or less.
Similarly, when Fe exceeds 0.4 mass%, an Al—Fe based coarse intermetallic compound is generated, and the workability of the aluminum alloy plate is lowered. Therefore, the Fe content is 0.4% by mass or less.
Of impurities other than Si and Fe, Cu is 0.1% by mass or less, Zn and Ti are 0.2% by mass or less, preferably 0.1% by mass or less, and B, Ni, Sn, In, and Ga are Each is 0.05 mass% or less, and the total is 0.15 mass% or less.

<アルミニウム合金板の特性>
本発明に係るアルミニウム合金板は、Vブロック法により内側半径ゼロの90度V字曲げを行ったとき、曲げ部の断面の外側頂点直下0.5mmの位置のビッカース硬さが110以下である。Vブロック法による厳しい曲げ加工にも関わらず、加工後のビッカース硬さが低く、これは、本発明に係るアルミニウム合金板において、加工硬化の進行が抑制されていることを意味する。エンジンマウントのケーシングの製造において、例えば、多段絞り加工後、さらに塑性加工を加える必要がある場合、加工硬化が大き過ぎないことが必要である。このビッカース硬さが110以下のとき、アルミニウム合金板は良好な張り出し加工性及び繰り返し曲げ加工性を示し、多段絞り加工後、例えば縮径加工、屈曲加工による段差部の形成、端部の伸びフランジ加工等を行う場合でも、加工硬化による割れの発生が防止される。
本発明に係るアルミニウム合金板は、圧延方向に平行方向の引張強さが170MPa以上とする。これにより、強度が高く軽量なエンジンマウントのケーシングを製造することができる。
<Characteristics of aluminum alloy plate>
The aluminum alloy plate according to the present invention has a Vickers hardness of 110 or less at a position of 0.5 mm immediately below the outer vertex of the cross section of the bent portion when 90-degree V-shaped bending with an inner radius of zero is performed by the V-block method. Despite severe bending by the V-block method, the Vickers hardness after processing is low, which means that the progress of work hardening is suppressed in the aluminum alloy plate according to the present invention. In manufacturing an engine mount casing, for example, when it is necessary to add plastic processing after multistage drawing, it is necessary that work hardening is not too large. When this Vickers hardness is 110 or less, the aluminum alloy plate exhibits good stretchability and repetitive bending workability, and after multistage drawing, for example, formation of a stepped portion by diameter reduction processing, bending processing, extension flange at the end Even when processing or the like is performed, generation of cracks due to work hardening is prevented.
The aluminum alloy plate according to the present invention has a tensile strength in the direction parallel to the rolling direction of 170 MPa or more. Thereby, the casing of an engine mount which is strong and lightweight can be manufactured.

<アルミニウム合金板の結晶組織>
本発明に係るアルミニウム合金板の平均結晶粒径(板表面)は95μm以下であることが好ましい。平均結晶粒径が95μm以下であることにより、曲げ加工においてしわの発生が抑えられる。平均結晶粒径を95μm以下とするには、アルミニウム合金中のMn、Cr、Zrの合計含有量を0.1質量%以上とすることが好ましい。
<Crystal structure of aluminum alloy plate>
The average crystal grain size (plate surface) of the aluminum alloy plate according to the present invention is preferably 95 μm or less. When the average crystal grain size is 95 μm or less, the generation of wrinkles is suppressed in bending. In order to make the average crystal grain size 95 μm or less, the total content of Mn, Cr and Zr in the aluminum alloy is preferably 0.1% by mass or more.

