JP4534573B2 - Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof - Google Patents

Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof Download PDF

Info

Publication number
JP4534573B2
JP4534573B2 JP2004128040A JP2004128040A JP4534573B2 JP 4534573 B2 JP4534573 B2 JP 4534573B2 JP 2004128040 A JP2004128040 A JP 2004128040A JP 2004128040 A JP2004128040 A JP 2004128040A JP 4534573 B2 JP4534573 B2 JP 4534573B2
Authority
JP
Japan
Prior art keywords
temperature
alloy plate
aluminum alloy
slab
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004128040A
Other languages
Japanese (ja)
Other versions
JP2005307300A (en
Inventor
丕植 趙
和宏 塩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004128040A priority Critical patent/JP4534573B2/en
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to CA002563789A priority patent/CA2563789A1/en
Priority to EP05734276A priority patent/EP1737995A1/en
Priority to KR1020067020240A priority patent/KR20060135849A/en
Priority to CNB2005800124198A priority patent/CN100519797C/en
Priority to PCT/JP2005/007657 priority patent/WO2005103313A1/en
Priority to US11/578,908 priority patent/US20070217943A1/en
Priority to TW094112865A priority patent/TWI310789B/en
Publication of JP2005307300A publication Critical patent/JP2005307300A/en
Application granted granted Critical
Publication of JP4534573B2 publication Critical patent/JP4534573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Description

本発明は、高温高速成形性に優れたAl‐Mg合金板およびその製造方法に関する。   The present invention relates to an Al—Mg alloy plate excellent in high-temperature high-speed formability and a method for producing the same.

Al-Mg合金は、軽く、強度および耐食性が優れることから、自動車板材など加工成形材として提案されている。しかし、室温における伸びが低いため、冷間加工では複雑な形状に成形できないという問題がある。このため、熱間加工時の再結晶を抑制して結晶粒を微細化し、例えば500〜550℃の高温域で数100%の伸びを生じるようにしたAl−Mg系超塑性合金が開発され、各種の用途に適用されている。   Al—Mg alloys are proposed as processed and formed materials such as automobile plate materials because they are light and have excellent strength and corrosion resistance. However, since the elongation at room temperature is low, there is a problem that it cannot be formed into a complicated shape by cold working. For this reason, an Al-Mg superplastic alloy is developed that suppresses recrystallization during hot working and refines the crystal grains, for example, causes an elongation of several hundred percent in a high temperature range of 500 to 550 ° C. It is applied to various uses.

従来のAl−Mg系超塑性合金は、10−4〜10−3/secという遅い成形速度(歪速度)において超塑性を発現するものであり、長時間を要するため通常のプレス成形に適用するには生産性が低くて実用的でない。 A conventional Al-Mg superplastic alloy exhibits superplasticity at a slow molding speed (strain rate) of 10 −4 to 10 −3 / sec, and takes a long time, so that it is applied to normal press molding. Is not practical because of low productivity.

そこで、熱間加工を行なう高温域で例えば歪速度0.1/sec以上という、従来の100倍以上の高速成形でも十分な伸びが得られ、且つ成形時のキャビティ生成を抑制できるアルミニウム合金板が開発されてきた。   Therefore, an aluminum alloy plate capable of obtaining sufficient elongation even at a high speed forming of 100 times or more of the conventional method such as a strain rate of 0.1 / sec or more in a high temperature region where hot working is performed, and capable of suppressing cavity generation during forming. Has been developed.

例えば、特許文献1(特開平10−259441)には、Mg:3.0〜8.0%(重量%、以下同じ)、Cu:0.21〜0.50%、Ti:0.001〜0.1%を含有し、不純物としてのFeを0.06%以下、Siを0.06%以下に制限し、残部Alおよび不純物から成り、平均結晶粒径が20〜200μmであることを特徴とする高速超塑性成形性に優れ且つ成形後のキャビティの少ないアルミニウム合金板が提唱されている。   For example, in Patent Document 1 (Japanese Patent Laid-Open No. 10-259441), Mg: 3.0 to 8.0% (% by weight, hereinafter the same), Cu: 0.21 to 0.50%, Ti: 0.001 to 0.1% is contained, Fe as impurities is limited to 0.06% or less, Si is limited to 0.06% or less, the balance is composed of Al and impurities, and the average crystal grain size is 20 to 200 μm. An aluminum alloy plate having excellent high-speed superplastic formability and having few cavities after forming has been proposed.

しかし、上記従来技術においては、最終的に得られる製品板において良好な高温高速成形性を達成するには、半連続鋳造による大型スラブ鋳造、面削、均質化処理、熱間圧延、冷間圧延、中間焼鈍、最終圧延、最終焼鈍と多くの工程を経る必要がありコスト高となるという問題があった。   However, in the above prior art, in order to achieve good high-temperature high-speed formability in the final product plate, large slab casting by semi-continuous casting, face grinding, homogenization treatment, hot rolling, cold rolling In other words, there is a problem in that the cost is high because many processes such as intermediate annealing, final rolling, and final annealing are required.

更に、大型スラブは鋳造時の冷却速度が1〜十数℃/sec程度と遅いため、Al-Fe-SiやAlMnなどの晶出物が数十μm以上と粗大になり、均質化処理、熱間圧延、冷間圧延、焼鈍などの処理を経た後の最終的な製品板においても、まだ10μm以上の粗大な晶出物が残存しており、高温成形時に晶出物とマトリックスとの界面での剥離によるキャビティが発生し易い。その対策として、Fe、Siの含有量を0.1%以下に抑える方法が採用されているが、それには高価な高純度の地金を用いる必要があるため、結局コストが上昇せざるを得ないという問題があった。
特開平10−259441号公報(特許請求の範囲)
Furthermore, since the cooling rate during casting of a large slab is as slow as 1 to tens of degrees centigrade / sec, the crystallized material such as Al—Fe—Si and Al 6 Mn becomes coarser to several tens μm or more and is homogenized. In the final product plate after the processes such as hot rolling, cold rolling, annealing, etc., coarse crystallized material of 10 μm or more still remains, and the crystallized material and the matrix are formed during high temperature forming. Cavities are likely to occur due to peeling at the interface. As a countermeasure, a method of suppressing the content of Fe and Si to 0.1% or less is adopted. However, since it is necessary to use expensive high-purity metal, the cost is inevitably increased. There was no problem.
Japanese Patent Laid-Open No. 10-259441 (Claims)

本発明は、上記従来の問題を解消し、コスト上昇を伴う高純度地金を用いる必要なく、高温高速成形性を高め且つ成形後のキャビティを低減したアルミニウム合金板およびその製造方法を提供することを目的とする。   The present invention provides an aluminum alloy plate that eliminates the above-described conventional problems, improves high-temperature high-speed formability, and reduces cavities after forming, and a method for manufacturing the same, without the need to use high-purity metal that increases costs. With the goal.

