JP2003105474A - Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING - Google Patents

Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING

Info

Publication number
JP2003105474A
JP2003105474A JP2002212159A JP2002212159A JP2003105474A JP 2003105474 A JP2003105474 A JP 2003105474A JP 2002212159 A JP2002212159 A JP 2002212159A JP 2002212159 A JP2002212159 A JP 2002212159A JP 2003105474 A JP2003105474 A JP 2003105474A
Authority
JP
Japan
Prior art keywords
aluminum alloy
based aluminum
alloy hollow
less
extruded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002212159A
Other languages
Japanese (ja)
Other versions
JP3850348B2 (en
Inventor
Hitoshi Kawai
仁 川井
Takashi Oka
貴志 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002212159A priority Critical patent/JP3850348B2/en
Publication of JP2003105474A publication Critical patent/JP2003105474A/en
Application granted granted Critical
Publication of JP3850348B2 publication Critical patent/JP3850348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg based aluminum alloy hollow extrusion material for bulging which has excellent formability. SOLUTION: This Al-Mg based aluminum alloy hollow extrusion material contains, by mass, 1.5 to 5.0% Mg, and 0.005 to 0.2% Ti. If required, the aluminum alloy contains one or more metals selected from 0.05 to 1.0% Mn, 0.05 to 0.3% Cr, 0.05 to 0.2% Zr and 0.01 to 0.2% V. The mean axial ratio between the major axis and the minor axis of crystal grains in the center part of the sheet thickness is <=4.5, and the mean crystal grain diameter of recrystallized grains to 500 μm from the outer surface is <=500 μm. The extrusion material is suitable as an automobile suspension subframe having a complicated shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車や鉄道車両
又は建築部材のフレームあるいは接合部等の成形に好適
なバルジ成形性が優れたアルミニウム合金中空押出材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy hollow extruded material having an excellent bulge formability, which is suitable for forming a frame, a joint or the like of an automobile, a railway vehicle or a building member.

【0002】[0002]

【従来の技術】近年、地球の温暖化及びオゾン層の破壊
など環境問題の観点から、大気中の炭酸ガス等の増加を
抑制するために、自動車の軽量化及び電気自動車の導入
などが本格的に検討されている。この軽量化の一貫とし
て、素材の置換、すなわち従来自動車用構造材に主とし
て使用されてきた鋼板の代わりにアルミニウム合金材の
使用が増加している。また、電気自動車においても電池
を積載するための重量増加を補償するために車体を軽量
化する必要が強く求められている。さらに、長手方向に
一定ではあるが自由な断面形状が得られる押出材は設計
の自由度を広げ、最終形状に近い断面形状を得ることで
成形性を向上できるなど、アルミニウム合金材の使用が
注目され、例えば特開2000−177621号公報に
は、サスペンションサブフレームの製造にアルミニウム
合金押出材を用いることが記載されている。
2. Description of the Related Art In recent years, from the viewpoint of environmental problems such as global warming and ozone layer destruction, weight reduction of automobiles and introduction of electric vehicles have been made in earnest in order to suppress an increase in carbon dioxide gas in the atmosphere. Is being considered. As part of this reduction in weight, replacement of materials, that is, use of aluminum alloy materials instead of steel plates that have been mainly used in the conventional structural materials for automobiles is increasing. Further, in an electric vehicle as well, there is a strong demand for reducing the weight of the vehicle body in order to compensate for an increase in weight for loading a battery. Furthermore, the use of aluminum alloy materials has attracted attention, as extruded materials that have a constant cross-sectional shape in the longitudinal direction can be obtained by increasing the degree of freedom in design and improving the formability by obtaining a cross-sectional shape close to the final shape. For example, Japanese Patent Application Laid-Open No. 2000-177621 describes that an aluminum alloy extruded material is used for manufacturing a suspension subframe.

【0003】一方、車体組立時にフレーム同士を接合す
る際に用いる継手部材や、サスペンションサブフレーム
等、複雑形状の部品の成形方法として、バルジ成形が着
目され、例えば、Al−Mg系アルミニウム合金溶接管
をバルジ成形したものをサスペンションサブフレームと
して用いることが公知である。そのほか、特開平5−2
12464号公報には、5000系(Al−Mg系)ア
ルミニウム合金板を液圧成形することが記載されてい
る。
On the other hand, bulge forming has attracted attention as a forming method of parts having a complicated shape such as a joint member used when joining frames to each other at the time of assembling a vehicle body and a suspension subframe. For example, an Al-Mg type aluminum alloy welded pipe is used. It is known to use a bulge-molded product as a suspension subframe. In addition, Japanese Patent Laid-Open No. 5-2
12464 discloses that a 5000 series (Al-Mg series) aluminum alloy plate is hydraulically formed.

