JP2021143375A - Aluminum alloy forged article and method for producing aluminum alloy forged article - Google Patents

Aluminum alloy forged article and method for producing aluminum alloy forged article Download PDF

Info

Publication number
JP2021143375A
JP2021143375A JP2020042009A JP2020042009A JP2021143375A JP 2021143375 A JP2021143375 A JP 2021143375A JP 2020042009 A JP2020042009 A JP 2020042009A JP 2020042009 A JP2020042009 A JP 2020042009A JP 2021143375 A JP2021143375 A JP 2021143375A
Authority
JP
Japan
Prior art keywords
mass
treatment step
aluminum alloy
forged product
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020042009A
Other languages
Japanese (ja)
Inventor
卓也 荒山
Takuya Arayama
卓也 荒山
雄人 富田
Yuto Tomita
雄人 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2020042009A priority Critical patent/JP2021143375A/en
Publication of JP2021143375A publication Critical patent/JP2021143375A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an aluminum alloy forged article that has excellent mechanical property at ordinary temperature and is less likely to generate recrystallized grain, and to provide a method for producing the same.SOLUTION: An aluminum alloy forged article 1 of the present invention contains Cu: 0.15 mass% to 1.0 mass%, Mg: 0.6 mass% to 1.15 mass%, Si: 0.95 mass% to 1.25 mass%, Mn: 0.4 mass% to 0.6 mass%, Fe: 0.2 mass% to 0.3 mass%, Cr: 0.11 mass% to 0.25 mass%, Ti: 0.012 mass% to 0.035 mass%, and B by 0.0001 mass% to 0.03 mass%, the Zn content is 0.25 mass% or less, the Zr content is 0.05 mass% or less, the balance is Al and unavoidable impurities, and, in the cross-section structure of the forged article 1, the fraction of Mg2Si phase present in the visual field area of 500×500 μm2 as measured by SEM-EBSD method is 0.1% or less.SELECTED DRAWING: Figure 1

Description

本発明は、常温における機械的特性に優れたAl−Mg−Si系アルミニウム合金鍛造品の製造方法に関する。 The present invention relates to a method for producing an Al-Mg-Si based aluminum alloy forged product having excellent mechanical properties at room temperature.

近年、アルミニウム合金は、軽量性を生かして各種製品の構造部材としての用途が拡大しつつある。例えば、自動車の足廻りやバンパー部品は今まで高張力鋼が用いられてきたが、近年は高強度アルミニウム合金材が用いられるようになっている。自動車部品、例えば、サスペンション部品は専ら鉄系材料が使用されていたが、軽量化を主目的としてアルミニウム材料またはアルミニウム合金材料に置き換えられることが多くなってきた。 In recent years, aluminum alloys are being used more and more as structural members of various products by taking advantage of their light weight. For example, high-strength steel has been used for undercarriage and bumper parts of automobiles, but in recent years, high-strength aluminum alloy materials have been used. Iron-based materials have been used exclusively for automobile parts, for example, suspension parts, but they are often replaced with aluminum materials or aluminum alloy materials mainly for the purpose of weight reduction.

これらの自動車部品では優れた耐食性、高強度および優れた加工性が要求されることから、アルミニウム合金材料としてAl−Mg−Si系合金、特にA6061が多用されている。そして、このような自動車部品は強度の向上を図るため、アルミニウム合金材料を加工用素材として塑性加工の1つである鍛造加工を行って製造される。 Since these automobile parts are required to have excellent corrosion resistance, high strength and excellent workability, Al—Mg—Si based alloys, especially A6061 are often used as aluminum alloy materials. Then, in order to improve the strength, such automobile parts are manufactured by forging, which is one of plastic working, using an aluminum alloy material as a processing material.

また、最近ではコストダウンを図る必要があるため、押出をせずに鋳造部材をそのまま素材として鍛造した後、T6処理して得たサスペンション部品が実用化され始めており、さらなる軽量化を目的として、従来のA6061に代わる高強度合金の開発が進められている(下記特許文献1〜3参照)。 In addition, recently, since it is necessary to reduce costs, suspension parts obtained by forging cast members as they are without extrusion and then performing T6 treatment have begun to be put into practical use. Development of high-strength alloys to replace the conventional A6061 is underway (see Patent Documents 1 to 3 below).

特開平5−59477号公報Japanese Unexamined Patent Publication No. 5-59477 特開平5−247574号公報Japanese Unexamined Patent Publication No. 5-247574 特開平6−256880号公報Japanese Unexamined Patent Publication No. 6-256880

しかし、上述したAl−Mg−Si系の高強度合金は、鍛造および熱処理工程において加工組織が再結晶し、粗大結晶粒が発生することにより、十分な高強度を得ることができないという問題があった。そのため、粗大再結晶粒生成防止のため、Zrを添加して再結晶を防止しているものがある(例えば上記特許文献1および2)。 However, the above-mentioned Al-Mg-Si-based high-strength alloy has a problem that a sufficiently high strength cannot be obtained because the processed structure is recrystallized in the forging and heat treatment steps and coarse crystal grains are generated. rice field. Therefore, in order to prevent the formation of coarse recrystallized grains, Zr is added to prevent recrystallization (for example, Patent Documents 1 and 2 above).

