JP4768925B2 - Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product - Google Patents

Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product Download PDF

Info

Publication number
JP4768925B2
JP4768925B2 JP2001102207A JP2001102207A JP4768925B2 JP 4768925 B2 JP4768925 B2 JP 4768925B2 JP 2001102207 A JP2001102207 A JP 2001102207A JP 2001102207 A JP2001102207 A JP 2001102207A JP 4768925 B2 JP4768925 B2 JP 4768925B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
plastic
ingot
casting
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001102207A
Other languages
Japanese (ja)
Other versions
JP2002294383A (en
Inventor
徹巳 團之原
英貴 竹村
康夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001102207A priority Critical patent/JP4768925B2/en
Publication of JP2002294383A publication Critical patent/JP2002294383A/en
Application granted granted Critical
Publication of JP4768925B2 publication Critical patent/JP4768925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、Al(アルミニウム)−Mg(マグネシウム)−Si(ケイ素)系の塑性加工用アルミニウム合金鋳塊の製造方法、この製造方法により製造した塑性加工用アルミニウム合金鋳塊を用いて製品を塑性加工するアルミニウム合金塑性加工品の製造方法、および、アルミニウム合金塑性加工品に関するものである。
【0002】
【従来の技術】
自動車部品、例えばサスペンション部品は、専ら鉄系材料が使用されていたが、軽量化を主目的としてアルミニウム材料またはアルミニウム合金材料に置き換えることが多くなってきた。
これら自動車部品では、優れた耐食性、高強度および優れた加工性が要求されることから、アルミニウム合金材料としてAl−Mg−Si系合金、特に、A6061が多用されている。
そして、このような自動車部品は、強度の向上を図るため、アルミニウム合金材料を加工用素材として用いて塑性加工の1つである鍛造加工で製造される。
【0003】
また、最近では、コストダウンを図る必要があるため、押出をせずに鋳造部材をそのまま素材として鍛造した後、T6処理して得られたサスペンション部品が実用化され始めており、さらに軽量化を目的にとして、従来のA6061に代わる高強度合金の開発が進められている(例えば特開平5−59477号公報、特開平5−247574号公報、特開平6−256880号公報に開示されている。)。
【0004】
【発明が解決しようとする課題】
これらA6061およびAl−Mg−Si系合金の高強度合金は、鍛造および熱処理工程において加工組織が再結晶し、粗大結晶粒が発生することにより、十分な高強度を得ることができないという問題があった。
そのため、粗大再結晶粒防止のため、Zr(ジルコニウム)を添加して再結晶を防止している例が多い(例えば特開平5−59477号公報、特開平5−247574号公報に開示されている。)。
【0005】
しかしながら、Zrの添加は、再結晶防止に効果があるものの、次のような問題を有している。
(1)Zrの添加により、Al−Ti(チタン)−B(ホウ素)系合金の結晶粒微細化効果が弱められ、鋳塊自体の結晶粒が粗くなり、逆に塑性加工後の加工品の強度低下をきたすことが多くなる。
(2)鋳塊自体の結晶粒微細化効果が弱められるため、鋳塊割れが発生し易くなり、内部欠陥が増加し、歩留まりが悪化する。
(3)ZrはAl−Ti−B系合金と化合物を形成し、合金溶湯を貯留する炉の底に化合物が堆積し、炉を汚染するとともに、製造した鋳塊においてもこれら化合物が鋳塊中に粗大に晶出し、強度を低下させる。
このため、Zrの添加は効果があるものの、強度の安定性を維持するのが難しく、製品の品質が不安定となり、材料コストの上昇を招いていた。
【0006】
この発明は、上記したような不都合を解消するためになされたもので、Mg(マグネシウム)、Si(ケイ素)、Cu(銅)、Mn(マンガン)、Cr(クロム)などの合金元素の含有量を調整し、かつ、晶出物の平均粒径、鋳塊組織のデンドライト二次アーム間隔(Dendrite Arm Space:以下、DASと記す。)、結晶粒径を調整することにより、強度が向上し、再結晶粒の発生しにくい塑性加工用アルミニウム合金鋳塊を製造する塑性加工用アルミニウム合金鋳塊の製造方法、およびアルミニウム合金塑性加工品の製造方法を提供するものである。
【0007】
【課題を解決するための手段】
この発明にかかる塑性加工用アルミニウム合金鋳塊の製造方法は、Mg(マグネシウム)を0.8wt%〜1.2wt%、Si(ケイ素)を0.7wt%〜1.0wt%、Cu(銅)を0.3wt%〜0.6wt%、Mn(マンガン)を0.14wt%〜0.3wt%、Cr(クロム)を0.14wt%〜0.3wt%、Fe(鉄)を0.5wt%以下、Ti(チタン)を0.01wt%〜0.15wt%、B(ホウ素)を0.0001wt%〜0.03wt%含有し、残部がAlと不可避的不純物であり、晶出物の平均粒径が8μm以下、DASが40μm以下、かつ、結晶粒径が300μm以下の組織を有するように塑性加工用アルミニウム合金鋳塊を連続鋳造して製造するものである。
また、鋳造温度を(750±50)℃とし、鋳造速度を(240±50)mm/分として連続鋳造する製造方法である。
また、鋳造後に均質化処理を施すことなく製造するのが望ましい。
さらに、この発明にかかるアルミニウム合金塑性加工品の製造方法は、上記した塑性加工用アルミニウム合金鋳塊の製造方法により製造した塑性加工用アルミニウム合金鋳塊を用い、塑性加工用アルミニウム合金鋳塊に塑性加工を施すとき、〔430+塑性加工率(%)〕℃以上550℃以下で加熱する方法である。
なお、塑性加工後に520℃〜550℃で溶体化処理を施すのが望ましい。
また、この発明にかかるアルミニウム合金塑性加工品は、上記した製造方法で製造したものである。
なお、この明細書中におけるwt%は、重量%を意味し、SI単位系の質量%と等価である。
したがって、例えば0.7wt%は、0.7重量%または0.7質量%のことである。
【0008】
【発明の実施の形態】
以下、この発明について説明する。
Siは、Mgと共存してMg2Si系析出物を形成し、最終製品の強度向上に寄与する。
Siの含有量が0.7wt%よりも少ないと、析出強化の効果が少なくなる。
一方、1.0wt%を越えると、Siの粒界析出が多くなり、粒界脆化が生じ易く、鋳塊の鍛造加工性(塑性加工性)、および最終製品の靭性を低下させるのみならず、鋳塊の晶出物の平均粒径が所定の上限を越えることになる。
したがって、Siの含有量は、0.7wt%〜1.0wt%の範囲にする必要がある。
なお、Siは、後述するMgの量に対してMg2Siを生成する量を越えて過剰に添加することにより、時効処理後の最終製品の強度をさらに高める。
【0009】
Mgは、Siと共存してMg2Si系析出物を形成し、最終製品の強度向上に寄与する。
Mgの含有量が0.8wt%よりも少ないと、析出強化の効果が少なくなる。
一方、1.2wt%を越えると、鋳塊の鍛造加工性、および最終製品の靭性を低下させるのみならず、鋳塊の晶出物の平均粒径が所定の上限を越えることになる。
したがって、Mgの含有量は、0.8wt%〜1.2wt%の範囲にする必要がある。
【0010】
Cuは、Mg2Si系析出物の見かけの過飽和量を増加させ、Mg2Si析出量を増加させることにより、最終製品の時効硬化を著しく促進させる。
Cuの含有量が0.3wt%よりも少ないと、上記した効果も少なくなる。
一方、0.6wt%を越えると、鋳塊の鍛造加工性、および最終製品の靭性を低下させ、さらに耐食性を劣化させる。
したがって、Cuの含有量は、0.3wt%〜0.6wt%の範囲にする必要がある。
【0011】
MnはAlMnSi相として晶出し、晶出しないMnは、析出して再結晶を抑制する。
この再結晶を抑制する作用により、鍛造後も結晶粒を微細にし、最終製品の靭性向上および耐食性向上の効果がもたらされる。
Mnの含有量が0.14%よりも少ないと、上記した効果が少なくなる。
一方、0.3wt%を越えると、巨大金属間化合物が生じ、この発明の鋳塊組織が満たされなくなる。
したがって、Mnの含有量は、0.14wt%〜0.3wt%の範囲にする必要がある。
【0012】
CrもAlCrSi相として晶出し、晶出しないCrは、析出して再結晶を抑制する。
この再結晶を抑制する作用により、鍛造後も結晶粒を微細にし、最終製品の靭性向上および耐食性向上の効果がもたらされる。
Crの含有量が0.14%よりも少ないと、上記した効果が少なくなる。
一方、0.3wt%を越えると、巨大金属間化合物が生じ、この発明の鋳塊組織が満たされなくなる。
したがって、Crの含有量は、0.14wt%〜0.3wt%の範囲にする必要がある。
【0013】
Feは、合金中でAl、Siと結合して晶出するとともに、結晶粒粗大化を防止し、焼き入れ感受性を減少させ、また、強度と靭性とを向上させ、耐食性をも向上させる。
Fe含有量が0.5wt%を越えると、上記した効果が得られなくなる。
したがって、Feの含有量は、0.5wt%以下にする必要がある。
【0014】
Tiは、結晶粒の微細化を図る上で有効な合金元素であり、かつ、連続鋳造棒に鋳塊割れなどが発生するのを防止する。
さらに、この発明の鋳塊は押出などの加工を行わずに鍛造加工を施すため、鋳塊の結晶粒径を300μm以下に調整するのに、このTiが重要な役割を果たす。
Tiの含有量が0.01wt%よりも少ないと、微細化効果が得られず、一方、0.15%を越えると、粗大なTi化合物が晶出し、靭性を劣化させる。
したがって、Tiの含有量は、0.01wt%〜0.15wt%の範囲にする必要がある。
【0015】
BもTiと同様に、結晶粒微細化に有効な元素であり、0.0001wt%よりも少ないと、その効果が得られず、一方、0.03wt%を越えると、靭性を劣化させる。
したがって、Bの含有量は、0.0001wt%〜0.03wt%の範囲にする必要がある。
【0016】
次に、連続鋳造した塑性加工用アルミニウム合金鋳塊の組織について説明する。
まず、晶出物の大きさである。
この発明でいう晶出物は、AlMnSi相、Mg2Si相、Fe、Cr、金属間化合物などを含む二次相が結晶粒界に粒状または片状に晶出したものである。
そして、晶出物の平均粒径は、8μm以下にする必要があり、より好ましくは7μm以下に、さらに好ましくは6.8μm以下にするのが望ましい。
晶出物の平均粒径が8μm以下であれば、鍛造加工性が良好であり、かつ、均質化処理を施さずに熱間鍛造加工をする場合にも、鍛造加工性に影響を与えることがなくなる。
Al−Mg−Si系であるこの発明の合金において、熱間で鍛造加工を施す場合、鍛造加工性に最も影響を与えるものは、Fe、Mn、Crなどの遷移金属の晶出物の大きさや、晶出したMg2SiがT6処理時に十分固溶できる大きさで均一に分散しているかである、と考えられる。
なお、晶出物の大きさの測定は、顕微鏡を有した画像解析装置(ルーゼックス)でミクロ組織を同定し、個々の晶出の断面積を円に換算したときの直径を粒径とした。
【0017】
次に、DAS(Dendrite Arm Space)の大きさである。
連続鋳造材のDASが40μmを越えると、強度が低下して所望した高強度が得られないので、DASを40μm以下にする必要があり、より好ましくは20μm以下にするのがよい。
なお、DASの測定は、軽金属学会発行の『軽金属(1988年)、vol.38、No.1、p45』に記載の、『デンドライトアームスペーシング測定手順』にしたがって行った。
【0018】
そして、結晶粒径の大きさである。
結晶粒径の大きさは、鍛造加工された製品の強度に大きく影響する。
すなわち、押出材や、圧延材などに認められる塑性加工の歪み導入によって得られる微細再結晶粒と異なり、連続鋳造の鋳造段階で得られた微細な結晶粒は組織内で歪みそのものが少なく、熱間鍛造加工を施しても粗大な再結晶が発生しにくい。
しかしながら、元の鋳塊組織の結晶粒径が大きいと、例えば300μmを越えると、強度の向上が認められない。
したがって、結晶粒径は、300μm以下にする必要があり、より好ましくは250μm以下にするのがよい。
なお、結晶粒径の測定は、光学顕微鏡写真上で切片法によって求めた。
【0019】
図1はこの発明の塑性加工用アルミニウム合金鋳塊を製造する製造装置の一例である半連続鋳造装置を示す説明図である。
図1において、11は溶湯受槽を示し、アルミニウム合金の溶湯Mが供給されるものであり、溶湯Mを流出させる流出口12が下側に設けられている。
21は鋳型を示し、溶湯受槽11の下側に気密状態で取り付けられ、流出口12に同軸で連通する、鋳塊Iを鋳造する円筒状内周面22が設けられている。
【0020】
31は冷却媒体流路を示し、鋳型21内に周回させて設けられた環状流路部分31aと、この環状流路部分31aを鋳型21の外側へ連通させる導入部分31bとで構成され、鋳型21を冷却するための冷却媒体として水Wが供給される。
32は噴出孔を示し、鋳塊Iを冷却させるために鋳塊Iの外周へ冷却媒体としての水Wを吹き付けることができるように、環状流路部分31aに連通させて、鋳型21に複数、または周回させて設けられている。
【0021】
33は気体流路を示し、円筒状内周面22の溶湯受槽11との接合部分へ気体、例えば空気Aを供給できるように、鋳型21に周回させて設けられた環状流路部分33aと、この環状流路部分33aを外側へ連通させる導入部分33bとで構成されている。
34は潤滑油流路を示し、円筒状内周面22へ潤滑油Oを供給できるように、鋳型21に周回させて設けられた環状流路部分34aと、この環状流路部分34aを外側へ連通させる導入部分34bとで構成されている。
【0022】
次に、塑性加工用アルミニウム合金鋳塊の鋳造について説明する。
まず、図示を省略した溶解炉で地金、母合金、金属シリコン、銅塊などを混合して溶解させた後、保持炉で脱滓のためのフラックス処理を行う。
そして、インライン脱ガス装置で溶湯中のガス(特に水素ガス)を減少させ、さらに、フラックス処理で除去できない微細な非金属介在物を除去した後、TiおよびBを添加する。
【0023】
このようにして所望の組成に調整された溶湯Mが溶湯受槽11に供給されると、鋳造温度を(750±50)℃とした溶湯Mは流出口12から鋳型21内へ押し出されながら、冷却媒体流路31へ供給される水Wによって一次冷却された後、噴出孔32から噴出される水Wによって二次冷却されることにより、10℃/秒以上の冷却速度で、より好ましくは20℃/秒以上の冷却速度で冷却されて凝固し、上記したような組織を有する鋳塊Iとなる。
【0024】
このようにして凝固した鋳塊Iは、この鋳塊Iを支える、図示を省略した底板を一定の速度、すなわち鋳造速度〔(240±50)mm/分〕で下降させることにより、下方へ連続的に引き抜かれる。
そして、鋳塊Iの長さが一定の長さに達すると、鋳造は中断され、鋳塊Iは上方へ引き抜かれる。
以後は、同様にして順次鋳塊Iを鋳造する。
【0025】
なお、鋳造の際に気体流路33へ供給される空気Aは、鋳型21の円筒状内周面22に供給され、鋳型21と溶湯Mとの接触を断つ機能を有する。
そして、余分な空気Aは、鋳型21と鋳塊Iとの間を下側へ流れる。
また、潤滑油流路34へ供給される潤滑油Oは、鋳型21の円筒状内周面22に供給され、溶湯Mの円筒状内周面22への焼き付きを防止し、気化して鋳型21と溶湯Mとの接触を断つ機能を有する。
この空気Aと潤滑油Oとにより、健全な鋳肌をもつ鋳塊Iが得られる。
【0026】
上記した鋳造温度が750℃で未満では、鋳造前の溶湯の温度が低く、凝固時の温度勾配がなだらかになり、高温に保持された溶湯中で粗大化した結晶粒がそのまま鋳造されるため、鋳塊の一部に粗大な結晶粒が存在する浮遊晶が発生する。
これに対し、鋳造温度が800℃を越えると、凝固時の温度勾配が急になり、微細化材の効果が低下するため、通常の粒状晶に比べて羽毛状晶の結晶粒径が大きくなり、強度および延性が低下する。
したがって、鋳造温度は、(750±50)℃とするのが好ましいが、より好ましくは(750±20)℃とし、さらに好ましくは750℃とするのがよい。
【0027】
また、鋳造速度が190mm/分未満では、冷却速度が遅くなるため、結晶粒径が大きくなる。
これに対し、鋳造速度が290mm/分を越えると、中心部の凝固時期と外周部の凝固時期との大きくなるため、鋳塊内の残留熱応力の発生が多くなって鋳塊割れが発生し、鋳塊が製造できなくなる。
したがって、鋳造速度は、(240±30)mm/分とするのが好ましいが、より好ましくは(240±10)mm/分とし、さらに好ましくは240mm/分とするのがよい。
【0028】
この連続鋳造した合金鋳塊を熱間鍛造する場合、鍛造加工率と、このアルミニウム合金鋳塊の加熱温度とを制御することにより、粗大再結晶の発生をより抑制し、強度を一層向上させることができる。
すなわち、加熱温度を、〔430℃+塑性加工率(鍛造加工率)(%)〕℃以上550℃以下の範囲に制御する。
ここで、塑性加工率(鍛造加工率)について説明すると、例えば据込加工のような場合は〔(変形した高さ)÷(初期高さ)×100〕(%)であり、また、押出加工のような場合は、〔(変形を受ける断面積)÷(初期断面積)×100〕(%)である。
【0029】
塑性加工率(鍛造加工率)が50(%)を越えるような大きな加工を合金鋳塊に加えると、加工中に導入される歪みが大きく、鋳塊の微細結晶であっても溶体化処理時に結晶成長のための大きなエネルギーとなり、粗大再結晶が発生し易くなる。
しかし、加熱温度を上げることにより、熱間加工中に導入された歪みが減少するため、溶体化処理時の再結晶成長のエネルギーが小さくなる。
しかしながら、加熱温度が550℃を越えると、バーニングの発生により、健全な製品ができなくなる。
【0030】
したがって、塑性加工率が50(%)の鍛造加工を施す場合、480℃(430℃+50℃)以上550℃以下の加熱温度で熱間鍛造する必要がある。
なお、製品が部分的に塑性加工率が大きい場合も、その鍛造加工率の最も大きい部分に合わせて加熱温度を設定することにより、全体的に健全な製品が得られる。
また、荒地工程、仕上げ工程などの複数の工程に分けて鍛造する場合も、特に、高い塑性加工率を有する工程では、この加熱温度で熱間鍛造することが健全な製品を得るために大切である。
【0031】
次に、この発明の実施例について説明する。
【0032】
【表1】