<アルミニウム合金板の製造方法>
本発明に係るアルミニウム合金板の製造方法は、常法でよく、例えば、半連続鋳造(DC(direct chill)鋳造)、均質化処理、熱間圧延、冷間圧延及び仕上げ焼鈍の各工程からなる。
均質化処理は480〜550℃の範囲内で行うことが好ましい。均質化処理温度が480℃より低いと、粗大なMg−Si系金属間化合物が析出し、それが加工時に割れの起点となる。一方、均質化処理温度が550℃より高いと、固溶Mgが多くなり、加工硬化しやすく、加工性が低下する。均質化処理時間は、1〜24時間の間で適宜選択すればよい。
<Method for producing aluminum alloy plate>
The method for producing an aluminum alloy plate according to the present invention may be a conventional method, and includes, for example, semi-continuous casting (DC (direct chill) casting), homogenization treatment, hot rolling, cold rolling, and finish annealing. .
The homogenization treatment is preferably performed within a range of 480 to 550 ° C. When the homogenization temperature is lower than 480 ° C., a coarse Mg—Si intermetallic compound is precipitated, which becomes a starting point of cracking during processing. On the other hand, when the homogenization treatment temperature is higher than 550 ° C., the amount of solid solution Mg increases, work hardening is easy, and workability is lowered. What is necessary is just to select a homogenization processing time suitably between 1 to 24 hours.

熱間圧延は、後続の冷間圧延において所定の加工率が得られるように、最終板厚が設定される。冷間圧延は、加工率が大きい方が仕上げ焼鈍後の結晶粒径が小さくなり、曲げ加工時にしわの発生が抑制されるため、加工率は50%以上とする。
仕上げ焼鈍は300〜480℃の範囲で行うことが好ましい。仕上げ焼鈍温度が300℃より低いと、再結晶が不十分で加工時に割れが発生しやすく、480℃より高いと再結晶粒が粗大化し、繰り返し曲げ加工性が低下する(しわが発生)。仕上げ焼鈍時間は、1〜24時間の間で適宜選択すればよい。
なお、この製造方法で製造されたアルミニウム合金板は焼鈍材(質別:O材)であり、板表面において再結晶粒の等軸晶(アスペクト比が1.2以下)が観察される。
In the hot rolling, the final plate thickness is set so that a predetermined processing rate is obtained in the subsequent cold rolling. In cold rolling, the larger the processing rate, the smaller the crystal grain size after finish annealing, and the generation of wrinkles during bending is suppressed, so the processing rate is 50% or more.
The finish annealing is preferably performed in the range of 300 to 480 ° C. If the final annealing temperature is lower than 300 ° C., recrystallization is insufficient and cracks are likely to occur during processing, and if it is higher than 480 ° C., the recrystallized grains are coarsened and repeated bending workability is reduced (wrinkles are generated). What is necessary is just to select finish annealing time suitably in 1 to 24 hours.
The aluminum alloy plate manufactured by this manufacturing method is an annealed material (type: O material), and equiaxed crystals (aspect ratio is 1.2 or less) of recrystallized grains are observed on the plate surface.

以下、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。
表1に示す組成のアルミニウム合金(SiとFeは不可避不純物として含有)を溶解し、半連続鋳造法を用いて厚さ600mmの鋳塊を作製した。この鋳塊の表層を面削し、510℃×4時間(No.1〜18)又は550℃×4時間(No.19)の条件で均質化処理を施した後、熱間圧延を行い、板厚8.0mmとした。続いて、熱間圧延材に対し冷間圧延を行い、板厚3.0mmのアルミニウム合金板(コイル)として巻き取り、360℃×4時間の仕上げ焼鈍を行った。
Hereinafter, examples in which the effects of the present invention have been confirmed will be specifically described in comparison with comparative examples that do not satisfy the requirements of the present invention. In addition, this invention is not limited to this Example.
An aluminum alloy having a composition shown in Table 1 (Si and Fe contained as inevitable impurities) was dissolved, and an ingot having a thickness of 600 mm was produced using a semi-continuous casting method. After chamfering the surface layer of this ingot, and performing a homogenization treatment under conditions of 510 ° C. × 4 hours (No. 1 to 18) or 550 ° C. × 4 hours (No. 19), hot rolling is performed, The plate thickness was 8.0 mm. Subsequently, the hot-rolled material was cold-rolled, wound up as an aluminum alloy plate (coil) having a thickness of 3.0 mm, and subjected to finish annealing at 360 ° C. for 4 hours.