上記の目的を達成するために、本発明によれば、
質量%で、
Mg:2.0〜8.0%、
Si:0.06〜0.2%、
Fe:0.1〜0.5%、
Mn:0.1〜0.5%、および
残部Alおよび不可避的不純物から成り、
円相当径1〜5μmの金属間化合物の密度が5000個/mm以上、平均結晶粒径20μm以下であることを特徴とする高温高速成形性に優れ且つ成形後のキャビティの少ないアルミニウム合金板が提供される。
In order to achieve the above object, according to the present invention,
% By mass
Mg: 2.0-8.0%,
Si: 0.06 to 0.2%,
Fe: 0.1 to 0.5%,
Mn: 0.1 to 0.5%, and the balance Al and inevitable impurities,
An aluminum alloy plate having excellent high-temperature high-speed formability and having few cavities after forming, wherein the density of an intermetallic compound having an equivalent circle diameter of 1 to 5 μm is 5000 / mm 2 or more and an average crystal grain size is 20 μm or less. Provided.

上記の目的を達成するために、本発明によれば更に、本発明のアルミニウム合金板の製造方法であって、
本発明のアルミニウム合金板の組成を有する合金溶湯を準備し、
上記合金溶湯を双ベルト鋳造機により鋳造時冷却速度20℃〜150℃/secで鋳造して厚さ5〜15mmのスラブとし、
引き続き上記スラブをコイルとして巻き取り、
上記コイルから解き出したスラブを冷延率70〜96%で冷間圧延し、
得られた冷間圧延板を5℃/sec以上の昇温速度で420〜500℃に加熱する焼鈍を行なう、
ことを特徴とする高温高速成形性に優れ且つ成形後のキャビティの少ないアルミニウム合金板の製造方法が提供される。
In order to achieve the above object, according to the present invention, there is further provided a method for producing an aluminum alloy plate of the present invention, comprising:
Preparing a molten alloy having the composition of the aluminum alloy sheet of the present invention;
The alloy melt is cast by a twin belt casting machine at a cooling rate of 20 ° C. to 150 ° C./sec during casting to form a slab having a thickness of 5 to 15 mm,
Continue to wind the slab as a coil,
The slab unrolled from the coil is cold-rolled at a cold rolling rate of 70 to 96%,
The obtained cold-rolled sheet is annealed to 420 to 500 ° C. at a temperature rising rate of 5 ° C./sec or more,
There is provided a method for producing an aluminum alloy plate which is excellent in high-temperature high-speed formability and has few cavities after forming.

本発明のアルミニウム合金板は、化学組成およびミクロ組織を規定範囲として金属間化合物を均一微細に分散させたことにより、高純度地金を必要とせずに結晶粒の微細化により高温高速成形性を高めると共に成形後のキャビティを低減した。
また、本発明の製造方法は、双ベルト鋳造により高い鋳造時冷却速度を確保し、冷間圧延において冷間圧延率を規制し、冷間圧延後の焼鈍条件を限定したことにより、上記金属間化合物の均一微細分散とそれによる結晶粒の微細化を実現した。
本発明のアルミニウム合金板を使用することにより、高品位の成形製品が得られ、また成形時間が短縮され生産性が改善される。
The aluminum alloy sheet of the present invention has high-temperature high-speed formability by refining crystal grains without the need for high-purity bare metal by uniformly dispersing fine intermetallic compounds with a specified range of chemical composition and microstructure. Increased and reduced the cavity after molding.
Further, the production method of the present invention secures a high cooling rate during casting by twin belt casting, regulates the cold rolling rate in cold rolling, and limits the annealing conditions after cold rolling. A uniform fine dispersion of the compound and a refinement of the crystal grain were realized.
By using the aluminum alloy plate of the present invention, a high-quality molded product can be obtained, the molding time is shortened, and the productivity is improved.

本発明において合金の化学組成を限定した理由を説明する。本明細書中で化学組成を表す「%」は特に断らない限り「質量%」の意味である。   The reason why the chemical composition of the alloy is limited in the present invention will be described. In the present specification, “%” representing the chemical composition means “% by mass” unless otherwise specified.

〔Mg:2.0〜8.0%〕
Mgは強度を高める元素であり、この効果を発現するにはMg含有量を2.0%以上とする必要がある。ただしMg含有量が8.0%を超えると薄スラブの鋳造性が低下する。したがって、Mg含有量は2.0〜8.0%に限定する。鋳造性を重視する場合には、Mg含有量の上限を更に制限して6.0%以下とすることが好ましい。
[Mg: 2.0-8.0%]
Mg is an element that increases the strength, and in order to exhibit this effect, the Mg content needs to be 2.0% or more. However, if the Mg content exceeds 8.0%, the castability of the thin slab decreases. Therefore, the Mg content is limited to 2.0 to 8.0%. When emphasizing castability, it is preferable to further limit the upper limit of the Mg content to 6.0% or less.