しかしながら、Zrを添加することは、再結晶防止に効果があるものの、次のような問題点があった。 However, although the addition of Zr is effective in preventing recrystallization, it has the following problems.

(1)Zrの添加により、Al−Ti−B系合金の結晶粒微細化効果が弱められ、鋳塊自体の結晶粒が粗くなり、塑性加工後の加工品(鍛造品)の強度低下を招く。 (1) The addition of Zr weakens the grain refinement effect of the Al-Ti-B alloy, coarsens the grain of the ingot itself, and causes a decrease in the strength of the processed product (forged product) after plastic working. ..

(2)鋳塊自体の結晶粒微細化効果が弱められるため、鋳塊割れが発生し易くなり、内部欠陥が増加し、歩留まりが悪化する。 (2) Since the effect of grain refinement of the ingot itself is weakened, ingot cracks are likely to occur, internal defects increase, and the yield deteriorates.

(3)Zrは、Al−Ti−B系合金と化合物を形成し、合金溶湯を貯留する炉の底に化合物が堆積し、炉を汚染すると共に、製造した鋳塊においてもこれら化合物が鋳塊中に粗大に晶出し、強度を低下させる。 (3) Zr forms a compound with an Al—Ti—B based alloy, and the compound is deposited on the bottom of the furnace for storing the molten alloy, contaminating the furnace and at the same time, these compounds are also ingots produced. It crystallizes coarsely inside and reduces the strength.

このように、Zrの添加は、再結晶防止に効果があるものの、強度の安定性を維持することが困難であった。 As described above, although the addition of Zr is effective in preventing recrystallization, it has been difficult to maintain the stability of the strength.

本発明は、かかる技術的背景に鑑みてなされたものであって、常温における機械的特性に優れると共に、再結晶粒が発生し難いアルミニウム合金鍛造品およびその製造方法を提供することを目的とする。 The present invention has been made in view of such a technical background, and an object of the present invention is to provide an aluminum alloy forged product having excellent mechanical properties at room temperature and less likely to generate recrystallized grains, and a method for producing the same. ..

前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.

[1]Cu:0.15質量%〜1.0質量%、Mg:0.6質量%〜1.15質量%、Si:0.95質量%〜1.25質量%、Mn:0.4質量%〜0.6質量%、Fe:0.2質量%〜0.3質量%、Cr:0.11質量%〜0.25質量%、Ti:0.012質量%〜0.035質量%、Bを0.0001質量%〜0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金鍛造品であって、
前記鍛造品の断面組織において、SEM−EBSD法により測定される視野面積500×500μmに存在するMgSi相分率が0.1%以下であることを特徴とするアルミニウム合金鍛造品。
[1] Cu: 0.15% by mass to 1.0% by mass, Mg: 0.6% by mass to 1.15% by mass, Si: 0.95% by mass to 1.25% by mass, Mn: 0.4 Mass% to 0.6% by mass, Fe: 0.2% by mass to 0.3% by mass, Cr: 0.11% by mass to 0.25% by mass, Ti: 0.012% by mass to 0.035% by mass , B is contained in an amount of 0.0001% by mass to 0.03% by mass, the Zn content is 0.25% by mass or less, the Zr content is 0.05% by mass or less, and the balance is composed of Al and unavoidable impurities. It is an aluminum alloy forged product
An aluminum alloy forged product having an Mg 2 Si phase fraction of 0.1% or less present in a viewing area of 500 × 500 μm 2 measured by the SEM-EBSD method in the cross-sectional structure of the forged product.

[2]前項1に記載のアルミニウム合金鍛造品の製造方法であって、
溶湯を得る溶湯形成工程と、
前記溶湯形成工程で得られる溶湯を鋳造加工することにより鋳造品を得る鋳造工程と、
前記鋳造工程で得られる鋳造品に均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理工程後の鋳造品に鍛造加工を行って鍛造品を得る鍛造工程と、
前記鍛造工程で得られる鍛造品に溶体化処理を行う溶体化処理工程と、
前記溶体化処理工程後に焼き入れする焼き入れ処理工程と、
前記焼き入れ処理工程後の鍛造品に時効処理を行う時効処理工程とを含むことを特徴とするアルミニウム合金鍛造品の製造方法。
[2] The method for manufacturing an aluminum alloy forged product according to item 1 above.
The molten metal formation process to obtain the molten metal,
A casting step of obtaining a cast product by casting the molten metal obtained in the molten metal forming step, and
A homogenization heat treatment step of performing a homogenization heat treatment on the cast product obtained in the casting step, and a homogenization heat treatment step.
A forging step of forging a cast product after the homogenizing heat treatment step to obtain a forged product,
A solution treatment step of performing a solution treatment on the forged product obtained in the forging step, and a solution treatment step.
A quenching treatment step of quenching after the solution treatment step and a quenching treatment step.
A method for producing an aluminum alloy forged product, which comprises an aging treatment step of performing an aging treatment on the forged product after the quenching treatment step.