No.1〜19の各アルミニウム合金板について、表面の結晶組織(平均結晶粒径、アスペクト比)、加工硬化特性、引張強さ、張り出し加工性、絞り加工性、及び曲げ加工性(繰り返し曲げ加工性)を、下記要領で測定した。その結果を表1に示す。
(平均結晶粒径)
表面の平均結晶粒径は、切片法で求めた。No.1〜19の各アルミニウム合金板から試験片を切り出し、表面を機械研磨し、電解液でエッチングし、水洗・乾燥した後に、光学顕微鏡にて100倍で表面の組織写真を撮影した(各試験片ごとに5視野)。切片法における測定ライン長さは一律0.95mmとし、測定ラインの数は各視野ごとに圧延平行方向及び圧延直角方向にそれぞれ3本ずつとした。圧延平行方向及び圧延直角方向とも、5視野の測定ライン長さの合計は0.95×3×5mmである。この測定ライン長さと3×5本の測定ラインが完全に横切った結晶粒の数から、圧延平行方向の平均結晶粒径Aと、圧延直角方向の平均結晶粒径Bをそれぞれ求め、その平均値である(A+B)/2を表面の平均結晶粒径とした。
(アスペクト比)
表面の結晶粒のアスペクト比はA/Bで計算した。
No. For each of the aluminum alloy plates 1 to 19, the crystal structure of the surface (average crystal grain size, aspect ratio), work hardening characteristics, tensile strength, overhang workability, drawing workability, and bending workability (repetitive bending workability) Was measured as follows. The results are shown in Table 1.
(Average crystal grain size)
The average crystal grain size on the surface was determined by the intercept method. No. A test piece was cut out from each of the aluminum alloy plates 1 to 19, and the surface was mechanically polished, etched with an electrolytic solution, washed with water and dried, and then a structure photograph of the surface was taken 100 times with an optical microscope (each test piece 5 views each). The measurement line length in the section method was uniformly 0.95 mm, and the number of measurement lines was three for each visual field in the rolling parallel direction and the rolling perpendicular direction. The total of the measurement line lengths of the five visual fields is 0.95 × 3 × 5 mm in both the rolling parallel direction and the rolling perpendicular direction. From this measurement line length and the number of crystal grains completely traversed by 3 × 5 measurement lines, the average crystal grain size A in the rolling parallel direction and the average crystal grain size B in the direction perpendicular to the rolling are obtained, and the average value thereof. (A + B) / 2 was defined as the average crystal grain size of the surface.
(aspect ratio)
The aspect ratio of the surface crystal grains was calculated by A / B.

(加工硬化特性)
No.1〜19のアルミニウム合金板から、幅20mm、長さ50mmの長方形の試験片を採取し(長さ方向が圧延平行方向)、図1(a),(b)に示すように、曲げ線を圧延直角方向として、Vブロック法により内側半径ゼロの90度V字曲げを行った。試験力は1960Nとした。図1において、1はパンチ、2はダイ、3は試験片であり、パンチ1は先端の角度が90度、曲率半径がゼロ、ダイ2はV字の角度が90度、下端の曲率半径がゼロである。続いて、V字曲げ後の試験片3の端面を機械研磨法で研磨し、当初の端面から幅方向内側に2〜3mm入った位置の断面(前記曲げ線に垂直な断面)を露出させ、平滑に仕上げた。図2(a)において、機械研磨後に露出した断面の位置を2点鎖線で示し、機械研磨法で研磨(除去)した材料を斜線で示す。続いて、前記断面のビッカース硬さを、JIS−Z2244(2009)に準拠し、試験力を0.1Nとして測定した。測定箇所は、図2(b)に示すように、V字曲げ及び機械研磨後の試験片3の外側頂点から鉛直方向に0.5mm内側に入った位置Pとした。
(Work hardening characteristics)
No. A rectangular test piece having a width of 20 mm and a length of 50 mm was sampled from the aluminum alloy plates 1 to 19 (the length direction is the direction parallel to the rolling), and as shown in FIGS. As the direction perpendicular to rolling, 90-degree V-bending with an inner radius of zero was performed by the V-block method. The test force was 1960N. In FIG. 1, 1 is a punch, 2 is a die, 3 is a test piece, punch 1 has a tip angle of 90 degrees and a radius of curvature of zero, and die 2 has a V-shaped angle of 90 degrees and a curvature radius at the bottom. Zero. Subsequently, the end surface of the test piece 3 after bending the V-shape is polished by a mechanical polishing method to expose a cross section (cross section perpendicular to the bending line) at a position 2 to 3 mm inward in the width direction from the original end surface, Smooth finish. In FIG. 2A, the position of the cross section exposed after mechanical polishing is indicated by a two-dot chain line, and the material polished (removed) by the mechanical polishing method is indicated by oblique lines. Subsequently, the Vickers hardness of the cross section was measured according to JIS-Z2244 (2009) with a test force of 0.1N. As shown in FIG. 2 (b), the measurement location was a position P that was 0.5 mm inside from the outer vertex of the test piece 3 after V-bending and mechanical polishing.