〔Si:0.06〜0.2%〕
Siは、鋳造時にAl−Fe−Si系やMgSi等の金属間化合物の微細粒子として晶出し、冷間圧延後の焼鈍の際に再結晶の核生成サイトとして機能する。したがって、これら金属間化合物の粒子個数が多いほど生成する再結晶核が多くなり、その結果、多数の微細な再結晶粒が形成される。また、金属間化合物の微細粒子は、生成した再結晶粒の粒界をピン止めして結晶粒の合体による成長を抑制し、微細な最結晶粒を安定に維持する。これらの効果を発現するにはSi含有量を0.06%以上とする必要がある。ただしSi含有量が0.2%を超えると晶出する金属間化合物が粗大化する傾向が強くなり、高温変形の際にキャビティの発生が助長される。したがって、Si含有量は0.06〜0.2%に限定する。好ましい範囲は0.07〜0.15%である。
一般にSiは下記Feと同様に不純物元素として排除すべき対象とされるが、本発明においては上記のように再結晶粒を微細化させるために逆に適量のSiを存在させる。従って、高純度地金を必要とせず、それに伴うコスト上昇も生じない。
[Si: 0.06 to 0.2%]
Si is crystallized as fine grains of Al-Fe-Si-based or Mg 2 Si intermetallic compound, such as during casting and functions as a nucleation site for recrystallization during annealing after cold rolling. Therefore, the larger the number of particles of these intermetallic compounds, the more recrystallized nuclei that are generated. As a result, a large number of fine recrystallized grains are formed. In addition, the fine particles of the intermetallic compound pin the grain boundaries of the recrystallized grains that are generated, suppress the growth due to the coalescence of the crystal grains, and keep the finest crystal grains stable. In order to develop these effects, the Si content needs to be 0.06% or more. However, if the Si content exceeds 0.2%, the tendency for the intermetallic compound to crystallize to become coarse increases, and the generation of cavities is promoted during high-temperature deformation. Therefore, the Si content is limited to 0.06 to 0.2%. A preferable range is 0.07 to 0.15%.
In general, Si is an object to be excluded as an impurity element as in the case of Fe described below. However, in the present invention, an appropriate amount of Si is present on the contrary in order to refine the recrystallized grains as described above. Therefore, high-purity bullion is not required, and the associated cost increase does not occur.

〔Fe:0.1〜0.5%〕
Feは、鋳造時にAl−Fe−Si系等の金属間化合物の微細粒子として晶出し、冷間圧延後の焼鈍の際に再結晶の核生成サイトとして機能する。したがって、これら金属間化合物の粒子個数が多いほど生成する再結晶核が多くなり、その結果、多数の微細な再結晶粒が形成される。また、金属間化合物の微細粒子は、生成した再結晶粒の粒界をピン止めして結晶粒の合体による成長を抑制し、微細な最結晶粒を安定に維持する。この効果を発現するにはFe含有量を0.1%以上とする必要がある。ただしFe含有量が0.5%を超えると晶出する金属間化合物が粗大化する傾向が強くなり、高温変形の際にキャビティの発生が助長される。したがって、Fe含有量は0.1〜0.5%に限定する。好ましい範囲は0.1〜0.3%である。
一般にFeは上記Siと同様に不純物元素として排除すべき対象とされるが、本発明においては上記のように再結晶粒を微細化させるために逆に適量のSiを存在させる。従って、高純度地金を必要とせず、それに伴うコスト上昇も生じない。
[Fe: 0.1-0.5%]
Fe crystallizes as fine particles of an intermetallic compound such as Al—Fe—Si during casting and functions as a nucleation site for recrystallization during annealing after cold rolling. Therefore, the larger the number of particles of these intermetallic compounds, the more recrystallized nuclei that are generated. As a result, a large number of fine recrystallized grains are formed. In addition, the fine particles of the intermetallic compound pin the grain boundaries of the recrystallized grains that are generated, suppress the growth due to the coalescence of the crystal grains, and keep the finest crystal grains stable. In order to exhibit this effect, the Fe content needs to be 0.1% or more. However, if the Fe content exceeds 0.5%, the tendency for the intermetallic compound to crystallize to become coarse increases, and the generation of cavities is promoted during high-temperature deformation. Therefore, the Fe content is limited to 0.1 to 0.5%. A preferable range is 0.1 to 0.3%.
In general, Fe is an object to be excluded as an impurity element as in the case of Si. However, in the present invention, an appropriate amount of Si is conversely present in order to refine the recrystallized grains as described above. Therefore, high-purity bullion is not required, and the associated cost increase does not occur.

〔Mn:0.1〜0.5%〕
Mnは、再結晶粒を微細化させる元素である。この効果を発現するにはMn含有量を0.1%以上とする必要がある。ただしMn含有量が0.5%を超えると粗大なAl−(Fe・Mn)−Si系が形成され、高温変形の際にキャビティの発生が助長される。したがって、Mn含有量は0.1〜0.5%に限定する。特にキャビティ発生防止を重視する場合には、Mn含有量の上限を更に制限して0.3%とすることが好ましい。
[Mn: 0.1 to 0.5%]
Mn is an element that refines the recrystallized grains. In order to exhibit this effect, the Mn content needs to be 0.1% or more. However, if the Mn content exceeds 0.5%, a coarse Al— (Fe · Mn) —Si system is formed, and the generation of cavities is promoted during high temperature deformation. Therefore, the Mn content is limited to 0.1 to 0.5%. In particular, when emphasis is placed on preventing the generation of cavities, it is preferable to further limit the upper limit of the Mn content to 0.3%.

〔任意成分のCu:0.1〜0.5%〕
本発明においては、アルミニウム合金板の強度向上のためにCuを0.1〜0.5%の範囲で添加することができる。強化作用を得るにはCu添加量を0.1%以上とする必要がある。ただしCu添加量が0.5%を超えると鋳造性が低下する。鋳造性を重視する場合には、Cu添加量の上限を更に制限して0.3%以下とすることが好ましい。
[Cu of optional components: 0.1 to 0.5%]
In the present invention, Cu can be added in the range of 0.1 to 0.5% in order to improve the strength of the aluminum alloy plate. In order to obtain a strengthening effect, the Cu addition amount needs to be 0.1% or more. However, when Cu addition amount exceeds 0.5%, castability will fall. When emphasizing castability, it is preferable to further limit the upper limit of the Cu addition amount to 0.3% or less.

〔任意成分のZr、Cr:0.1〜0.4%〕
本発明においては、再結晶粒の微細化を補助するためにZr、Crの少なくとも1種をそれぞれ0.1〜0.4%の範囲で添加することができる。Zr、Crは、再結晶粒を微細化させる元素である。この効果を発現するにはZr、Crのいずれも添加量を0.1%以上とする必要がある。ただし、これらの添加量が0.4%を超えると鋳造時に粗大な金属間化合物が形成され、高温変形の際にキャビティの発生が助長される。特にキャビティ発生防止を重視する場合には、添加量の上限を更に制限して0.2%以下とすることが好ましい。
[Zr and Cr as optional components: 0.1 to 0.4%]
In the present invention, at least one of Zr and Cr can be added in the range of 0.1 to 0.4% in order to assist the refinement of recrystallized grains. Zr and Cr are elements that refine the recrystallized grains. In order to exhibit this effect, it is necessary that the addition amount of both Zr and Cr be 0.1% or more. However, if the amount of addition exceeds 0.4%, a coarse intermetallic compound is formed during casting, and the generation of cavities is promoted during high-temperature deformation. In particular, when emphasis is placed on preventing the generation of cavities, it is preferable to further limit the upper limit of the addition amount to 0.2% or less.