Figure 0004768925
【0033】
表1に示す参考例1〜参考例10と、比較例1〜比較例5および参考例8とは、組成および組織を評価するものである。
そして、参考例1〜参考例10と、比較例6とは、微細化材(Ti、B)の効果を評価するものである。
また、参考例1〜参考例10と、比較例7とは、冷却速度(鋳造速度)を比較するものである。
【0034】
各組成となるように配合して各参考例および各比較例の、直径が4インチまたは8インチの鋳塊を連続鋳造法で製造した。
なお、鋳造温度は、各実施例および各比較例とも、(750±50)℃であった。また、冷却速度は、比較例7が1℃/秒〜9℃/秒で、比較例7以外が10℃/秒〜15℃/秒であった。
さらに、鋳造速度は、比較例7が90mm/分〜190mm未満/分で、比較例7以外が190mm/分〜290mm/分であった。
【0035】
上記のようにして鋳造した各参考例および各比較例の鋳塊の中心軸に対して対称位置となる4個所から直径が30mmで、長さが34mmの試料を採取して組織観察を行い、晶出物平均粒径(μm)、DAS(μm)および結晶粒径(μm)を測定した。
そして、各試料に対して470℃で6時間の均質化処理を行い、各試料を520℃に加熱した後、各試料に対して鍛造加工率50%となるように鍛伸加工を行った。
その後、各試料を、530℃で3時間保持した後、70℃の温水中に焼き入れし、180℃で6時間保持した後に室温で放置し、各試料に対して引張強度(MPa)、0.2%耐力(MPa)および伸び(%)を測定した。
【0036】
参考例1〜参考例10は、組成、組織などがともにこの発明の範囲内であるため、引張強度、0.2%耐力および伸びにおいて優れている。
これに対し、比較例1〜比較例5および比較例8は、組成、組織の少なくとも1つがこの発明の範囲外であるため、引張強度、0.2%耐力、伸びにおいて劣っている。
そして、比較例6は、通常、微細化材(Ti、B)を投入してから30分以内に鋳造するところ、微細化材を投入してから2時間後に鋳造したため、微細化材の効果が現れず、結晶粒径がこの発明の範囲外となり、引張強度、0.2%耐力、伸びにおいて劣っている。
また、比較例7は、この発明の鋳造速度よりも遅く、晶出物平均粒径およびDASがこの発明の範囲外であるため、引張強度、0.2%耐力、伸びにおいて劣っている。
【0037】
このように、組成、組織などをこの発明の範囲内にすることにより、鍛造加工性に優れた鋳造合金を得ることができる。
したがって、高強度、高靱性、時効硬化性の大きいことが要求される部品、例えば自動車用のサスペンションなどに好適な材料となるとともに、その部品を得ることができる。
【0038】
【表2】
Figure 0004768925
【0039】
表2に示す参考例1および実施例11〜実施例14、参考例15〜参考例17は、均質化処理を評価するものである。
各組成となるように配合して各実施例、参考例の、直径が4インチまたは8インチの鋳塊を連続鋳造法で製造した。
なお、各実施例、参考例とも、鋳造温度は(750±50)℃で、冷却速度は10℃/秒〜15℃/秒で、鋳造速度は190mm/分〜290mm/分であった。
【0040】
上記のようにして鋳造した各実施例、参考例の鋳塊の中心軸に対して対称位置となる4個所から直径が30mmで、長さが34mmの試料を採取して組織観察を行い、晶出物平均粒径(μm)、DAS(μm)および結晶粒径(μm)を測定した。
そして、実施例11〜実施例14の試料に対して均質化処理を行わず、参考例1および参考例15〜参考例17の試料に対して470℃で6時間の均質化処理を行った。
【0041】
次に、参考例1、実施例11、実施例12および参考例15の試料を520℃に加熱した後、実施例12および参考例15の試料に対して鍛造加工率75%となるように鍛伸加工を行い、参考例1および実施例11の試料に対して鍛造加工率50%となるように鍛伸加工を行った。
また、実施例13および参考例16の試料を480℃に加熱した後、実施例13および参考例16の試料に対して鍛造加工率50%となるように鍛伸加工を行った。
【0042】
また、実施例14および参考例17の試料を460℃に加熱した後、実施例14および参考例17の試料に対して鍛造加工率30%となるように鍛伸加工を行った。
その後、各試料を、530℃で3時間保持した後、70℃の温水中に焼き入れし、180℃で6時間保持した後に室温で放置し、各試料に対して引張強度(MPa)、0.2%耐力(MPa)および伸び(%)を測定した。
【0043】
参考例1および参考例15〜参考例17は、均質化処理を行ってはいるものの、組成、組織などがともにこの発明の範囲内であるため、引張強度、0.2%耐力および伸びにおいて優れている。
これに対し、実施例11〜実施例14は、均質化処理を省略した上、組成、組織などがともにこの発明の範囲内であるため、引張強度、0.2%耐力および伸びにおいてより優れている。
【0044】
このように、均質化処理を施さないものが、均質化処理を施したものに対して引張強度、0.2%耐力および伸びにおいてより優れているので、均質化処理工程が不要となり、その設備が不要になるとともに、消費エネルギーが少なくなることにより、生産性が向上する。
【0045】
【表3】
Figure 0004768925
【0046】
表3に示す参考例15〜参考例19と、比較例9〜比較例12とは、鍛造加工率(塑性加工率)に対する鍛造加熱温度を評価するものである。
各組成となるように配合して各実施例および各比較例の、直径が4インチまたは8インチの鋳塊を連続鋳造法で製造した。
なお、各参考例および各比較例とも、鋳造温度は(750±50)℃で、冷却速度は10℃/秒〜15℃/秒で、鋳造速度は190mm/分〜290mm/分であった。
【0047】
上記のようにして鋳造した各参考例および各比較例の鋳塊の中心軸に対して対称位置となる4個所から直径が30mmで、長さが34mmの試料を採取して組織観察を行い、晶出物平均粒径(μm)、DAS(μm)および結晶粒径(μm)を測定した。
そして、各試料に対して470℃で6時間の均質化処理を行った。
【0048】
その後、参考例15、参考例18および参考例19の試料を520℃に加熱した後、参考例15の試料に対して鍛造加工率75%となるように鍛伸加工を行い、参考例18の試料に対して鍛造加工率50%となるように鍛伸加工を行い、参考例19の試料に対して鍛造加工率30%となるように鍛伸加工を行った。
また、参考例16および比較例9の試料を480℃に加熱した後、比較例9の試料に対して鍛造加工率75%となるように鍛伸加工を行い、参考例16の試料に対して鍛造加工率50%となるように鍛伸加工を行った。
また、比較例10の試料を470℃に加熱した後、比較例10の試料に対して鍛造加工率50%となるように鍛伸加工を行った。
さらに、参考例17の試料を460℃に加熱した後、参考例17の試料に対して鍛造加工率30%となるように鍛伸加工を行った。
また、比較例11および比較例12の試料を435℃に加熱した後、比較例11の試料に対して鍛造加工率50%となるように鍛伸加工を行い、比較例12の試料に対して鍛造加工率30%となるように鍛伸加工を行った。
【0049】
その後、各試料を、530℃で3時間保持した後、70℃の温水中に焼き入れし、180℃で6時間保持した後に室温で放置し、各試料に対して引張強度(MPa)、0.2%耐力(MPa)および伸び(%)を測定した。
【0050】
参考例15〜参考例19は、組成、組織、鍛造加工率に対する鍛造加熱温度などがともにこの発明の範囲内であるため、引張強度、0.2%耐力および伸びにおいて優れている。
これに対し、比較例9〜比較例12は、鍛造加工率に対する鍛造加熱温度が、この発明の〔430℃+塑性加工率(%)〕℃以上550℃以下の範囲外であるため、引張強度、0.2%耐力、伸びにおいて劣っている。
【0051】
【表4】
Figure 0004768925
【0052】
表4に示す参考例20および参考例21と、比較例13および比較例14とは、溶体化処理を評価するものである。
各組成となるように配合して各参考例および各比較例の、直径が4インチまたは8インチの鋳塊を連続鋳造法で製造した。
なお、各参考例および各比較例とも、鋳造温度は(750±50)℃で、冷却速度は10℃/秒〜15℃/秒で、鋳造速度は190mm/分〜290mm/分であった。
【0053】
上記のようにして鋳造した各参考例および各比較例の鋳塊の中心軸に対して対称位置となる4個所から直径が30mmで、長さが34mmの試料を採取して組織観察を行い、晶出物平均粒径(μm)、DAS(μm)および結晶粒径(μm)を測定した。
そして、各試料に対して470℃で6時間の均質化処理を行い、各試料を520℃に加熱した後、各試料に対して鍛造加工率50%となるように鍛伸加工を行った。
【0054】
その後、比較例13の試料を515℃で、参考例20の試料を525℃で、参考例21の試料を545℃で、また、比較例14の試料を555℃で3時間保持した後、70℃の温水中に焼き入れし、180℃で6時間保持した後に室温で放置し、各試料に対して引張強度(MPa)、0.2%耐力(MPa)および伸び(%)を測定した。
【0055】
参考例20および参考例21は、組成、組織、溶体化温度などがともにこの発明の範囲内であるため、引張強度、0.2%耐力および伸びにおいて優れている。
これに対し、比較例13および比較例14は、溶体化温度がこの発明の範囲外であるため、引張強度、0.2%耐力、伸びにおいて劣っている。
【0056】
図2はこの発明の塑性加工用アルミニウム合金鋳塊を製造する製造装置の他の例である水平続鋳造装置を示す説明図である。
図2において、41は溶湯受槽を示し、アルミニウム合金の溶湯Mが供給されるものであり、溶湯Mを流出させる流出口42が下側側面に設けられている。
51は耐火物製板体を示し、溶湯受槽41の、流出口42が設けられた外側に気密状態で取り付けられ、流出口42に同軸で連通する流出口52が設けられている。
61は鋳型を示し、耐火物製板体51に気密状態で取り付けられ、流出口52に同軸で連通する、鋳塊Iを鋳造する円筒状内周面62が設けられている。
【0057】
71は冷却媒体流路を示し、鋳型61内に周回させて設けられた環状流路部分71aと、この環状流路部分71aを鋳型61の外側へ連通させる導入部分71bとで構成され、鋳型61を冷却するための冷却媒体として水Wが供給される。
72は噴出孔を示し、鋳塊Iを冷却させるために鋳塊Iの外周へ冷却媒体としての水Wを吹き付けることができるように、環状流路部分71aに連通させて、鋳型61に複数、または周回させて設けられている。
【0058】
73は気体流路を示し、円筒状内周面62の溶湯受槽41との接合部分へ気体、例えば空気Aを供給できるように、鋳型61に周回させて設けられた環状流路部分73aと、この環状流路部分73aを外側へ連通させる導入部分73bとで構成されている。
74は潤滑油流路を示し、円筒状内周面62へ潤滑油Oを供給できるように、鋳型61に周回させて設けられた環状流路部分74aと、この環状流路部分74aを外側へ連通させる導入部分74bとで構成されている。
【0059】
図2に示す水平続鋳造装置において、所望の組成に調整された溶湯Mが溶湯受槽41に供給されると、鋳造温度を(750±50)℃とした溶湯Mは流出口12から鋳型21内へ押し出されながら、冷却媒体流路31へ供給される水Wによって一次冷却された後、噴出孔32から噴出される水Wによって二次冷却されることにより、10℃/秒以上の冷却速度で、より好ましくは20℃/秒以上の冷却速度で冷却されて凝固し、上記したような組織を有する鋳塊Iとなる。
【0060】
このようにして所望の組成に調整された溶湯Mが溶湯受槽11に供給されると、鋳造温度を(750±50)℃とした溶湯Mは流出口12から鋳型21内へ押し出されながら、冷却媒体流路31へ供給される水Wによって一次冷却された後、噴出孔32から噴出される水Wによって二次冷却されることにより、10℃/秒以上の冷却速度で、より好ましくは20℃/秒以上の冷却速度で冷却されて凝固し、上記したような組織を有する鋳塊Iとなる。
【0061】
このようにして凝固した鋳塊Iは、一定の速度、すなわち鋳造速度〔(240±50)mm/分〕で連続的に引き抜かれて順次所定長に切断される。
なお、空気A、潤滑油Oの機能は、先の説明と同じなので、説明を省略する。
【0062】
上記した実施形態の塑性加工用アルミニウム合金鋳塊を利用する例として、自動車のシャーシ部品では、アッパアーム、ロアーアーム、ナックル、ホイール、ダンパ、サブフレームなどが挙げられる。
また、自動車のエンジン廻り部品では、エンジンマウントブラケット、高圧燃料噴射ポンプボディなどが挙げられる。
さらに、自転車部品は、ギヤクランクなどが挙げられる。
また、オートバイ用部品では、クッションアーム、ブラケット、フォークボトムブリッジなどが挙げられる。
なお、これらは一例であり、この発明の鋳塊の特性を利用できる部品であれば、他の部品などにも適用できることはいうまでもない。
【0063】
【発明の効果】
以上のように、この発明の塑性加工用アルミニウム合金鋳塊によれば、微細化材〔Ti(チタン)およびB(ホウ素)〕を添加して結晶粒径を300μm以下にしたので、鍛造加工性に優れた鋳造合金を得ることができる。
したがって、高強度、高靱性、時効硬化性の大きいことが要求される部品、例えば自動車用のサスペンションなどに好適な材料となるとともに、その部品を得ることができる。
【0064】
また、この発明の塑性加工用アルミニウム合金鋳塊の製造方法によれば、鋳造温度を(750±50)℃とし、鋳造速度を(240±50)mm/分としたので、晶出物の平均粒径が8μm以下、DASが40μm以下、かつ、結晶粒径が300μm以下の組織を有する塑性加工用アルミニウム合金鋳塊を鋳造することができる。
そして、鋳造後に均質化処理を施さなくても機械的強度に優れているので、均質化処理工程が不要となり、その設備が不要になるとともに、消費エネルギーが少なくなることにより、生産性が向上する。
【0065】
また、この発明のアルミニウム合金塑性加工品の製造方法によれば、塑性加工用アルミニウム合金鋳塊に塑性加工を施すとき、〔430+塑性加工率(%)〕℃以上550℃以下で加熱するので、熱間加工中に導入された歪みが減少するため、溶体化処理時の再結晶成長のエネルギーが小さくなり、健全な製品を得ることができる。
そして、520℃〜550℃で溶体化処理を施すので、時効硬化を著しく促進させ、時効処理後の強度をさらに高めることができる。
さらに、この発明のアルミニウム合金塑性加工品は、機械的強度に優れたものとなる。
【図面の簡単な説明】
【図1】この発明の塑性加工用アルミニウム合金鋳塊を製造する製造装置の一例である半連続鋳造装置を示す説明図である。
【図2】この発明の塑性加工用アルミニウム合金鋳塊を製造する製造装置の他の例である水平続鋳造装置を示す説明図である。
【符号の説明】
11,41 溶湯受槽
12,42 流出口
21,61 鋳型
22,62 円筒状内周面
31,71 冷却媒体流路
31a,71a 環状流路部分
31b,71b 導入部分
32,72 噴出孔
33,73 気体流路
33a,73a 環状流路部分
33b,73b 導入部分
34,77 潤滑油流路
34a,73a 環状流路部分
34b,74b 導入部分
51 耐火物製板体
52 流出口
M 溶湯
A 空気
O 潤滑油
W 水
I 鋳塊[0001]
BACKGROUND OF THE INVENTION
This invention is based on Al (aluminum) -Mg (magnesium) -Si (silicon) system Plastic Method of producing an aluminum alloy ingot for mechanical processing, Manufactured by this manufacturing method The present invention relates to a method of manufacturing an aluminum alloy plastic processed product in which a product is plastic processed using an aluminum alloy ingot for plastic processing, and an aluminum alloy plastic processed product.
[0002]
[Prior art]
For automobile parts, for example, suspension parts, iron-based materials have been exclusively used. However, aluminum parts or aluminum alloy materials have been increasingly replaced mainly for weight reduction.
Since these automobile parts are required to have excellent corrosion resistance, high strength, and excellent workability, Al—Mg—Si based alloys, particularly A6061, are frequently used as aluminum alloy materials.
Such automobile parts are manufactured by forging, which is one of plastic working, using an aluminum alloy material as a processing material in order to improve strength.
[0003]
Recently, since it is necessary to reduce the cost, suspension parts obtained by T6 treatment after forging a cast member as it is without extrusion are starting to be put into practical use. In addition, development of high-strength alloys in place of conventional A6061 is underway (for example, disclosed in JP-A-5-59477, JP-A-5-247574, and JP-A-6-256880). .
[0004]
[Problems to be solved by the invention]
These high-strength alloys of A6061 and Al—Mg—Si-based alloys have a problem in that sufficient high strength cannot be obtained due to recrystallization of the processed structure in the forging and heat treatment steps and generation of coarse crystal grains. It was.
Therefore, in order to prevent coarse recrystallized grains, there are many examples where Zr (zirconium) is added to prevent recrystallization (for example, disclosed in JP-A-5-59477 and JP-A-5-247574). .)
[0005]
However, although the addition of Zr is effective in preventing recrystallization, it has the following problems.
(1) By adding Zr, the grain refinement effect of the Al—Ti (titanium) -B (boron) alloy is weakened, the crystal grains of the ingot itself become coarse, and conversely the processed product after plastic working It often causes a decrease in strength.
(2) Since the crystal grain refinement effect of the ingot itself is weakened, ingot cracking is likely to occur, internal defects increase, and the yield deteriorates.