(引張強さ)
No.1〜19のアルミニウム合金板から、長手方向が圧延平行方向となるようにJIS5号引張り試験片を採取し、JIS−Z2241(2011)に準拠して引張り試験を実施して、引張強さを測定した。
(張り出し加工性)
JIS−Z2247(2006)に準拠して、No.1〜19のアルミニウム合金板から試験片を採取し、エリクセン試験を行い、エリクセン値を求めた。張り出し加工性の評価は、エリクセン値が9.5以上を◎(優)、9.0以上9.5未満を○(良)、9.0未満を×(不良)とした。
(Tensile strength)
No. JIS No. 5 tensile test specimens were taken from 1 to 19 aluminum alloy sheets so that the longitudinal direction was parallel to the rolling direction, and the tensile test was performed in accordance with JIS-Z2241 (2011) to measure the tensile strength. did.
(Overhang processability)
In accordance with JIS-Z2247 (2006), no. Test pieces were sampled from 1 to 19 aluminum alloy plates and subjected to an Erichsen test to determine Erichsen values. In the evaluation of the overhang workability, an Erichsen value of 9.5 or more was evaluated as ((excellent), 9.0 or more and less than 9.5 was evaluated as ◯ (good), and less than 9.0 was evaluated as x (bad).

(絞り加工性)
No.1〜19のアルミニウム合金板から種々のサイズの円板を打抜き、円筒深絞り試験を行って、限界絞り比(LDR)を測定した。円筒絞り試験は、パンチ径が40mm、しわ押さえ荷重が1トンで実施した。絞り加工性の評価は、LDR1.95以上を◎(優)、1.85以上1.95未満を○(良)、1.85未満を×(不良)と評価した。
(Drawing workability)
No. Disks of various sizes were punched from 1 to 19 aluminum alloy plates, a cylindrical deep drawing test was performed, and a limit drawing ratio (LDR) was measured. The cylindrical drawing test was performed with a punch diameter of 40 mm and a wrinkle holding load of 1 ton. The drawability was evaluated as L (1.95) or higher (excellent), 1.85 or higher and lower than 1.95 as ◯ (good), and lower than 1.85 as x (poor).