【0004】[0004]

【発明が解決しようとする課題】Al−Mg系アルミニ
ウム合金の場合、これまで成形加工性の面で一般に有利
とされる焼きなまし材(O材)が、バルジ加工用素材と
して用いられてきた。しかし、バルジ成形の張出高さが
高くなると張出部の頂部に亀裂が入り、大きく張出成形
をすることができなかった。本発明は、Al−Mg系ア
ルミニウム合金のバルジ成形に関して、このような問題
点に鑑みてなされたもので、バルジ成形性(特に張出高
さ)に優れ、自動車や鉄道車両又は建築部材のフレーム
及び接合部材等の成形に好適なAl−Mg系アルミニウ
ム合金中空押出材を提供することを目的としてなされた
ものである。
In the case of Al-Mg type aluminum alloy, an annealed material (O material), which is generally advantageous in terms of formability, has been used as a material for bulging. However, when the bulge height of the bulge molding was high, cracks were formed at the top of the bulge portion, and large bulge molding could not be performed. The present invention has been made in view of such problems with regard to bulge forming of an Al-Mg-based aluminum alloy, is excellent in bulge formability (particularly overhang height), and is a frame for automobiles, railway vehicles, or building members. And an Al-Mg-based aluminum alloy hollow extruded material suitable for molding a joining member and the like.

【0005】[0005]

【課題を解決するための手段】本発明者らは、バルジ成
形性に優れるAl−Mg系アルミニウム合金中空押出材
を開発すべく種々実験研究を行う過程で、押出材を抽伸
後焼きなました従来のO材は、表層部はほぼ完全に等軸
晶化されているが、その中心部では冷間加工(抽伸)の
際に導入された転位は消滅しているものの、一部に等軸
晶ではなく押出方向に延伸した組織(押し出し時又は抽
伸時に導入された組織)が残留し、これがバルジ成形性
を阻害していることを見いだし、その知見をもとに本発
明を得ることができた。
[Means for Solving the Problems] In the process of conducting various experimental studies to develop an Al-Mg-based aluminum alloy hollow extruded material having excellent bulge formability, the inventors extruded the extruded material and then annealed it. In the O material, the surface layer portion is almost completely equiaxed, but dislocations introduced during cold working (drawing) disappear in the central portion, but in part, in equiaxed crystal. However, it was found that a structure stretched in the extrusion direction (a structure introduced at the time of extrusion or drawing) remained, and this hindered the bulge formability, and the present invention could be obtained based on this finding.

【0006】すなわち、本発明に係るバルジ成形用Al
−Mg系アルミニウム合金中空押出材は、Mg:1.5
〜5.0%及びTi:0.005〜0.2%を含有する
Al−Mg系アルミニウム合金中空押出材からなり、板
厚中心部における結晶粒の長軸と短軸の平均軸比が4.
5以下であることを特徴とする。なお、本発明において
バルジ成形とは、流体圧を利用して部材の一部を膨出さ
せること(ハイドロフォームと呼ばれることもある)、
及び部材の外側を負圧にすることにより部材の一部を膨
出させることを意味する。
That is, Al for bulge forming according to the present invention
-Mg-based aluminum alloy hollow extruded material is Mg: 1.5
.About.5.0% and Ti: 0.005 to 0.2%, and is made of an Al--Mg-based aluminum alloy hollow extruded material, and the average axial ratio of the major axis and the minor axis of the crystal grains in the plate thickness central portion is 4 .
It is characterized by being 5 or less. In the present invention, bulge molding is to bulge a part of a member using fluid pressure (sometimes called hydroform),
And that a part of the member is bulged by applying a negative pressure to the outside of the member.

【0007】[0007]

【発明の実施の形態】前記組成のAl−Mg系アルミニ
ウム合金中空押出材において、板厚中心部における結晶
粒の長軸と短軸の平均軸比(アスペクト比)を4.5以
下というのは、これにより優れたバルジ成形性が得られ
るからである。なお、アスペクト比が4.5以下という
のは、板厚中心部の結晶粒が等軸晶又は等軸晶に近い形
態であることを意味する。押出材の板厚中心部でアスペ
クト比が4.5以下であれば、それより表層部でも同じ
く4.5以下が得られている。このアスペクト比は3以
下であることがより好ましい。また、バルジ成形後の表
面部の肌荒れを抑えるためには、少なくとも表面部(外
表面から500μmまでの部分)の再結晶粒の平均粒径
が500μm以下であることが望ましい。300μm以
下、さらに100μm以下がより望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the Al-Mg-based aluminum alloy hollow extruded material having the above composition, the average axial ratio (aspect ratio) between the major axis and the minor axis of the crystal grains at the center of the plate thickness is 4.5 or less. This is because excellent bulge formability can be obtained. The aspect ratio of 4.5 or less means that the crystal grains at the central portion of the plate thickness are equiaxed or near equiaxed. If the aspect ratio is 4.5 or less at the center of the plate thickness of the extruded material, 4.5 or less is similarly obtained in the surface layer portion. The aspect ratio is more preferably 3 or less. Further, in order to suppress the roughening of the surface portion after bulging, it is desirable that the average grain size of the recrystallized grains of at least the surface portion (portion from the outer surface to 500 μm) is 500 μm or less. It is preferably 300 μm or less, more preferably 100 μm or less.