(3) Zr forms a compound with an Al—Ti—B alloy, and the compound is deposited on the bottom of the furnace for storing molten alloy, contaminating the furnace, and these compounds are also in the ingot produced. Crystallizes coarsely to reduce the strength.
For this reason, although the addition of Zr is effective, it is difficult to maintain the stability of the strength, the quality of the product becomes unstable, and the material cost is increased.
[0006]
The present invention has been made to solve the above-mentioned disadvantages, and the content of alloy elements such as Mg (magnesium), Si (silicon), Cu (copper), Mn (manganese), and Cr (chromium). And by adjusting the average grain size of the crystallized material, the dendrite secondary arm interval of the ingot structure (hereinafter referred to as DAS), and the crystal grain size, the strength is improved. Aluminum alloy ingots for plastic working that do not easily generate recrystallized grains Manufacture The present invention provides a method for producing an aluminum alloy ingot for plastic working and a method for producing an aluminum alloy plastic work product.
[0007]
[Means for Solving the Problems]
The manufacturing method of the aluminum alloy ingot for plastic working according to the present invention includes Mg (magnesium) 0.8 wt% to 1.2 wt%, Si (silicon) 0.7 wt% to 1.0 wt%, and Cu (copper). 0.3 wt% to 0.6 wt%, Mn (manganese) 0.14 wt% to 0.3 wt%, Cr (chromium) 0.14 wt% to 0.3 wt%, Fe (iron) 0.5 wt% Hereinafter, Ti (titanium) is contained in an amount of 0.01 wt% to 0.15 wt%, B (boron) is contained in an amount of 0.0001 wt% to 0.03 wt%, the balance being Al and inevitable impurities, The aluminum alloy ingot for plastic working has a structure having a diameter of 8 μm or less, DAS of 40 μm or less, and a crystal grain size of 300 μm or less. Continuous casting To manufacture.
Also , Casting The manufacturing temperature is (750 ± 50) ° C. and the casting speed is (240 ± 50) mm / min. Continuous casting Manufacturing method.
Moreover, it is desirable to manufacture without performing a homogenization process after casting.
Furthermore, the manufacturing method of the aluminum alloy plastic work product according to the present invention is a plastic working aluminum alloy ingot produced by the above-described method of producing an aluminum alloy ingot for plastic working. When processing, it is a method of heating at [430 + plastic working rate (%)] ° C. or more and 550 ° C. or less.
It is desirable to perform solution treatment at 520 ° C. to 550 ° C. after plastic working.
The aluminum alloy plastic processed product according to the present invention is manufactured by the manufacturing method described above.
In addition, wt% in this specification means weight%, and is equivalent to mass% of SI unit system.
Therefore, for example, 0.7 wt% is 0.7 wt% or 0.7 mass%.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below.
Si coexists with Mg and Mg 2 Forms Si-based precipitates and contributes to improving the strength of the final product.
When the Si content is less than 0.7 wt%, the effect of precipitation strengthening is reduced.
On the other hand, when the content exceeds 1.0 wt%, grain boundary precipitation of Si increases and grain boundary embrittlement tends to occur, not only lowering the forging processability (plastic workability) of the ingot and the toughness of the final product. The average particle size of the ingot crystallized product exceeds the predetermined upper limit.
Therefore, the Si content needs to be in the range of 0.7 wt% to 1.0 wt%.
Si is Mg relative to the amount of Mg described later. 2 By adding excessively beyond the amount of Si, the strength of the final product after aging treatment is further increased.
[0009]
Mg coexists with Si and Mg 2 Forms Si-based precipitates and contributes to improving the strength of the final product.
When the Mg content is less than 0.8 wt%, the effect of precipitation strengthening is reduced.
On the other hand, if it exceeds 1.2 wt%, not only the forging processability of the ingot and the toughness of the final product will be lowered, but also the average particle size of the crystallized material of the ingot will exceed the predetermined upper limit.
Therefore, the Mg content needs to be in the range of 0.8 wt% to 1.2 wt%.
[0010]
Cu is Mg 2 Increasing the apparent supersaturation amount of Si-based precipitates, Mg 2 By increasing the amount of Si deposited, age hardening of the final product is significantly accelerated.
When the Cu content is less than 0.3 wt%, the above-described effects are also reduced.
On the other hand, if it exceeds 0.6 wt%, the forging processability of the ingot and the toughness of the final product are lowered, and the corrosion resistance is further deteriorated.
Therefore, the Cu content needs to be in the range of 0.3 wt% to 0.6 wt%.
[0011]
Mn crystallizes as an AlMnSi phase, and Mn that does not crystallize precipitates to suppress recrystallization.
Due to the action of suppressing this recrystallization, the crystal grains are made fine even after forging, and the effect of improving the toughness and corrosion resistance of the final product is brought about.
When the Mn content is less than 0.14%, the above-described effects are reduced.
On the other hand, if it exceeds 0.3 wt%, a huge intermetallic compound is generated, and the ingot structure of the present invention is not satisfied.
Therefore, the Mn content needs to be in the range of 0.14 wt% to 0.3 wt%.
[0012]
Cr also crystallizes as an AlCrSi phase, and Cr that does not crystallize precipitates and suppresses recrystallization.
Due to the action of suppressing this recrystallization, the crystal grains are made fine even after forging, and the effect of improving the toughness and corrosion resistance of the final product is brought about.
When the Cr content is less than 0.14%, the above-described effects are reduced.
On the other hand, if it exceeds 0.3 wt%, a huge intermetallic compound is generated, and the ingot structure of the present invention is not satisfied.
Therefore, the Cr content needs to be in the range of 0.14 wt% to 0.3 wt%.
[0013]
Fe is crystallized by combining with Al and Si in the alloy, prevents coarsening of the grains, decreases quenching sensitivity, improves strength and toughness, and improves corrosion resistance.
When the Fe content exceeds 0.5 wt%, the above-described effects cannot be obtained.
Therefore, the Fe content needs to be 0.5 wt% or less.
[0014]
Ti is an alloy element that is effective in reducing the size of crystal grains, and prevents ingot cracking and the like from occurring in a continuous cast bar.
Furthermore, since the ingot of the present invention is subjected to forging without performing processing such as extrusion, this Ti plays an important role in adjusting the crystal grain size of the ingot to 300 μm or less.
If the Ti content is less than 0.01 wt%, the effect of miniaturization cannot be obtained. On the other hand, if it exceeds 0.15%, a coarse Ti compound crystallizes and deteriorates toughness.
Therefore, the Ti content needs to be in the range of 0.01 wt% to 0.15 wt%.
[0015]
B, like Ti, is an element effective for refining crystal grains. If it is less than 0.0001 wt%, the effect cannot be obtained, while if it exceeds 0.03 wt%, the toughness is deteriorated.
Therefore, the B content needs to be in the range of 0.0001 wt% to 0.03 wt%.
[0016]
Next, the structure of the continuously cast aluminum alloy ingot for plastic working will be described.
First, the size of the crystallized product.
In the present invention, the crystallized product is composed of AlMnSi phase, Mg 2 A secondary phase containing a Si phase, Fe, Cr, an intermetallic compound, or the like is crystallized in a granular or flake form at a crystal grain boundary.
The average particle size of the crystallized product needs to be 8 μm or less, more preferably 7 μm or less, and still more preferably 6.8 μm or less.
If the average particle size of the crystallized material is 8 μm or less, the forging processability is good and the forging processability may be affected even when hot forging is performed without performing homogenization. Disappear.
In the alloy of the present invention which is an Al-Mg-Si system, when hot forging is performed, what has the greatest influence on forging workability is the size of crystallized substances of transition metals such as Fe, Mn, and Cr. Crystallized Mg 2 It is considered that Si is uniformly dispersed in a size that can be sufficiently dissolved during the T6 treatment.
The size of the crystallized product was measured by identifying the microstructure with an image analyzer (Luzex) having a microscope, and using the diameter when the cross-sectional area of each crystallized was converted to a circle as the particle size.
[0017]
Next, the size of DAS (Dendrite Arm Space).
If the DAS of the continuously cast material exceeds 40 μm, the strength is lowered and the desired high strength cannot be obtained. Therefore, the DAS needs to be 40 μm or less, and more preferably 20 μm or less.