〔その他の元素〕
本発明においては、鋳造組織を微細化するためにTiを0.001〜0.15%の範囲で添加することができる。この効果を発現するにはTi添加量を0.001%以上とする必要がある。ただし、Ti添加量が0.15%を超えるとTiAl等の粗大な化合物が生成し、高温での成形性が低下し、キャビティ発生も助長される。好ましい範囲は0.006〜0.10%である。
[Other elements]
In the present invention, Ti can be added in the range of 0.001 to 0.15% in order to refine the cast structure. In order to exhibit this effect, it is necessary to make Ti addition amount 0.001% or more. However, when the Ti addition amount exceeds 0.15%, a coarse compound such as TiAl 3 is generated, the moldability at high temperature is lowered, and the generation of cavities is promoted. A preferable range is 0.006 to 0.10%.

次に、本発明において合金板の組織を限定した理由を説明する。
〔円相当径1〜5μmの金属間化合物の密度が5000/mm以上〕
本発明は、微細な金属間化合物粒子を(1)再結晶核発生サイトおよび(2)再結晶粒の粒界ピン止め手段として利用して、冷間圧延後の焼鈍により微細な再結晶粒を生成させる。これにより得られた細粒組織が高温高速変形時に高い延性を発現することにより、高温高速成形性が高まる。
Next, the reason why the structure of the alloy plate is limited in the present invention will be described.
[The density of an intermetallic compound having an equivalent circle diameter of 1 to 5 μm is 5000 / mm 2 or more]
The present invention uses fine intermetallic compound particles as (1) recrystallization nucleation sites and (2) grain boundary pinning means of recrystallized grains, and fine recrystallized grains are obtained by annealing after cold rolling. Generate. The fine-grained structure thus obtained exhibits high ductility during high-temperature high-speed deformation, thereby increasing high-temperature high-speed moldability.

上記の効果を得るためには、円相当径1〜5μmの金属間化合物が5000/mm以上の密度で存在する必要がある。金属間化合物としては、既に述べたように、鋳造時にAl−(Fe・Mn)−Si系、MgSi、AlMn等の金属間化合物が晶出する。これらの金属間化合物が上記(1)(2)の効果を発現するには円相当径が1〜5μmであることが必要である。円相当径1μm未満では粒子が小さすぎて上記(1)(2)の効果が無い。逆に、5μmを超えると高温高速成形時にキャビティが発生し易くなり、成形後の強度および延性が低下する。
上記サイズ範囲の金属間化合物が5000/mm以上の密度で存在する必要がある。密度が5000/mm未満であると、焼鈍時の再結晶粒径が20μmを超えてしまい、高温変形時の伸びが低下する。
In order to obtain the above effect, an intermetallic compound having an equivalent circle diameter of 1 to 5 μm needs to be present at a density of 5000 / mm 2 or more. As already described, intermetallic compounds such as Al— (Fe · Mn) —Si, Mg 2 Si, Al 6 Mn, etc. crystallize out as the intermetallic compound. In order for these intermetallic compounds to exhibit the effects (1) and (2) above, the equivalent circle diameter needs to be 1 to 5 μm. If the equivalent circle diameter is less than 1 μm, the particles are too small to achieve the effects (1) and (2). Conversely, if it exceeds 5 μm, cavities are likely to occur during high-temperature high-speed molding, and the strength and ductility after molding are reduced.
The intermetallic compound in the above size range needs to be present at a density of 5000 / mm 2 or more. If the density is less than 5000 / mm 2 , the recrystallized grain size during annealing exceeds 20 μm, and the elongation during high-temperature deformation is reduced.

〔平均結晶粒径20μm以下〕
本発明の合金板は、平均結晶粒径を20μm以下とする。平均結晶粒径が20μmを超えると高温変形時の伸びが低下する。
[Average crystal grain size of 20 μm or less]
The alloy plate of the present invention has an average crystal grain size of 20 μm or less. When the average crystal grain size exceeds 20 μm, the elongation at high temperature deformation decreases.

本発明の製造方法の諸条件を限定した理由を説明する。
〔双ベルト鋳造により厚さ5〜15mmのスラブを鋳造し、コイルの巻き取る〕
双ベルト鋳造法は、上下に対面する一対の水冷回転ベルトの間隙に一端から溶湯を注湯し、ベルト面からの冷却によって溶湯を凝固させてスラブとし、形成されたスラブをベルト間隙の他端から引き出してコイル状に巻き取る連続鋳造方法である。
The reason why the conditions of the production method of the present invention are limited will be described.
[Casting 5-15mm thick slab by twin belt casting and winding coil]
In the double belt casting method, molten metal is poured from one end into a gap between a pair of water-cooled rotating belts facing up and down, and the molten metal is solidified by cooling from the belt surface to form a slab, and the formed slab is used as the other end of the belt gap. It is a continuous casting method that is drawn out from a coil and wound into a coil.

本発明においては、この双ベルト鋳造法により鋳造するスラブの厚さは5〜15mmとする。この範囲の厚さであれば、板厚中央部でも大きな凝固速度を確保できるので、均一な鋳造組織を形成し易く、同時に、本発明の組成であれば粗大な金属間化合物の生成の抑制が容易にでき、最終的な製品板における再結晶粒の平均粒径を20μm以下に制御することが容易になる。上記のスラブ厚さ範囲は、双ベルト鋳造の実行面からも適当である。すなわち、スラブ厚さが5mm未満であると、単位時間当りに鋳造機を通過するアルミニウム合金量が少なくなり過ぎて、双ベルト鋳造自体が困難になる。スラブ厚さが15mmを超えると、コイルとして巻き取ることが困難になる。   In the present invention, the thickness of the slab cast by this twin belt casting method is 5 to 15 mm. If the thickness is within this range, a large solidification rate can be ensured even in the central portion of the plate thickness, so that it is easy to form a uniform cast structure. This makes it easy to control the average grain size of the recrystallized grains in the final product plate to 20 μm or less. The above slab thickness range is also appropriate from the aspect of twin belt casting. That is, if the slab thickness is less than 5 mm, the amount of aluminum alloy passing through the casting machine per unit time becomes too small, and twin belt casting itself becomes difficult. When the slab thickness exceeds 15 mm, it becomes difficult to wind it as a coil.