【0008】上記Al−Mg系アルミニウム合金は、M
g、Ti以外の添加元素として必要に応じて、例えばM
n、Cr、Zr及びVの1種又は2種以上を含み、さら
に不可避不純物としてFe、その他の元素を含むことが
できる。ただし、これらの添加元素等の含有量の合計
は、JIS5000系アルミニウム合金のレベルである
6%未満(Al:94%以上)とするのが望ましい。以
下、本発明に係るアルミニウム合金中空押出材における
各成分の添加理由について説明する。 Mg Mgはアルミニウムのマトリックス中に固溶し、合金強
度を向上させる。自動車のフレーム又は継手部材等の構
造部材として必要な強度(耐力値σ0.2≧50MPa)
を得るためには、Mgは1.5%以上の添加が必要であ
る。しかし、5.0%を越えて添加されると耐応力腐食
割れ性が低下し、かつ固溶量が過剰となって伸びδが低
下し、優れたバルジ成形性が得られない。従って、Mg
含有量は1.5〜5.0%とする。より望ましい範囲は
2.0〜4.0%である。
The Al-Mg type aluminum alloy is M
As an additional element other than g and Ti, for example, M
One or more of n, Cr, Zr, and V may be contained, and Fe and other elements may be contained as unavoidable impurities. However, the total content of these additive elements and the like is preferably less than 6% (Al: 94% or more), which is the level of JIS 5000 series aluminum alloys. Hereinafter, the reason for adding each component to the aluminum alloy hollow extruded material according to the present invention will be described. Mg Mg forms a solid solution in the aluminum matrix and improves the alloy strength. Strength required for structural members such as automobile frames or joint members (proof strength value σ0.2 ≥ 50 MPa)
To obtain Mg, it is necessary to add 1.5% or more of Mg. However, if added in excess of 5.0%, the stress corrosion cracking resistance deteriorates, and the amount of solid solution becomes excessive and the elongation δ decreases, so that excellent bulge formability cannot be obtained. Therefore, Mg
The content is 1.5 to 5.0%. A more desirable range is 2.0 to 4.0%.

【0009】Ti Tiは鋳造時における結晶粒を微細化することにより合
金強度を向上させる。この効果を発揮させるには、Ti
添加量は0.005%以上とすることが必要である。ま
た、0.005%より少ないと、結晶粒が粗大化して伸
びが低下し、優れたバルジ成形性が得られない。一方、
Ti添加量が0.2%を超えると前記効果が飽和し、さ
らに、粗大な金属間化合物が晶出して所定の合金強度及
び伸びが得られなくなる。従って、Tiの含有量は0.
005〜0.2%とし、より望ましくは0.01〜0.
1%、さらに望ましくは0.01〜0.05%とする。
Ti Ti improves the alloy strength by refining the crystal grains during casting. To exert this effect, Ti
It is necessary that the addition amount be 0.005% or more. On the other hand, if it is less than 0.005%, the crystal grains are coarsened and the elongation is lowered, so that excellent bulge formability cannot be obtained. on the other hand,
When the amount of Ti added exceeds 0.2%, the above effect is saturated, and further, a coarse intermetallic compound crystallizes out, making it impossible to obtain a predetermined alloy strength and elongation. Therefore, the Ti content is 0.
005-0.2%, more preferably 0.01-0.
1%, and more preferably 0.01 to 0.05%.

【0010】Mn、Cr、Zr、V これらの元素は製造工程における組織制御、すなわち金
属間化合物として晶出及び析出して結晶粒の粗大化を防
止し耐応力腐食割れ性を改善するために、必要に応じて
1種又は2種以上が添加される。それぞれ、0.05
%、0.05%、0.05%、0.01%以下ではその
効果がなく、1.0%、0.3%、0.2%、0.2%
を超えると前記効果が飽和するとともに、粗大な金属間
化合物が析出して伸びが低下し、バルジ成形性を劣化さ
せる。なお、これらの元素が金属間化合物として晶出及
び析出すると再結晶が抑制され、押出材に押し出し方向
に延伸した組織(繊維状組織)が残留しやすくなるた
め、アスペクト比が4.5以下の組織を得るという観点
からは、これらの元素の添加量は少ない方がよい。上記
範囲を越えて添加された場合、後述する製造条件等を工
夫しても、延伸した組織が解消できないか他の弊害(再
結晶粒の粗大化)が出てくる。
Mn, Cr, Zr, V These elements control the structure in the manufacturing process, that is, crystallize and precipitate as intermetallic compounds to prevent coarsening of crystal grains and improve stress corrosion cracking resistance. If necessary, one kind or two or more kinds are added. 0.05 each
%, 0.05%, 0.05%, 0.01% or less has no effect, 1.0%, 0.3%, 0.2%, 0.2%
When it exceeds, the above effect is saturated and a coarse intermetallic compound precipitates to lower the elongation and deteriorate the bulge formability. When these elements are crystallized and precipitated as an intermetallic compound, recrystallization is suppressed and a structure (fibrous structure) stretched in the extrusion direction tends to remain in the extruded material, so that the aspect ratio is 4.5 or less. From the viewpoint of obtaining a structure, it is preferable that the addition amount of these elements is small. If added in excess of the above range, the stretched structure cannot be eliminated or other adverse effects (coarseening of recrystallized grains) will occur even if the manufacturing conditions described later are devised.