The measurement of DAS was performed by “Light Metals (1988), vol. 38, no. 1, p45 ”, followed by“ Dendrite arm spacing measurement procedure ”.
[0018]
And it is the size of the crystal grain size.
The size of the crystal grain size greatly affects the strength of the forged product.
In other words, unlike fine recrystallized grains obtained by introducing strain in plastic processing, which is recognized in extruded materials and rolled materials, fine crystal grains obtained in the casting stage of continuous casting have less distortion in the structure and heat. Coarse recrystallization is unlikely to occur even during intermediate forging.
However, if the crystal grain size of the original ingot structure is large, for example, if it exceeds 300 μm, no improvement in strength is observed.
Therefore, the crystal grain size needs to be 300 μm or less, and more preferably 250 μm or less.
The crystal grain size was measured by a section method on an optical micrograph.
[0019]
FIG. 1 is an explanatory view showing a semi-continuous casting apparatus which is an example of a manufacturing apparatus for manufacturing an aluminum alloy ingot for plastic working according to the present invention.
In FIG. 1, 11 shows a molten metal receiving tank, to which a molten metal M of aluminum alloy is supplied, and an outlet 12 through which the molten metal M flows out is provided on the lower side.
Reference numeral 21 denotes a mold, which is provided with a cylindrical inner peripheral surface 22 for casting the ingot I, which is attached in an airtight state to the lower side of the molten metal receiving tank 11 and communicates coaxially with the outlet 12.
[0020]
Reference numeral 31 denotes a cooling medium flow path, which is composed of an annular flow path portion 31 a provided around the mold 21 and an introduction portion 31 b that allows the annular flow path portion 31 a to communicate with the outside of the mold 21. Water W is supplied as a cooling medium for cooling the water.
32 indicates an ejection hole, and in order to cool the ingot I, water W as a cooling medium can be sprayed to the outer periphery of the ingot I. Or it is provided to circulate.
[0021]
33 indicates a gas flow path, and an annular flow path portion 33a provided around the mold 21 so that gas, for example, air A, can be supplied to the joint portion of the cylindrical inner peripheral surface 22 with the molten metal receiving tank 11, The annular flow passage portion 33a is constituted by an introduction portion 33b that communicates with the outside.
Reference numeral 34 denotes a lubricating oil flow path. An annular flow path portion 34a provided around the mold 21 so that the lubricating oil O can be supplied to the cylindrical inner peripheral surface 22, and the annular flow path portion 34a outward. It is comprised with the introduction part 34b connected.
[0022]
Next, casting of an aluminum alloy ingot for plastic working will be described.
First, after a base metal, a mother alloy, metallic silicon, a copper lump, and the like are mixed and melted in a melting furnace (not shown), flux treatment for degassing is performed in a holding furnace.
And after reducing the gas (especially hydrogen gas) in a molten metal with an in-line degassing apparatus and also removing the fine nonmetallic inclusions which cannot be removed by the flux treatment, Ti and B are added.
[0023]
When the molten metal M adjusted to a desired composition in this way is supplied to the molten metal receiving tank 11, the molten metal M having a casting temperature of (750 ± 50) ° C. is cooled while being pushed out from the outlet 12 into the mold 21. After being primarily cooled by the water W supplied to the medium flow path 31, it is secondarily cooled by the water W ejected from the ejection holes 32, and more preferably at a cooling rate of 10 ° C / second or more, more preferably 20 ° C. The ingot I is cooled and solidified at a cooling rate of not less than / sec.
[0024]
The ingot I solidified in this manner is continuously lowered by lowering a bottom plate (not shown) that supports the ingot I at a constant speed, that is, a casting speed [(240 ± 50) mm / min]. Pulled out.
When the length of the ingot I reaches a certain length, the casting is interrupted and the ingot I is drawn upward.
Thereafter, the ingot I is sequentially cast in the same manner.
[0025]
In addition, the air A supplied to the gas flow path 33 at the time of casting is supplied to the cylindrical inner peripheral surface 22 of the mold 21 and has a function of cutting off the contact between the mold 21 and the molten metal M.
Then, excess air A flows downward between the mold 21 and the ingot I.
Further, the lubricating oil O supplied to the lubricating oil flow path 34 is supplied to the cylindrical inner peripheral surface 22 of the mold 21 to prevent the molten metal M from being seized onto the cylindrical inner peripheral surface 22 and to be vaporized. And the function of cutting off the contact with the molten metal M.
With the air A and the lubricating oil O, an ingot I having a sound casting surface is obtained.
[0026]
If the above casting temperature is less than 750 ° C., the temperature of the molten metal before casting is low, the temperature gradient at the time of solidification becomes gentle, and the crystal grains coarsened in the molten metal kept at a high temperature are cast as they are. A floating crystal in which coarse crystal grains exist in a part of the ingot is generated.
On the other hand, when the casting temperature exceeds 800 ° C., the temperature gradient during solidification becomes steep and the effect of the refined material decreases, so that the crystal grain size of feathery crystals becomes larger than that of normal granular crystals. , Strength and ductility are reduced.
Therefore, the casting temperature is preferably (750 ± 50) ° C., more preferably (750 ± 20) ° C., and further preferably 750 ° C.
[0027]
On the other hand, when the casting speed is less than 190 mm / min, the cooling rate becomes slow, and the crystal grain size becomes large.
On the other hand, if the casting speed exceeds 290 mm / min, the solidification time of the central part and the solidification time of the outer peripheral part become large, so that the occurrence of residual thermal stress in the ingot increases and ingot cracking occurs. Ingots cannot be manufactured.
Therefore, the casting speed is preferably (240 ± 30) mm / min, more preferably (240 ± 10) mm / min, and even more preferably 240 mm / min.
[0028]
When hot forging this continuously cast alloy ingot, by controlling the forging rate and the heating temperature of this aluminum alloy ingot, the generation of coarse recrystallization is further suppressed and the strength is further improved. Can do.
That is, the heating temperature is controlled in the range of [430 ° C. + plastic working rate (forging rate) (%)] ° C. to 550 ° C.
Here, the plastic working rate (forging rate) will be described. For example, in the case of upsetting, [(deformed height) ÷ (initial height) × 100] (%), and extrusion processing In such a case, [(cross-sectional area subject to deformation) ÷ (initial cross-sectional area) × 100] (%).
[0029]
When a large processing with a plastic processing rate (forging processing rate) exceeding 50% is added to the alloy ingot, the strain introduced during the processing is large, and even in the case of a fine crystal of the ingot, during the solution treatment Large energy is required for crystal growth, and coarse recrystallization is likely to occur.
However, by increasing the heating temperature, the strain introduced during hot working is reduced, so that the energy of recrystallization growth during the solution treatment is reduced.
However, if the heating temperature exceeds 550 ° C., a healthy product cannot be produced due to the occurrence of burning.
[0030]
Therefore, when forging with a plastic working rate of 50 (%), it is necessary to perform hot forging at a heating temperature of 480 ° C. (430 ° C. + 50 ° C.) or higher and 550 ° C. or lower.
In addition, even when the product has a partially high plastic working rate, an overall sound product can be obtained by setting the heating temperature in accordance with the portion having the largest forging rate.
Also, when forging by dividing into multiple processes such as wasteland process and finishing process, especially in the process with high plastic working rate, hot forging at this heating temperature is important to obtain a sound product. is there.
[0031]
Next, examples of the present invention will be described.
[0032]
[Table 1]
Figure 0004768925
[0033]
Shown in Table 1 Reference example 1 to Reference example 10 and Comparative Examples 1 to 5 and Reference example 8 is to evaluate composition and structure.
And Reference example 1 to Reference example 10 and Comparative Example 6 evaluate the effect of the fine material (Ti, B).
Also, Reference example 1 to Reference example 10 and Comparative Example 7 compare the cooling rate (casting rate).
[0034]
Each composition is blended to make each composition Reference example And the ingot of diameter 4 inches or 8 inches of each comparative example was manufactured by the continuous casting method.