(曲げ加工性)
先に説明したエンジンマウントのケーシングの製造方法(多段絞り、縮径加工、屈曲加工、伸びフランジ加工)を想定して、繰り返し曲げを行ったときの曲げ加工性を評価した。No.1〜19のアルミニウム合金板から、幅20mm、長さ50mmの長方形の試験片を採取し(長さ方向が圧延平行方向)、この試験片4に対し、曲げ線を圧延直角方向として、Vブロック法により1回目の90度V字曲げを行った。パンチの先端の曲率半径は6mmとした。1回目の90度V字曲げ後の試験片4を図3(a)に示す。続いて、図3(b)に示すように試験片4を直線状に曲げ戻した後、図3(c)に示すように、同じくVブロック法により2回目の90度V字曲げ(曲げの向きは1回目とは逆)を行った。パンチの先端の曲率半径は2mmとした。
2回目の90度V字曲げを行った試験片4(図3(c))の外側頂点部分の表面を光学顕微鏡にて観察し、割れ及びしわの有無を調べ、曲げ加工性(繰り返し曲げ加工性)を評価した。評価基準は、図4(a)に示すように、割れが認められたものを×(不良)、図4(b)に示すように、しわが認められたが割れが認められないものを○(良)、図4(c)に示すように、目立つしわが認められないものを◎(優)とした。
(Bending workability)
The bending workability when repeatedly bending was evaluated assuming the above-described method for manufacturing the casing of the engine mount (multi-stage drawing, diameter reduction processing, bending processing, stretch flange processing). No. A rectangular test piece having a width of 20 mm and a length of 50 mm was taken from the aluminum alloy plates 1 to 19 (the length direction is the parallel direction of rolling), and the bending line was made perpendicular to the rolling perpendicular direction with respect to the test piece 4 to form a V block. The first 90 degree V-bending was performed by the method. The radius of curvature of the punch tip was 6 mm. The test piece 4 after the first 90-degree V-bending is shown in FIG. Subsequently, after the test piece 4 is bent back linearly as shown in FIG. 3B, the second 90 degree V-bending (bending of the bending) is similarly performed by the V-block method as shown in FIG. 3C. The direction was opposite to the first). The radius of curvature at the tip of the punch was 2 mm.
The surface of the outer apex portion of the test piece 4 (Fig. 3 (c)) subjected to the second 90 degree V-bending was observed with an optical microscope to check for the presence of cracks and wrinkles. Sex). As shown in FIG. 4 (a), the evaluation criteria are x (defective) when cracks were observed, and ○ when wrinkles were observed but cracks were not observed as shown in FIG. 4 (b). (Good), as shown in FIG. 4 (c), those in which no noticeable wrinkles were observed were marked as ◎ (excellent).

表1に示すように、合金組成及び内側半径ゼロの90度V字曲げ加工後の加工硬化特性(ビッカース硬さ)が本発明の規定を満たすNo.1〜12は、引張強さが170MPa以上で、張り出し加工性、絞り加工性及び繰り返し曲げ加工性の全てが◎又は○と評価された。また、No.1〜12は表面組織が再結晶粒の等軸晶からなり、そのうち平均結晶粒径が95μm以下のNo.1〜9,12は、繰り返し曲げ加工性が◎と評価された。   As shown in Table 1, the alloy composition and work hardening characteristics (Vickers hardness) after 90-degree V-bending with zero inner radius satisfy No. 1 of the present invention. For Nos. 1 to 12, the tensile strength was 170 MPa or more, and all of the stretchability, drawability and repeated bending property were evaluated as ◎ or ○. No. Nos. 1 to 12 have surface textures consisting of equiaxed crystals of recrystallized grains, of which no. Nos. 1 to 9 and 12 were evaluated as ◎ for repeated bending workability.

これに対し、合金組成又は内側半径ゼロの90度V字曲げ加工後の加工硬化特性(ビッカース硬さ)が本発明の規定を満たさないNo.13〜19は、引張強さが170MPa未満か、張り出し加工性、絞り加工性及び繰り返し曲げ加工性のいずれかが×と評価された。具体的には下記のとおりである。
No.13は、Mg含有量が不足するため、引張強さが小さい。
No.14は、Mg含有量が過剰で、内側半径ゼロの90度V字曲げ加工後の加工硬化特性(ビッカース硬さ)が本発明の規定を満たさず、繰り返し曲げ加工性が×と評価された。
No.15は、Cr含有量が過剰で、内側半径ゼロの90度V字曲げ加工後の加工硬化特性(ビッカース硬さ)が本発明の規定を満たさず、繰り返し曲げ加工性が×と評価された。
On the other hand, the alloy composition or the work hardening characteristics (Vickers hardness) after 90-degree V-bending with zero inner radius do not satisfy the provisions of the present invention. For Nos. 13 to 19, the tensile strength was less than 170 MPa, and any of the overhanging workability, drawing workability, and repeated bending workability was evaluated as x. Specifically, it is as follows.
No. No. 13 has a low tensile strength because the Mg content is insufficient.
No. No. 14, the Mg content was excessive, the work hardening characteristics (Vickers hardness) after 90-degree V-shaped bending with an inner radius of zero did not satisfy the provisions of the present invention, and the repeated bending workability was evaluated as x.
No. No. 15, the Cr content was excessive, the work hardening property (Vickers hardness) after 90-degree V-bending with a zero inner radius did not satisfy the provisions of the present invention, and the repeated bending workability was evaluated as x.