【0011】不可避不純物 不可避不純物のうちFeはアルミニウム地金に最も多く
含まれる不純物であり、0.7%を超えて合金中に存在
すると鋳造時に粗大な金属間化合物を晶出し、合金の機
械的性質を損なう。従って、Feの含有量は0.7%以
下、望ましくは0.5%以下に規制する。また、アルミ
ニウム合金を鋳造する際には地金、添加元素の中間合
金、化合物等様々な経路より不純物が混入する。混入す
る元素は様々であるが、Fe以外の不純物のうちSiは
0.5%以下、望ましくは0.4%以下、Cuは0.3
%以下、望ましくは0.2%以下、Znは0.3%以
下、望ましくは0.2%以下、その他の不純物は単体で
0.05%以下、総量で0.15%以下であれば合金の
特性にほとんど影響を及ぼさない。従って、これらの不
純物は上記の数値以下とする。なお、不純物のうちBに
ついてはTiの添加に伴い合金中にTi含有量の1/5
程度の量で混入するが、より望ましい範囲は0.02%
以下、さらに0.01%以下が望ましい。
Inevitable Impurities Of the inevitable impurities, Fe is the most contained impurity in the aluminum base metal, and if more than 0.7% is present in the alloy, coarse intermetallic compounds crystallize during casting and the alloy mechanically acts. Spoil the nature. Therefore, the Fe content is regulated to 0.7% or less, preferably 0.5% or less. Further, when casting an aluminum alloy, impurities are mixed in through various routes such as a base metal, an intermediate alloy of additional elements, and a compound. Although various elements are mixed, Si is 0.5% or less, preferably 0.4% or less, and Cu is 0.3% among impurities other than Fe.
% Or less, preferably 0.2% or less, Zn is 0.3% or less, preferably 0.2% or less, and other impurities are 0.05% or less as a simple substance, and 0.15% or less in total amount is an alloy. Has almost no effect on the characteristics of. Therefore, these impurities should be below the above values. As for B among the impurities, 1/5 of the Ti content in the alloy is added as Ti is added.
It is mixed in a certain amount, but a more desirable range is 0.02%
Hereafter, 0.01% or less is desirable.

【0012】押出材の板厚中心部の組織をアスペクト比
4.5以下とするには、組成面では、Mn等の遷移元素
の添加量を抑えるのが有効である。また、製造条件面で
は、押出材が再結晶を起こしやすい条件を設定する。例
えば、ビレットの均質化処理条件を高温長時間側とし、
又は/及び押出温度を高め、これらの元素の金属間化合
物粒を成長させピン止め作用を低下させると、再結晶が
起こりやすくなる。また、押出比や押出速度を上げて押
出中の押出材が高温になるようにしても、再結晶が起こ
りやすくなる。さらに、O材であれば、押し出したまま
の押出材を抽伸したのち、板厚中心部まで完全に再結晶
が起こるように、高温長時間の焼きなましを行うことも
考えられる。一方、バルジ成形性だけを考慮するのであ
れば、アスペクト比をコントロールすることで足りる
が、バルジ成形後の表面部の肌荒れを考慮すると、同時
に表面部の再結晶粒の粗大化を防止する必要がある。そ
のためには、遷移元素の添加量が繊維状組織が形成され
ない程度に少ない場合、押出温度及び押出速度を余り高
くしないで結晶粒の粗大化を抑え、遷移元素の添加量が
それより多い場合、均質化処理条件を高温長時間側と
し、押出温度及び押出速度を比較的高くして、再結晶を
促進させるようにする。このように、アスペクト比が
4.5以下となるように、かつ再結晶粒が余りに粗大化
しないようにするには、組成面と製造条件面のバランス
を取る必要がある。
From the viewpoint of composition, it is effective to suppress the addition amount of transition elements such as Mn in order to make the structure at the center of the plate thickness of the extruded material 4.5 or less. In terms of manufacturing conditions, conditions under which the extruded material is likely to recrystallize are set. For example, the billet homogenization condition is high temperature long time side,
Alternatively, if the extrusion temperature is increased and the intermetallic compound grains of these elements are grown to reduce the pinning action, recrystallization easily occurs. Further, even if the extrusion ratio or the extrusion speed is increased to raise the temperature of the extruded material during extrusion, recrystallization easily occurs. Further, in the case of O material, it may be considered that after extruding the extruded material as it is extruded, it is annealed at a high temperature for a long time so that the recrystallization completely occurs up to the center portion of the plate thickness. On the other hand, if only the bulge formability is considered, it is sufficient to control the aspect ratio, but considering the rough surface of the surface after bulge formation, it is necessary to prevent coarsening of recrystallized grains on the surface at the same time. is there. To that end, when the addition amount of the transition element is so small that a fibrous structure is not formed, the coarsening of crystal grains is suppressed without increasing the extrusion temperature and the extrusion rate too much, and the addition amount of the transition element is higher than that. The homogenization treatment conditions are set to a high temperature for a long time, and the extrusion temperature and the extrusion rate are set relatively high to promote recrystallization. As described above, in order to keep the aspect ratio at 4.5 or less and the recrystallized grains from becoming too coarse, it is necessary to balance the composition aspect and the production condition aspect.