The casting temperature was (750 ± 50) ° C. in each example and each comparative example. The cooling rate is 1 in Comparative Example 7. ° C / second ~ 9 ° C / second 10 except for Comparative Example 7 ° C / second ~ 15 ° C / second Met.
Furthermore, the casting speed of Comparative Example 7 was 90 mm / min to less than 190 mm / min, and other than Comparative Example 7 was 190 mm / min to 290 mm / min.
[0035]
Each cast as above Reference example In addition, a sample having a diameter of 30 mm and a length of 34 mm was collected from four locations that are symmetrical with respect to the central axis of the ingot of each comparative example, and the structure was observed. The crystallized average particle diameter (μm), DAS (μm) and crystal grain size (μm) were measured.
Each sample was homogenized at 470 ° C. for 6 hours, and after heating each sample to 520 ° C., each sample was subjected to forging so that the forging rate was 50%.
Thereafter, each sample was held at 530 ° C. for 3 hours, then quenched in warm water at 70 ° C., held at 180 ° C. for 6 hours, and then allowed to stand at room temperature to obtain a tensile strength (MPa) of 0 .2% yield strength (MPa) and elongation (%) were measured.
[0036]
Reference example 1 to Reference example No. 10 is excellent in tensile strength, 0.2% proof stress and elongation because the composition, structure and the like are both within the scope of the present invention.
On the other hand, Comparative Example 1 to Comparative Example 5 and Comparative Example 8 are inferior in tensile strength, 0.2% proof stress, and elongation because at least one of the composition and the structure is outside the scope of the present invention.
In Comparative Example 6, casting is usually performed within 30 minutes after the addition of the micronized material (Ti, B). Since casting was performed 2 hours after the micronized material was added, the effect of the micronized material was obtained. It does not appear, the crystal grain size is out of the scope of the present invention, and inferior in tensile strength, 0.2% proof stress and elongation.
Moreover, since the comparative example 7 is slower than the casting speed of this invention and the crystallized average particle diameter and DAS are outside the scope of this invention, it is inferior in tensile strength, 0.2% proof stress, and elongation.
[0037]
Thus, the casting alloy excellent in forgeability can be obtained by setting the composition, structure, and the like within the scope of the present invention.
Therefore, it becomes a material suitable for parts required to have high strength, high toughness, and high age-hardening properties, for example, a suspension for automobiles, and the parts can be obtained.
[0038]
[Table 2]
Figure 0004768925
[0039]
Shown in Table 2 Reference example 1 and Example 11 to Example 14, Reference Examples 15 to 17 Evaluates the homogenization process.
Each example was formulated to have each composition Reference examples An ingot having a diameter of 4 inches or 8 inches was manufactured by a continuous casting method.
Each example Reference examples In both cases, the casting temperature was (750 ± 50) ° C., and the cooling rate was 10 ° C / second ~ 15 ° C / second The casting speed was 190 mm / min to 290 mm / min.
[0040]
Examples cast as described above Reference examples Samples having a diameter of 30 mm and a length of 34 mm were collected from four locations that are symmetrical with respect to the central axis of the ingot of the steel, and the structure was observed. The crystallized average particle diameter (μm) and DAS (μm) The crystal grain size (μm) was measured.
And the homogenization process is not performed on the samples of Examples 11 to 14, Reference example 1 and Reference example 15 ~ Reference example Seventeen samples were homogenized at 470 ° C. for 6 hours.
[0041]
next, Reference example 1, Example 11, Example 12 and Reference example After heating 15 samples to 520 ° C., Example 12 and Reference example Forging the 15 samples so that the forging rate is 75%, Reference example The samples of 1 and Example 11 were forged to a forging rate of 50%.
Example 13 and Reference example After heating 16 samples to 480 ° C., Example 13 and Reference example Forging of 16 samples was performed so that the forging rate was 50%.
[0042]
In addition, Example 14 and Reference example After heating 17 samples to 460 ° C., Example 14 and Reference example The 17 samples were forged to a forging rate of 30%.
Thereafter, each sample was held at 530 ° C. for 3 hours, then quenched in warm water at 70 ° C., held at 180 ° C. for 6 hours, and then allowed to stand at room temperature to obtain a tensile strength (MPa) of 0 .2% yield strength (MPa) and elongation (%) were measured.
[0043]
Reference example 1 and Reference example 15 ~ Reference example No. 17 is excellent in tensile strength, 0.2% proof stress, and elongation because the composition, structure, and the like are both within the scope of the present invention although homogenization is performed.
On the other hand, Examples 11 to 14 are more excellent in tensile strength, 0.2% proof stress and elongation because the homogenization treatment is omitted and the composition, structure, and the like are both within the scope of the present invention. Yes.
[0044]
In this way, the material that is not subjected to the homogenization treatment is superior in tensile strength, 0.2% proof stress, and elongation to the material subjected to the homogenization treatment, so that the homogenization treatment step is unnecessary, and the equipment Is unnecessary, and energy consumption is reduced, so that productivity is improved.
[0045]
[Table 3]
Figure 0004768925
[0046]
Shown in Table 3 Reference example 15 ~ Reference example 19 and Comparative Examples 9 to 12 evaluate the forging heating temperature with respect to the forging rate (plastic working rate).
The ingots having a diameter of 4 inches or 8 inches of the respective examples and comparative examples were blended so as to have respective compositions, and were produced by a continuous casting method.
In addition, each Reference example In each comparative example, the casting temperature was (750 ± 50) ° C., and the cooling rate was 10 ° C / second ~ 15 ° C / second The casting speed was 190 mm / min to 290 mm / min.
[0047]
Each cast as above Reference example In addition, a sample having a diameter of 30 mm and a length of 34 mm was collected from four locations that are symmetrical with respect to the central axis of the ingot of each comparative example, and the structure was observed. The crystallized average particle diameter (μm), DAS (μm) and crystal grain size (μm) were measured.
Each sample was homogenized at 470 ° C. for 6 hours.
[0048]
afterwards, Reference example 15, Reference example 18 and Reference example After 19 samples were heated to 520 ° C, Reference example Forging the 15 samples so that the forging rate is 75%, Reference example 18 samples were forged and processed so that the forging rate was 50%. Reference example Forging of 19 samples was performed so that the forging rate was 30%.
Also, Reference example After heating the samples of 16 and Comparative Example 9 to 480 ° C., the samples of Comparative Example 9 were forged to a forging rate of 75%, Reference example Forging of 16 samples was performed so that the forging rate was 50%.
Further, after heating the sample of Comparative Example 10 to 470 ° C., forging was performed on the sample of Comparative Example 10 so that the forging rate was 50%.
further, Reference example After heating 17 samples to 460 ° C, Reference example The 17 samples were forged to a forging rate of 30%.
Further, after heating the samples of Comparative Example 11 and Comparative Example 12 to 435 ° C., the samples of Comparative Example 11 were forged to a forging rate of 50%, and the samples of Comparative Example 12 were compared. Forging was performed so that the forging rate was 30%.
[0049]
Thereafter, each sample was held at 530 ° C. for 3 hours, then quenched in warm water at 70 ° C., held at 180 ° C. for 6 hours, and then allowed to stand at room temperature to obtain a tensile strength (MPa) of 0 .2% yield strength (MPa) and elongation (%) were measured.
[0050]
Reference example 15 ~ Reference example No. 19 is excellent in tensile strength, 0.2% proof stress and elongation because the forging heating temperature with respect to the composition, structure, forging rate, and the like are all within the scope of the present invention.
On the other hand, in Comparative Examples 9 to 12, the forging heating temperature relative to the forging rate is outside the range of [430 ° C. + plastic working rate (%)] ° C. to 550 ° C. of the present invention. 0.2% proof stress and elongation are inferior.
[0051]
[Table 4]
Figure 0004768925
[0052]
Shown in Table 4 Reference example 20 and Reference example 21 and Comparative Examples 13 and 14 evaluate the solution treatment.
Each composition is blended to make each composition Reference example And the ingot of diameter 4 inches or 8 inches of each comparative example was manufactured by the continuous casting method.