No.16は、Mg含有量が不足するため、引張強さが小さい。
No.17は、Mn、Cr及びZrの合計含有量が過剰なため、張り出し加工性が×と評価された。
No.18は、Mn含有量と、Mn、Cr及びZrの合計含有量が過剰で、内側半径ゼロの90度V字曲げ加工後の加工硬化特性(ビッカース硬さ)が本発明の規定を満たさず張り出し加工性と繰り返し曲げ加工性が×と評価された。
No.19は、均熱温度が550℃と比較的高かったため、内側半径ゼロの90度V字曲げ加工後の加工硬化特性(ビッカース硬さ)が本発明の規定を満たさず、繰り返し曲げ加工性が×と評価された。
No. No. 16 has a low tensile strength because the Mg content is insufficient.
No. No. 17 had an overhang workability of x because the total content of Mn, Cr and Zr was excessive.
No. No. 18, the Mn content and the total content of Mn, Cr, and Zr are excessive, and the work hardening characteristics (Vickers hardness) after 90-degree V-bending with an inner radius of zero do not meet the provisions of the present invention. Workability and repeated bending workability were evaluated as x.
No. No. 19 has a relatively high soaking temperature of 550 ° C., so that the work hardening characteristics (Vickers hardness) after 90-degree V-bending with an inner radius of zero do not satisfy the provisions of the present invention, and the repeated bending workability is × It was evaluated.

1 パンチ
2 ダイ
3,4 試験片
1 Punch 2 Die 3, 4 Test piece

Claims (3)

Mg:2.0〜4.0質量%を含有し、残部がAl及び不可避不純物からなり、圧延方向に平行方向の引張強さが170MPa以上であり、内側半径ゼロの90度V字曲げ部の断面の頂点直下0.5mmの位置のビッカース硬さが110以下であることを特徴とするエンジンマウントのケーシング用アルミニウム合金板。 Mg: 2.0 to 4.0% by mass, the balance is made of Al and inevitable impurities, the tensile strength in the direction parallel to the rolling direction is 170 MPa or more, and the 90-degree V-bend portion with an inner radius of zero An aluminum alloy plate for a casing of an engine mount, wherein the Vickers hardness at a position 0.5 mm immediately below the top of the cross section is 110 or less. さらに、Mn:0.5質量%以下、Cr:0.35質量%以下、Zr:0.35質量%以下のうち少なくとも1種を、Mn、Cr及びZrの合計で0.1〜0.6質量%含有することを特徴とする請求項1に記載されたエンジンマウントのケーシング用アルミニウム合金板。 Further, at least one of Mn: 0.5% by mass or less, Cr: 0.35% by mass or less, Zr: 0.35% by mass or less, and 0.1 to 0.6 in total of Mn, Cr and Zr The aluminum alloy plate for an engine mount casing according to claim 1, wherein the aluminum alloy plate is contained by mass%. 表面の結晶粒径が95μm以下であることを特徴とする請求項1又は2に記載されたエンジンマウントのケーシング用アルミニウム合金板。 The aluminum alloy plate for casings of an engine mount according to claim 1 or 2, wherein the crystal grain size of the surface is 95 µm or less.
JP2015206307A 2015-10-20 2015-10-20 Aluminum alloy sheet for casing engine mount Pending JP2017078199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015206307A JP2017078199A (en) 2015-10-20 2015-10-20 Aluminum alloy sheet for casing engine mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206307A JP2017078199A (en) 2015-10-20 2015-10-20 Aluminum alloy sheet for casing engine mount