[3]前記均質化熱処理工程は前記鋳造工程で得られる鋳造品に370℃〜560℃の温度で4時間〜10時間保持する均質化熱処理を行い、
前記鍛造工程は前記均質化熱処理工程後の鋳造品に加熱温度450℃〜560℃で鍛造加工を行い、
前記溶体化処理工程は前記鍛造工程で得られる鍛造品に20℃〜500℃までの昇温速度が5.0℃/min以上で昇温させ、530℃〜560℃で0.3時間〜3時間以内保持する溶体化処理を行い、
前記焼き入れ処理工程は前記溶体化処理工程後5秒〜60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間水槽内で焼き入れを行い、
前記時効処理工程は前記焼き入れ処理工程後の鍛造品に180℃〜220℃の温度で0.5時間〜1.5時間加熱して時効処理を行うことを特徴とする前項2に記載のアルミニウム合金鍛造品の製造方法。
[3] In the homogenization heat treatment step, the cast product obtained in the casting step is subjected to a homogenization heat treatment in which the cast product is held at a temperature of 370 ° C. to 560 ° C. for 4 hours to 10 hours.
In the forging step, the cast product after the homogenizing heat treatment step is forged at a heating temperature of 450 ° C. to 560 ° C.
In the solution treatment step, the forged product obtained in the forging step is heated at a heating rate of 5.0 ° C./min or more from 20 ° C. to 500 ° C. at 530 ° C. to 560 ° C. for 0.3 hours to 3 Perform solution treatment to hold for less than an hour,
In the quenching treatment step, all the surfaces of the forged product come into contact with the quenching water within 5 to 60 seconds after the solution treatment step, and quenching is performed in the water tank for more than 5 minutes and within 40 minutes.
The aluminum according to item 2 above, wherein the aging treatment step is performed by heating the forged product after the quenching treatment step at a temperature of 180 ° C. to 220 ° C. for 0.5 hours to 1.5 hours. Manufacturing method of forged alloy products.

[1]の発明によれば、各元素の含有量が所定の範囲内に設定され、前記鍛造品の断面組織において、SEM−EBSD法により測定される視野面積500×500μmに存在するMgSi相分率が0.1%以下であることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を提供することができる。 According to the invention of [1], the content of each element is set within a predetermined range, and Mg 2 present in a field area of 500 × 500 μm 2 measured by the SEM-EBSD method in the cross-sectional structure of the forged product. When the Si phase fraction is 0.1% or less, it is possible to provide an aluminum alloy forged product which has excellent mechanical properties at room temperature and is less likely to generate recrystallized grains.

[2]の発明によれば、溶湯形成工程、鋳造工程、均質化熱処理工程、鍛造工程、溶体化処理工程、焼き入れ処理工程および時効処理工程が含まれることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。 According to the invention of [2], the molten metal forming step, the casting step, the homogenizing heat treatment step, the forging step, the solution treatment step, the quenching treatment step and the aging treatment step are included, so that the mechanical properties are excellent at room temperature. It is possible to produce an aluminum alloy forged product which has a above-mentioned structure and is less likely to generate recrystallized grains.

[3]の発明によれば、各処理工程における処理条件が所定の範囲内に設定されることで、より一層、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。 According to the invention of [3], by setting the treatment conditions in each treatment step within a predetermined range, the aluminum alloy has further excellent mechanical properties at room temperature and is less likely to generate recrystallized grains. Forged products can be manufactured.

図1は本発明の製造方法で得られるアルミニウム合金鍛造品を示す斜視図である。FIG. 1 is a perspective view showing an aluminum alloy forged product obtained by the production method of the present invention.

本発明のアルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法について説明する。 The aluminum alloy forged product and the method for producing the aluminum alloy forged product of the present invention will be described.

なお、以下に示す実施形態は例示に過ぎず、本発明はこれらの例示した実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲において適宜変更することができる。 The embodiments shown below are merely examples, and the present invention is not limited to these illustrated embodiments, and can be appropriately modified without departing from the technical idea of the present invention.

本実施形態のアルミニウム合金鍛造品1は、Cu:0.15質量%〜1.0質量%、Mg:0.6質量%〜1.15質量%、Si:0.95質量%〜1.25質量%、Mn:0.4質量%〜0.6質量%、Fe:0.2質量%〜0.3質量%、Cr:0.11質量%〜0.25質量%、Ti:0.012質量%〜0.035質量%、Bを0.0001質量%〜0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下で、残部がAl及び不可避不純物からなり、この鍛造品1の断面組織において、SEM−EBSD法により測定される視野面積500×500μmに存在するMgSi相分率が0.1%以下であることを特徴とする。 The aluminum alloy forged product 1 of the present embodiment has Cu: 0.15% by mass to 1.0% by mass, Mg: 0.6% by mass to 1.15% by mass, and Si: 0.95% by mass to 1.25% by mass. Mass%, Mn: 0.4% by mass to 0.6% by mass, Fe: 0.2% by mass to 0.3% by mass, Cr: 0.11% by mass to 0.25% by mass, Ti: 0.012 It contains mass% to 0.035 mass%, B 0.0001 mass% to 0.03 mass%, Zn content of 0.25 mass% or less, Zr content of 0.05 mass% or less, and the balance. Is composed of Al and unavoidable impurities, and in the cross-sectional structure of this forged product 1, the Mg 2 Si phase fraction present in the field area of 500 × 500 μm 2 measured by the SEM-EBSD method is 0.1% or less. It is a feature.