【0013】本発明に係るAl−Mg系アルミニウム合
金中空押出材は、種々の押出方式で製造することができ
るが、直接押出より間接押出の方が、押出材表面に粗大
な再結晶粒が形成されるのを防止する意味で望ましく、
また、ポートホール方式よりマンドレル方式の方が、断
面における組織の均一性を確保する(溶着部がない)意
味で望ましい。本発明に係るAl−Mg系アルミニウム
合金中空押出材は、自動車や鉄道車両又は建築部材のフ
レームあるいは接合部等の成形に好適であり、特に自動
車のサスペンションサブフレームの成形に好適に利用で
きる。なお、本発明でいうサスペンションサブフレーム
は、単にサブフレームとか、サスペンションフレーム、
サスペンションメンバー、エンジンマウント、エンジン
クレイドルなどと呼ばれるものである。なお、本発明に
係る押出材は、端部のフランジ曲げなどの口広げ加工
性、ヘミング加工性も良好である。
The Al-Mg-based aluminum alloy hollow extruded material according to the present invention can be manufactured by various extrusion methods. However, indirect extrusion rather than direct extrusion forms coarse recrystallized grains on the surface of the extruded material. Is desirable in the sense of preventing
Further, the mandrel method is more preferable than the porthole method in the sense that the uniformity of the structure in the cross section is ensured (there is no welded portion). INDUSTRIAL APPLICABILITY The Al-Mg-based aluminum alloy hollow extruded material according to the present invention is suitable for molding a frame or a joint portion of an automobile, a railroad vehicle, or a building member, and can be particularly suitably used for molding a suspension subframe of an automobile. The suspension subframe referred to in the present invention is simply a subframe, a suspension frame,
It is called a suspension member, engine mount, engine cradle, etc. In addition, the extruded material according to the present invention has good spreadability such as flange bending of the end portion and hemming workability.

【0014】[0014]

【実施例】次に、本発明の実施例について説明する。先
ず、下記表1に示す組成のアルミニウム合金鋳塊を通常
の方法により溶製し、No.1〜4、8〜10の鋳塊に
対しては、520℃×4hrの均質化処理を施し、押出
温度が520℃、押出速度が5m/minの条件で押出
加工を行い、No.5の鋳塊に対しては、570℃×4
hrの均質化処理を施し、押出温度が520℃、押出速
度が10m/minの条件で押出加工を行い、No.6
の鋳塊に対しては、570℃×4hrの均質化処理を施
し、押出温度が520℃、押出速度が5m/minの条
件で押出加工を行い、No.7の鋳塊に対しては、45
0℃×8hrの均質化処理を施し、押出温度が470
℃、押出速度が3m/minの条件で押出加工を行い、
いずれも押出直後に材料をファン空冷(冷却速度約10
0℃/min)で冷却し、外径が38.5mm、肉厚が
1.5mmの丸パイプを得た。No.7についてはさら
に550℃×4hrの再加熱を施した後、放冷した。こ
れを供試材(No.1〜10)とし、下記要領にて、板
厚中心部における結晶粒の長軸と短軸の平均軸比(アス
ペクト比)と、表面部の再結晶粒の平均粒径を測定し、
引張特性及びバルジ成形性の試験を行った。また、バル
ジ成形後の表面の肌荒れを目視で確認した。その結果を
同じく表1に示す。
EXAMPLES Next, examples of the present invention will be described. First, an aluminum alloy ingot having the composition shown in Table 1 below was melted by a usual method, and No. The ingots of 1 to 4 and 8 to 10 were homogenized at 520 ° C. for 4 hours, and extruded under conditions of an extrusion temperature of 520 ° C. and an extrusion speed of 5 m / min. 570 ℃ × 4 for ingot 5
Homogenization treatment was performed for hr, and extrusion processing was performed under the conditions of an extrusion temperature of 520 ° C. and an extrusion speed of 10 m / min. 6
The ingot of No. 1 was subjected to homogenization treatment at 570 ° C. for 4 hours, and was extruded under conditions of an extrusion temperature of 520 ° C. and an extrusion speed of 5 m / min. 45 for 7 ingots
Homogenization treatment at 0 ° C x 8hr is applied and extrusion temperature is 470
Extruding under conditions of ℃, extrusion speed 3m / min,
In both cases, the material was air-cooled with a fan immediately after extrusion (cooling rate of about 10
After cooling at 0 ° C./min), a round pipe having an outer diameter of 38.5 mm and a wall thickness of 1.5 mm was obtained. No. The sample No. 7 was reheated at 550 ° C. for 4 hours and then allowed to cool. Using this as the test material (No. 1 to 10), the average axial ratio (aspect ratio) of the major axis and the minor axis of the crystal grains in the central part of the plate thickness and the average of the recrystallized grains of the surface part were measured as follows. Measure the particle size,
Tensile properties and bulge formability tests were conducted. Moreover, the rough surface of the surface after bulging was visually confirmed. The results are also shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】アスペクト比;各供試材から試験片を採取
し、板面に垂直かつ押出方向に平行な断面を観察し、そ
の板厚中心部に位置する結晶粒10個について長軸と短
軸の長さの比を求め、その平均値をアスペクト比とし
た。 表面部の平均粒径;板面に垂直かつ押出方向に平行な断
面において、押出材の外表面から500μmまでの部分
に位置する再結晶粒10個について押出方向に平行方向
の長さと垂直方向の長さを求め、それらを平均して再結
晶粒の粒径とした。 引張試験;各供試材からJIS12A号試験片を作成
し、JISZ2241に準拠して引張試験を実施し、引
張強さσB、耐力σ0.2及び伸びを求めた。
Aspect ratio: A test piece was taken from each test material, and a cross section perpendicular to the plate surface and parallel to the extrusion direction was observed. The major axis and the minor axis of 10 crystal grains located at the center of the plate thickness were observed. The length ratio was calculated and the average value was used as the aspect ratio. Average grain size of the surface portion: in a cross section perpendicular to the plate surface and parallel to the extrusion direction, the length in the direction parallel to the extrusion direction and the direction perpendicular to the direction of 10 recrystallized grains located in a portion up to 500 μm from the outer surface of the extruded material The length was determined and averaged to obtain the recrystallized grain size. Tensile test: A JIS No. 12A test piece was prepared from each test material, and a tensile test was carried out in accordance with JISZ2241 to determine tensile strength σB, proof stress σ0.2 and elongation.