In addition, each Reference example In each comparative example, the casting temperature was (750 ± 50) ° C., and the cooling rate was 10 ° C / second ~ 15 ° C / second The casting speed was 190 mm / min to 290 mm / min.
[0053]
Each cast as above Reference example In addition, a sample having a diameter of 30 mm and a length of 34 mm was collected from four locations that are symmetrical with respect to the central axis of the ingot of each comparative example, and the structure was observed. The crystallized average particle diameter (μm), DAS (μm) and crystal grain size (μm) were measured.
Each sample was homogenized at 470 ° C. for 6 hours, and after heating each sample to 520 ° C., each sample was subjected to forging so that the forging rate was 50%.
[0054]
Then, the sample of Comparative Example 13 was at 515 ° C. Reference example Twenty samples at 525 ° C Reference example Sample No. 21 was held at 545 ° C., and the sample of Comparative Example 14 was held at 555 ° C. for 3 hours, then quenched in 70 ° C. warm water, held at 180 ° C. for 6 hours, and allowed to stand at room temperature. Tensile strength (MPa), 0.2% yield strength (MPa) and elongation (%) were measured.
[0055]
Reference example 20 and Reference example No. 21 is excellent in tensile strength, 0.2% proof stress and elongation because the composition, structure, solution temperature and the like are all within the scope of the present invention.
On the other hand, Comparative Example 13 and Comparative Example 14 are inferior in tensile strength, 0.2% proof stress, and elongation because the solution temperature is outside the range of the present invention.
[0056]
FIG. 2 is an explanatory view showing a horizontal continuous casting apparatus which is another example of a manufacturing apparatus for manufacturing an aluminum alloy ingot for plastic working according to the present invention.
In FIG. 2, reference numeral 41 denotes a molten metal receiving tank, to which an aluminum alloy molten metal M is supplied, and an outlet 42 through which the molten metal M flows out is provided on the lower side surface.
Reference numeral 51 denotes a refractory plate, which is attached in an airtight state to the outside of the molten metal receiving tank 41 where the outflow port 42 is provided, and is provided with an outflow port 52 that communicates coaxially with the outflow port 42.
Reference numeral 61 denotes a mold, which is provided with a cylindrical inner peripheral surface 62 for casting the ingot I, which is attached to the refractory plate 51 in an airtight state and communicates coaxially with the outlet 52.
[0057]
Reference numeral 71 denotes a cooling medium flow path, which is composed of an annular flow path portion 71 a provided around the mold 61 and an introduction portion 71 b that communicates the annular flow path portion 71 a with the outside of the mold 61. Water W is supplied as a cooling medium for cooling the water.
72 indicates an ejection hole, and in order to be able to spray water W as a cooling medium to the outer periphery of the ingot I in order to cool the ingot I, a plurality of the mold 61 are connected to the annular flow path portion 71a. Or it is provided to circulate.
[0058]
73 indicates a gas flow path, and an annular flow path portion 73a provided around the mold 61 so that gas, for example, air A, can be supplied to the joint portion of the cylindrical inner peripheral surface 62 with the molten metal receiving tank 41, It is comprised with the introduction part 73b which makes this annular flow-path part 73a communicate outside.
Reference numeral 74 denotes a lubricating oil flow path. An annular flow path portion 74a provided around the mold 61 so that the lubricating oil O can be supplied to the cylindrical inner peripheral surface 62, and the annular flow path portion 74a outward. It is comprised with the introduction part 74b connected.
[0059]
In the horizontal continuous casting apparatus shown in FIG. 2, when the molten metal M adjusted to a desired composition is supplied to the molten metal receiving tank 41, the molten metal M having a casting temperature of (750 ± 50) ° C. is introduced into the mold 21 from the outlet 12. After being primarily cooled by the water W supplied to the cooling medium flow path 31 while being extruded, the secondary cooling is performed by the water W ejected from the ejection holes 32 so that the cooling rate is 10 ° C./second or more. More preferably, it is cooled and solidified at a cooling rate of 20 ° C./second or more to form an ingot I having the above-described structure.
[0060]
When the molten metal M adjusted to a desired composition in this way is supplied to the molten metal receiving tank 11, the molten metal M having a casting temperature of (750 ± 50) ° C. is cooled while being pushed out from the outlet 12 into the mold 21. After being primarily cooled by the water W supplied to the medium flow path 31, it is secondarily cooled by the water W ejected from the ejection holes 32, and more preferably at a cooling rate of 10 ° C / second or more, more preferably 20 ° C. The ingot I is cooled and solidified at a cooling rate of not less than / sec.
[0061]
The ingot I solidified in this way is continuously drawn at a constant speed, that is, a casting speed [(240 ± 50) mm / min], and is sequentially cut into a predetermined length.
Note that the functions of the air A and the lubricating oil O are the same as those described above, and a description thereof will be omitted.
[0062]
As an example of using the aluminum alloy ingot for plastic working of the above-described embodiment, in an automobile chassis component, an upper arm, a lower arm, a knuckle, a wheel, a damper, a subframe, and the like can be given.
Also, in the parts around the engine of an automobile, there are an engine mount bracket, a high-pressure fuel injection pump body, and the like.
Furthermore, a bicycle crank etc. are mentioned as a bicycle component.
In addition, for motorcycle parts, there are cushion arms, brackets, fork bottom bridges, and the like.
Note that these are merely examples, and it goes without saying that the present invention can be applied to other components as long as they can utilize the characteristics of the ingot of the present invention.
[0063]
【The invention's effect】
As described above, according to the aluminum alloy ingot for plastic working of the present invention, the refined materials [Ti (titanium) and B (boron)] are added to make the crystal grain size 300 μm or less. An excellent casting alloy can be obtained.
Therefore, it becomes a material suitable for parts required to have high strength, high toughness, and high age-hardening properties, for example, a suspension for automobiles, and the parts can be obtained.
[0064]
In addition, according to the method for producing an aluminum alloy ingot for plastic working according to the present invention, the casting temperature was set to (750 ± 50) ° C. and the casting speed was set to (240 ± 50) mm / min. An aluminum alloy ingot for plastic working having a structure with a grain size of 8 μm or less, DAS of 40 μm or less, and a crystal grain size of 300 μm or less can be cast.
And since it is excellent in mechanical strength without performing homogenization after casting, the homogenization process is not required, the equipment is unnecessary, and the energy consumption is reduced, thereby improving productivity. .
[0065]
Further, according to the method for producing an aluminum alloy plastic work product of the present invention, when plastic working is performed on the aluminum alloy ingot for plastic working, it is heated at [430 + plastic working rate (%)] ° C. or higher and 550 ° C. or lower. Since strain introduced during hot working is reduced, the energy of recrystallization growth during solution treatment is reduced, and a healthy product can be obtained.
And since solution treatment is performed at 520 ° C. to 550 ° C., age hardening can be remarkably accelerated and the strength after aging treatment can be further increased.
Furthermore, the aluminum alloy plastic processed product of the present invention is excellent in mechanical strength.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a semi-continuous casting apparatus which is an example of a manufacturing apparatus for producing an aluminum alloy ingot for plastic working according to the present invention.
FIG. 2 is an explanatory view showing a horizontal continuous casting apparatus which is another example of a manufacturing apparatus for manufacturing an aluminum alloy ingot for plastic working according to the present invention.
[Explanation of symbols]
11, 41 molten metal receiving tank
12, 42 outlet
21,61 mold
22, 62 Cylindrical inner peripheral surface
31, 71 Cooling medium flow path
31a, 71a Annular channel part
31b, 71b introduction part
32, 72 ejection holes
33, 73 Gas flow path
33a, 73a Annular channel part
33b, 73b Introduction part
34, 77 Lubricating oil passage
34a, 73a Annular channel part
34b, 74b introduction part
51 Refractory plate
52 Outlet
M molten metal
A Air
O Lubricating oil
W Water
I Ingot