このように、各元素の含有量が所定の範囲内に設定され、鍛造品1の断面組織において、SEM−EBSD法により測定される視野面積500×500μmに存在するMgSi相分率が0.1%以下であることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を提供することができる。 In this way, the content of each element is set within a predetermined range, and in the cross-sectional structure of the forged product 1, the Mg 2 Si phase fraction present in the field area of 500 × 500 μm 2 measured by the SEM-EBSD method is determined. When it is 0.1% or less, it is possible to provide an aluminum alloy forged product which has excellent mechanical properties at room temperature and is less likely to generate recrystallized grains.

本実施形態のアルミニウム合金鍛造品1の製造方法は、溶湯形成工程、鋳造工程、均質化熱処理工程、鍛造工程、溶体化処理工程、焼き入れ処理工程および時効処理工程をこの順に行うことで、例えば図1に示すようなアルミニウム合金鍛造品1を製造するものである。以下、各工程について説明する。 The method for producing the aluminum alloy forged product 1 of the present embodiment is, for example, by performing a molten metal forming step, a casting step, a homogenizing heat treatment step, a forging step, a solution treatment step, a quenching treatment step, and an aging treatment step in this order, for example. The aluminum alloy forged product 1 as shown in FIG. 1 is manufactured. Hereinafter, each step will be described.

(溶湯形成工程)
溶湯形成工程は、原料を溶解して組成を調製したアルミニウム合金溶湯を得る工程である。
(Melted metal forming process)
The molten metal forming step is a step of melting a raw material to obtain an aluminum alloy molten metal having a prepared composition.

本実施形態では、Cu:0.15質量%〜1.0質量%、Mg:0.6質量%〜1.15質量%、Si:0.95質量%〜1.25質量%、Mn:0.4質量%〜0.6質量%、Fe:0.2質量%〜0.3質量%、Cr:0.11質量%〜0.25質量%、Ti:0.012質量%〜0.035質量%、Bを0.0001質量%〜0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなる6000系アルミニウム合金の溶湯を得る(調製する)。このアルミニウム合金の溶湯においては、Zn含有率が0質量%(Zn非含有)であってもよく、またZr含有率が0質量%(Zr非含有)であってもよい。 In this embodiment, Cu: 0.15% by mass to 1.0% by mass, Mg: 0.6% by mass to 1.15% by mass, Si: 0.95% by mass to 1.25% by mass, Mn: 0. .4% by mass to 0.6% by mass, Fe: 0.2% by mass to 0.3% by mass, Cr: 0.11% by mass to 0.25% by mass, Ti: 0.012% by mass to 0.035 It contains 0.0001% by mass to 0.03% by mass of B and 0.0001% by mass, Zn content is 0.25% by mass or less, Zr content is 0.05% by mass or less, and the balance is Al and unavoidable impurities. A molten metal of a 6000 series aluminum alloy consisting of the above is obtained (prepared). In the molten aluminum alloy, the Zn content may be 0% by mass (Zn-free), or the Zr content may be 0% by mass (Zr-free).

(鋳造工程)
鋳造工程は、溶湯形成工程で得られたアルミニウム合金溶湯を鋳造加工することによって鋳造品を得る工程である。
(Casting process)
The casting step is a step of obtaining a cast product by casting the molten aluminum alloy obtained in the molten metal forming step.

鋳造品を得るための連続鋳造法としては、特に限定されるものではないが、様々な公知の連続鋳造法(垂直型連続鋳造法、水平型連続鋳造法等)を挙げることができる。垂直型連続鋳造法としては、ホットトップ鋳造法等が用いられる。以下では、連続鋳造法の一例としてホットトップ鋳造装置を用いたホットトップ鋳造法によってアルミニウム合金連続鋳造材を製造する場合(即ちアルミニウム合金の溶湯をホットトップ鋳造法によって連続鋳造してアルミニウム合金連続鋳造材を製造する場合)について簡単に説明する。 The continuous casting method for obtaining a cast product is not particularly limited, and various known continuous casting methods (vertical continuous casting method, horizontal continuous casting method, etc.) can be mentioned. As the vertical continuous casting method, a hot top casting method or the like is used. In the following, as an example of the continuous casting method, a case where an aluminum alloy continuous casting material is manufactured by a hot top casting method using a hot top casting device (that is, a molten aluminum alloy is continuously cast by a hot top casting method to continuously cast an aluminum alloy. (When manufacturing materials) will be briefly described.