【0017】バルジ成形試験;各供試材を長さ177m
mに切断し、バルジ成形試験を行った。図1はバルジ成
形試験方法を示す模式図であり、下型1に各供試材(パ
イプ)5をセットし、マンドレル2、3をパイプの端面
に挿入した後上型4を締め、マンドレル2、3内部の穴
2a、3aに水6を通しパイプ内部に圧力をかけると同
時に、マンドレル2、3を移動させてパイプを長手方向
に圧縮することでT型の成形を行った。なお、内圧(水
の圧力):25.5MPa、マンドレル圧縮量:85m
m(片側42.5mm)、張出高さ(図2参照):85
mmに設定した。バルジ成形性は張出頭頂部の表面に生
ずる割れ(亀裂)の有無と張出部の局部的に肉厚が薄く
なるネッキングの有無を観察し、割れなしでネッキング
も起きていないものを○、割れなしだがネッキングが起
きたものを△、割れありを×と評価した。 肌荒れの評価;バルジ成形後の表面を目視し、肌荒れの
ないものを◎とし、肌荒れが大きいものを×とし、その
中間を○、△として全4段階で評価した。
Bulge forming test; length of each test material is 177 m
It cut | disconnected to m and the bulge forming test was done. FIG. 1 is a schematic diagram showing a bulge forming test method, in which each sample material (pipe) 5 is set in the lower mold 1, the mandrels 2 and 3 are inserted into the end faces of the pipes, and then the upper mold 4 is tightened. Water 6 was passed through the holes 2a and 3a inside 3 to apply pressure to the inside of the pipe, and at the same time, the mandrels 2 and 3 were moved to compress the pipe in the longitudinal direction to form a T-shape. Internal pressure (water pressure): 25.5 MPa, mandrel compression amount: 85 m
m (one side 42.5 mm), overhang height (see FIG. 2): 85
It was set to mm. For bulge formability, observe the presence or absence of cracks (cracks) that occur on the surface of the overhanging crown and the presence or absence of necking where the wall thickness becomes thin locally at the overhanging portion. If there was no cracking, but necking occurred, it was evaluated as △, and if there was cracking, it was evaluated as ×. Evaluation of skin roughness: The surface after bulge molding was visually observed, and those without skin roughness were rated as ⊚, those with large skin roughness were rated as ×, and the middle thereof was rated as ◯ and Δ, and evaluated in all four levels.

【0018】表1に示されるように、成分組成及びアス
ペクト比が本発明の規定を満たすNo.1〜7はいずれ
もバルジ成形性が良好であり、耐力σ0.2も構造部材と
しての必要強度を満たす。特にアスペクト比の小さいN
o.1〜5はバルジ成形性が優れている。肌荒れの評価
を見ると、表面部の平均結晶粒径が小さいNo.1〜4
は肌荒れがなく、No.5〜7は平均結晶粒径が大きく
なるにつれ、しだいに肌荒れが大きくなっている。な
お、No.7は押出直後は断面全体が微細なファイバー
組織(押出方向に延伸した組織)であり、これを再加熱
して再結晶させたため、表面部の結晶粒が粗大化した。
As shown in Table 1, No. 1 whose composition and aspect ratio satisfy the requirements of the present invention. All of 1 to 7 have good bulge formability, and the proof stress σ0.2 also satisfies the required strength as a structural member. N with a particularly small aspect ratio
o. Nos. 1 to 5 have excellent bulge formability. Looking at the evaluation of the rough skin, No. 1 having a small average crystal grain size on the surface portion was used. 1-4
No rough skin, No. In Nos. 5 to 7, as the average crystal grain size became larger, the rough skin gradually became larger. In addition, No. Immediately after extrusion, No. 7 had a fine fiber structure in the entire cross section (structure stretched in the extrusion direction). Since this was reheated and recrystallized, the crystal grains of the surface portion became coarse.