Claims (5)

Mgを0.8wt%〜1.2wt%、Siを0.7wt%〜1.0wt%、Cuを0.3wt%〜0.6wt%、Mnを0.14wt%〜0.3wt%、Crを0.14wt%〜0.3wt%、Feを0.5wt%以下、Tiを0.01wt%〜0.15wt%、Bを0.0001wt%〜0.03wt%含有し、残部がAlと不可避的不純物であり、晶出物の平均粒径が8μm以下、デンドライト二次アーム間隔が40μm以下、かつ、結晶粒径が300μm以下の組織を有するように塑性加工用アルミニウム合金鋳塊を鋳造して製造する塑性加工用アルミニウム合金鋳塊の製造方法であって、
鋳造温度を(750±50)℃とし、鋳造速度を(240±50)mm/分として連続鋳造し、
少なくとも引張強度に優れるものとするために、鋳造後に均質化処理を施すことなく前記塑性加工用アルミニウム合金鋳塊を製造する、
ことを特徴とする塑性加工用アルミニウム合金鋳塊の製造方法。
Mg 0.8 wt% to 1.2 wt%, Si 0.7 wt% to 1.0 wt%, Cu 0.3 wt% to 0.6 wt%, Mn 0.14 wt% to 0.3 wt%, Cr 0.14 wt% to 0.3 wt%, Fe 0.5 wt% or less, Ti 0.01 wt% to 0.15 wt%, B 0.0001 wt% to 0.03 wt%, the balance is inevitable with Al Manufactured by casting an aluminum alloy ingot for plastic working so as to have a structure in which the average grain size of crystals is 8 μm or less, the dendrite secondary arm interval is 40 μm or less, and the crystal grain size is 300 μm or less. A method for producing an aluminum alloy ingot for plastic working,
Continuous casting at a casting temperature of (750 ± 50) ° C. and a casting speed of (240 ± 50) mm / min,
In order to at least have excellent tensile strength, the aluminum alloy ingot for plastic working is produced without performing homogenization treatment after casting,
A method for producing an aluminum alloy ingot for plastic working characterized by the above.
請求項1に記載の塑性加工用アルミニウム合金鋳塊の製造方法により製造した塑性加工用アルミニウム合金鋳塊に塑性加工を施すとき、〔430+塑性加工率(%)〕℃以上550℃以下で加熱する、
ことを特徴とするアルミニウム合金塑性加工品の製造方法。
When plastic working is performed on the aluminum alloy ingot for plastic working produced by the method for producing an aluminum alloy ingot for plastic working according to claim 1 , [430 + plastic working rate (%)] is heated at not less than 430 ° C and not more than 550 ° C. ,
A method for producing an aluminum alloy plastic processed product .
請求項2に記載のアルミニウム合金塑性加工品の製造方法において塑性加工は、鍛造加工である、
ことを特徴とするアルミニウム合金塑性加工品の製造方法。
The method of manufacturing an aluminum alloy plastic workpiece according to claim 2, wherein the plastic processing is forging.
A method for producing an aluminum alloy plastic processed product.
請求項2または請求項3に記載のアルミニウム合金塑性加工品の製造方法において520℃〜550℃で溶体化処理を施す、
ことを特徴とするアルミニウム合金塑性加工品の製造方法。
The solution treatment is performed at 520 ° C. to 550 ° C. in the method for producing an aluminum alloy plastic processed product according to claim 2 ,
A method for producing an aluminum alloy plastic processed product.
請求項2から請求項4のいずれか1項に記載のアルミニウム合金塑性加工品の製造方法で製造されたアルミニウム合金塑性加工品。 An aluminum alloy plastic workpiece manufactured by the method for manufacturing an aluminum alloy plastic workpiece according to any one of claims 2 to 4 .
JP2001102207A 2001-03-30 2001-03-30 Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product Expired - Lifetime JP4768925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102207A JP4768925B2 (en) 2001-03-30 2001-03-30 Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102207A JP4768925B2 (en) 2001-03-30 2001-03-30 Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2008281256A Division JP5081791B2 (en) 2008-10-31 2008-10-31 Manufacturing method of automobile parts
JP2010248114A Division JP5435371B2 (en) 2010-11-05 2010-11-05 Aluminum alloy ingot for plastic working