〔鋳造時冷却速度20〜150℃/sec〕
本発明の製造方法においては、双ベルト鋳造により厚さ5〜15mmのスラブを鋳造する。その際に、本発明の合金において規定した円相当径1〜5μmの金属間化合物を5000個/mm以上の密度で晶出させるために、鋳造時のスラブ厚さ1/4における冷却速度を20〜150℃/secとする。本発明のアルミニウム合金は鋳造時にAl−(Fe・Mn)−Si系やMgSi等の金属間化合物が晶出する。冷却速度が20℃/sec未満であると、これら金属間化合物は粗大化して5μmを超えるものが増加し、逆に、冷却速度が150℃/secを超えると、上記金属間化合物は微細化して1μm未満のものが増加し、結局どちらの場合にも、円相当径1〜5μmの金属間化合物の密度が5000個/mm未満となり、最終焼鈍(CAL)時に再結晶の核が少なくなるため、再結晶粒が粗大化する。
[Cooling rate during casting 20 to 150 ° C / sec]
In the manufacturing method of the present invention, a slab having a thickness of 5 to 15 mm is cast by twin belt casting. At that time, in order to crystallize the intermetallic compound having an equivalent circle diameter of 1 to 5 μm defined in the alloy of the present invention at a density of 5000 pieces / mm 2 or more, the cooling rate at the slab thickness ¼ at the time of casting is set. 20 to 150 ° C./sec. In the aluminum alloy of the present invention, an intermetallic compound such as Al— (Fe · Mn) —Si or Mg 2 Si crystallizes during casting. When the cooling rate is less than 20 ° C./sec, these intermetallic compounds are coarsened and increase in excess of 5 μm. Conversely, when the cooling rate exceeds 150 ° C./sec, the intermetallic compounds are refined. Since the density of intermetallic compounds with an equivalent circle diameter of 1 to 5 μm is less than 5000 / mm 2 in both cases, the number of recrystallization nuclei decreases during the final annealing (CAL). The recrystallized grains become coarse.

〔冷延率70〜96%で冷間圧延する〕
冷間圧延による塑性加工により発生した転位の晶出物周囲への堆積が、最終焼鈍時の微細な再結晶組織を形成するために必須である。冷延率が70%未満であると、転位の蓄積が不十分になって微細な再結晶組織が得られない。冷延率が96%を超えると、冷間圧延中に耳割れが発生し、冷間圧延の実行が困難になる。
[Cold rolling at a cold rolling rate of 70 to 96%]
The deposition of dislocations generated by plastic working by cold rolling around crystallized substances is essential for forming a fine recrystallized structure during the final annealing. If the cold rolling rate is less than 70%, the accumulation of dislocations becomes insufficient and a fine recrystallized structure cannot be obtained. When the cold rolling rate exceeds 96%, ear cracks occur during cold rolling, making it difficult to perform cold rolling.

〔5℃/sec以上の昇温速度で420〜500℃に加熱する焼鈍を行なう〕
本発明においては冷間圧延後に最終焼鈍として上記の焼鈍を行なう。これは一般に連続焼鈍で行なうが、特にこれに限定する必要はない。
最終焼鈍の焼鈍温度は420〜500℃の範囲とする。420℃未満であると、再結晶に必要なエネルギーが不足するため、再結晶が不十分になり、微細な再結晶組織を得ることができない。しかし、500℃を超えると、再結晶粒径が20μmを超えてしまい、微細な再結晶組織が得られない。
[Annealing is performed at a temperature rising rate of 5 ° C./sec or more to 420 to 500 ° C.]
In the present invention, the above annealing is performed as the final annealing after cold rolling. This is generally performed by continuous annealing, but it is not necessary to limit to this.
The annealing temperature of final annealing shall be 420-500 degreeC. If it is lower than 420 ° C., the energy required for recrystallization is insufficient, so that recrystallization becomes insufficient and a fine recrystallized structure cannot be obtained. However, if it exceeds 500 ° C., the recrystallized grain size exceeds 20 μm, and a fine recrystallized structure cannot be obtained.

焼鈍温度までの昇温速度は5℃/sec以上とする。5℃/sec未満の速度でゆっくり昇温すると再結晶粒が粗大化してしまい、微細な再結晶組織が得られない。   The rate of temperature rise to the annealing temperature is 5 ° C / sec or more. When the temperature is raised slowly at a rate of less than 5 ° C./sec, the recrystallized grains become coarse and a fine recrystallized structure cannot be obtained.

最後に、本発明のアルミニウム合金板の成形加工は400〜550℃の温度で行なうことが好ましい。成形加工温度が400℃未満では十分な伸びが得られない。成形加工温度が550℃を超えると、結晶粒の粗大化が起き、更に本発明の範囲内で高Mg組成の合金では局部的な融解が発生して伸びが低下する。成形加工時の歪速度は0.1/sec以上が好ましい。歪速度が0.1/sec未満であると、成形加工中に結晶粒の粗大化が起きて伸びの低下を招く。   Finally, the forming process of the aluminum alloy plate of the present invention is preferably performed at a temperature of 400 to 550 ° C. If the molding temperature is less than 400 ° C., sufficient elongation cannot be obtained. When the forming temperature exceeds 550 ° C., the crystal grains become coarse, and within the range of the present invention, local melting occurs in the alloy having a high Mg composition, and the elongation decreases. The strain rate during molding is preferably 0.1 / sec or more. If the strain rate is less than 0.1 / sec, the crystal grains become coarse during the forming process, resulting in a decrease in elongation.

表1に示す組成のアルミニウム合金溶湯を双ベルト鋳造法で鋳造して、厚さ7〜9mmのスラブとした。各スラブを厚さ1mmまで冷間圧延し、450℃にて焼鈍後、JIS H7501に規定した試験片を切り出して、引張り試験後の伸びを測定した。さらに、破断サンプルの断面を研磨後、画像解析装置でキャビティの面積率(キャビティ率)を測定した。製造工程および特性を表2に示す。   A molten aluminum alloy having the composition shown in Table 1 was cast by a twin belt casting method to obtain a slab having a thickness of 7 to 9 mm. Each slab was cold-rolled to a thickness of 1 mm, annealed at 450 ° C., cut out a test piece defined in JIS H7501, and measured the elongation after a tensile test. Furthermore, after polishing the cross section of the broken sample, the cavity area ratio (cavity ratio) was measured with an image analyzer. The manufacturing process and characteristics are shown in Table 2.