【0019】一方、Mg量の多いNo.8はバルジ成形
性に劣り、Mg量の少ないNo.9は耐力が不足し、ア
スペクト比が大きいNo.10はバルジ成形性が劣る。
肌荒れの評価を見ると、表面部の結晶粒径が小さいN
o.8〜9は肌荒れがなく、結晶粒径が大きいNo.1
0は肌荒れが大きい。なお、No.10は表層部のみ粗
大再結晶粒が成長したもので、遷移元素の添加量が過剰
なときこのような組織になる傾向がある。
On the other hand, in No. 1 having a large amount of Mg. No. 8 is inferior in bulge formability and has a low Mg content. No. 9 has a low yield strength and a large aspect ratio. No. 10 is inferior in bulge formability.
Looking at the evaluation of rough skin, the crystal grain size of the surface part is small N
o. Nos. 8 to 9 have no rough skin and have a large crystal grain size. 1
0 is rough skin. In addition, No. In No. 10, coarse recrystallized grains grow only in the surface layer portion, and such a structure tends to be formed when the transition element is added in an excessive amount.

【0020】[0020]

【発明の効果】以上説明したように、所定組成のAl−
Mg系アルミニウム合金中空押出材において、板厚中心
部における結晶粒の長軸と短軸の平均軸比(アスペクト
比)を4.5以下とすることにより、優れたバルジ成形
性が得られる。また、表層部の再結晶粒の平均粒径を5
00μm以下とすることにより、バルジ成形後の肌荒れ
を抑えることができる。このAl−Mg−Si系アルミ
ニウム合金中空押出材は、自動車や鉄道車両、船舶又は
建築部材のフレーム及び接合部材等のバルジ成形用材料
として好適である。
As described above, Al-containing a predetermined composition
In the Mg-based aluminum alloy hollow extruded material, excellent bulge formability can be obtained by setting the average axial ratio (aspect ratio) of the major axis and the minor axis of the crystal grains in the central part of the plate thickness to 4.5 or less. In addition, the average grain size of the recrystallized grains in the surface layer is 5
By setting the thickness to 00 μm or less, it is possible to suppress skin roughness after bulge molding. This Al-Mg-Si-based aluminum alloy hollow extruded material is suitable as a material for bulge molding of frames and joint members of automobiles, railway vehicles, ships or construction members.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のバルジ成形試験方法を説明する模式
図である。
FIG. 1 is a schematic diagram illustrating a bulge forming test method according to an example.

【図2】 実施例のバルジ成形試験による張出高さの説
明図である。
FIG. 2 is an explanatory diagram of the overhang height by a bulge forming test of an example.

【符号の説明】[Explanation of symbols]

1 下型 2、3 マンドレル 4 上型 5 供試材(パイプ) 1 Lower mold A few mandrels 4 Upper mold 5 Test material (pipe)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mg:1.5〜5.0%(質量%、以下
同じ)、Ti:0.005〜0.2%を含有するAl−
Mg系アルミニウム合金中空押出材からなり、板厚中心
部における結晶粒の長軸と短軸の平均軸比が4.5以下
であることを特徴とするバルジ成形用Al−Mg系アル
ミニウム合金中空押出材。
1. Al-containing Mg: 1.5 to 5.0% (mass%, the same applies hereinafter) and Ti: 0.005 to 0.2%.
An Al-Mg-based aluminum alloy hollow extrusion for bulging, characterized by comprising a Mg-based aluminum alloy hollow-extruded material, and having an average axial ratio of the major axis and the minor axis of the crystal grains of 4.5 or less in the central portion of the plate thickness. Material.
【請求項2】 Mg:1.5〜5.0%、Ti:0.0
05〜0.2%を含有し、さらにMn:0.05〜1.
0%、Cr:0.05〜0.3%、Zr:0.05〜
0.2%、V:0.01〜0.2%のうち1種以上を含
有し、残部Al及び不純物からなるAl−Mg系アルミ
ニウム合金中空押出材からなり、板厚中心部における結
晶粒の長軸と短軸の平均軸比が4.5以下であることを
特徴とするバルジ成形用Al−Mg系アルミニウム合金
中空押出材。
2. Mg: 1.5 to 5.0%, Ti: 0.0
0.05 to 0.2%, and further Mn: 0.05 to 1.
0%, Cr: 0.05 to 0.3%, Zr: 0.05 to
0.2%, V: 0.01 to 0.2%, and at least one of Al-Mg-based aluminum alloy hollow extruded material containing the balance Al and impurities. An Al-Mg-based aluminum alloy hollow extruded material for bulging, characterized in that the average axial ratio of the major axis and the minor axis is 4.5 or less.
【請求項3】 外表面から500μmまでの再結晶粒の
平均結晶粒径が500μm以下であることを特徴とする
請求項1又は2に記載されたバルジ成形用Al−Mg系
アルミニウム合金中空押出材。
3. The bulge-forming Al-Mg-based aluminum alloy hollow extruded material according to claim 1, wherein the average crystal grain size of recrystallized grains from the outer surface to 500 μm is 500 μm or less. .
【請求項4】 請求項1〜3のいずれかに記載されたバ
ルジ成形用Al−Mg系アルミニウム合金中空押出材を
用いたサスペンションサブフレーム。
4. A suspension subframe using the Al-Mg-based aluminum alloy hollow extruded material for bulging according to claim 1.
JP2002212159A 2001-07-23 2002-07-22 Al-Mg aluminum alloy hollow extruded material for bulge forming Expired - Lifetime JP3850348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212159A JP3850348B2 (en) 2001-07-23 2002-07-22 Al-Mg aluminum alloy hollow extruded material for bulge forming