ホットトップ鋳造装置は、モールド(鋳型)、溶湯受容器(ヘッダー)等を具備している。モールドは、その内部に充満された冷却水により冷却されている。受容器は、一般に耐火物製であり、モールドの上側に設置されている。受容器内のアルミニウム合金溶湯は、冷却されたモールド内に下方向に注入されると共に、モールドから噴出された冷却水により所定の冷却速度で冷却されて凝固し、更に水槽内の水(その温度:約20℃)に浸されて完全に凝固する。これにより棒状等の長尺な連続鋳造材が得られる。 The hot-top casting apparatus includes a mold, a molten metal receiver (header), and the like. The mold is cooled by the cooling water filled in the mold. Receptors are generally made of refractory and are located above the mold. The molten aluminum alloy in the receiver is injected downward into the cooled mold, cooled by the cooling water ejected from the mold at a predetermined cooling rate and solidified, and further water in the water tank (its temperature). : Immerse in (about 20 ° C) to completely solidify. As a result, a long continuous cast material such as a rod can be obtained.

(均質化熱処理工程)
均質化熱処理工程は、鋳造工程で得られた鋳造材に対して均質化熱処理を行うことによって、凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出および準安定相の平衡相への変化を行う工程である。
(Homogenization heat treatment process)
In the homogenization heat treatment step, the cast material obtained in the casting step is subjected to homogenization heat treatment to homogenize the microsegregation generated by solidification, precipitate hypersaturated solid-dissolved elements, and transfer the semi-stable phase to the equilibrium phase. This is the process of making changes.

本実施形態では、鋳造工程で得られた鋳造品を370℃〜560℃の温度で、4時間〜10時間保持する均質化熱処理を行う。この温度範囲で均質化熱処理を施すことにより、鋳塊の均質化と溶質原子の溶入化が十分になされるため、その後の時効処理によって必要とされる十分な強度が得られるものとなる。 In the present embodiment, a homogenizing heat treatment is performed in which the cast product obtained in the casting step is held at a temperature of 370 ° C. to 560 ° C. for 4 hours to 10 hours. By performing the homogenization heat treatment in this temperature range, the ingot is sufficiently homogenized and the solute atoms are sufficiently incorporated, so that sufficient strength required by the subsequent aging treatment can be obtained.

(鍛造工程)
鍛造工程は、均質化熱処理工程後に得られた鍛造用ビレットを加熱し、プレス機で圧力をかけて金型成型する工程である。
(Forging process)
The forging step is a step of heating the forging billet obtained after the homogenizing heat treatment step and applying pressure with a press to mold the die.

本実施形態では、均質化熱処理後の鋳塊に加熱温度450℃〜560℃で鍛造加工を行って鍛造品(例えば自動車のサスペンションアーム部品等)を得る。この時、鍛造素材の鍛造の開始温度は450℃〜560℃とする。開始温度が450℃未満になると変形抵抗が高くなって十分な加工ができなくなり、560℃を超えると鍛造割れや共晶融解等の欠陥が発生し易くなるためである。 In the present embodiment, the ingot after the homogenization heat treatment is forged at a heating temperature of 450 ° C. to 560 ° C. to obtain a forged product (for example, a suspension arm part of an automobile). At this time, the starting temperature for forging the forging material is 450 ° C to 560 ° C. This is because if the starting temperature is less than 450 ° C., the deformation resistance becomes high and sufficient processing cannot be performed, and if it exceeds 560 ° C., defects such as forging cracks and eutectic melting are likely to occur.

(溶体化処理工程)
溶体化処理工程は、鍛造工程で導入された歪みを緩和し、溶質元素の固溶を行う工程である。
(Solution processing process)
The solution treatment step is a step of alleviating the strain introduced in the forging step and solid-solving the solute element.

本実施形態では、鍛造工程後の鍛造品の温度を20℃まで下げた後、室温になってから加熱を始め、20℃〜500℃までの温度範囲全域において昇温速度が常に5.0℃/min以上で昇温させ、530℃〜560℃で0.3時間〜3時間以内保持することで溶体化処理を行う。 In the present embodiment, after the temperature of the forged product after the forging step is lowered to 20 ° C., heating is started after the temperature reaches room temperature, and the temperature rising rate is always 5.0 ° C. over the entire temperature range from 20 ° C. to 500 ° C. The solution treatment is performed by raising the temperature at / min or more and holding the temperature at 530 ° C. to 560 ° C. for 0.3 hours to 3 hours or less.

昇温速度が5.0℃/min未満ではMgSiが粗大析出してしまい、また、処理温度が530℃未満では溶体化が進まず時効析出による高強度化を実現できなくなり、処理温度が560℃を超えると溶質元素の固溶がより促進されるものの、共晶融解や再結晶が生じ易くなるためである。 If the temperature rise rate is less than 5.0 ° C./min, Mg 2 Si is coarsely precipitated, and if the treatment temperature is less than 530 ° C., solution hardening does not proceed and high strength due to aging precipitation cannot be realized, resulting in a treatment temperature of less than 5.0 ° C./min. This is because if the temperature exceeds 560 ° C., the solid solution of the solute element is further promoted, but eutectic melting and recrystallization are likely to occur.