Figure 0004534573
Figure 0004534573

Figure 0004534573
Figure 0004534573

双ベルト式鋳造機により鋳造した薄スラブを冷間圧延した板(本発明品、試料番号1〜7)については、表1の合金組成からも明らかなように、何れもFe0.1%以上、Si0.06%以上であるにも関わらず、最終板における円相当径1〜5μmの金属間化合物の密度が5000/mm以上であり、結晶粒径20μm以下であった。このため、引張温度500℃における伸びも200%以上と良好であり、高温引張後のキャビティ率も0.15〜0.27%の範囲内で1%以下と良好であった。 As is clear from the alloy composition of Table 1, for the plate (invention product, sample numbers 1 to 7) obtained by cold rolling a thin slab cast by a twin belt type casting machine, Fe 0.1% or more, Despite being 0.06% or more of Si, the density of the intermetallic compound having an equivalent circle diameter of 1 to 5 μm in the final plate was 5000 / mm 2 or more and the crystal grain size was 20 μm or less. For this reason, the elongation at a tensile temperature of 500 ° C. was good at 200% or more, and the cavity ratio after high-temperature tension was also good at 1% or less within the range of 0.15 to 0.27%.

双ロール鋳造機により鋳造した薄スラブを冷間圧延した板(比較例、試料番号8)については、鋳造時の冷却速度が300℃/secと比較的速いために、円相当径で1μm未満の非常に微細な晶出物が多数発生するため、最終板における円相当径1〜5μmの金属間化合物密度が5000/mm未満となり、結晶粒径20μm以上を超えて粗大となった。このため、高温引張後のキャビティ率は0.12%と比較的低く良好であったが、引張温度500℃における伸びは80%と劣っていた。 About the plate (Comparative example, sample number 8) which cold-rolled the thin slab cast by the twin roll caster, the cooling rate at the time of casting is relatively high at 300 ° C./sec. Therefore, the equivalent circle diameter is less than 1 μm. Since a lot of very fine crystallized substances were generated, the density of the intermetallic compound having an equivalent circle diameter of 1 to 5 μm in the final plate was less than 5000 / mm 2 , and the crystal grain size was larger than 20 μm and became coarse. For this reason, the cavity ratio after high-temperature tension was 0.12%, which was relatively low and good, but the elongation at a tensile temperature of 500 ° C. was inferior at 80%.

DC鋳造機により鋳造した通常のスラブを均熱処理、7mm厚まで熱間圧延後、冷間圧延した板(比較例、試料番号9)については、鋳造時の冷却速度が5℃/secと比較的遅いために、円相当径で5μmを超える晶出物が発生するため、最終板における円相当径1〜5μmの金属間化合物密度が5000/mm未満となり、結晶粒径20μmを超えてやや粗大となった。このため、高温引張後のキャビティ率は1.5%と高く劣っており、引張温度500℃における伸びは160%と劣っていた。 A normal slab cast by a DC casting machine is soaked, hot-rolled to a thickness of 7 mm, and then cold-rolled (Comparative Example, Sample No. 9) has a relatively low cooling rate of 5 ° C./sec during casting. Due to the slowness, a crystallized product having an equivalent circle diameter exceeding 5 μm is generated, so that the density of the intermetallic compound having an equivalent circle diameter of 1 to 5 μm in the final plate is less than 5000 / mm 2 and slightly larger than the crystal grain size of 20 μm. It became. For this reason, the cavity ratio after high-temperature tension was as poor as 1.5%, and the elongation at a tensile temperature of 500 ° C. was as poor as 160%.

双ベルト式鋳造機により鋳造した薄スラブを板厚2mmまで冷間圧延した後、350℃で中間焼鈍し、その後1mmまで冷間圧延した板(比較例、試料番号10)については、最終板における円相当径1〜5μmの金属間化合物密度が5000/mm以上であるが、最終焼鈍前の冷延率は70%未満で低いため、結晶粒径20μmを超えてやや粗大となった。引張温度500℃における伸びは200%未満と劣っていた。 A thin slab cast by a twin-belt casting machine is cold-rolled to a thickness of 2 mm, subjected to intermediate annealing at 350 ° C., and then cold-rolled to 1 mm (Comparative Example, Sample No. 10). Although the density of the intermetallic compound having an equivalent circle diameter of 1 to 5 μm is 5000 / mm 2 or more, the cold rolling rate before final annealing is low at less than 70%, so that the crystal grain size is slightly larger than 20 μm. The elongation at a tensile temperature of 500 ° C. was inferior to less than 200%.

双ベルト式鋳造機により鋳造した薄スラブを冷間圧延した板(比較例、試料番号11)については、最終板における円相当径1〜5μmの金属間化合物密度が5000/mm以上であり、結晶粒径20μm以下であった。しかし、引張り試験における引張温度が350℃と比較的低いため、伸びは200%未満と劣っていた。 For a plate obtained by cold rolling a thin slab cast by a twin belt type casting machine (Comparative Example, Sample No. 11), the density of an intermetallic compound having an equivalent circle diameter of 1 to 5 μm in the final plate is 5000 / mm 2 or more, The crystal grain size was 20 μm or less. However, since the tensile temperature in the tensile test was relatively low at 350 ° C., the elongation was inferior to less than 200%.

双ベルト式鋳造機により鋳造した薄スラブを冷間圧延した板(比較例、試料番号12)については、最終板における円相当径1〜5μmの金属間化合物密度が5000/mm以上であり、結晶粒径20μm以下であった。しかし、引張り試験における引張速度が0.01/secと比較的遅いため、高温引張後のキャビティ率も1.8%と劣っており、引張温度500℃における伸びは200%未満と劣っていた。 For a plate obtained by cold rolling a thin slab cast by a twin belt type casting machine (comparative example, sample number 12), the density of an intermetallic compound having a circle-equivalent diameter of 1 to 5 μm in the final plate is 5000 / mm 2 or more, The crystal grain size was 20 μm or less. However, since the tensile rate in the tensile test was relatively slow at 0.01 / sec, the cavity ratio after high-temperature tension was also inferior at 1.8%, and the elongation at a tensile temperature of 500 ° C. was inferior at less than 200%.