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001222174 2001-07-23
JP2001-222174 2001-07-23
JP2002212159A JP3850348B2 (en) 2001-07-23 2002-07-22 Al-Mg aluminum alloy hollow extruded material for bulge forming

Publications (2)

Publication Number Publication Date
JP2003105474A true JP2003105474A (en) 2003-04-09
JP3850348B2 JP3850348B2 (en) 2006-11-29

Family

ID=26619134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212159A Expired - Lifetime JP3850348B2 (en) 2001-07-23 2002-07-22 Al-Mg aluminum alloy hollow extruded material for bulge forming

Country Status (1)

Country Link
JP (1) JP3850348B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307285A (en) * 2005-04-28 2006-11-09 Furukawa Sky Kk Aluminum alloy extruded material for high temperature molding
WO2016159361A1 (en) * 2015-04-03 2016-10-06 株式会社Uacj Aluminum alloy pipe with superior corrosion resistance and processability, and method for manufacturing same
JP2017078199A (en) * 2015-10-20 2017-04-27 株式会社神戸製鋼所 Aluminum alloy sheet for casing engine mount
CN112126824A (en) * 2020-10-09 2020-12-25 福建祥鑫股份有限公司 Manufacturing method of 6-series container aluminum alloy section
CN114540673A (en) * 2022-03-07 2022-05-27 中铝河南洛阳铝加工有限公司 Medium-strength aluminum alloy with excellent surface performance and deep drawing performance and preparation process thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307285A (en) * 2005-04-28 2006-11-09 Furukawa Sky Kk Aluminum alloy extruded material for high temperature molding
WO2016159361A1 (en) * 2015-04-03 2016-10-06 株式会社Uacj Aluminum alloy pipe with superior corrosion resistance and processability, and method for manufacturing same
CN107429337A (en) * 2015-04-03 2017-12-01 株式会社Uacj The aluminium-alloy pipe and its manufacture method of corrosion resistance and excellent in workability
JPWO2016159361A1 (en) * 2015-04-03 2018-03-01 株式会社Uacj Aluminum alloy tube excellent in corrosion resistance and workability and method for producing the same
EP3279349A4 (en) * 2015-04-03 2018-10-31 UACJ Corporation Aluminum alloy pipe with superior corrosion resistance and processability, and method for manufacturing same
CN107429337B (en) * 2015-04-03 2019-06-07 株式会社Uacj The aluminium-alloy pipe and its manufacturing method of corrosion resistance and excellent in workability
US10889881B2 (en) 2015-04-03 2021-01-12 Uacj Corporation Aluminum alloy pipe with superior corrosion resistance and processability, and method for manufacturing same
JP2017078199A (en) * 2015-10-20 2017-04-27 株式会社神戸製鋼所 Aluminum alloy sheet for casing engine mount
CN112126824A (en) * 2020-10-09 2020-12-25 福建祥鑫股份有限公司 Manufacturing method of 6-series container aluminum alloy section
CN114540673A (en) * 2022-03-07 2022-05-27 中铝河南洛阳铝加工有限公司 Medium-strength aluminum alloy with excellent surface performance and deep drawing performance and preparation process thereof

Also Published As

Publication number Publication date
JP3850348B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
JP4101614B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent resistance to corrosion and stress corrosion cracking
JP4768925B2 (en) Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product
JP5159196B2 (en) Aluminum alloy for high pressure hydrogen gas storage container
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP2020084278A (en) Al-Mg-Si-BASED ALUMINUM ALLOY EXTRUSION PULL-OUT MEMBER AND MANUFACTURING METHOD THEREFOR
KR20210130455A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JPH108172A (en) Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP4798877B2 (en) Al-Mg aluminum alloy hollow extruded material for bulge forming
JP3850348B2 (en) Al-Mg aluminum alloy hollow extruded material for bulge forming
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JP2006213942A (en) Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
JP4311634B2 (en) Aluminum alloy extrusion for electromagnetic forming
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP4707074B2 (en) Al-Mg aluminum alloy hollow extruded material for bulge forming
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
KR20210121541A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JP3882901B2 (en) Al-Mg-based aluminum alloy hollow extruded profile
JP2009079299A (en) Automotive parts
JP4281609B2 (en) Aluminum alloy extruded material excellent in formability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3850348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

EXPY Cancellation because of completion of term