Publications (2)

Publication Number Publication Date
JP2002294383A JP2002294383A (en) 2002-10-09
JP4768925B2 true JP4768925B2 (en) 2011-09-07

Family

ID=18955427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102207A Expired - Lifetime JP4768925B2 (en) 2001-03-30 2001-03-30 Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product

Country Status (1)

Country Link
JP (1) JP4768925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494578A (en) * 2017-04-06 2019-11-22 新布里萨什肯联铝业 Improved motor vehicle body construction package manufacturing method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028452A (en) * 2003-06-18 2005-02-03 Showa Denko Kk CONTINUOUS CASTING METHOD OF Al-Mg-Si ALLOY AND Al-Mg-Si ALLOY INGOT, MANUFACTURING METHOD OF Al-Mg-Si ALLOY SHEET AND Al-Mg-Si ALLOY SHEET, AND MANUFACTURING METHOD OF HEAT RADIATION MATERIAL AND HEAT RADIATION MATERIAL
US8828157B2 (en) 2003-12-18 2014-09-09 Showa Denko K.K. Method for producing shaped article of aluminum alloy, shaped aluminum alloy article and production system
JP5021199B2 (en) * 2004-10-25 2012-09-05 昭和電工株式会社 Horizontal continuous casting apparatus, horizontal continuous casting method, and aluminum alloy casting rod
JP4757602B2 (en) * 2004-10-25 2011-08-24 昭和電工株式会社 Continuous casting apparatus, continuous casting method, and aluminum alloy casting rod
JP4757603B2 (en) * 2004-10-25 2011-08-24 昭和電工株式会社 Horizontal continuous casting method and horizontal continuous casting apparatus
US7732059B2 (en) * 2004-12-03 2010-06-08 Alcoa Inc. Heat exchanger tubing by continuous extrusion
JPWO2008016169A1 (en) * 2006-08-01 2009-12-24 昭和電工株式会社 Aluminum alloy molded product manufacturing method, aluminum alloy molded product and production system
JP2010174337A (en) * 2009-01-30 2010-08-12 Honda Motor Co Ltd Al-Mg-Si-BASED ALLOY BILLET FOR FORGING
WO2011046196A1 (en) * 2009-10-16 2011-04-21 昭和電工株式会社 Process for producing brake piston
JP5431233B2 (en) * 2010-03-31 2014-03-05 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5819294B2 (en) * 2010-06-11 2015-11-24 昭和電工株式会社 Method for producing Al alloy joined body
JP5863626B2 (en) 2012-02-02 2016-02-16 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5872443B2 (en) * 2012-03-30 2016-03-01 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof
JP5931554B2 (en) * 2012-04-13 2016-06-08 昭和電工株式会社 Aluminum alloy material
JP6001981B2 (en) * 2012-09-27 2016-10-05 本田技研工業株式会社 Motorcycle undercarriage parts and motorcycle wheel manufacturing method
JP5901738B2 (en) * 2014-03-27 2016-04-13 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP6433380B2 (en) * 2014-06-27 2018-12-05 株式会社神戸製鋼所 Aluminum alloy rolled material
CN107385290B (en) * 2017-08-10 2018-10-30 广东和胜工业铝材股份有限公司 A kind of high-strength aluminum alloy and its preparation method and application with excellent oxidation effect
KR101979344B1 (en) * 2017-09-14 2019-08-28 한국기계연구원 Methods of treating aluminum alloy
MX2020007482A (en) 2018-01-12 2020-11-12 Accuride Corp Aluminum wheels and methods of manufacture.
JP7190324B2 (en) * 2018-10-19 2022-12-15 昭和電工株式会社 Metal continuous casting apparatus and continuous casting method
CN115255811A (en) * 2022-06-13 2022-11-01 力野精密工业(深圳)有限公司 Novel high-precision process for turning damping part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256880A (en) * 1993-03-08 1994-09-13 Honda Motor Co Ltd Aluminum alloy cast member for forging
JPH07145440A (en) * 1993-11-22 1995-06-06 Mitsubishi Alum Co Ltd Aluminum alloy forging stock
JP3684313B2 (en) * 1998-08-25 2005-08-17 株式会社神戸製鋼所 High-strength, high-toughness aluminum alloy forgings for automotive suspension parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494578A (en) * 2017-04-06 2019-11-22 新布里萨什肯联铝业 Improved motor vehicle body construction package manufacturing method
CN110494578B (en) * 2017-04-06 2021-09-24 新布里萨什肯联铝业 Improved motor vehicle body structure assembly manufacturing method

Also Published As

Publication number Publication date
JP2002294383A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP4768925B2 (en) Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
JP2697400B2 (en) Aluminum alloy for forging
JP2008223108A (en) Forged material of aluminum alloy and manufacturing method therefor
WO2005075692A1 (en) Aluminum alloy for producing high performance shaped castings
JP5758402B2 (en) Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
JP2006322032A (en) Aluminum alloy for semi-solid casting, and aluminum-alloy casting and its manufacturing method
TW201435092A (en) High strength aluminum-magnesium-silicon alloy and production process thereof
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP4511156B2 (en) Aluminum alloy manufacturing method and aluminum alloy, rod-shaped material, sliding part, forged molded product and machined molded product manufactured thereby
JP5081791B2 (en) Manufacturing method of automobile parts
KR100703130B1 (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
JP5435371B2 (en) Aluminum alloy ingot for plastic working
JP5360729B2 (en) Method of manufacturing aluminum alloy ingot for plastic working, method of manufacturing aluminum alloy plastic processed product, aluminum alloy plastic processed product
KR20060135990A (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
JP5622159B2 (en) Aluminum alloy plastic processed product
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
JP2021070871A (en) Aluminum alloy forging and production method thereof
JPH083675A (en) Aluminum alloy for forging
JP2021143375A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4768925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

EXPY Cancellation because of completion of term