Publications (1)

Publication Number Publication Date
JP2017078199A true JP2017078199A (en) 2017-04-27

Family

ID=58665261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206307A Pending JP2017078199A (en) 2015-10-20 2015-10-20 Aluminum alloy sheet for casing engine mount

Country Status (1)

Country Link
JP (1) JP2017078199A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171012A (en) * 1992-12-11 1994-06-21 Kurashiki Kako Co Ltd Metal/rubber composite damping material
JPH08311594A (en) * 1995-05-16 1996-11-26 Furukawa Electric Co Ltd:The Al-mg alloy sheet excellent in bendability and its production
JPH08311625A (en) * 1995-05-10 1996-11-26 Kobe Steel Ltd Working method of aluminium-magnesium alloy excellent in formability
JP2003105474A (en) * 2001-07-23 2003-04-09 Kobe Steel Ltd Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
JP2004250738A (en) * 2003-02-19 2004-09-09 Kobe Steel Ltd Al-Mg BASED ALLOY SHEET
JP2005146310A (en) * 2003-11-12 2005-06-09 Kobe Steel Ltd Mg-CONTAINING Al ALLOY

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171012A (en) * 1992-12-11 1994-06-21 Kurashiki Kako Co Ltd Metal/rubber composite damping material
JPH08311625A (en) * 1995-05-10 1996-11-26 Kobe Steel Ltd Working method of aluminium-magnesium alloy excellent in formability
JPH08311594A (en) * 1995-05-16 1996-11-26 Furukawa Electric Co Ltd:The Al-mg alloy sheet excellent in bendability and its production
JP2003105474A (en) * 2001-07-23 2003-04-09 Kobe Steel Ltd Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
JP2004250738A (en) * 2003-02-19 2004-09-09 Kobe Steel Ltd Al-Mg BASED ALLOY SHEET
JP2005146310A (en) * 2003-11-12 2005-06-09 Kobe Steel Ltd Mg-CONTAINING Al ALLOY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
アルミニウム ハンドブック, vol. 第7版, JPN6018032238, 31 January 2007 (2007-01-31), pages 17 - 26, ISSN: 0004006232 *

Similar Documents

Publication Publication Date Title
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
JP3558628B2 (en) Magnesium alloy plate and method for producing the same
JP5354954B2 (en) Aluminum alloy plate for press forming
EP1586667A1 (en) Copper alloy and method of manufacturing the same
JP5522400B2 (en) Magnesium alloy material
JP2016138336A (en) Magnesium-based alloy for extension application
JP2010077506A (en) Aluminum alloy sheet having excellent formability
JP5648885B2 (en) Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate
JP2007138227A (en) Magnesium alloy material
JP2012158776A (en) Pure titanium sheet excellent in balance between stamping formability and strength
JP7249321B2 (en) Method for manufacturing aluminum alloy member
JP2010275611A (en) 7,000 series aluminum alloy extruded material having excellent scc resistance and method for producing the same
JP2014043601A (en) Magnesium alloy rolled material and method for manufacturing the same
JP6644376B2 (en) Method for producing extruded high-strength aluminum alloy with excellent formability
JP4306547B2 (en) Magnesium alloy plate and manufacturing method thereof
JP2011184795A (en) Aluminum alloy sheet having excellent formability
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2017078199A (en) Aluminum alloy sheet for casing engine mount
JP5688674B2 (en) Magnesium alloy coil material, magnesium alloy plate, and method for producing magnesium alloy coil material
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP6230142B1 (en) Aluminum alloy sheet for forming
JP2001207233A (en) Al-Mg-Si BASES ALUMINUM ALLOY EXTRUDED MATERIAL FOR AUTOMOTIVE FRAME EXCELLENT IN BENDING WORKABILITY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402