(焼き入れ処理工程)
焼き入れ処理工程は、溶体化処理工程によって得られた固溶状態を急速に冷却せしめて過飽和固溶体を形成する熱処理である。
(Quenching process)
The quenching treatment step is a heat treatment in which the solid solution state obtained by the solution treatment step is rapidly cooled to form a supersaturated solid solution.

本実施形態では、溶体化処理後5秒〜60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間、水槽内で焼き入れ処理を行う。 In the present embodiment, all the surfaces of the forged product come into contact with the quenching water within 5 to 60 seconds after the solution treatment, and the quenching treatment is performed in the water tank for more than 5 minutes and within 40 minutes.

(時効処理工程)
時効処理工程は、アルミニウム合金鍛造品を比較的低温で加熱保持し過飽和に固溶した元素を析出させて、適度な硬さを付与するための熱処理である。
(Aging process)
The aging treatment step is a heat treatment for heating and holding an aluminum alloy forged product at a relatively low temperature to precipitate elements that are supersaturated and solid-solved to impart appropriate hardness.

本実施形態では、焼き入れ処理工程後の鍛造品に180℃〜220℃の温度で0.5時間〜1.5時間加熱して時効処理を行う。処理温度が180℃未満あるいは処理時間が0.5時間未満では引張強度を向上させるMgSi系析出物が十分に成長できなくなり、処理温度が220℃を超えるとMgSi系析出物が粗大になり過ぎて引張強度を十分に向上させることができないためである。 In the present embodiment, the forged product after the quenching treatment step is heated at a temperature of 180 ° C. to 220 ° C. for 0.5 hours to 1.5 hours for aging treatment. If the treatment temperature is less than 180 ° C or the treatment time is less than 0.5 hours, the Mg 2 Si-based precipitate that improves the tensile strength cannot grow sufficiently, and if the treatment temperature exceeds 220 ° C, the Mg 2 Si-based precipitate becomes coarse. This is because the tensile strength cannot be sufficiently improved.

上述したように、本発明のアルミニウム合金鍛造品の製造方法は各元素の含有量が所定の範囲内に設定され、各処理工程における処理条件が所定の範囲内に設定されることで、より一層、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。 As described above, in the method for producing an aluminum alloy forged product of the present invention, the content of each element is set within a predetermined range, and the treatment conditions in each treatment step are set within a predetermined range. It is possible to produce an aluminum alloy forged product which has excellent mechanical properties at room temperature and is less likely to generate recrystallized grains.

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to those of these examples.

<実施例1〜13>
表1に示す合金組成のアルミニウム合金で直径54mmの断面円形の連続鋳造材を作製し、表1に示す条件で均質化熱処理を行った。得られた鋳造材を表1に示す条件で鍛造加工を行って図1に示す自動車のサスペンションアーム部品の形状に塑性加工した。
<Examples 1 to 13>
A continuous cast material having a diameter of 54 mm and a circular cross section was prepared from an aluminum alloy having an alloy composition shown in Table 1, and homogenized heat treatment was performed under the conditions shown in Table 1. The obtained cast material was forged under the conditions shown in Table 1 and plastically worked into the shape of the suspension arm component of the automobile shown in FIG.

次に、表1に示す条件で昇温、溶体化処理を行った後、表1に示す焼き入れ処理を行い、その後時効処理を行ってアルミニウム合金鍛造品1を得た。 Next, the temperature was raised and solution treatment was performed under the conditions shown in Table 1, then the quenching treatment shown in Table 1 was performed, and then the aging treatment was performed to obtain an aluminum alloy forged product 1.

<比較例1〜9>
表2に示す合金組成のアルミニウム合金で直径54mmの断面円形の連続鋳造材を作製し、表2に示す条件で均質化熱処理を行った。得られた鋳造材を表2に示す条件で鍛造加工を行って図1に示す自動車のサスペンションアーム部品の形状に塑性加工した。
<Comparative Examples 1 to 9>
A continuous cast material having a diameter of 54 mm and a circular cross section was prepared from an aluminum alloy having an alloy composition shown in Table 2, and homogenized heat treatment was performed under the conditions shown in Table 2. The obtained cast material was forged under the conditions shown in Table 2 and plastically worked into the shape of the suspension arm component of the automobile shown in FIG.

次に、表2に示す条件で昇温、溶体化処理を行った後、表2に示す焼き入れ処理を行い、その後時効処理を行ってアルミニウム合金鍛造品1を得た。 Next, the temperature was raised and solution treatment was performed under the conditions shown in Table 2, then the quenching treatment shown in Table 2 was performed, and then the aging treatment was performed to obtain an aluminum alloy forged product 1.

また、焼き入れ開始は鍛造品全体が水についた時点とする。 Quenching starts when the entire forged product is submerged in water.

Figure 2021143375
Figure 2021143375

Figure 2021143375
Figure 2021143375

上記のようにして得られた各アルミニウム合金鍛造品について下記評価法に基づいて評価を行った。 Each aluminum alloy forged product obtained as described above was evaluated based on the following evaluation method.

<常温での耐力評価法>
得られたアルミニウム合金鍛造品から、標点間距離25.4mm、平行部直径6.4mmの引張試験片を採取し、該引張試験片の常温(25℃)引張試験を行うことによって、耐力を測定し、下記判定基準に基づいて評価した。
<Proof stress evaluation method at room temperature>
From the obtained forged aluminum alloy, a tensile test piece having a distance between reference points of 25.4 mm and a parallel portion diameter of 6.4 mm is collected, and the tensile test piece is subjected to a normal temperature (25 ° C.) tensile test to obtain proof stress. It was measured and evaluated based on the following criteria.

(判定基準)
「〇」…常温での耐力が370MPa以上である
「△」…常温での耐力が360MPa以上370MPa未満である
「×」…常温での耐力が360MPa未満である。
(criterion)
“○”… The proof stress at room temperature is 370 MPa or more “Δ”… The proof stress at room temperature is 360 MPa or more and less than 370 MPa “×”… The proof stress at room temperature is less than 360 MPa.

表1から明らかなように、本発明の製造方法で製造された実施例1〜13のアルミニウム合金鍛造品は、常温での耐力に優れていた。 As is clear from Table 1, the aluminum alloy forged products of Examples 1 to 13 produced by the production method of the present invention were excellent in proof stress at room temperature.

これに対し、表2に示すように、本発明の規定範囲を逸脱する比較例1〜9のアルミニウム合金鍛造品では、常温での耐力に劣っていた。 On the other hand, as shown in Table 2, the forged aluminum alloys of Comparative Examples 1 to 9 outside the specified range of the present invention were inferior in yield strength at room temperature.

<アルミニウム合金鍛造品のSEM−EBSD法により得られるMgSi相分率の測定法>
各アルミニウム合金鍛造品についてSEM−EBSD装置を用いてMgSi相分率測定を行った。なお、鍛造品より10mm×10mm×厚さ2mmの板状体を採取して、これをSEM−EBSD測定試料として用いた。測定条件は、加速電圧を15kV、測定ピッチを0.5μm/px、解析領域を500×500μmおよび粒界定義角を15°で実施した。これらの結果を表1および2に示した。
<Measurement method of Mg 2 Si phase fraction obtained by SEM-EBSD method of forged aluminum alloy>
The Mg 2 Si phase fraction was measured for each aluminum alloy forged product using an SEM-EBSD device. A plate-shaped body having a size of 10 mm × 10 mm × thickness 2 mm was collected from the forged product and used as an SEM-EBSD measurement sample. The measurement conditions were an acceleration voltage of 15 kV, a measurement pitch of 0.5 μm / px, an analysis region of 500 × 500 μm 2, and a grain boundary definition angle of 15 °. These results are shown in Tables 1 and 2.

表1に示すように、実施例1〜13ではMgSi相分率が0.1%以下であった。 As shown in Table 1, in Examples 1 to 13, the Mg 2 Si phase fraction was 0.1% or less.

これに対し、表2に示すように、比較例1〜9ではMgSi相分率が0.1%よりも大きくなっていた。 On the other hand, as shown in Table 2, in Comparative Examples 1 to 9, the Mg 2 Si phase fraction was larger than 0.1%.

本発明に係るアルミニウム合金鍛造品の製造方法で得られた鍛造品は、常温における機械的強度に優れているので、例えば、自動車のサスペンションアーム部品等の足廻り材として好適に用いられるが、特にこのような用途に限定されるものではない。 The forged product obtained by the method for producing an aluminum alloy forged product according to the present invention has excellent mechanical strength at room temperature, and is therefore suitably used as a suspension material for, for example, suspension arm parts of automobiles. It is not limited to such applications.

1: アルミニウム合金鍛造品 1: Aluminum alloy forged product

Claims (3)

Cu:0.15質量%〜1.0質量%、Mg:0.6質量%〜1.15質量%、Si:0.95質量%〜1.25質量%、Mn:0.4質量%〜0.6質量%、Fe:0.2質量%〜0.3質量%、Cr:0.11質量%〜0.25質量%、Ti:0.012質量%〜0.035質量%、Bを0.0001質量%〜0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金鍛造品であって、
前記鍛造品の断面組織において、SEM−EBSD法により測定される視野面積500×500μmに存在するMgSi相分率が0.1%以下であることを特徴とするアルミニウム合金鍛造品。
Cu: 0.15% by mass to 1.0% by mass, Mg: 0.6% by mass to 1.15% by mass, Si: 0.95% by mass to 1.25% by mass, Mn: 0.4% by mass to 0.6% by mass, Fe: 0.2% by mass to 0.3% by mass, Cr: 0.11% by mass to 0.25% by mass, Ti: 0.012% by mass to 0.035% by mass, B Forged aluminum alloy containing 0.0001% by mass to 0.03% by mass, Zn content of 0.25% by mass or less, Zr content of 0.05% by mass or less, and the balance consisting of Al and unavoidable impurities. It ’s a product,
An aluminum alloy forged product having an Mg 2 Si phase fraction of 0.1% or less present in a viewing area of 500 × 500 μm 2 measured by the SEM-EBSD method in the cross-sectional structure of the forged product.
請求項1に記載のアルミニウム合金鍛造品の製造方法であって、
溶湯を得る溶湯形成工程と、
前記溶湯形成工程で得られる溶湯を鋳造加工することにより鋳造品を得る鋳造工程と、
前記鋳造工程で得られる鋳造品に均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理工程後の鋳造品に鍛造加工を行って鍛造品を得る鍛造工程と、
前記鍛造工程で得られる鍛造品に溶体化処理を行う溶体化処理工程と、
前記溶体化処理工程後に焼き入れする焼き入れ処理工程と、
前記焼き入れ処理工程後の鍛造品に時効処理を行う時効処理工程とを含むことを特徴とするアルミニウム合金鍛造品の製造方法。
The method for manufacturing an aluminum alloy forged product according to claim 1.
The molten metal formation process to obtain the molten metal,
A casting step of obtaining a cast product by casting the molten metal obtained in the molten metal forming step, and
A homogenization heat treatment step of performing a homogenization heat treatment on the cast product obtained in the casting step, and a homogenization heat treatment step.
A forging step of forging a cast product after the homogenizing heat treatment step to obtain a forged product,
A solution treatment step of performing a solution treatment on the forged product obtained in the forging step, and a solution treatment step.
A quenching treatment step of quenching after the solution treatment step and a quenching treatment step.
A method for producing an aluminum alloy forged product, which comprises an aging treatment step of performing an aging treatment on the forged product after the quenching treatment step.
前記均質化熱処理工程は前記鋳造工程で得られる鋳造品に370℃〜560℃の温度で4時間〜10時間保持する均質化熱処理を行い、
前記鍛造工程は前記均質化熱処理工程後の鋳造品に加熱温度450℃〜560℃で鍛造加工を行い、
前記溶体化処理工程は前記鍛造工程で得られる鍛造品に20℃〜500℃までの昇温速度が5.0℃/min以上で昇温させ、530℃〜560℃で0.3時間〜3時間以内保持する溶体化処理を行い、
前記焼き入れ処理工程は前記溶体化処理工程後5秒〜60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間水槽内で焼き入れを行い、
前記時効処理工程は前記焼き入れ処理工程後の鍛造品に180℃〜220℃の温度で0.5時間〜1.5時間加熱して時効処理を行うことを特徴とする請求項2に記載のアルミニウム合金鍛造品の製造方法。
In the homogenization heat treatment step, the cast product obtained in the casting step is subjected to a homogenization heat treatment in which the cast product is held at a temperature of 370 ° C. to 560 ° C. for 4 hours to 10 hours.
In the forging step, the cast product after the homogenizing heat treatment step is forged at a heating temperature of 450 ° C. to 560 ° C.
In the solution treatment step, the forged product obtained in the forging step is heated at a heating rate of 5.0 ° C./min or more from 20 ° C. to 500 ° C. at 530 ° C. to 560 ° C. for 0.3 hours to 3 Perform solution treatment to hold for less than an hour,
In the quenching treatment step, all the surfaces of the forged product come into contact with the quenching water within 5 to 60 seconds after the solution treatment step, and quenching is performed in the water tank for more than 5 minutes and within 40 minutes.
The second aspect of claim 2, wherein the aging treatment step is performed by heating the forged product after the quenching treatment step at a temperature of 180 ° C. to 220 ° C. for 0.5 hours to 1.5 hours. Manufacturing method of forged aluminum alloy products.
JP2020042009A 2020-03-11 2020-03-11 Aluminum alloy forged article and method for producing aluminum alloy forged article Pending JP2021143375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020042009A JP2021143375A (en) 2020-03-11 2020-03-11 Aluminum alloy forged article and method for producing aluminum alloy forged article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042009A JP2021143375A (en) 2020-03-11 2020-03-11 Aluminum alloy forged article and method for producing aluminum alloy forged article

Publications (1)

Publication Number Publication Date
JP2021143375A true JP2021143375A (en) 2021-09-24

Family

ID=77767185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042009A Pending JP2021143375A (en) 2020-03-11 2020-03-11 Aluminum alloy forged article and method for producing aluminum alloy forged article

Country Status (1)

Country Link
JP (1) JP2021143375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139960A1 (en) * 2022-01-18 2023-07-27 株式会社レゾナック Aluminum alloy forged product, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139960A1 (en) * 2022-01-18 2023-07-27 株式会社レゾナック Aluminum alloy forged product, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
JP6420553B2 (en) Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
TW201435092A (en) High strength aluminum-magnesium-silicon alloy and production process thereof
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143370A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143375A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
US20220195573A1 (en) Aluminum alloy forging and method of producing the same
JP2021143373A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
US20210123123A1 (en) Aluminum alloy forging and production method thereof
JP5081791B2 (en) Manufacturing method of automobile parts
JP2021143368A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALUMINUM ALLOY FORGED PRODUCT
CN114150237A (en) High-toughness structural part precision forming aluminum alloy material suitable for new energy automobile and preparation method thereof
JP2022093991A (en) Aluminum alloy forging and method for producing the same
JP2022093985A (en) Aluminum alloy forging and method for producing the same
JP2022093987A (en) Aluminum alloy forging and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304