本発明によれば、高温高速成形性に優れ、且つ成形後のキャビティの少ないアルミニウム合金板およびその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in high temperature high speed moldability, and provides the aluminum alloy plate with few cavities after shaping | molding, and its manufacturing method.

Claims (4)

質量%で、
Mg:2.0〜8.0%、
Si:0.07〜0.15%、
Fe:0.1〜0.15%、
Mn:0.1〜0.5%、
残部Alおよび不可避的不純物から成り、
円相当径1〜5μmの金属間化合物の密度が6145〜7501個/mm2 平均結晶粒径10μm以下であり、
400〜550℃の温度領域において歪速度0.1〜1.0/secでの引張り変形時の伸びが200%以上であり、且つ上記引張り変形による破断後の断面におけるキャビティ率が0.27%以下である、
ことを特徴とする高温高速成形性に優れ且つ成形後のキャビティの少ないアルミニウム合金板。
% By mass
Mg: 2.0-8.0%,
Si: 0.07 to 0.15 %,
Fe: 0.1 to 0.15 %,
Mn: 0.1 to 0.5%
Consisting of the balance Al and inevitable impurities,
Circle equivalent diameter density of 1~5μm intermetallic compounds 6145-7501 pieces / mm 2, Ri mean grain size 10 [mu] m der less,
The elongation at the time of tensile deformation at a strain rate of 0.1 to 1.0 / sec in the temperature range of 400 to 550 ° C. is 200% or more, and the cavity ratio in the cross section after fracture due to the tensile deformation is 0.27%. Is
An aluminum alloy plate having excellent high-temperature and high-speed formability and having few cavities after forming.
請求項1において、更にCu:0.1〜0.5質量%を含有することを特徴とするアルミニウム合金板。   The aluminum alloy plate according to claim 1, further comprising Cu: 0.1 to 0.5 mass%. 請求項1または2において、更にZr:0.1〜0.4質量%をおよびCr:0.1〜0.4質量%の1種以上を含有することを特徴とするアルミニウム合金板。   The aluminum alloy plate according to claim 1 or 2, further comprising at least one of Zr: 0.1 to 0.4 mass% and Cr: 0.1 to 0.4 mass%. 請求項1からまでのいずれか1項記載のアルミニウム合金板の製造方法であって、
請求項1から3までのいずれか1項記載の組成の合金溶湯を準備し、
上記合金溶湯を双ベルト鋳造機により鋳造時冷却速度20〜150℃/secで鋳造して厚さ7〜9mmのスラブとし、
引き続き上記スラブをコイルとして巻き取り、
上記コイルから解き出したスラブを冷延率70〜96%で冷間圧延し、
得られた冷間圧延板を5℃/sec以上の昇温速度で420〜500℃に加熱する焼鈍を行なう、
ことを特徴とする高温高速成形に優れ且つ成形後のキャビティの少ないアルミニウム合金板の製造方法。
A method for producing an aluminum alloy plate according to any one of claims 1 to 3 ,
A molten alloy having a composition according to any one of claims 1 to 3 is prepared,
The alloy melt is cast by a twin belt casting machine at a cooling rate of 20 to 150 ° C./sec during casting to form a slab having a thickness of 7 to 9 mm.
Continue to wind the slab as a coil,
The slab unrolled from the coil is cold-rolled at a cold rolling rate of 70 to 96%,
The obtained cold-rolled sheet is annealed to 420 to 500 ° C. at a temperature rising rate of 5 ° C./sec or more,
A method for producing an aluminum alloy plate that is excellent in high-temperature high-speed forming and has few cavities after forming.
JP2004128040A 2004-04-23 2004-04-23 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof Expired - Fee Related JP4534573B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004128040A JP4534573B2 (en) 2004-04-23 2004-04-23 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
EP05734276A EP1737995A1 (en) 2004-04-23 2005-04-15 Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
KR1020067020240A KR20060135849A (en) 2004-04-23 2005-04-15 Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
CNB2005800124198A CN100519797C (en) 2004-04-23 2005-04-15 Al-Mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
CA002563789A CA2563789A1 (en) 2004-04-23 2005-04-15 Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
PCT/JP2005/007657 WO2005103313A1 (en) 2004-04-23 2005-04-15 Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
US11/578,908 US20070217943A1 (en) 2004-04-23 2005-04-15 Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same
TW094112865A TWI310789B (en) 2004-04-23 2005-04-22 Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128040A JP4534573B2 (en) 2004-04-23 2004-04-23 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005307300A JP2005307300A (en) 2005-11-04
JP4534573B2 true JP4534573B2 (en) 2010-09-01

Family

ID=34967021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128040A Expired - Fee Related JP4534573B2 (en) 2004-04-23 2004-04-23 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof

Country Status (8)

Country Link
US (1) US20070217943A1 (en)
EP (1) EP1737995A1 (en)
JP (1) JP4534573B2 (en)
KR (1) KR20060135849A (en)
CN (1) CN100519797C (en)
CA (1) CA2563789A1 (en)
TW (1) TWI310789B (en)
WO (1) WO2005103313A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996854B2 (en) * 2006-01-12 2012-08-08 古河スカイ株式会社 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP5135684B2 (en) * 2006-01-12 2013-02-06 日本軽金属株式会社 Aluminum alloy plate excellent in high-temperature high-speed formability and method for producing the same
WO2007080938A1 (en) 2006-01-12 2007-07-19 Furukawa-Sky Aluminum Corp. Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
JP4203508B2 (en) 2006-03-08 2009-01-07 株式会社神戸製鋼所 Method for producing aluminum alloy cast plate
JP2008024964A (en) * 2006-07-18 2008-02-07 Nippon Light Metal Co Ltd High-strength aluminum alloy sheet and producing method therefor
JP5050577B2 (en) * 2007-03-09 2012-10-17 日本軽金属株式会社 Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
KR20100108370A (en) * 2008-02-06 2010-10-06 니폰게이긴조쿠가부시키가이샤 Aluminum alloy sheet for motor vehicle and process for producing the same
CN102373353B (en) * 2010-08-05 2016-06-01 株式会社神户制钢所 The aluminium alloy plate having excellent formability
BR112014001471B1 (en) 2011-07-25 2022-05-24 Nippon Light Metal Company, Ltd. Aluminum alloy sheet and method of manufacturing same
JP5870791B2 (en) 2012-03-21 2016-03-01 日本軽金属株式会社 Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
CN102732755A (en) * 2012-06-19 2012-10-17 银邦金属复合材料股份有限公司 Aluminum alloy material for processing automobile water tank radiator water pipe
CA2882614C (en) * 2012-08-22 2018-01-02 Hydro Aluminium Rolled Products Gmbh Highly formable and intercrystalline corrosion-resistant almg strip
JP5741561B2 (en) * 2012-12-04 2015-07-01 日本軽金属株式会社 Pellicle frame and manufacturing method thereof
US11499209B2 (en) 2014-10-09 2022-11-15 Uacj Corporation Superplastic-forming aluminum alloy plate and production method therefor
CN115094282A (en) * 2015-06-05 2022-09-23 诺维尔里斯公司 High strength 5XXX aluminum alloys and methods of making the same
CN107354351A (en) * 2017-07-25 2017-11-17 杨仲彬 A kind of appearance member aluminium alloy and its processing method
CN110216166A (en) * 2019-06-21 2019-09-10 天津忠旺铝业有限公司 A kind of production method of television stand aluminium alloy strips
FR3122187B1 (en) 2021-04-21 2024-02-16 Constellium Neuf Brisach 5xxx aluminum sheets with high formability
CN114277290A (en) * 2021-12-28 2022-04-05 烟台南山学院 Aluminum alloy material, aluminum alloy hollow pipe and preparation method thereof
CN114480928A (en) * 2022-01-28 2022-05-13 全良金属(苏州)有限公司 High-strength aluminum plate for electronic product and manufacturing method thereof
CN116144996A (en) * 2023-01-06 2023-05-23 山东创新精密科技有限公司 Superplastic aluminum alloy material and preparation method thereof
CN117778794A (en) * 2024-02-28 2024-03-29 河南工学院 Die casting process of aluminum magnesium alloy automobile body panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207850A (en) * 1986-03-10 1987-09-12 Sky Alum Co Ltd Rolled aluminum alloy sheet for forming and its production
JPH04325659A (en) * 1991-04-26 1992-11-16 Sky Alum Co Ltd Manufacture of aluminum alloy hard sheet for forming excellent in tearing property
JPH08199272A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Aluminum alloy sheet and forming method
JP2001262263A (en) * 2000-03-23 2001-09-26 Kobe Steel Ltd Al-Mg SERIES Al ALLOY SHEET EXCELLENT IN FORMABILITY
JP2004076155A (en) * 2002-06-21 2004-03-11 Nippon Light Metal Co Ltd Aluminum alloy sheet having excellent seizure softening resistance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822363A (en) * 1981-07-30 1983-02-09 Mitsubishi Keikinzoku Kogyo Kk Preparation of ultra-plastic aluminum alloy plate
AT394580B (en) * 1989-11-30 1992-05-11 Austria Metall Aktienges METHOD FOR PRODUCING A SHEET FROM AN ALUMINUM ALLOY FOR COMPONENTS
DE69220164T2 (en) * 1991-09-26 1998-01-08 Kenji Higashi Superplastic material made of aluminum-based alloy and method of manufacture
JP2865499B2 (en) * 1991-09-26 1999-03-08 健 増本 Superplastic aluminum-based alloy material and method for producing superplastic alloy material
JPH07145441A (en) * 1993-01-27 1995-06-06 Toyota Motor Corp Superplastic aluminum alloy and its production
JP3145904B2 (en) * 1995-08-23 2001-03-12 住友軽金属工業株式会社 Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
FR2752244B1 (en) * 1996-08-06 1998-09-18 Pechiney Rhenalu PRODUCT FOR WELDED CONSTRUCTION IN ALMGMN ALLOY WITH IMPROVED CORROSION RESISTANCE
JPH10259441A (en) * 1997-03-19 1998-09-29 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
US6811625B2 (en) * 2002-10-17 2004-11-02 General Motors Corporation Method for processing of continuously cast aluminum sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207850A (en) * 1986-03-10 1987-09-12 Sky Alum Co Ltd Rolled aluminum alloy sheet for forming and its production
JPH04325659A (en) * 1991-04-26 1992-11-16 Sky Alum Co Ltd Manufacture of aluminum alloy hard sheet for forming excellent in tearing property
JPH08199272A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Aluminum alloy sheet and forming method
JP2001262263A (en) * 2000-03-23 2001-09-26 Kobe Steel Ltd Al-Mg SERIES Al ALLOY SHEET EXCELLENT IN FORMABILITY
JP2004076155A (en) * 2002-06-21 2004-03-11 Nippon Light Metal Co Ltd Aluminum alloy sheet having excellent seizure softening resistance

Also Published As

Publication number Publication date
CN1946861A (en) 2007-04-11
WO2005103313A1 (en) 2005-11-03
US20070217943A1 (en) 2007-09-20
JP2005307300A (en) 2005-11-04
TW200540280A (en) 2005-12-16
TWI310789B (en) 2009-06-11
CA2563789A1 (en) 2005-11-03
CN100519797C (en) 2009-07-29
KR20060135849A (en) 2006-12-29
EP1737995A1 (en) 2007-01-03

Similar Documents

Publication Publication Date Title
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP2008024964A (en) High-strength aluminum alloy sheet and producing method therefor
JP5233607B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP5135684B2 (en) Aluminum alloy plate excellent in high-temperature high-speed formability and method for producing the same
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP2002294383A (en) Aluminum alloy ingot for plastic working, method for producing aluminum alloy ingot for plastic working, method for producing aluminum alloy plastic worked product and aluminum alloy plastic worked product
CA2551599A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
JP3767492B2 (en) Method for producing aluminum flexible foil
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP4325126B2 (en) Aluminum alloy plate excellent in warm formability and manufacturing method thereof
JP4701998B2 (en) Aluminum alloy foil excellent in strength and rough skin resistance and method for producing the same
JP2008508421A (en) Aluminum alloy plate and manufacturing method thereof
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP3324444B2 (en) Manufacturing method of extruded aluminum material with excellent bending workability
WO2008078399A1 (en) Method of producing aluminum alloy sheet
JP5423822B2 (en) Aluminum alloy plate excellent in high-temperature high-speed formability and method for producing the same
JP2012107339A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH0978168A (en) Aluminum alloy sheet
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4534573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees